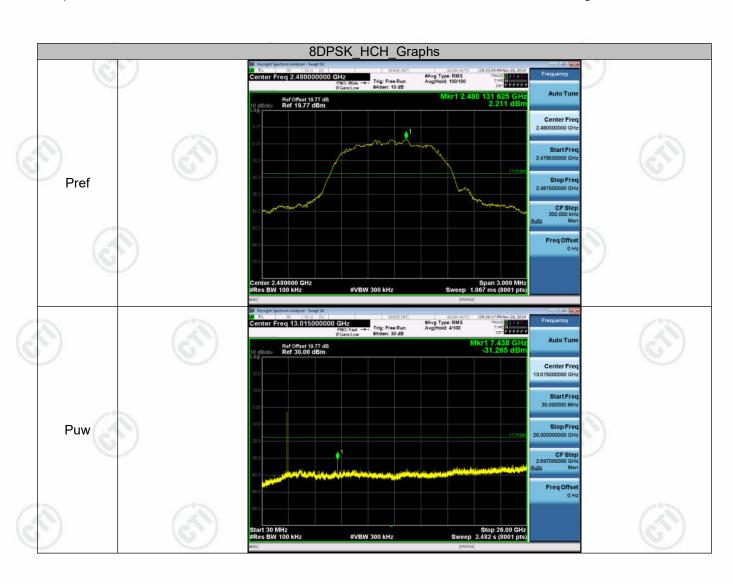
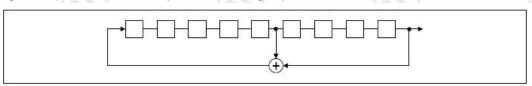

Page 56 of 93





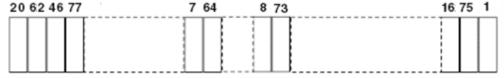
Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15**C Section 15.247 (a)(1) requirement:**


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

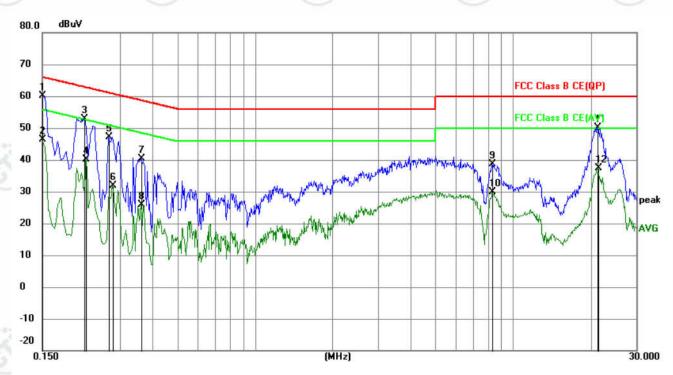
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.8 dBi.

Appendix J) AC Power Line Conducted Emission

T.	est Procedure:	Test frequency range:150KHz- 1) The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a sexceeded.	nce voltage test was AC power source thre h provides a 50Ω/50µ nits of the EUT were cound reference planed. A multiple socket of	ough a LISN 1 (Line $_{\rm H}$ H + 5Ω linear important connected to a section the same way a putlet strip was use	e Impedance edance. The cond LISN 2, s the LISN 1 d to connect
	CAN)	 The tabletop EUT was place reference plane. And for flothorizontal ground reference 	or-standing arrangem		
9		4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from t ground reference plane fo plane. This distance was be All other units of the EUT a LISN 2.	e vertical ground refer d to the horizontal gro he boundary of the u r LISNs mounted of etween the closest po	rence plane. The verbund reference pland init under test and in top of the groundints of the LISN 1 are	rtical ground le. The LISN bonded to a nd reference and the EUT.
	(ii)	 In order to find the maximum all of the interface cables conducted measurement. 			•
Li	imit:	Fragues average (MIII-)	Limit (c	lBuV)	
		Frequency range (MHz)	Quasi-peak	Average	
	7	0.15-0.5	66 to 56*	56 to 46*	(10)
	(6)	0.5-5	56	46	(6,7)
		5-30	60	50	
(* The limit decreases linearly with MHz to 0.50 MHz. NOTE: The lower limit is application.	(ii)		e range 0.15

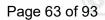

Page 62 of 93

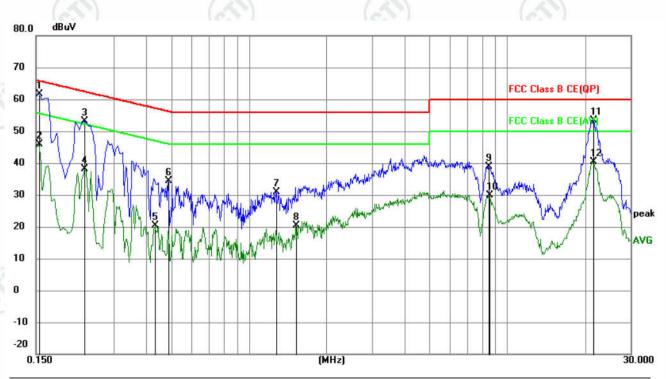
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	50.25	9.97	60.22	66.00	-5.78	QP	
2		0.1500	36.51	9.97	46.48	56.00	-9.52	AVG	
3		0.2175	42.87	10.03	52.90	62.91	-10.01	QP	
4		0.2220	29.97	10.04	40.01	52.74	-12.73	AVG	
5		0.2714	37.12	10.08	47.20	61.07	-13.87	QP	
6		0.2805	21.70	10.08	31.78	50.80	-19.02	AVG	
7		0.3615	30.30	10.04	40.34	58.69	-18.35	QP	
8		0.3615	15.80	10.04	25.84	48.69	-22.85	AVG	
9		8.3085	28.85	9.90	38.75	60.00	-21.25	QP	
10		8.3085	20.00	9.90	29.90	50.00	-20.10	AVG	
11		21.2235	40.12	9.94	50.06	60.00	-9.94	QP	
12		21.2910	27.47	9.94	37.41	50.00	-12.59	AVG	





Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1545	51.70	9.98	61.68	65.75	-4.07	QP	
2		0.1545	35.98	9.98	45.96	55.75	-9.79	AVG	
3		0.2310	43.04	10.04	53.08	62.41	-9.33	QP	
4		0.2310	28.16	10.04	38.20	52.41	-14.21	AVG	
5		0.4335	10.50	10.00	20.50	47.19	-26.69	AVG	
6		0.4875	24.46	10.00	34.46	56.21	-21.75	QP	
7		1.2750	21.10	9.89	30.99	56.00	-25.01	QP	
8		1.5225	10.56	9.87	20.43	46.00	-25.57	AVG	
9		8.4660	28.94	9.90	38.84	60.00	-21.16	QP	
10		8.5335	20.03	9.91	29.94	50.00	-20.06	AVG	
11		21.5385	43.45	9.94	53.39	60.00	-6.61	QP	
12		21.5385	30.40	9.94	40.34	50.00	-9.66	AVG	

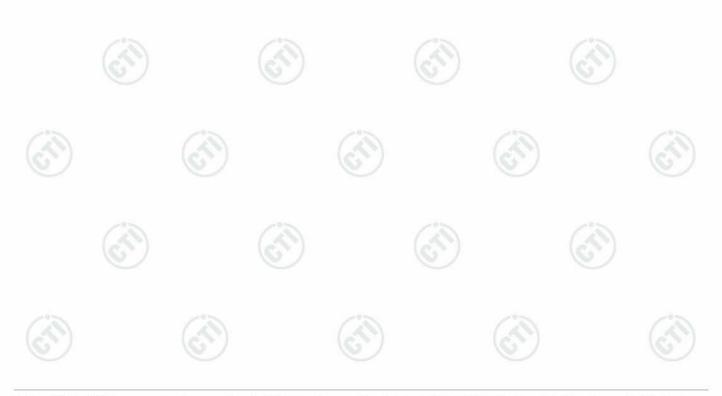
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

AppendixK) Restricted bands around fundamental frequency (Radiated)

						_
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	13
	Above 1GHz	Peak	1MHz	10Hz	Average	(J)
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is a determine the maximum polarizations of the antenna was tuned table was turned from 0 e. The test-receiver systems and the support of the support of the systems of the system	n the top of a rot choic camber. The of the highest raters away from the proof of a variable-howeried from one representation of the field of the field of the field of the form of the enna are set to make the field of the fiel	diation. he interfered eight anter meter to foeld strength make the mas arran 1 meter to degrees to ak Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its v 4 meters a o find the i Function a	ving antenna above the gra- izontal and vent. worst case are and the rotate maximum rea nd Specified	ound erticand the
	f. Place a marker at the effrequency to show combands. Save the spectr for lowest and highest of the same state of the s	npliance. Also me rum analyzer plot channel re as below: re is the test site, ber and change he distance is 1 r lowest channel, ments are perfor d found the X axi	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni	or each portions on Semi- 0.8 metre table is 1.5 st channel Y, Z axis png which i	Anechoic Ch to 1.5 metre).	dulation
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of the spectral for fully Anechoic Chammetre (Above 18GHz the b. Test the EUT in the line in the radiation measured that the spectral forms it is the spectral forms in the line in the spectral forms in the s	rpliance. Also me rum analyzer plot channel re as below: re is the test site, ber and change he distance is 1 r lowest channel, ments are perfor d found the X axi res until all frequen	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni	or each portions on Semi- 0.8 metre table is 1.5 st channel Y, Z axis programming which is assured was	Anechoic Ch to 1.5 metre).	dulati ambe
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of fully Anechoic Chammetre (Above 18GHz the spectra for the spectra for lowest fill the spectra for	rum analyzer plotchannel re as below: re is the test site, rber and change he distance is 1 r lowest channel, ments are perfor d found the X axi res until all frequ Limit (dBuV/r	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni iencies me m @3m)	remissions for each por each por each por 0.8 metre table is 1.5 st channel Y, Z axis programmed was red was Rer	Anechoic Ch to 1.5 metre).	dulati amb
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of fully Anechoic Chammetre (Above 18GHz the spectra for lowest fill the	ppliance. Also me rum analyzer plot channel Ire as below: Ire is the test site, ber and change he distance is 1 relowest channel, ments are perford found the X axi res until all frequency. Limit (dBuV/res)	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni lencies me m @3m)	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which is easured wa	Anechoic Ch to 1.5 metre). cositioning for t is worse cas as complete. mark eak Value	dulati ambe
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of lowest and highest of the second s	rum analyzer plotchannel re as below: re is the test site, the distance is 1 relowest channel, ments are perford found the X axis res until all frequency. Limit (dBuV/rum 40.0) 43.5	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni iencies me m @3m)	com Semions on Semions	Anechoic Ch to 1.5 metre). cositioning for t is worse cas as complete. mark eak Value	dulati ambe
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammetre (Above 18GHz the light of the second for the second fo	ppliance. Also me rum analyzer plot channel Ire as below: Ire is the test site, ber and change he distance is 1 relowest channel, ments are perford found the X axi res until all frequency Limit (dBuV/r 40.0 43.5 46.0	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni uencies me m @3m)	remissions for each por each por each por 0.8 metre table is 1.5 st channel Y, Z axis programmed was red was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch to 1.5 metre). cositioning for t is worse cas as complete. mark eak Value eak Value	dulati ambe
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of lowest and highest of the second s	ppliance. Also merum analyzer plotchannel Ire as below: Ire is the test site, aber and change he distance is 1 relowest channel, ments are perford found the X axis res until all frequences and the control of the con	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni iencies me m @3m)	remissions for each por each por each por each por 0.8 metre table is 1.5 st channel Y, Z axis programmed was reasured was Rer Quasi-pe Qu	Anechoic Ch to 1.5 metre). positioning for t is worse cas as complete. mark eak Value eak Value eak Value	dulation
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for fully Anechoic Chammetre (Above 18GHz the spectra for the spectra for fully Anechoic Chammetre (Above 18GHz the spectra for fully Anechoic Chammetre (Above 18GHz to ful	ppliance. Also merum analyzer plotchannel Ire as below: Ire is the test site, aber and change he distance is 1 relowest channel, ments are perford found the X axion res until all frequences until all frequences and the second found the X axion f	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni lencies me m @3m)	remissions for each por each por each por 0.8 metre table is 1.5 st channel Y, Z axis programmed was Rer Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch to 1.5 metre). cositioning for t is worse cas as complete. mark eak Value eak Value eak Value	dulation
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammetre (Above 18GHz the light of the second for the second fo	ppliance. Also merum analyzer plotchannel Ire as below: Ire is the test site, aber and change he distance is 1 relowest channel, ments are perford found the X axis res until all frequences and the control of the con	easure any t. Repeat f , change fr form table meter and the Highes med in X, is positioni lencies me m @3m)	remissions for each por each por each por 0.8 metre table is 1.5 st channel Y, Z axis programmed was Rer Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch to 1.5 metre). positioning for t is worse cas as complete. mark eak Value eak Value eak Value	dulation

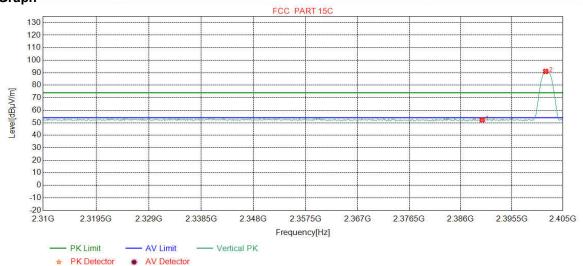
Page 65 of 93

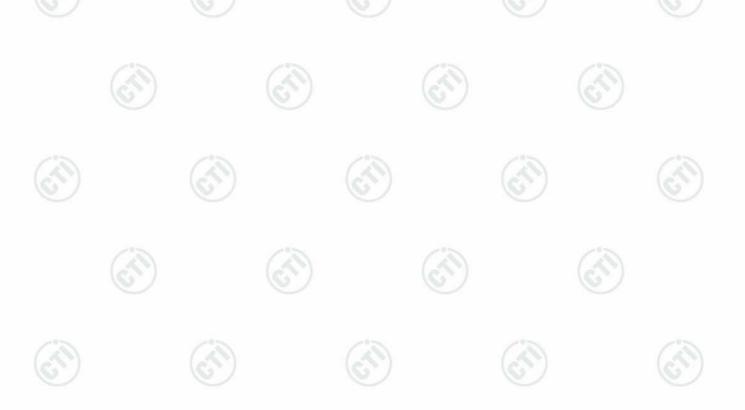

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.57	51.75	74.00	22.25	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	94.77	97.91	74.00	-23.91	Pass	Horizontal

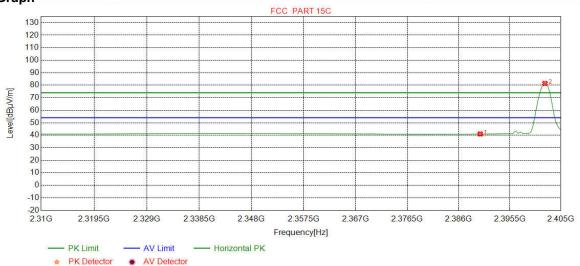


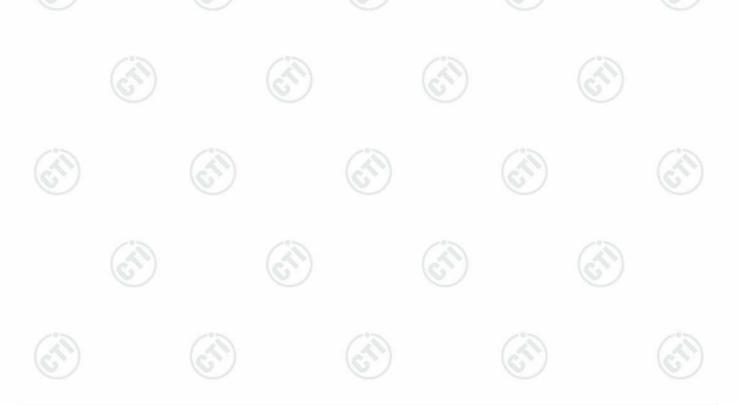


Mode:	GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.16	52.34	74.00	21.66	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	87.89	91.03	74.00	-17.03	Pass	Vertical

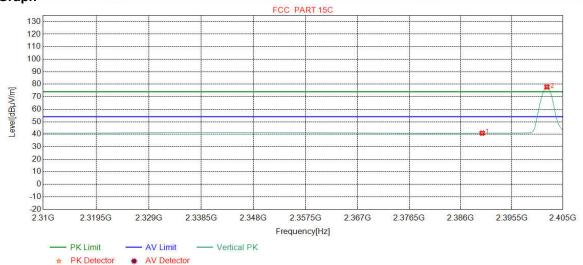


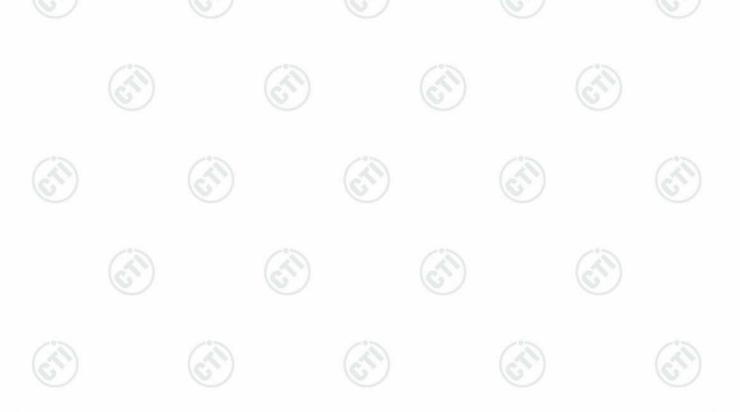


Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.87	41.05	54.00	12.95	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	78.27	81.41	54.00	-27.41	Pass	Horizontal

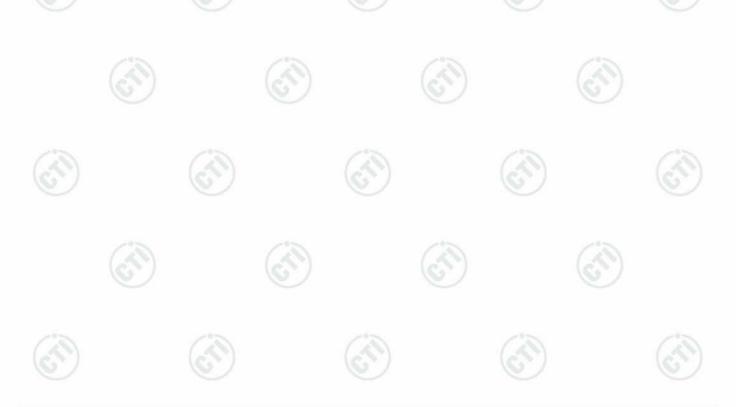




Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

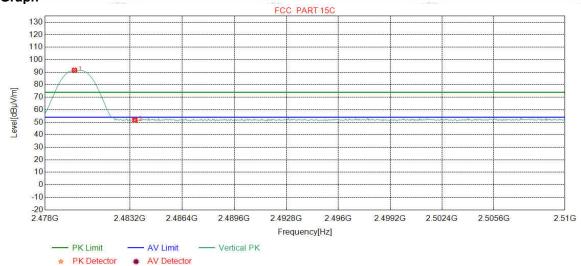
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.71	40.89	54.00	13.11	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	74.60	77.74	54.00	-23.74	Pass	Vertical

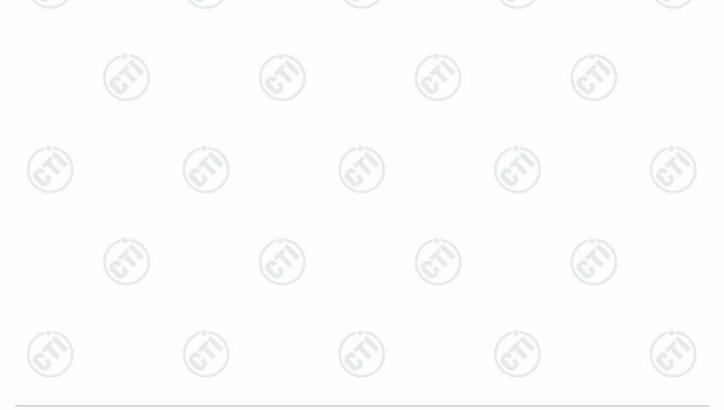


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		

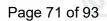

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	93.63	97.00	74.00	-23.00	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	48.42	51.78	74.00	22.22	Pass	Horizontal

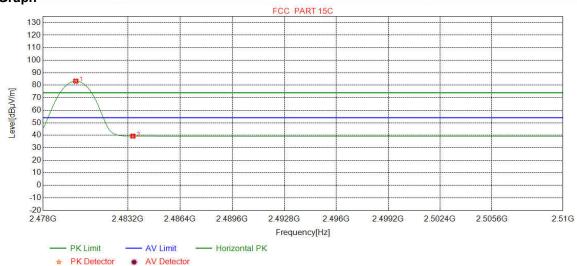


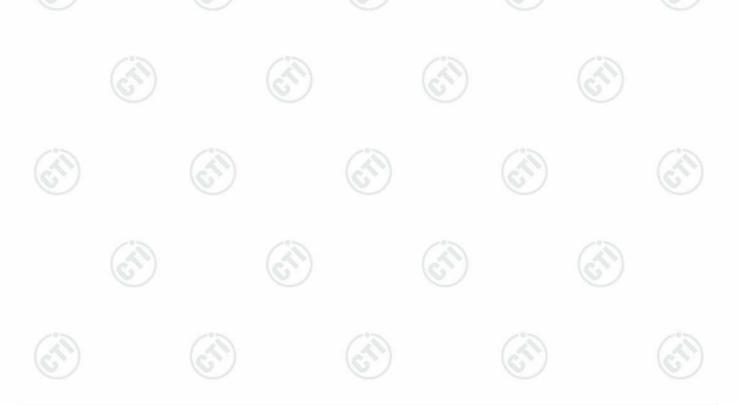


Mode:	GFSK Transmitting	Channel:	2480
Remark:	PK		


PK Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	88.20	91.57	74.00	-17.57	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.34	51.70	74.00	22.30	Pass	Vertical

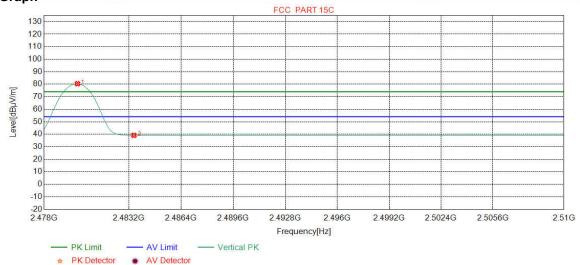


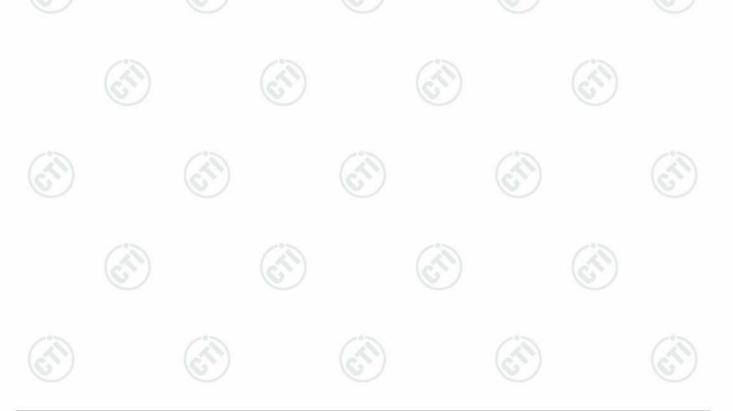


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	79.92	83.29	54.00	-29.29	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	35.96	39.32	54.00	14.68	Pass	Horizontal

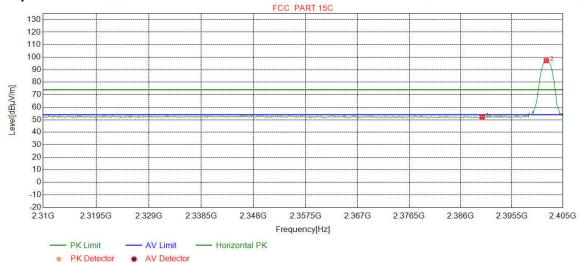


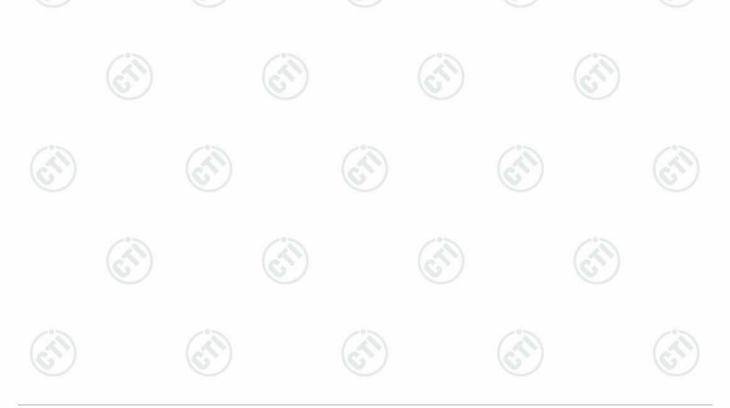


Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	77.05	80.42	54.00	-26.42	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	35.77	39.13	54.00	14.87	Pass	Vertical

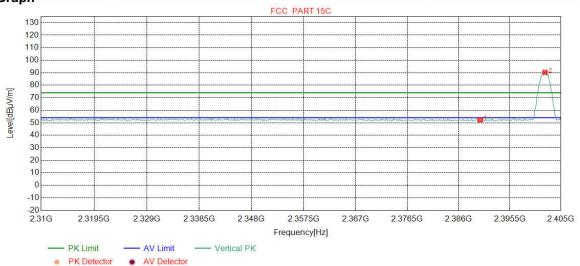


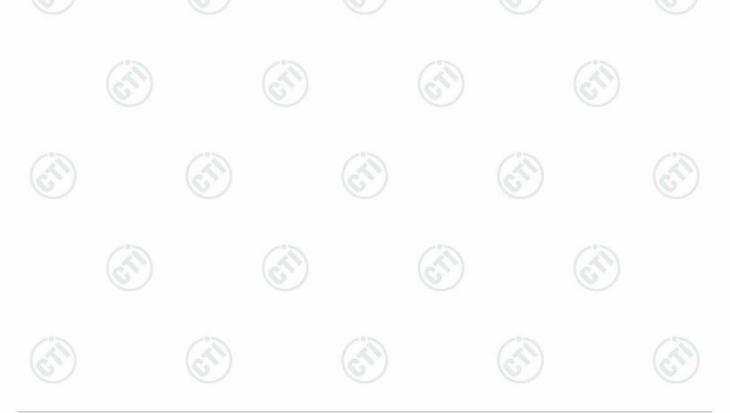


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		

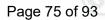
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.04	52.22	74.00	21.78	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	94.11	97.25	74.00	-23.25	Pass	Horizontal

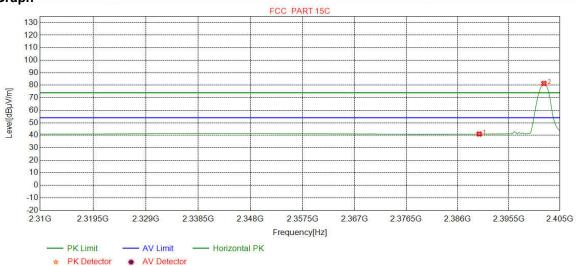


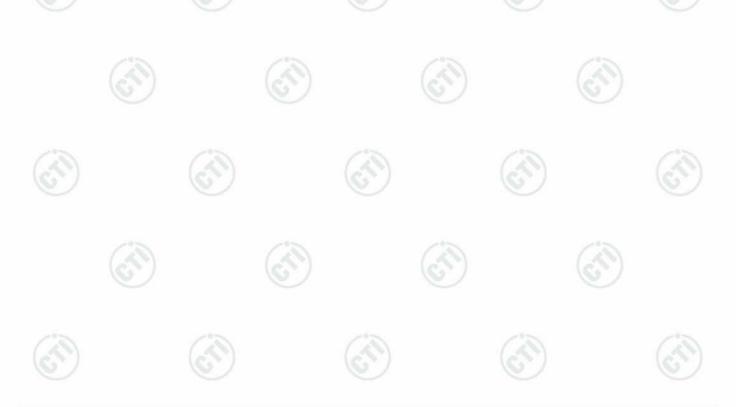


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.11	52.29	74.00	21.71	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	87.06	90.20	74.00	-16.20	Pass	Vertical

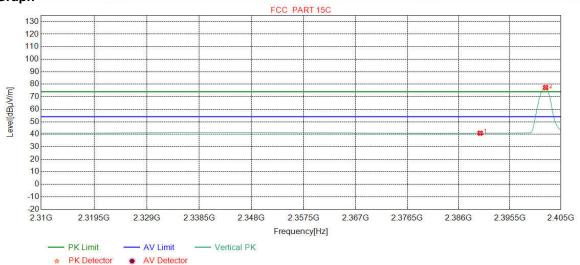


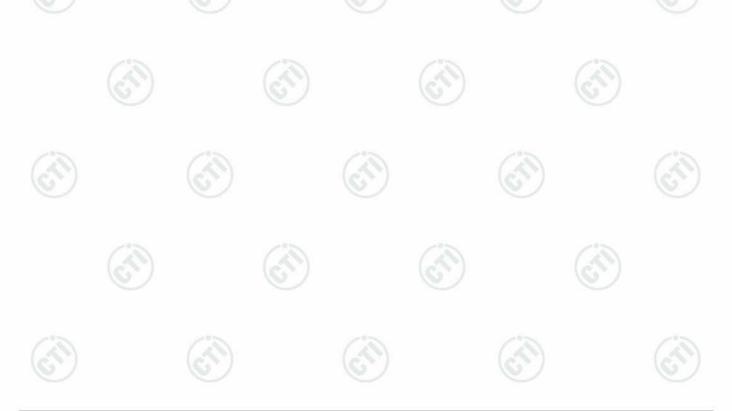


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.81	40.99	54.00	13.01	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	78.25	81.39	54.00	-27.39	Pass	Horizontal

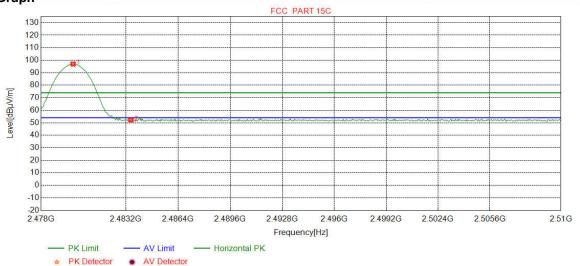


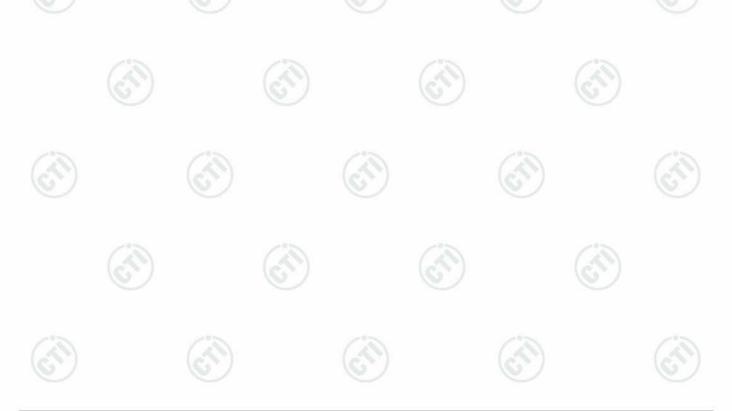


Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.70	40.88	54.00	13.12	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	74.18	77.32	54.00	-23.32	Pass	Vertical

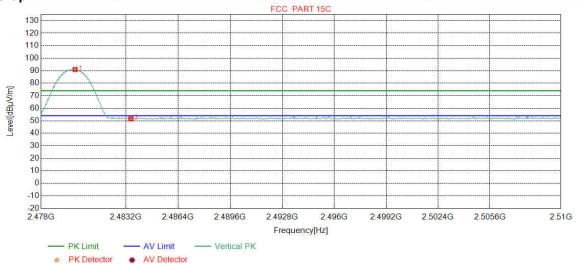


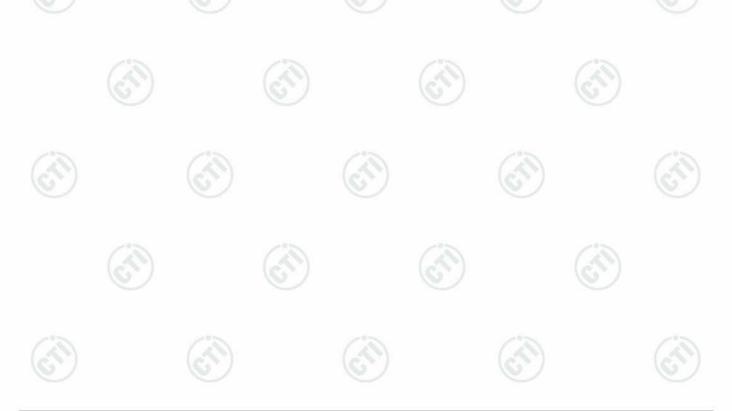


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	93.55	96.92	74.00	-22.92	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	48.94	52.30	74.00	21.70	Pass	Horizontal

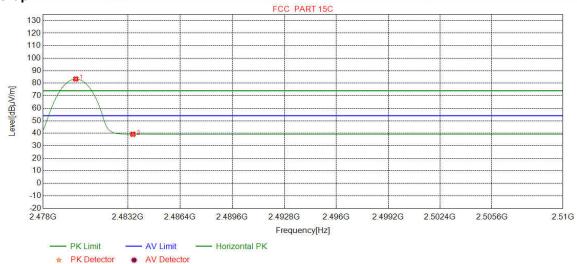


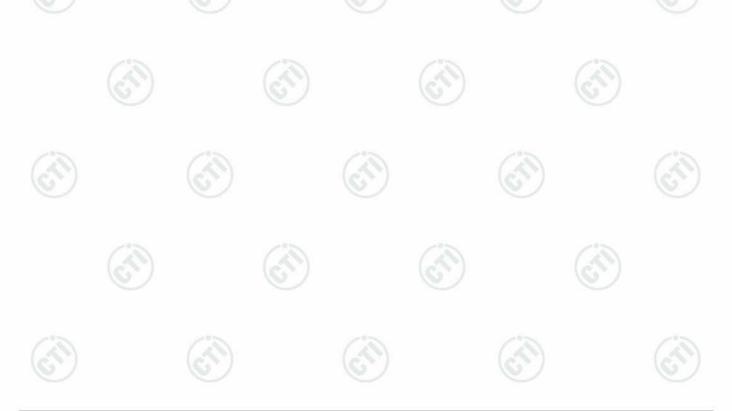


Mode:	8DPSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0826	32.37	13.39	-42.40	87.59	90.95	74.00	-16.95	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.22	51.58	74.00	22.42	Pass	Vertical

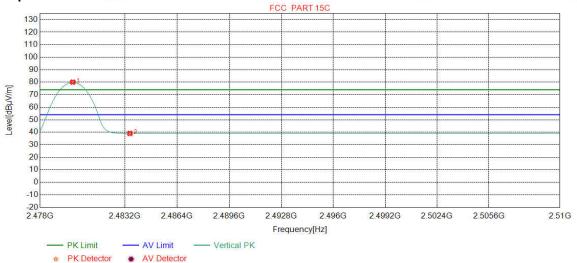




Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	80.01	83.38	54.00	-29.38	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	35.88	39.24	54.00	14.76	Pass	Horizontal



Page	80	οf	93
raye	oo	UΙ	90

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

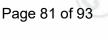
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	76.69	80.06	54.00	-26.06	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	35.72	39.08	54.00	14.92	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor


Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

ppendix L) Radiated Spurious Emissions	
Receiver Setup:	

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Limit:

Below 1GHz test procedure as below:

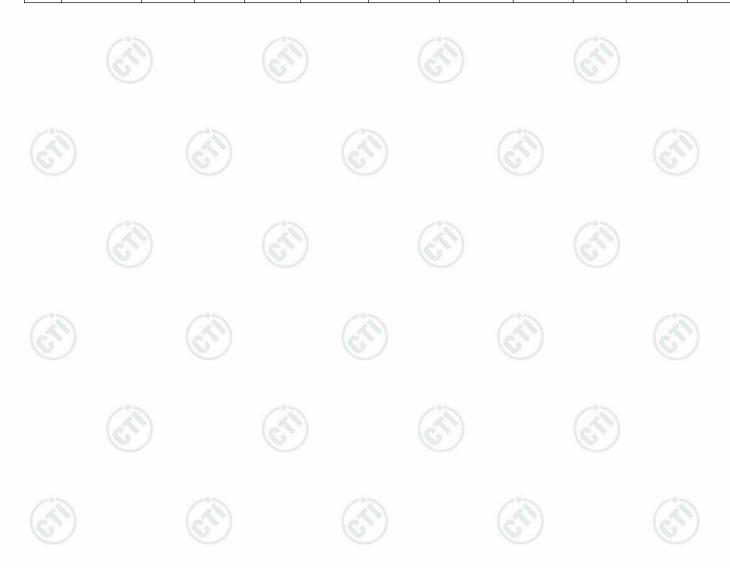
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

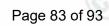
Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

 Coduled until all reductions measured was complete.											
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)							
0.0000411- 0.4000411-		(aba v/III)									
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300							
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30							
1.705MHz-30MHz	30	-	-	30							
30MHz-88MHz	100	40.0	Quasi-peak	3							
88MHz-216MHz	150	43.5	Quasi-peak	3							
216MHz-960MHz	200	46.0	Quasi-peak	3							
960MHz-1GHz	500	54.0	Quasi-peak	3							
Above 1GHz	500	54.0	Average	3							

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.




Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

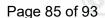
Mode	e:		GFSK 7	Transmitti	ng		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	69.1919	9.21	0.95	-32.05	51.50	29.61	40.00	10.39	Pass	Н	PK
2	179.7830	8.99	1.58	-31.99	44.86	23.44	43.50	20.06	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	43.25	24.15	43.50	19.35	Pass	Н	PK
4	256.0326	12.32	1.90	-31.88	41.70	24.04	46.00	21.96	Pass	Н	PK
5	600.0290	19.00	2.96	-31.99	42.35	32.32	46.00	13.68	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	40.02	35.37	54.00	18.63	Pass	Н	PK
7	71.9082	8.64	0.97	-32.05	53.04	30.60	40.00	9.40	Pass	Н	PK
8	99.2649	10.88	1.16	-32.06	38.07	18.05	43.50	25.45	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	44.40	25.30	43.50	18.20	Pass	V	PK
10	411.4421	15.58	2.42	-31.83	37.20	23.37	46.00	22.63	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	41.51	31.94	46.00	14.06	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	41.18	36.53	54.00	17.47	Pass	V	PK

							01 1 0400				
Mode	:	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3054.0036	33.22	4.82	-42.08	49.99	45.95	74.00	28.05	Pass	Н	PK
2	3812.0541	33.65	4.37	-41.17	49.10	45.95	74.00	28.05	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	57.74	56.13	74.00	17.87	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	56.08	57.18	74.00	16.82	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	50.25	53.76	74.00	20.24	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	44.76	50.46	74.00	23.54	Pass	Н	PK
7	3033.0022	33.21	4.86	-42.09	49.44	45.42	74.00	28.58	Pass	V	PK
8	3983.0655	33.79	4.33	-40.82	54.37	51.67	74.00	22.33	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	59.97	58.36	74.00	15.64	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	58.44	59.54	74.00	14.46	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	49.03	52.54	74.00	21.46	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	44.91	50.61	74.00	23.39	Pass	V	PK
13	7205.9204	36.31	5.82	-41.02	51.28	52.39	54.00	1.61	Pass	V	AV

Mode):	8DPSK	Transmi	tting			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3193.0129	33.28	4.64	-42.01	48.98	44.89	74.00	29.11	Pass	Н	PK
2	4262.0841	34.17	4.48	-40.85	52.91	50.71	74.00	23.29	Pass	Н	PK
3	4882.0000	34.50	4.81	-40.60	55.01	53.72	74.00	20.28	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	53.70	55.05	74.00	18.95	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	47.90	51.70	74.00	22.30	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	45.10	51.03	74.00	22.97	Pass	Н	PK
7	7322.2282	36.42	5.85	-40.92	43.00	44.35	54.00	9.65	Pass	Н	AV
8	4252.0835	34.15	4.51	-40.85	55.51	53.32	74.00	20.68	Pass	V	PK
9	4882.0000	34.50	4.81	-40.60	55.72	54.43	74.00	19.57	Pass	V	PK
10	5328.1552	34.83	4.82	-40.59	47.96	47.02	74.00	26.98	Pass	V	PK
11	7323.0000	36.42	5.85	-40.92	55.57	56.92	74.00	17.08	Pass	V	PK
12	9764.0000	37.71	6.71	-40.62	48.39	52.19	74.00	21.81	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	45.33	51.26	74.00	22.74	Pass	V	PK
14	7322.4182	36.42	5.85	-40.92	46.95	48.30	54.00	5.70	Pass	V	AV

Mode	e:	GFSK T	ransmitt	ing			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3019.0013	33.21	4.89	-42.11	49.59	45.58	74.00	28.42	Pass	Н	PK
2	3890.0593	33.71	4.34	-41.00	50.10	47.15	74.00	26.85	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	55.38	54.17	74.00	19.83	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	56.11	57.68	74.00	16.32	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	47.31	51.39	74.00	22.61	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	46.07	52.35	74.00	21.65	Pass	Н	PK
7	7439.9260	36.54	5.85	-40.82	48.90	50.47	54.00	3.53	Pass	Н	AV
8	2930.3930	33.09	4.39	-42.16	50.77	46.09	74.00	27.91	Pass	V	PK
9	4259.0839	34.16	4.49	-40.84	51.56	49.37	74.00	24.63	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	57.27	56.06	74.00	17.94	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	56.43	58.00	74.00	16.00	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	48.44	52.52	74.00	21.48	Pass	V	PK
13	12400.0000	39.54	7.86	-41.12	46.63	52.91	74.00	21.09	Pass	V	PK

Mode) :	8DPSK	Transmi	tting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3975.0650	33.78	4.33	-40.83	49.42	46.70	74.00	27.30	Pass	Н	PK
2	4804.0000	34.50	4.55	-40.66	58.35	56.74	74.00	17.26	Pass	Н	PK
3	6304.2203	35.86	5.46	-41.15	47.70	47.87	74.00	26.13	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	56.14	57.24	74.00	16.76	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	47.65	51.16	74.00	22.84	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	43.87	49.57	74.00	24.43	Pass	Н	PK
7	7206	36.31	5.81	-41.02	47.28	48.38	54.00	5.62	Pass	Н	AV
8	3993.0662	33.79	4.33	-40.79	55.61	52.94	74.00	21.06	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	57.28	55.67	74.00	18.33	Pass	V	PK
10	5905.1937	35.65	5.09	-41.01	48.49	48.22	74.00	25.78	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	58.40	59.50	74.00	14.50	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	48.06	51.57	74.00	22.43	Pass	V	PK
13	12010.0000	39.31	7.60	-41.21	43.81	49.51	74.00	24.49	Pass	V	PK
14	7206	36.31	5.81	-41.02	49.01	50.11	54.00	3.89	Pass	V	AV



Mode	e :	8DPSK	Transmi	tting			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3444.0296	33.38	4.45	-41.86	49.15	45.12	74.00	28.88	Pass	Н	PK
2	4882.0000	34.50	4.81	-40.60	55.98	54.69	74.00	19.31	Pass	Н	PK
3	5611.1741	35.18	5.06	-40.74	49.12	48.62	74.00	25.38	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	56.31	57.66	74.00	16.34	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	48.27	52.07	74.00	21.93	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	45.20	51.13	74.00	22.87	Pass	Н	PK
7	7322.3382	36.42	5.85	-40.92	47.34	48.69	54.00	5.31	Pass	Н	AV
8	3073.0049	33.23	4.78	-42.08	49.83	45.76	74.00	28.24	Pass	V	PK
9	3981.0654	33.78	4.33	-40.81	54.54	51.84	74.00	22.16	Pass	V	PK
10	4882.0000	34.50	4.81	-40.60	56.86	55.57	74.00	18.43	Pass	V	PK
11	7323.0000	36.42	5.85	-40.92	58.01	59.36	74.00	14.64	Pass	V	PK
12	9764.0000	37.71	6.71	-40.62	48.81	52.61	74.00	21.39	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	45.05	50.98	74.00	23.02	Pass	V	PK
14	7322.4482	36.42	5.85	-40.92	50.52	51.87	54.00	2.13	Pass	V	AV

Mode	e :	8DPSK	Transmi	tting			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3940.0627	33.75	4.34	-40.90	50.03	47.22	74.00	26.78	Pass	Н	PK
2	4960.0000	34.50	4.82	-40.53	55.09	53.88	74.00	20.12	Pass	Н	PK
3	6426.2284	35.89	5.42	-41.18	48.36	48.49	74.00	25.51	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	56.15	57.72	74.00	16.28	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	48.06	52.14	74.00	21.86	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	47.32	53.60	74.00	20.40	Pass	Н	PK
7	7439.6160	36.54	5.85	-40.82	49.75	51.32	54.00	2.68	Pass	Н	AV
8	4254.0836	34.16	4.50	-40.85	56.97	54.78	74.00	19.22	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	57.35	56.14	74.00	17.86	Pass	V	PK
10	6497.2331	35.90	5.47	-41.19	48.29	48.47	74.00	25.53	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	56.87	58.44	74.00	15.56	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	47.21	51.29	74.00	22.71	Pass	V	PK
13	12400.0000	39.54	7.86	-41.12	45.98	52.26	74.00	21.74	Pass	V	PK
14	7439.3960	36.54	5.85	-40.82	49.06	50.63	54.00	3.37	Pass	V	AV

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below