

Report No.: EED32L00066601 Page 1 of 81

TEST REPORT

Product Razor XV BT

Trade mark Walker's

GWP-NHE-BT Model/Type reference

Serial Number N/A

: EED32L00066601 **Report Number**

FCC ID : MV3-GWPNHE

Date of Issue : May 14, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Country Mate Technology Ltd 5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

ory Tested By: Compiled by: Jay Kevin lan Reviewed by: Mare Xm elm (a Kevin yang Ware xin Date: May 14, 2019

Report Sea Check No.: 3096378380

2 Version

Version No.	Date	Description
00	May 14, 2019	Original

Report No. : EED32L00066601 Page 3 of 81

3 Test Summary

Test Requirement	Test method	Result	
47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
	47 CFR Part 15 Subpart C Section 15.203/15.247 (c) 47 CFR Part 15 Subpart C Section 15.207 47 CFR Part 15 Subpart C Section 15.247 (b)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (b) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (b)(4)&TCB Exclusion List (7 July 2002) 47 CFR Part 15 Subpart C Section 15.247(d) 47 CFR Part 15 Subpart C Section	47 CFR Part 15 Subpart C Section 15.203/15.247 (c) 47 CFR Part 15 Subpart C Section 15.207 47 CFR Part 15 Subpart C Section 15.247 (b)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (b) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (a)(1) 47 CFR Part 15 Subpart C Section 15.247 (b)(4)&TCB Exclusion List (7 July 2002) 47 CFR Part 15 Subpart C Section 15.247(d) 48 CFR Part 15 Subpart C Section 15.247(d)	

Remark:

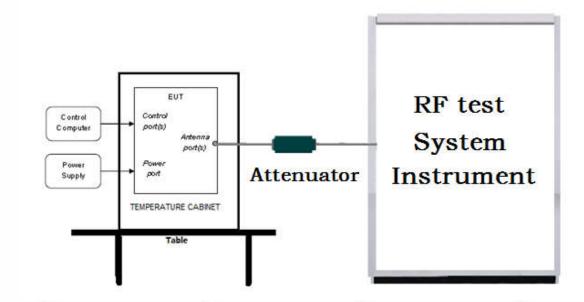
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Report No. : EED32L00066601 Page 4 of 81

4 Content

1 COVER PAGE				1
2 VERSION				2
3 TEST SUMMARY		•••••	•••••	3
4 CONTENT				4
5 TEST REQUIREME	NT			5
5.1 TEST SETUP				5
	cted test setup			
	ed Emissions test setup			
	cted Emissions test setup			
	ENT			
	ATION			
	TIONRIPTION OF EUT			
	FICATION OF EUTFICATION SUBJECTIVE TO THIS			
	SUPPORT UNITS			
	STANDARDS			
	FROM STANDARD CONDITIONS			
	TION REQUESTED BY THE CUS			
	JNCERTAINTY (95% CONFIDEN	A. W. J.		
7 EQUIPMENT LIST		••••••		10
8 RADIO TECHNICAL	REQUIREMENTS SPECIF	ICATION		13
Appendix A): 20c	dB Occupied Bandwidth		2450	14
Appendix B): Car	rrier Frequency Separation			18
	ell Time			
	pping Channel Number			
	nducted Peak Output Power			
	nd-edge for RF Conducted E Conducted Spurious Emissi			
	eudorandom Frequency Hop			
	enna Requirement			
	Power Line Conducted Emis			
	stricted bands around fundar			
	diated Spurious Emissions			
PHOTOGRAPHS OF	TEST SETUP			74
PHOTOGRAPHS OF	EUT CONSTRUCTIONAL D	ETAILS.	(0)	77



Report No. : EED32L00066601 Page 5 of 81

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

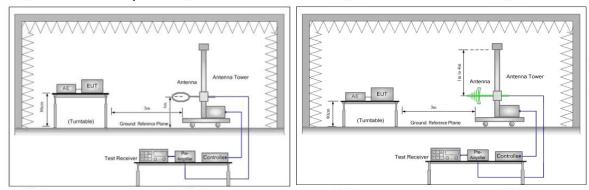


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

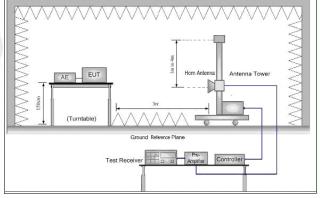
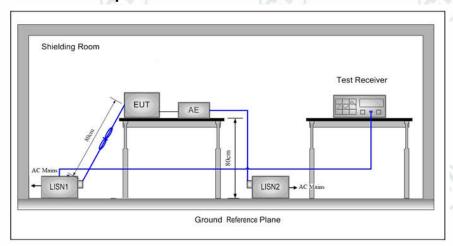



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment fo		6	
Temperature:	25°C		
Humidity:	52% RH		
Atmospheric Pressure:	101kPa	(20)	

5.3 Test Condition

Test Mode	Tx	RF Channel				
rest Mode	IX.	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3, DH5)		2402MHz	2441MHz	2480MHz		
TX mode: The EUT transmitted the continuous signal at the specific channel(s).						

Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK			
packets	1-DH1 1-DH3 1-DH5			
Power(dBm)	5.441	5.448	5.457	

π/4DQPSK				
2-DH1	2-DH3	2-DH5		
5.699	5.705	5.718		
8DPSK				
3-DH1	3-DH3	3-DH5		
5.509	5.512	5.531		
	5.699 3-DH1	2-DH1 2-DH3 5.699 5.705 8DPSK 3-DH1 3-DH3		

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Page 7 of 81 Report No.: EED32L00066601

General Information

6.1 Client Information

Applicant:	Country Mate Technology Ltd
Address of Applicant:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Manufacturer:	Country Mate Technology Ltd
Address of Manufacturer:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Factory:	Concord Electronic (Huizhou) Ltd.
Address of Factory:	21, Ping An Rd., Shuikou Street, Hui Cheng District, Huizhou City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Razor XV BT	(6,	
Model No.(EUT):	GWP-NHE-BT		
Trade mark:	Walker's		
EUT Supports Radios application:	BT: 2402-2480MHz	(17:3)	(4)
Power Supply:	Battery: 3.7V,120mAh		(0)
Sample Received Date:	Mar. 29, 2019		
Sample tested Date:	Mar. 29, 2019 to Apr. 15, 2019	-15	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	5.0	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	107
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	(2)
Number of Channel:	79	(0)
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Hardware Version:	V02	
Software Version:	V03	
Test Power Grade:	N/A	
Test Software of EUT:	AB153x_Airoha_Tool_Kit(ATK)_V1.1.16(manufacturer declare)	
Antenna Type:	Chip Antenna	
Antenna Gain:	-1.18dBi	
Test Voltage:	DC 3.7V	(0.)

Report No. : EED32L00066601 Page 8 of 81

Operation	Frequency ea	ch of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		(4)

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacture	model	Serial number	Supplied by	Certification
AE1	adapter	TEKA	TEKA006- 051000CHU	N/A	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

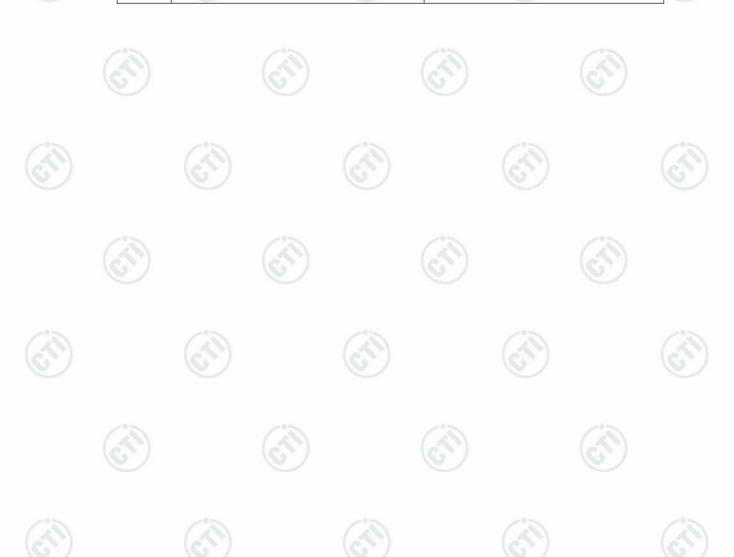
No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.


Report No. : EED32L00066601 Page 9 of 81

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
2	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32L00066601 Page 10 of 81

7 Eq<u>uipment List</u>

	RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020		
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

Cil

Page 11 of 81

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019	
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019	
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021	
Horn Antenna	ETS-LINDGRE N	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Receiver	R&S	ESCI7	100938-0 03	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020	
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019	
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019	
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020	
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line Communication test	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020	
set	R&S	CMW500	104466	01-18-2019	01-17-2020	
High-pass filter	Sinoscite	FL3CX03WG 18NM12-039 8-002		01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

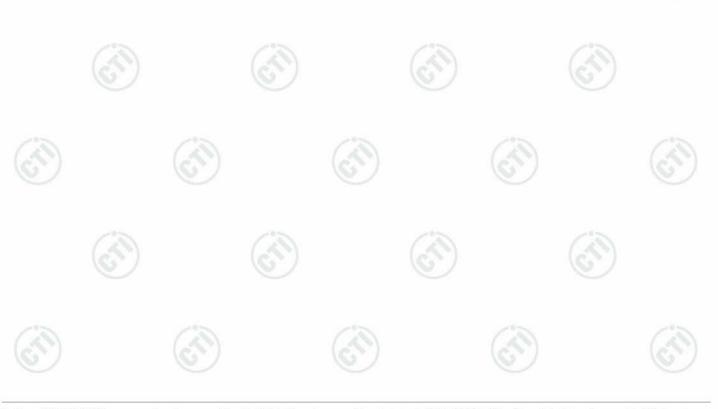
Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Report No.: EED32L00066601 Page 14 of 81

Appendix A): 20dB Occupied Bandwidth

Spectrum Setup:	(6,1)		(C)	
	Span	RBW	VBW	Trace
	3MHz	30kHz	100kHz	Max Hold


Test procedure as below:

- a. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilized for 20 dB bandwidth measurement.
- c. Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

Test Ambient: Temp.: 25°C Humid.: 52% Press.: 101kPa

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9595	0.89256	PASS
GFSK	MCH	0.9621	0.88853	PASS
GFSK	HCH	0.9618	0.88988	PASS
π/4DQPSK	LCH	1.283	1.1771	PASS
π/4DQPSK	MCH	1.282	1.1719	PASS
π/4DQPSK	HCH	1.303	1.1742	PASS
8DPSK	LCH	1.297	1.1754	PASS
8DPSK	MCH	1.296	1.1807	PASS
8DPSK	НСН	1.298	1.1867	PASS

Report No. : EED32L00066601 Page 15 of 81

Test Graph



Report No. : EED32L00066601 Page 18 of 81

Appendix B): Carrier Frequency Separation

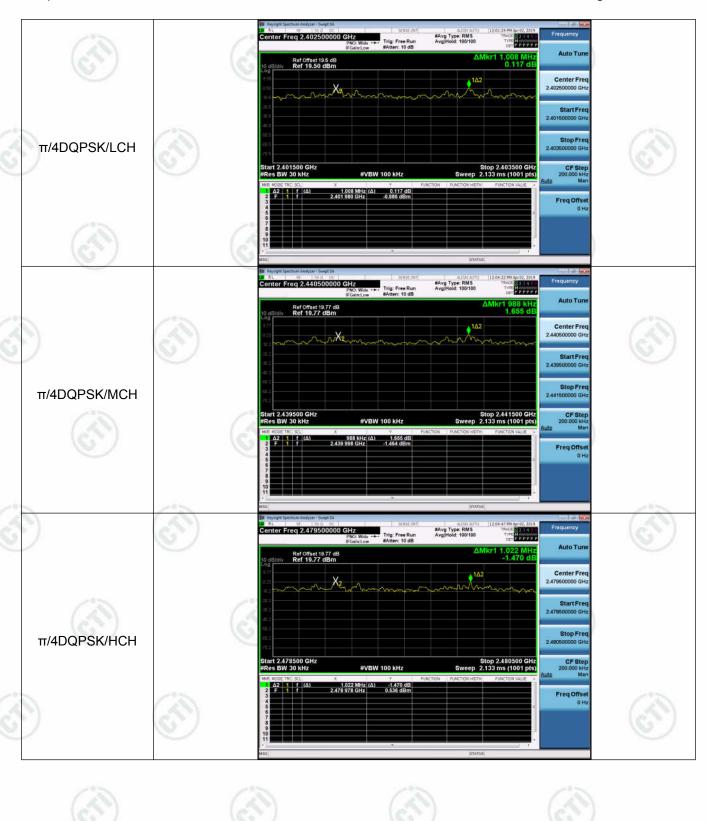
Spectrum Setup:	(6.7)		(6.)		(0,1)
opconum comp.	Span	RBW	VBW	Trace	
	2MHz	30kHz	100kHz	Max Hold	
	output (antenna port) was andwidth of 30 kHz and th				
Limit: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively.					
Test Ambient:	Temp.: 25°C	Humid.: 5	52%	Pres	ss.: 101kPa

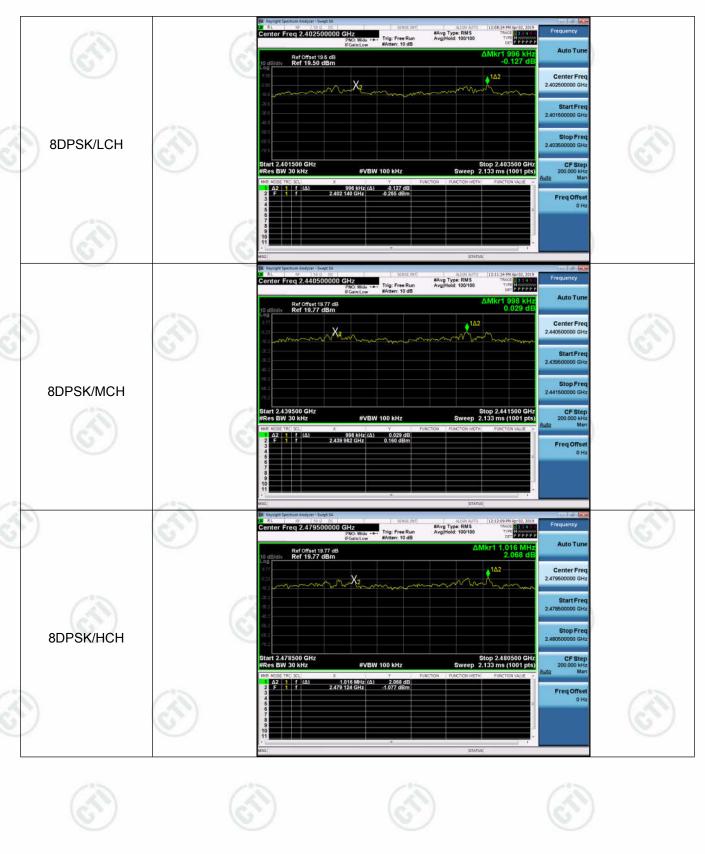
Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.148	PASS
GFSK	MCH	1.158	PASS
GFSK	нсн	1.156	PASS
π/4DQPSK	LCH	1.008	PASS
π/4DQPSK	MCH	0.988	PASS
π/4DQPSK	НСН	1.022	PASS
8DPSK	LCH	0.996	PASS
8DPSK	MCH	0.998	PASS
8DPSK	нсн	1.016	PASS

Report No. : EED32L00066601 Page 19 of 81

Test Graph




Page 20 of 81

Report No. : EED32L00066601 Page 22 of 81

Appendix C): Dwell Time

Spectrum Setup:	(6.7)		(0)	
	Span	RBW	VBW	
	0MHz	1MHz	3MHz	

Test procedure as below:

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- c. Sweep Time is more than once pulse time.
- d. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- e. Measure the maximum time duration of one single pulse.

o. mododio tilo maxi	taximam time daration or one origin parce.					
Limit:	Frequency hopping systems	s in the 2400-2483.5 MHz bar	nd shall use at least 15 channels.			
	The average time of occupancy on any channel shall not be greater than					
(6.7)	within a period of 0.4 seconds multiplied by the number of hopping channels em					
Test Ambient:	Temp.: 25°C	Humid.: 52%	Press.: 101kPa			

Result Table

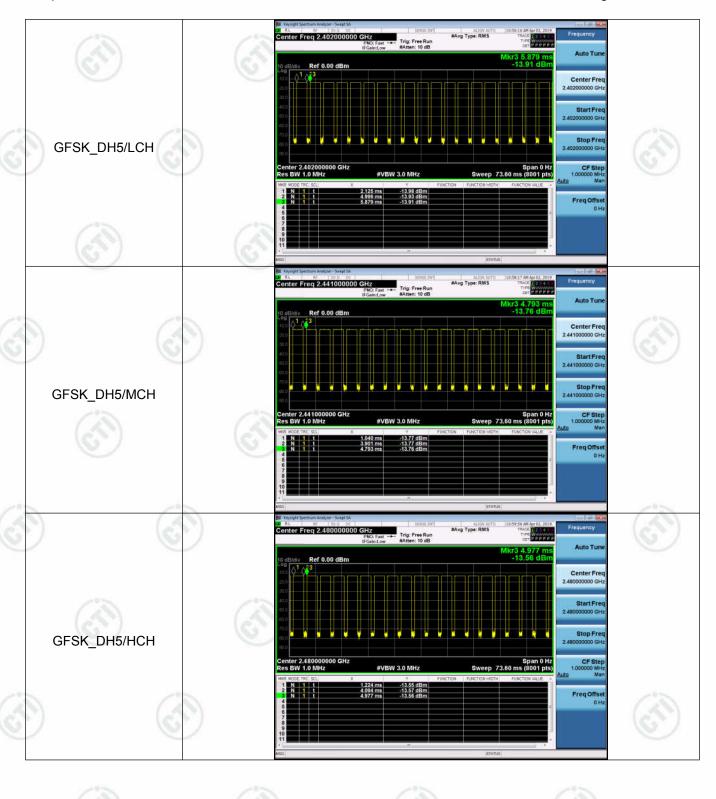
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.376203	320	0.12	0.30	PASS
GFSK	DH1	MCH	0.374934	320	0.12	0.30	PASS
GFSK	DH1	HCH	0.37493	320	0.12	0.30	PASS
GFSK	DH3	LCH	1.63147	160	0.261	0.65	PASS
GFSK	DH3	MCH	1.63146	160	0.261	0.65	PASS
GFSK	DH3	НСН	1.63147	160	0.261	0.65	PASS
GFSK	DH5	LCH	2.8704	106.7	0.306	0.76	PASS
GFSK	DH5	MCH	2.8612	106.7	0.305	0.76	PASS
GFSK	DH5	HCH	2.8704	106.7	0.306	0.76	PASS

Remark : All modes are tested, only the worst mode GFSK is reported.

Report No. : EED32L00066601 Page 23 of 81

Test Graph



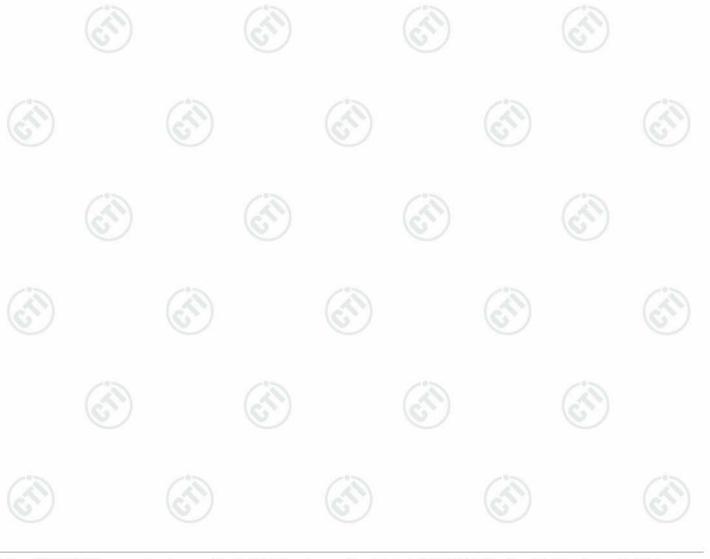


Report No.: EED32L00066601 Page 26 of 81

Appendix D): Hopping Channel Number

Temp.: 25°C

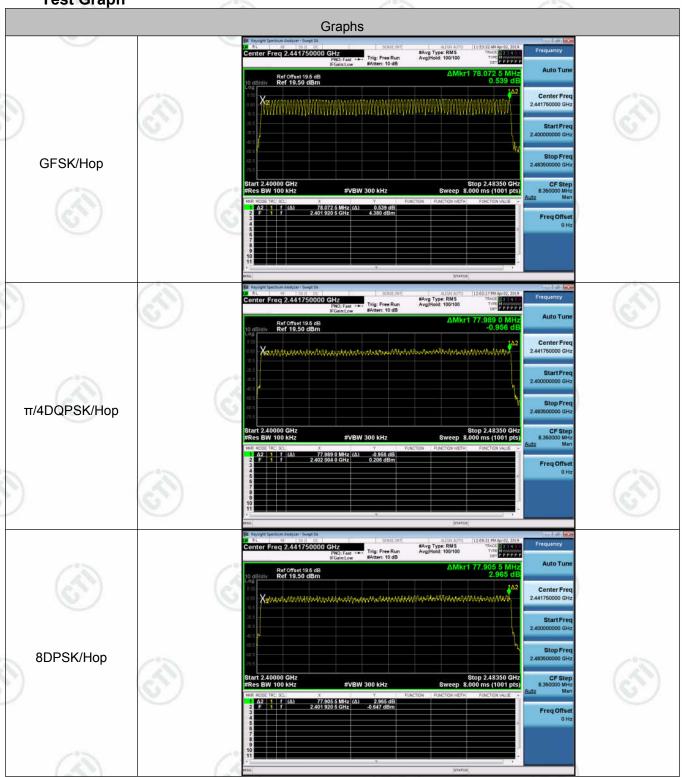
Spectrum Setup:					
	Span	RBW	VBW		
	Operating Frequency Range	100kHz	300kHz		
b. The resolution ban	below: tput (antenna port) was connect dwidth of 100 kHz and the vide hopping in 2400MHz~2483.5N	eo bandwidth	of 300 kH	z were utilized.	
Limit:	At least 15 hopping frequency	cies, and sh	ould be eq	ually spaced.	


Humid.: 52%

Press.: 101kPa

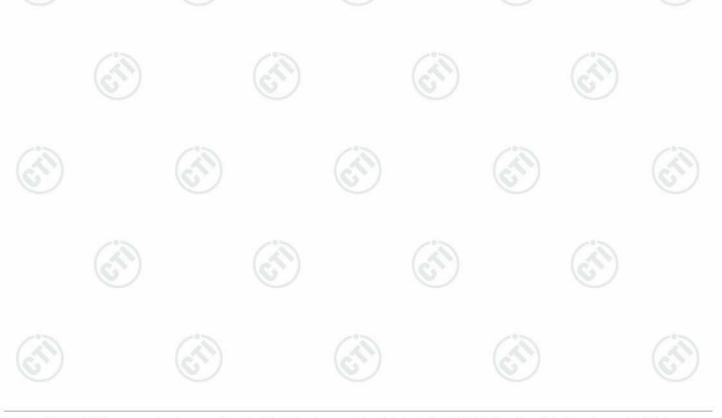
Result Table

Test Ambient:


Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Report No.: EED32L00066601 Page 27 of 81

Test Graph


Report No.: EED32L00066601 Page 28 of 81

Appendix E): Conducted Peak Output Power

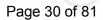
Test procedure a	s below:	(6,1)	(6.)					
a. The transmitter output (antenna port) was connected to the spectrum analyzer.								
b. Set RBW of spectrum analyzer to 3MHz and VBW to 8MHz.								
c. Use peak marker	function to determine the peal	k amplitude level.						
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, the limit for peak output power is 1Watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts (21dBm).							
Test Ambient:	Temp.: 25°C	Humid.: 52%	Press.: 101kPa					

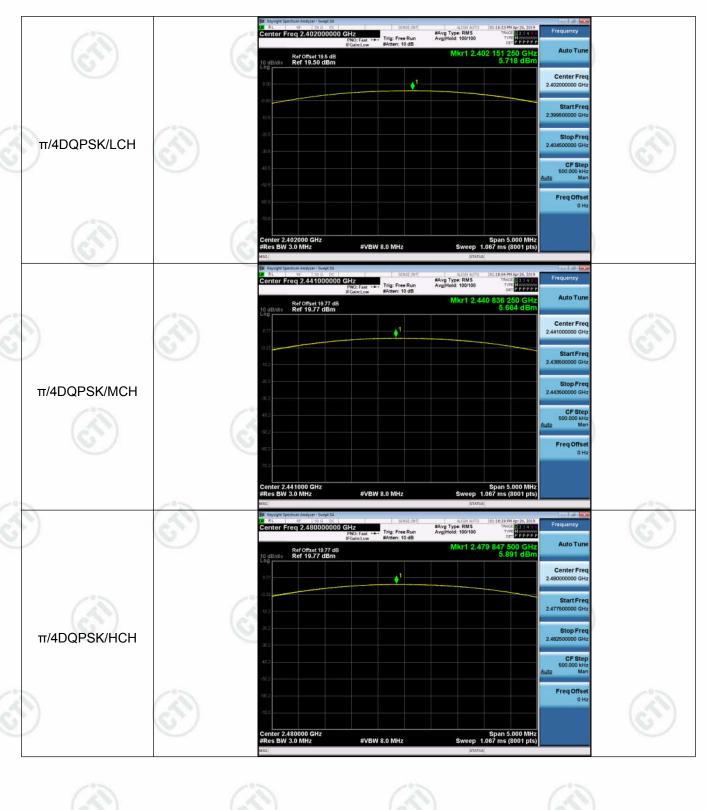
Result Table

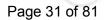

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	5.457	PASS
GFSK	MCH	5.704	PASS
GFSK	НСН	5.831	PASS
π/4DQPSK	LCH	5.718	PASS
π/4DQPSK	MCH	5.664	PASS
π/4DQPSK	НСН	5.891	PASS
8DPSK	LCH	5.531	PASS
8DPSK	MCH	5.583	PASS
8DPSK	HCH	5.641	PASS

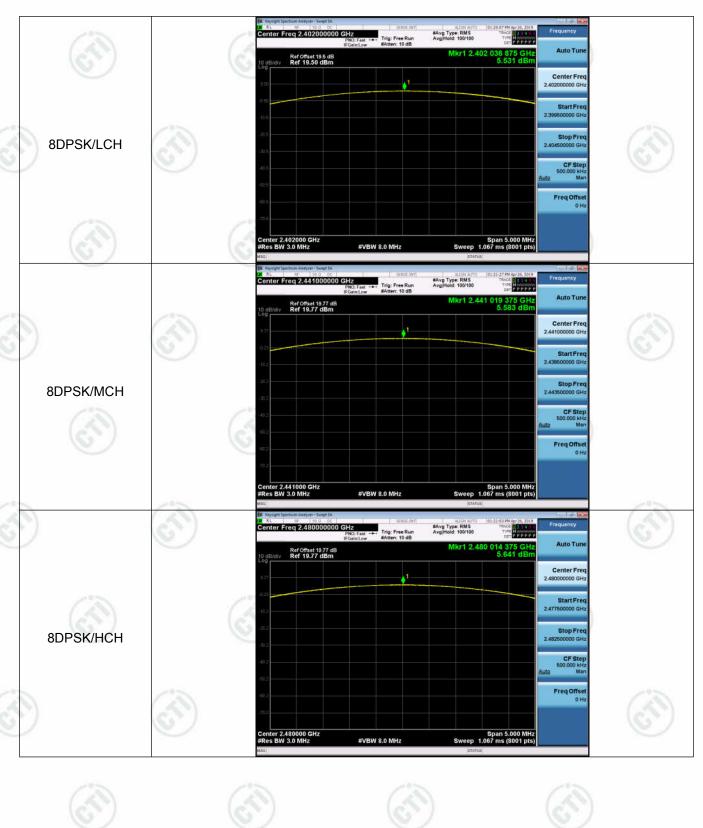
Report No. : EED32L00066601 Page 29 of 81

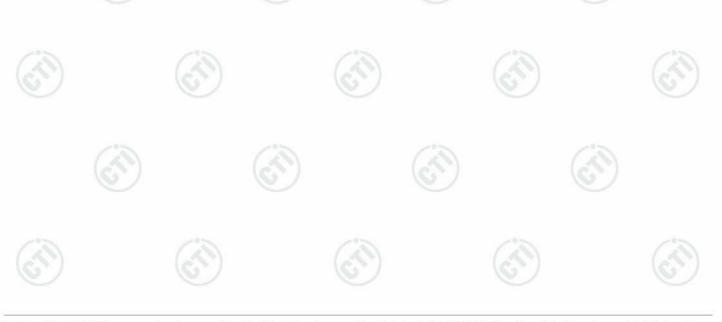
Test Graph









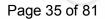


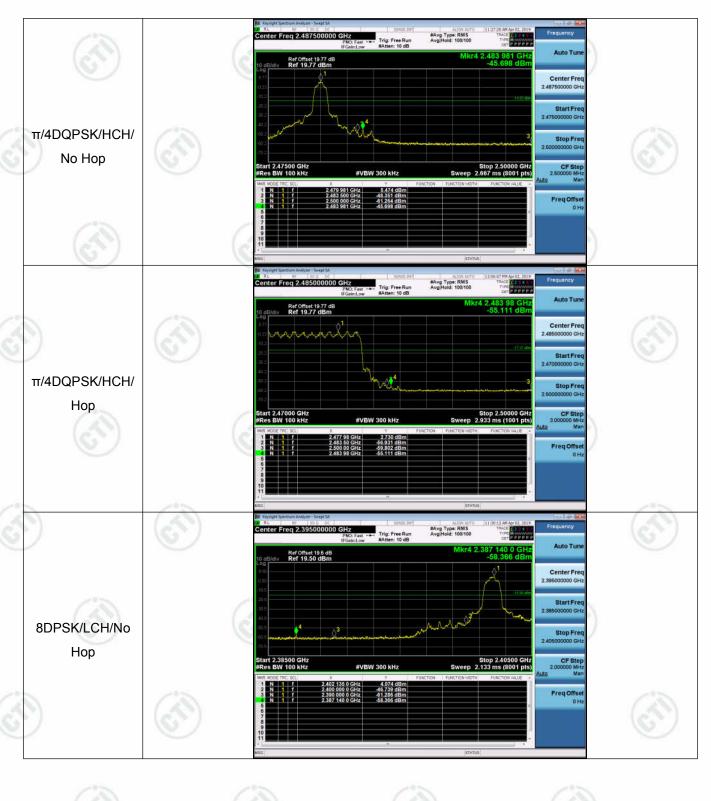
Appendix F): Band-edge for RF Conducted Emissions

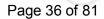

Test procedure a ANSI C63.10 (2013		6	(C.)
Limit:	modulated intentional radiato intentional radiator shall be a that contains the highest lev	r is operating, the radio frequent t least 20 dB below that in the rel of the desired power, base	ich the spread spectrum or digitally ency power that is produced by the 100 kHz bandwidth within the band d on either an RF conducted or a strates compliance with the peak
Test Ambient:	Temp.: 25°C	Humid.: 52%	Press.: 101kPa

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
M			5.773	Off	-59.889	-14.23	PASS
GFSK	LCH	2402	4.930	On	-59.923	-15.07	PASS
		2480	6.293	Off	-42.664	-13.71	PASS
GFSK	HCH		5.635	On	-45.314	-14.37	PASS
	LCH	2402	4.416	Off	-59.522	-15.58	PASS
π/4DQPSK			1.439	On	-59.289	-18.56	PASS
π/4DQPSK		2480	5.474	Off	-45.698	-14.53	PASS
	HCH		2.730	On	-55.111	-17.27	PASS
8DPSK	(27)	2402	4.074	Off	-58.366	-15.93	PASS
	LCH		1.606	On	-59.849	-18.39	PASS
			5.074	Off	-45.503	-14.93	PASS
8DPSK	HCH	2480	2.786	On	-53.071	-17.21	PASS

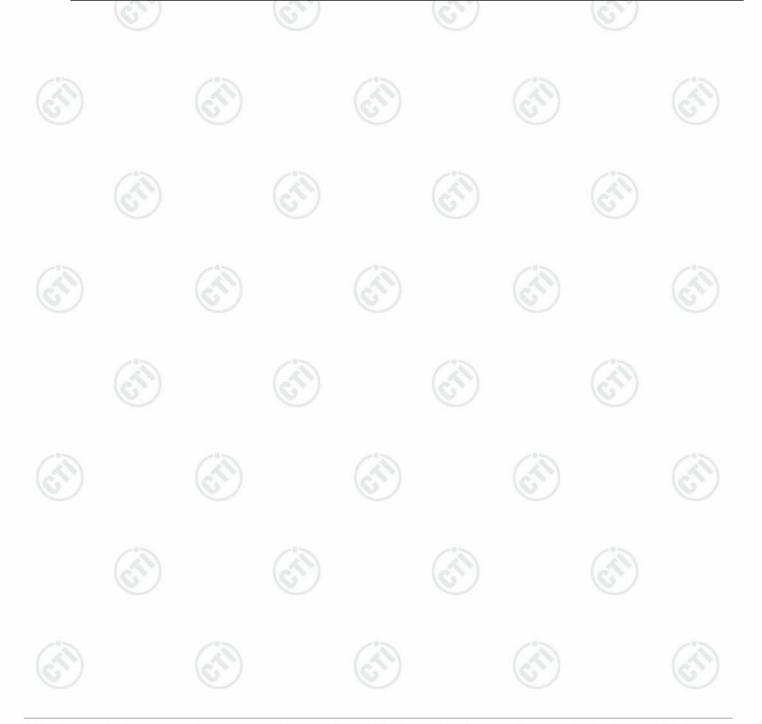






Test Ambient:

Report No. : EED32L00066601 Page 37 of 81

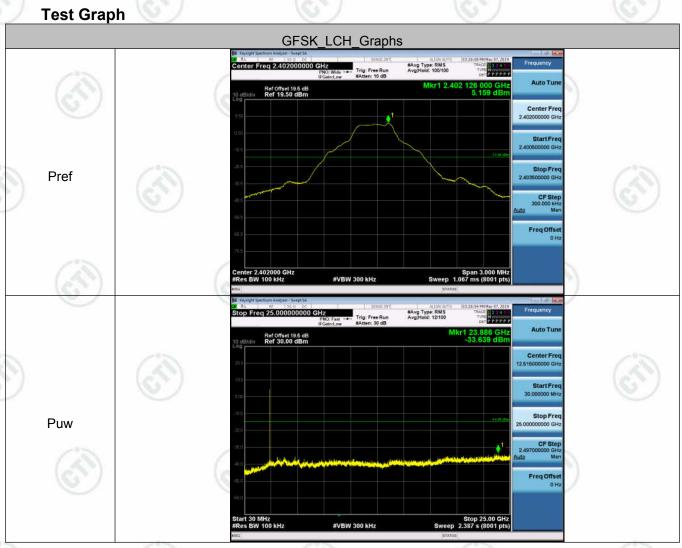

Appendix G): RF Conducted Spurious Emissions

Temp.: 25°C

Test procedure as below: a. The transmitter output (antenna port) was connected to the spectrum analyzer. b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. c. Measurements are made over the 30MHz to 25GHz range with the transmitter set to the lowest, middle, and highest channels. Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Humid.: 52%

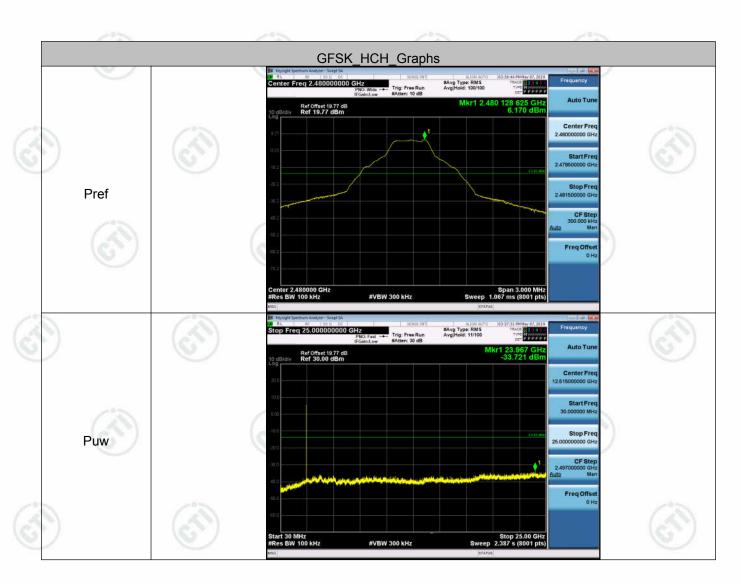
Press.: 101kPa



Page 38 of 81 Report No.: EED32L00066601

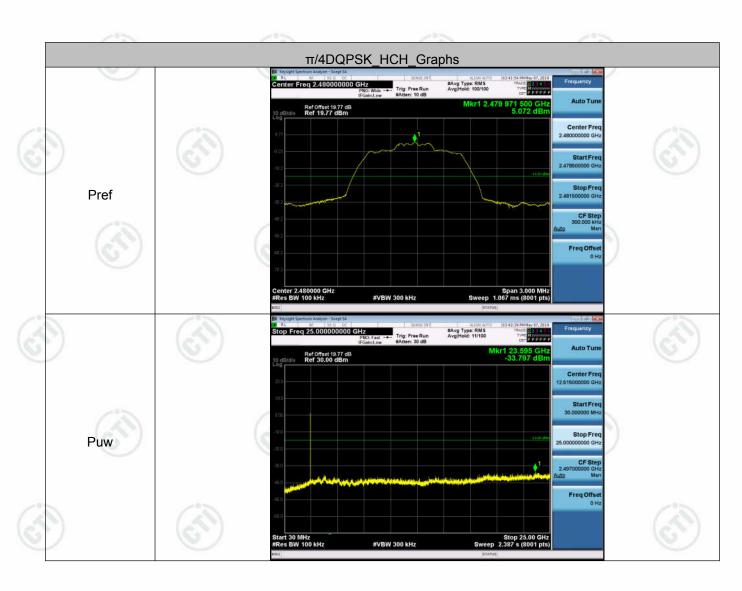
Result Table

10.0.1	1.15	A 1 / 1 10 A		
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	5.159	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	5.843	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	нсн	6.17	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	3.401	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	4.397	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	5.072	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	3.618	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	4.403	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	нсн	5.097	<limit< td=""><td>PASS</td></limit<>	PASS



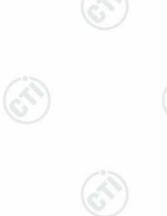
Page 40 of 81

Page 42 of 81





Page 44 of 81

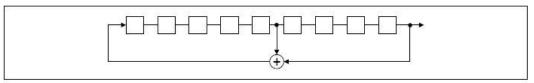




Page 46 of 81

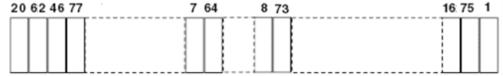
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

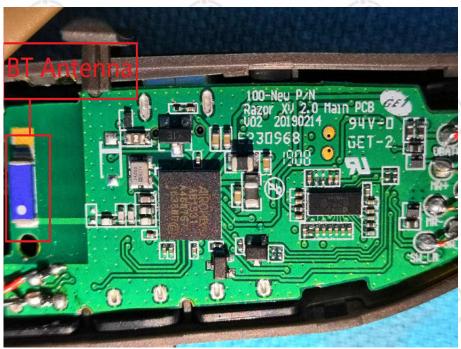
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32L00066601 Page 48 of 81

Appendix I): Antenna Requirement

15.203 requirement:

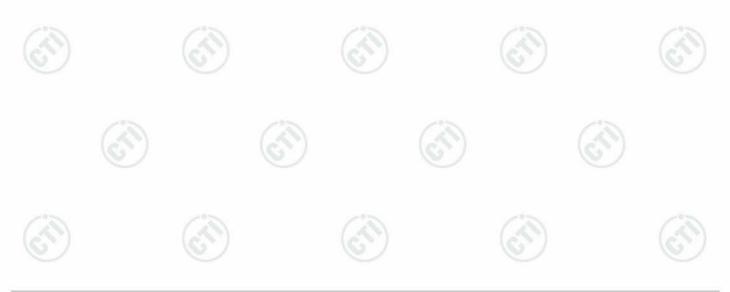

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

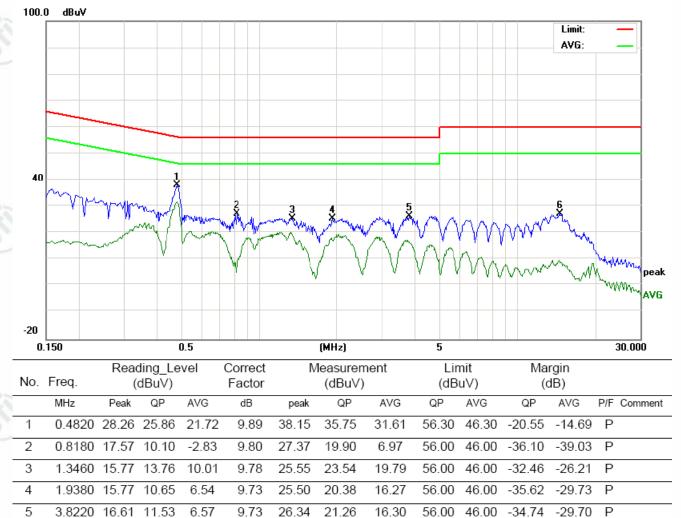
The antenna is Chip Antenna and no consideration of replacement. The best case gain of the antenna is -1.18dBi.

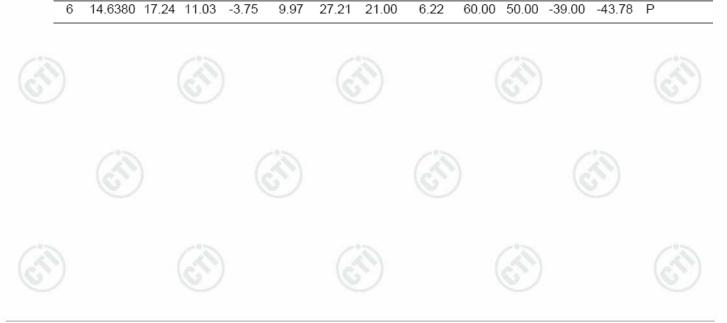


Report No. : EED32L00066601 Page 49 of 81

Appendix J): AC Power Line Conducted Emission

	Test frequency range :150KHz- 1)The mains terminal disturban		onducted in a shield	ed room.					
	2) The EUT was connected to Stabilization Network) which power cables of all other upwhich was bonded to the graph for the unit being measured multiple power cables to a sexceeded.	h provides a 50Ω/50μ hits of the EUT were ound reference plane d. A multiple socket of	uH + 5Ω linear imper connected to a sect in the same way as outlet strip was used	edance. The ond LISN 2, s the LISN 1 I to connect					
(cti)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem							
	EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from t ground reference plane for plane. This distance was be	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the							
(2)	5) In order to find the maximum of the interface cables must conducted measurement.								
Limit:	of the interface cables must								
Limit:	of the interface cables must conducted measurement.		g to ANSI C63.10 o						
Limit:	of the interface cables must	be changed according	g to ANSI C63.10 o						
Limit:	of the interface cables must conducted measurement.	be changed according	g to ANSI C63.10 o						
Limit:	of the interface cables must conducted measurement. Frequency range (MHz)	be changed according Limit (congression)	g to ANSI C63.10 o						
Limit:	of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (c Quasi-peak 66 to 56*	g to ANSI C63.10 o						
Limit:	of the interface cables must conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	Limit (conditions) Quasi-peak 66 to 56* 56 60 with the logarithm of	g to ANSI C63.10 o (BµV) Average 56 to 46* 46 50 the frequency in the						

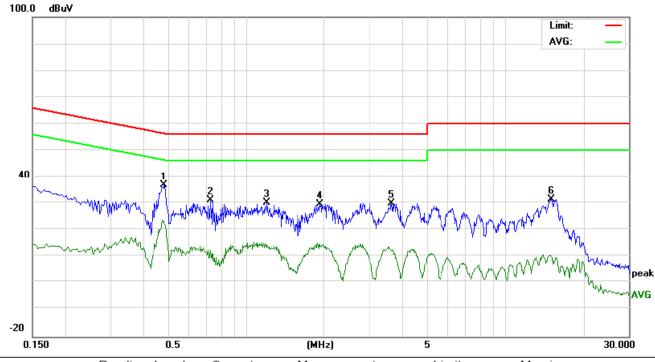



Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:



Report No. : EED32L00066601 Page 51 of 81

Neutral line:

			Read	ding_Le	vel	Correct	M	leasuren	nent	Lin	nit	Ma	rgin		
	No.	Freq.	(dBuV)		Factor		(dBu∀)		(dB	uV)	(0	iB)		
Ī		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.4860	27.08	21.90	12.60	9.89	36.97	31.79	22.49	56.24	46.24	-24.45	-23.75	Р	_
	2	0.7300	21.49	12.93	1.28	9.81	31.30	22.74	11.09	56.00	46.00	-33.26	-34.91	Р	
Ñ	3	1.2059	20.57	13.58	4.06	9.79	30.36	23.37	13.85	56.00	46.00	-32.63	-32.15	Р	
7	4	1.9380	19.80	12.09	2.96	9.73	29.53	21.82	12.69	56.00	46.00	-34.18	-33.31	Р	
	5	3.6460	20.09	12.30	2.19	9.73	29.82	22.03	11.92	56.00	46.00	-33.97	-34.08	Р	
Ī	6	15.1100	21.60	15.00	-1.88	9.98	31.58	24.98	8.10	60.00	50.00	-35.02	-41.90	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32L00066601 Page 52 of 81

Appendix K): Restricted bands around fundamental frequency (Radiated)

1.32						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ahava 40U-	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak 1MHz		10Hz	Average	
Test Procedure:	Below 1GHz test procedu	re as below:				
	a. The EUT was placed of at a 3 meter semi-anec determine the position of the EUT was set 3 meters was mounted on the top of the antenna height is with determine the maximum polarizations of the antenna was tuned table was turned from the antenna was tuned table was turned from the European of the Eur	hoic camber. The of the highest racters away from the pof a variable-head aried from one not not a value of the field are set to make the point of the field are set to make the point of the point of the restrict of the restrict of the restrict pliance. Also me um analyzer plot channel	e table wadiation. The interfer eight anter to food the strength as arrand meter to degrees to the band of the sasure any strength as the stre	ence-receinna tower. Four meters Four meters Four measurement Four find the Four find	above the grant above the grantal and vent. worst case are and the rotate maximum real and Specified the transmit in the restricts in the restricts.	to, which which which will be the control of the co
	g. Different between abov to fully Anechoic Cham meter(Above 18GHz the h. b. Test the EUT in the li. The radiation measurer Transmitting mode, and j. Repeat above procedure.	re is the test site, ber and change the ne distance is 1 nowest channel, the ments are perform the the X axis	form table neter and the Highe med in X, s positioni	0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). positioning for t is worse cas	CT.
Limit:	Frequency	Limit (dBµV/r	m @3m)	Rei	mark	
	30MHz-88MHz	40.0	<u> </u>	4	eak Value	
	88MHz-216MHz	43.5		· ·	eak Value	
	216MHz-960MHz	46.0		· ·	eak Value	
				_		
	960MHz-1GHz	54.0		Quasi-pe	eak Value	
		54.0 54.0	-(6	· ·	eak Value ge Value	
	960MHz-1GHz Above 1GHz	(P.)	6	Averag		

Report No.: EED32L00066601 Page 53 of 81

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak	9	

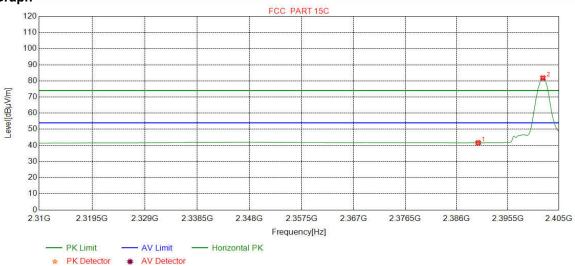

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.66	52.84	74.00	21.16	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	97.86	101.00	74.00	-27.00	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak	(68)	7)

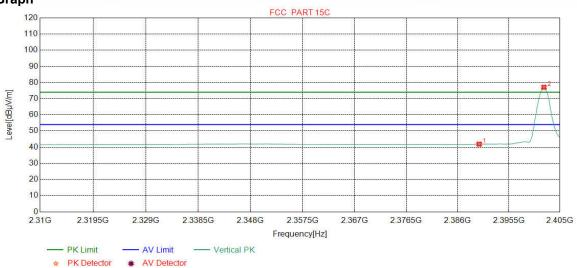
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.08	53.26	74.00	20.74	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	88.47	91.61	74.00	-17.61	Pass	Vertical



D	T 1	- 5	04	
Page	34	OI	OΙ	

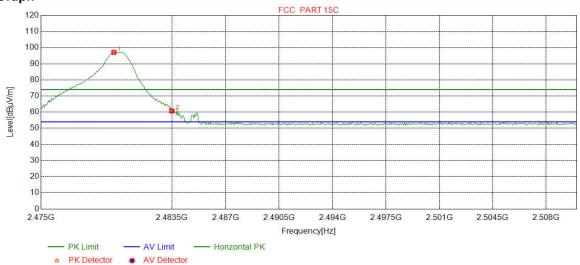
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV	(0,0)	(0,1)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.46	41.64	54.00	12.36	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	78.66	81.80	54.00	-27.80	Pass	Horizontal

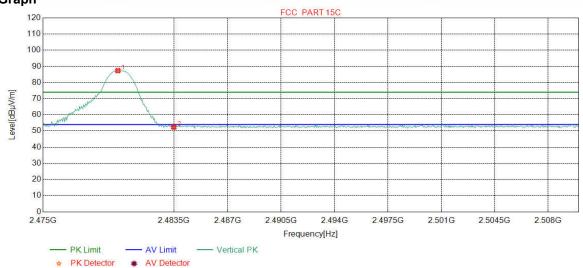
Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		\

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.69	41.87	54.00	12.13	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	73.95	77.09	54.00	-23.09	Pass	Vertical

Page	55	of	81	
------	----	----	----	--

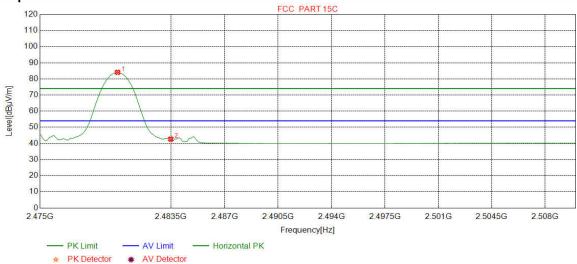
Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak	((((0,2)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	93.73	97.10	74.00	-23.10	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	57.41	60.77	74.00	13.23	Pass	Horizontal

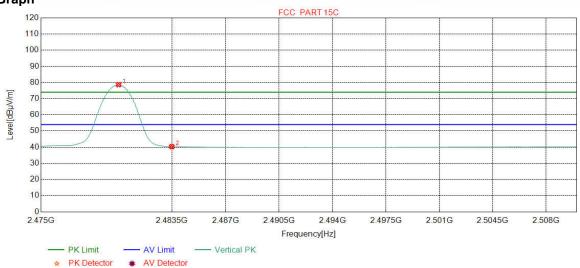
Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak		\

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8623	32.37	13.39	-42.39	84.00	87.37	74.00	-13.37	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.10	52.46	74.00	21.54	Pass	Vertical

Page	56	of	81	
------	----	----	----	--

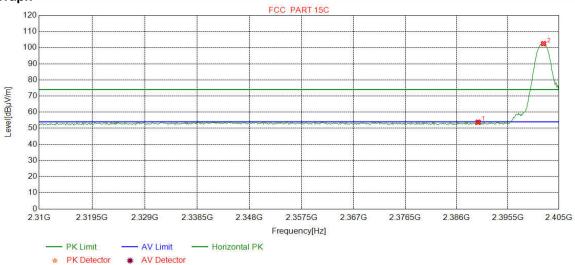
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV	37)	(0,2)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	80.70	84.07	54.00	-30.07	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	39.32	42.68	54.00	11.32	Pass	Horizontal

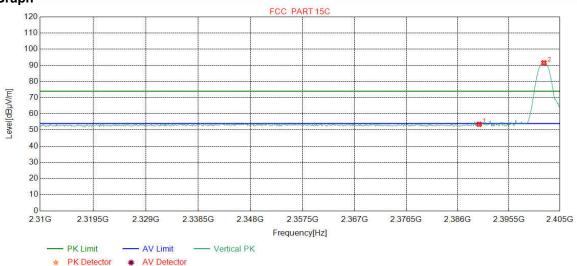
Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		\

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	75.31	78.68	54.00	-24.68	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.97	40.33	54.00	13.67	Pass	Vertical

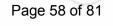
_		-	-	
Page	5/	OŤ	81	

1	Mode:	π/4DQPSK Transmitting	Channel:	2402
16	Remark:	Peak	37)	

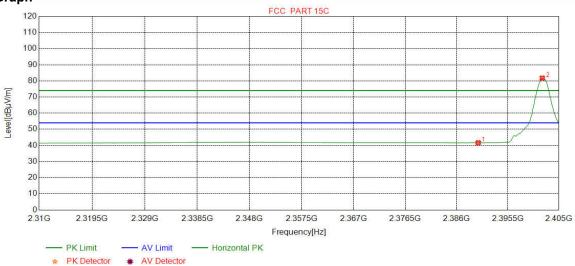

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.61	53.79	74.00	20.21	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	99.35	102.49	74.00	-28.49	Pass	Horizontal

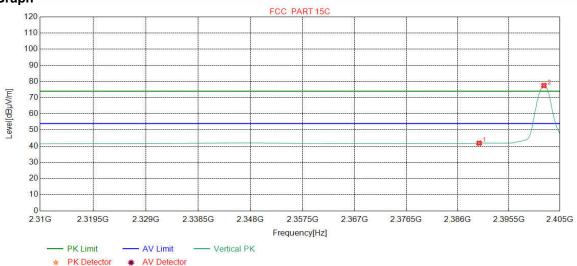
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	Peak		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.42	53.60	74.00	20.40	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	88.44	91.58	74.00	-17.58	Pass	Vertical



Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		(0)


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.48	41.66	54.00	12.34	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	78.62	81.76	54.00	-27.76	Pass	Horizontal

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		\ /

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.68	41.86	54.00	12.14	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	74.40	77.54	54.00	-23.54	Pass	Vertical