

Page 1 of 95

TEST REPORT

Product Trade mark Model/Type reference

- Bone Conductor Hearing Enhancer
 - Walker's
- GWP-BCON, GWP-SF-BCON, GWP-BCON-XXX, 2 GWP-SF-BCON-XXX (Where X=0 to 9 or A to Z)
- N/A

1

:

:

Serial Number **Report Number** FCC ID Date of Issue: **Test Standards Test result**

- EED32M00099401 ÷.
- **MV3-BCON** :
- May 28, 2020 :
 - 47 CFR Part 15 Subpart C

PASS

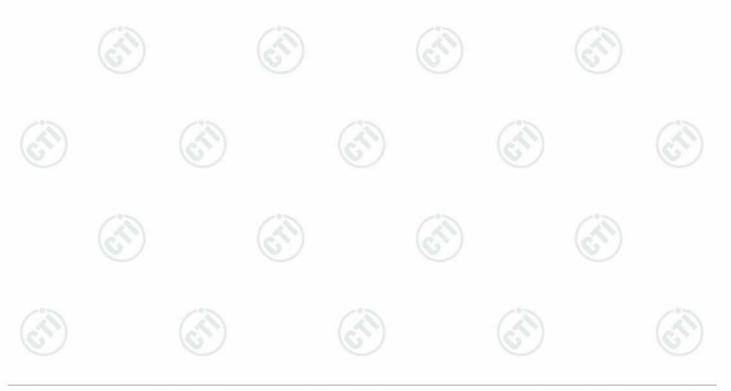
Prepared for: **Country Mate Technology Ltd.** 5/F, Blk E, Hing Yip Center, 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	Sunlight Sun Sunlight Sun San Curry	Reviewed by:	Wave Xin Ware Xin May 28, 2020	
Report Seal	Sam Chuang		Check No.:30	96302697
(ST)				

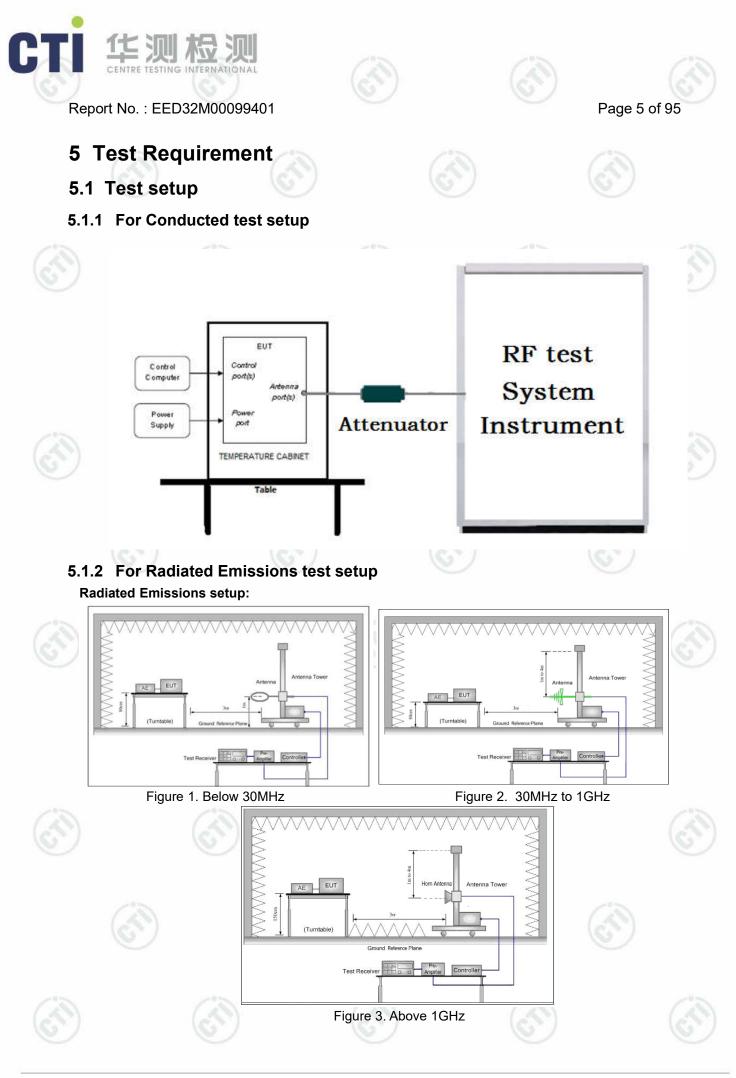
Version No.	Date	Description
00	May 28, 2020	Original
(

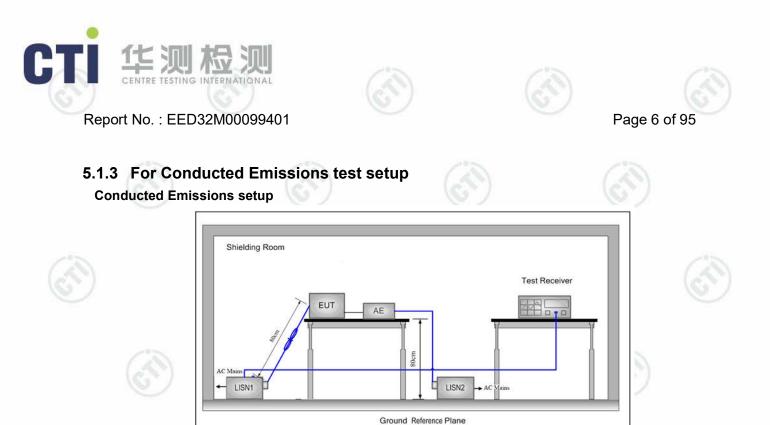

Page 3 of 95

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.


The tested samples and the sample information are provided by the client. Model No.:GWP-BCON, GWP-SF-BCON, GWP-BCON-XXX, GWP-SF-BCON-XXX (Where X=0 to 9 or A to Z) Only the model GWP-BCON was tested, since their electrical circuit design, layout, components used and internal wiring are identical. Only the Color or Package is different.



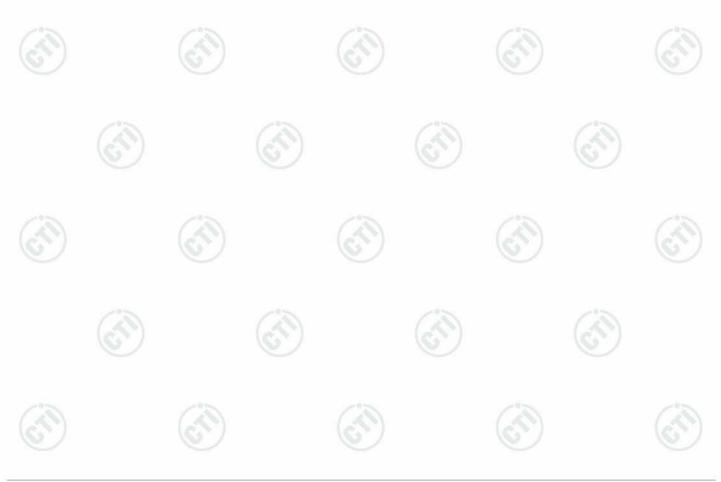
4 Content			
1 COVER PAGE			••••••
2 VERSION			•••••
3 TEST SUMMARY	<u></u>		
4 CONTENT			
5 TEST REQUIREMENT			
5.1 TEST SETUP			
5.1.1 For Conducted test setup			
5.1.2 For Radiated Emissions tes			
5.1.3 For Conducted Emissions te			
5.2 TEST ENVIRONMENT			
5.3 TEST CONDITION			
6 GENERAL INFORMATION			
6.1 CLIENT INFORMATION			
6.2 GENERAL DESCRIPTION OF EUT			
6.3 PRODUCT SPECIFICATION SUBJECT			
6.4 DESCRIPTION OF SUPPORT UNITS.			
6.5 TEST LOCATION			
6.6 DEVIATION FROM STANDARDS			
6.7 ABNORMALITIES FROM STANDARD			
6.8 OTHER INFORMATION REQUESTED			
6.9 MEASUREMENT UNCERTAINTY (95%			
7 EQUIPMENT LIST			
B RADIO TECHNICAL REQUIREMEN			
Appendix A): 20dB Occupied Ban	dwidth& 99% Occupied Bandw	idth	
Appendix B): Carrier Frequency S	eparation		
Appendix C): Dwell Time			
Appendix D): Hopping Channel N			
Appendix E): Conducted Peak Ou			
Appendix F): Band-edge for RF C			
Appendix G): RF Conducted Spur			
Appendix H) Pseudorandom Freq			
Appendix I) Antenna Requiremer	1t		
Appendix J) AC Power Line Cond	ucted Emission		
AppendixK) Restricted bands are			
	missions		
Appendix L) Radiated Spurious E			
Appendix L) Radiated Spurious E PHOTOGRAPHS OF TEST SETUP	<u> </u>		

5.2 Test Environment

Operating Environ	nent:		
Temperature:	23.0 °C		
Humidity:	54 % RH	(c))	(S)
Atmospheric Pressure:	1010 mbar		

	Test Co	0		_ (5)		RF Channel	6
~	Test Mode		Tx/	Rx	Low(L)	Middle(M)	High(H)
8	GFSK/π/4DQ DPSK(DH1,DH		2402MHz ~24	80 MHz	Channel 0 2402MHz	Channel 39 2441MHz	Channel 78 2480MHz
	(I)		Ì		(S)	(S)

6 General Information


6.1 Client Information

Applicant:	Country Mate Technology Ltd.
Address of Applicant:	5/F, Blk E, Hing Yip Center, 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Manufacturer:	Country Mate Technology Ltd.
Address of Manufacturer:	5/F, Blk E, Hing Yip Center, 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Factory:	Concord Electronic (Huizhou) Ltd.
Address of Factory:	21, Ping An Rd, Shuikou Street, Hui Cheng District , Huizhou City, Guangdong Province,China

Page 7 of 95

6.2 General Description of EUT

Product Name:	Bone Conductor Hearing	Enhancer
Model No.(EUT):	GWP-BCON, GWP-SF-B (Where X=0 to 9 or A to Z	CON, GWP-BCON-XXX, GWP-SF-BCON-XXX
Test Mode No.:	GWP-BCON	
Tark mark:	Walker's	6
EUT Supports Radios application	BT 5.0 Single mode, 2402	2MHz to 2480MHz
Power Supply:	Lithium Polymer Battery	Model:SP851425 3.8V 300mAh 1.14Wh
Sample Received Date:	Apr. 24, 2020	
Sample tested Date:	Apr. 24, 2020 to May 18, 2	2020

Page 8 of 95

6.3 Product Specification subjective to this standard

Operation	Frequency:	2402M	Hz~2480MHz				
Bluetooth '	Version:	5.0					
Modulatior	n Technique:	Freque	ncy Hopping S	pread Spect	rum(FHSS)		
Modulation	n Type:	GFSK,	π/4DQPSK, 8I	DPSK	6	0	G
Number of	f Channel:	79	G		G		G
Hopping C	hannel Type:	Adaptiv	ve Frequency H	lopping syste	ems		
Test Powe	er Grade:	Refere	nce Table 1				
Test Softw	are of EUT:	Bluetes	st3	6	E)	63	0
Antenna T	ype:	Chip A	ntenna				
Antenna G	Gain:	0.8dBi					
Test Volta	ge:	DC 3.8	V	-		i marine	
Operation	Frequency ea			0	6	0)	(2
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	6.5	

Page 9 of 95

Table 1:				
Mode	Channel	(GY)	Power Setting	
Wode	ondimor	Atn	Mag	Exp
	LCH	2	0	0
DH5	MCH	2	0	0
	НСН	2	0	0
/	LCH	2	0	0
2DH5	MCH	2	0	0
	НСН	2	0	0
(2)	LCH	2	0	0
3DH5	MCH	2	0	0
	НСН	2	0	0

6.4 Description of Support Units

The EUT has been tested with associated equipment below

	sociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
A	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
	6					(12)
		1 J.	G		G	6.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
		6

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002)	(``)	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d	-(20)		
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3)		

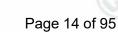
		Conducted d	isturbance Test		
Equipment	Manufactur er	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019 04-28-2020	05-19-2020 04-27-2021
Temperature/ Humidity Indicator	Defu	TH128		06-14-2019	06-13-2020
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020

Page 12 of 95

	3M 3	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	трк	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	11	
Cable line	Fulai(3M)	SF106	5217/6A	(

Page 13 of 95

		3M full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019 04-22-2020	05-07-2020 04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019 04-27-2020	04-29-2020 04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		(A)
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		<u>o</u>
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		



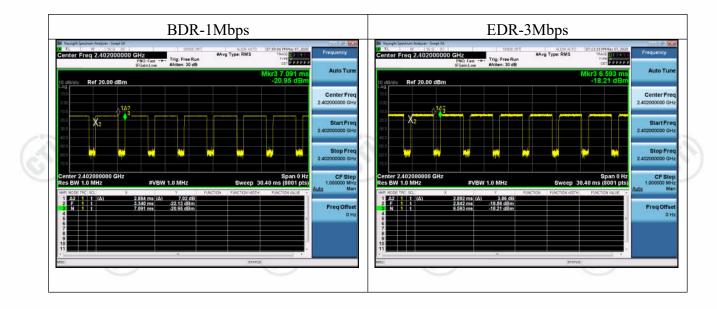
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth& 99% Occupied Bandwidth	PASS	Appendix A)
0	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
D	Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
	Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
9	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
0	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	AppendixJ)
	Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	AppendixK)
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	AppendixL)



Page 15 of 95

Duty Cycle

(35)			
	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BDR-1Mbps	2.884	3.751	76.9%
EDR-3Mbps	2.892	3.751	77.1%

Appendix A): 20dB Occupied Bandwidth& 99% Occupied Bandwidth

Test Limit

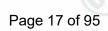
According to §15.247(a) (1),

20 dB Bandwidth : For reporting purposes only.

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

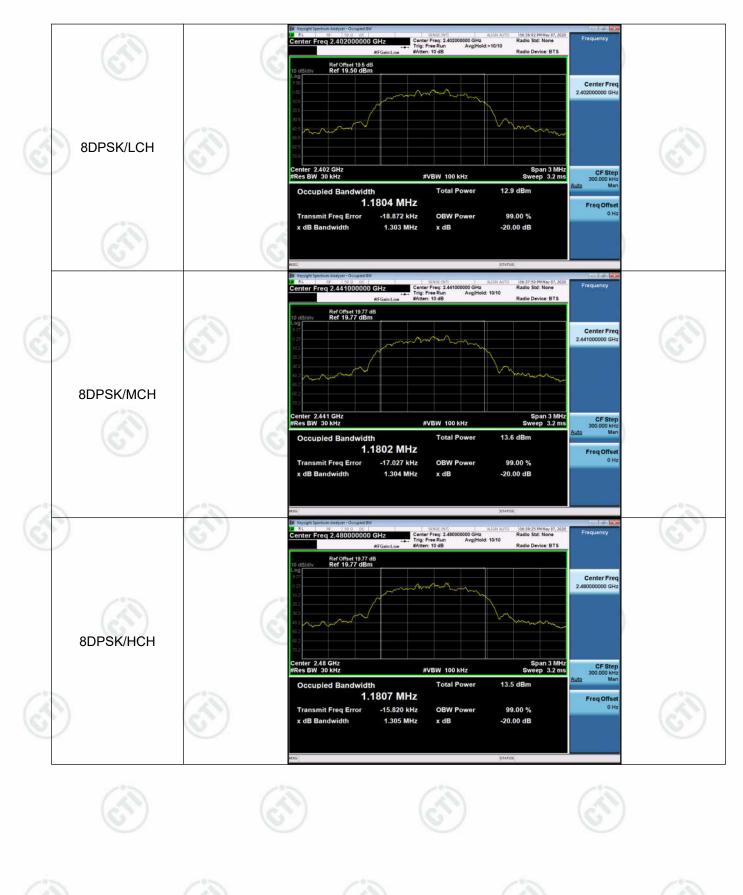

- The EUT RF output connected to the spectrum analyzer by RF cable. 1.
- 2. Setting maximum power transmit of EUT
- SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB 3. Bandwidth.
 - SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test 5. report.

4.

Test Result	6	(A) (A		
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9598	0.86597	PASS
GFSK	МСН	0.9601	0.86662	PASS
GFSK	нсн	0.9604	0.86195	PASS
π /4DQPSK	LCH	1.332	1.1885	PASS
π /4DQPSK	МСН	1.332	1.1891	PASS
π /4DQPSK	нсн	1.331	1.1893	PASS
8DPSK	LCH	1.303	1.1804	PASS
8DPSK	МСН	1.304	1.1802	PASS
8DPSK	НСН	1.305	1.1807	PASS

Page 18 of 95

Page 19 of 95



Page 20 of 95

Page 21 of 95

Appendix B): Carrier Frequency Separation

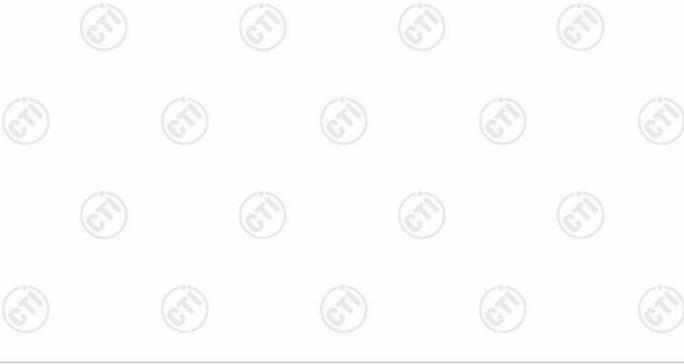
Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

 Limit
 > two-thirds of the 20 dB bandwidth

 Test Procedure


 1.
 Place the EUT on the table and set it in transmitting mode.

 2.
 EUT RF output port connected to the SA by RF cable.

 3.
 Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

 Test Setup

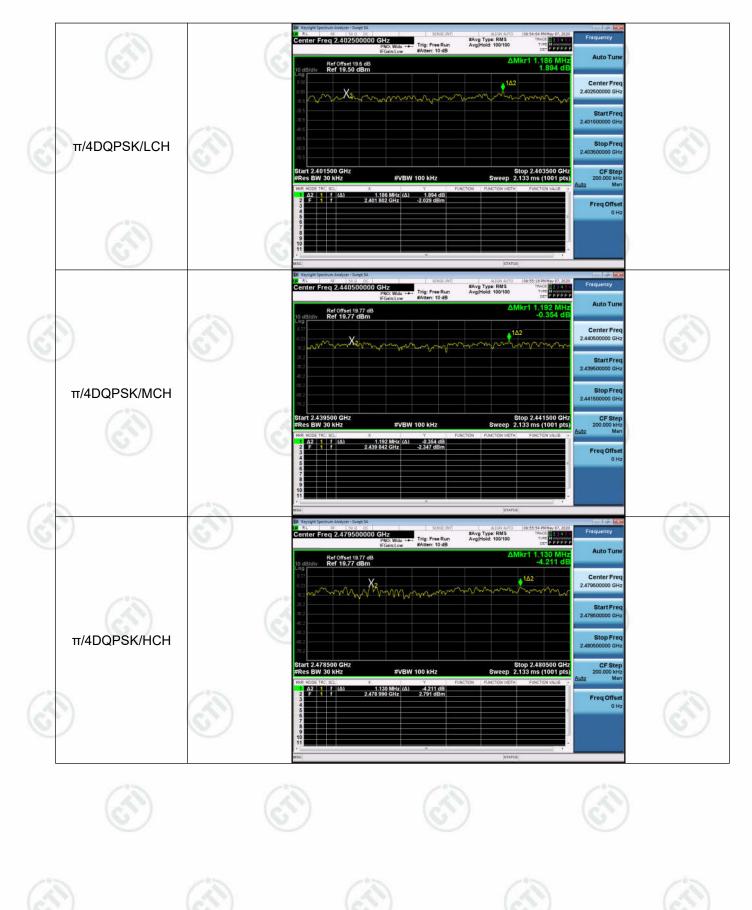
 EUT
 Spectrum Analyzer

Page 22 of 95

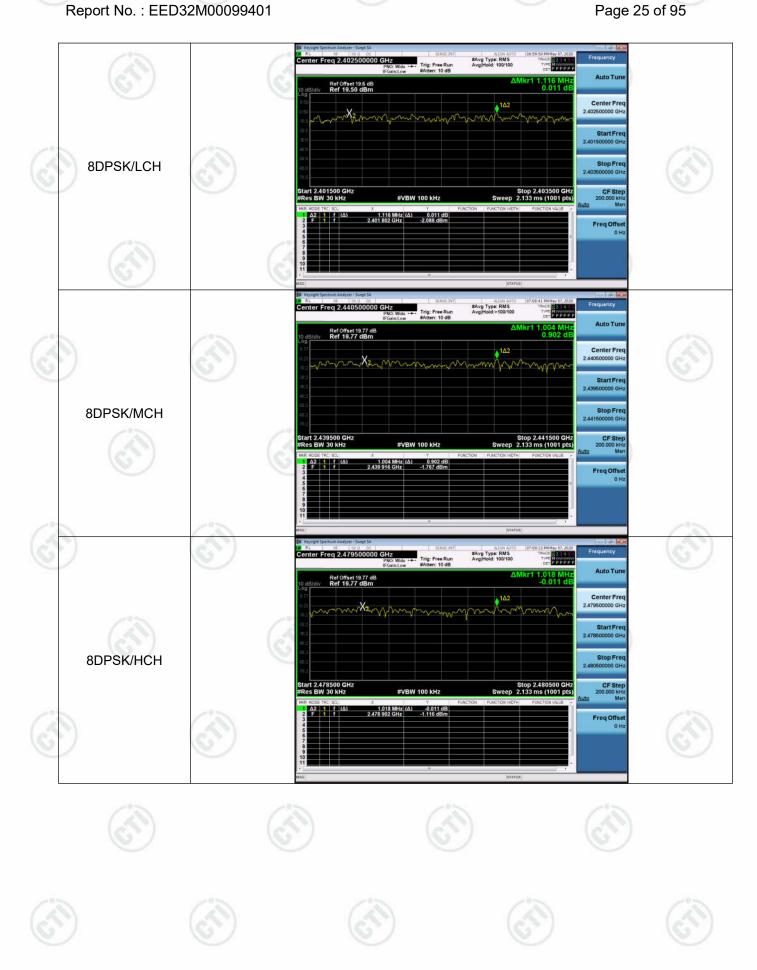

Result Table

	Mode	Channel.		Carrier Freq	uency Separ	ation [MHz]		Verdict
	GFSK	LCH			1.044			PASS
	GFSK GFSK	MCH HCH			1.022 1.000			PASS PASS
12	π/4DQPSK	LCH		12	1.186	~		PASS
	π/4DQPSK	MCH			1.192			PASS
S C	π/4DQPSK	НСН			1.130	e l		PASS
	8DPSK	LCH			1.116			PASS
	8DPSK 8DPSK	MCH HCH			1.004 1.018			PASS PASS
	ODFSK		12		1.018		10	FASS

Page 23 of 95



Page 24 of 95


Report No. : EED32M00099401

CTI 华测检测 CENTRE TESTING INTERNATIONAL

Appendix C): Dwell Time

Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep = auto

Page 27 of 95

Result Table

	Mode	Packet	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
Γ	GFSK	DH1	LCH	0.38506	320	0.123	0.31	PASS
	GFSK	DH1	MCH	0.3838	320	0.123	0.31	PASS
22	GFSK	DH1	HCH	0.3838	320	0.123	0.31	PASS
5	GFSK	DH3	LCH	1.64033	160	0.262	0.66	PASS
2	GFSK	DH3	MCH	1.64034	160	0.262	0.66	PASS
	GFSK	DH3	HCH	1.64033	160	0.262	0.66	PASS
Γ	GFSK	DH5	LCH	2.8704	106.7	0.306	0.77	PASS
	GFSK	DH5	MCH	2.8796	106.7	0.307	0.77	PASS
	GFSK	DH5	HCH	2.8704	106.7	0.306	0.77	PASS

Test Graph

Page 29 of 95



Page 30 of 95

Appendix D): Hopping Channel Number

Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Page 31 of 95

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

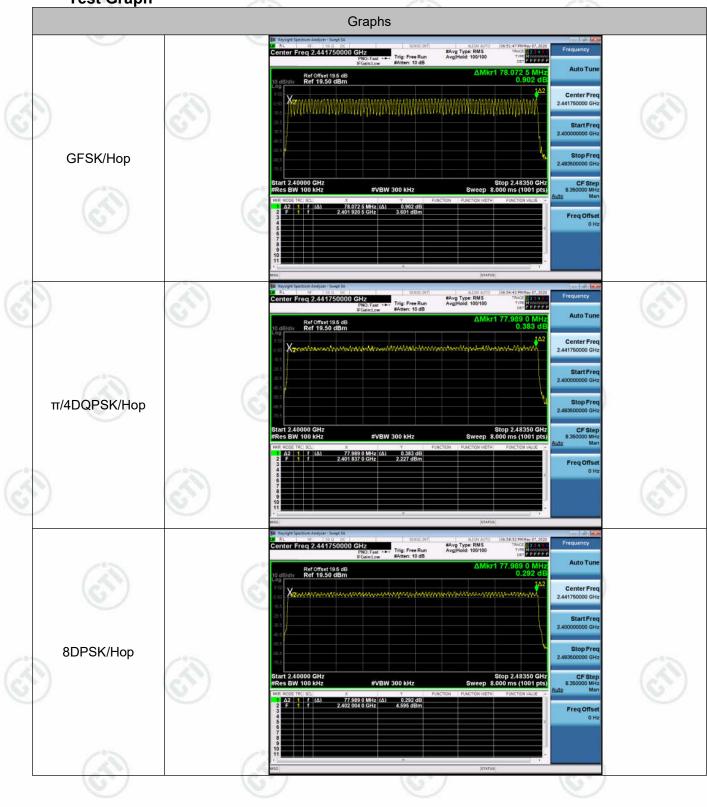
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Test Setup

Page 32 of 95

Result Table

Re 	esult lable		(i)		(A)		
	Mode GFSK	Channel. Hop	Nu	mber of Hopp 79	bing Channel	Verdict PASS	
	π/4DQPSK 8DPSK	Hop Hop		79 79		PASS PASS	
Ì		Ì		(A)			Ì



Page 33 of 95

Test Graph

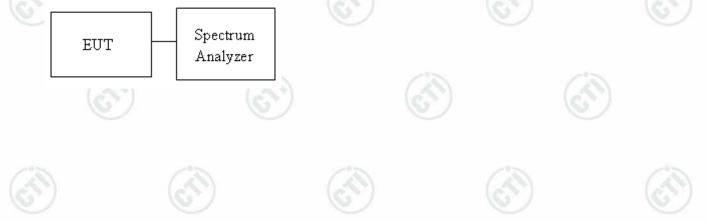
Appendix E): Conducted Peak Output Power

Test Limit According to §15.247(b)(1).

Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


Antenna with DG greater than 6 dBi : 21dBm
[Limit = 30 – (DG – 6)]

Average output power : For reporting purposes only.

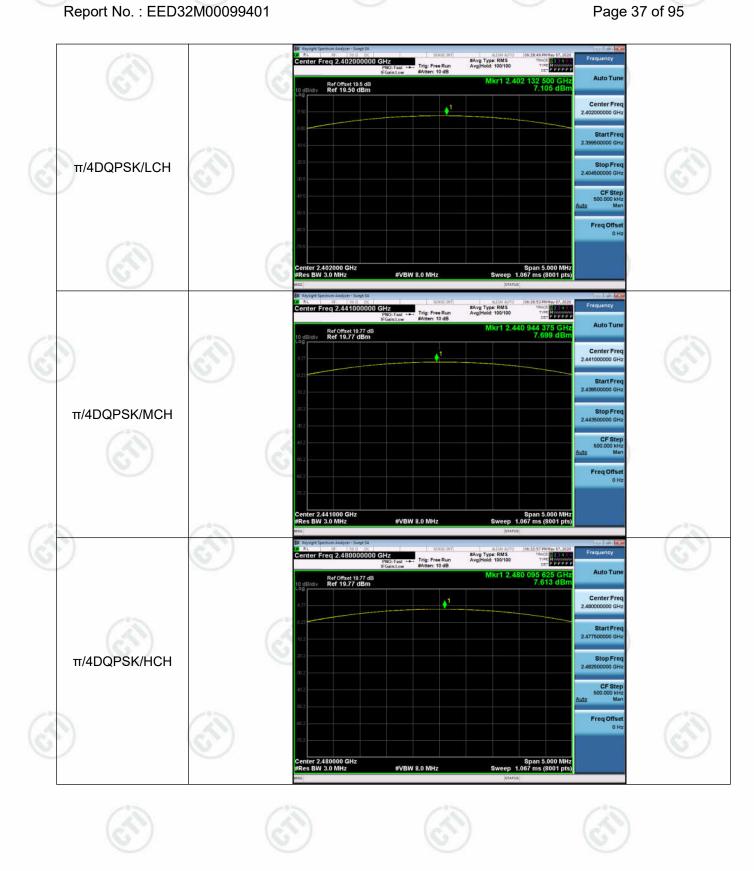
Test Procedure

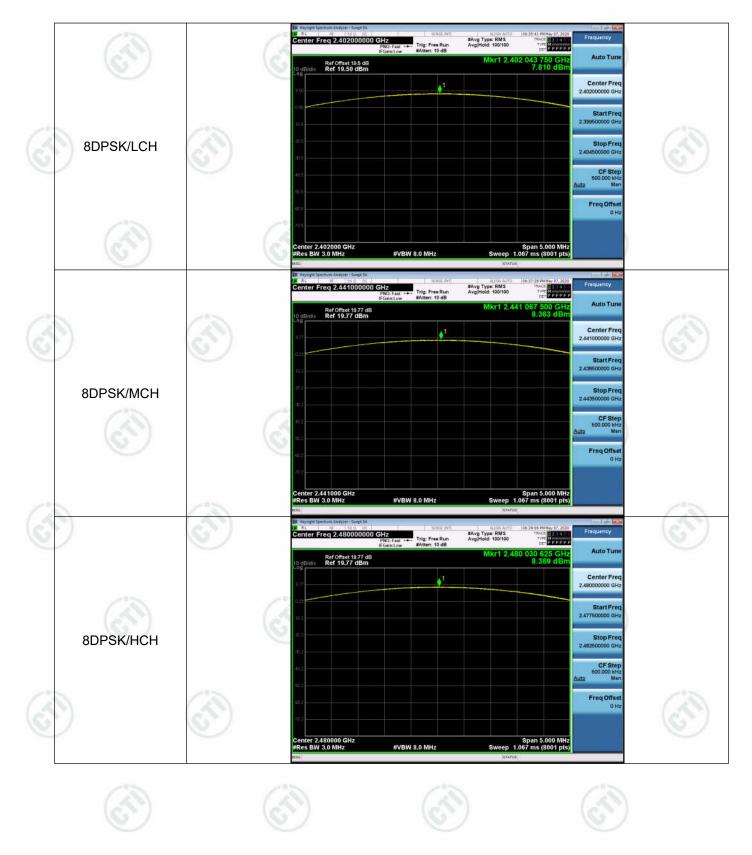
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows :
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW \geq RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
- 4. Measure and record the result in the test report.

Page 35 of 95

Result Table

Ne:	Suit Table						
	Mode	Channel.	Maximum Pe	ak Output Pow	ver [dBm]	Verdict	
GFSK		LCH		Maximum Peak Output Power [dBm] 4.630			
	GFSK	MCH		5.222		PASS PASS	
	GFSK	HCH		5.136		PASS	
100	π/4DQPSK	LCH	100	7.105	192	PASS	0
(1)	π/4DQPSK	MCH		7.699		PASS	
ST	π/4DQPSK	НСН	67	7.613	67	PASS	- 657
~	8DPSK	LCH		7.810		PASS	~
	8DPSK	MCH		8.363		PASS	
	8DPSK	HCH		8.389		PASS	
	ODFOR	non	2	0.000		TAGO	


Test Graph



Page 38 of 95

Report No. : EED32M00099401

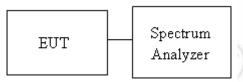
Page 39 of 95

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

		N
-20 dBC	-20 dBc	LIMIT
-20 dBc	-20 dBc	Limit


Test Procedure

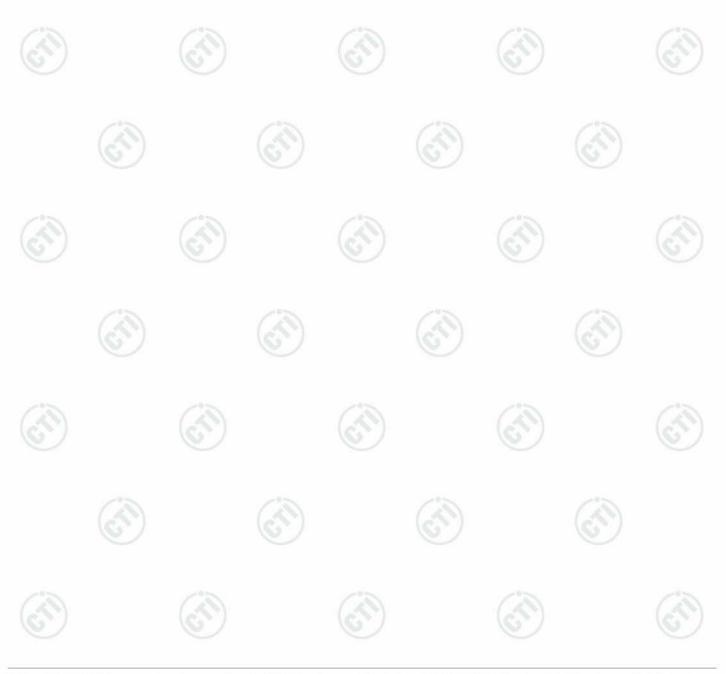
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

Test Setup

Hotline: 400-6788-333



Page 40 of 95

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	4.634	Off	-56.373	-15.37	PASS
GFSK	LOIT	2402	4.792	On	-57.392	-15.21	PASS
GFSK	нсн	2480	5.087	Off	-49.596	-14.91	PASS
GFSK	псп	2400	5.124	On	-49.438	-14.88	PASS
π/4DQPSK	LCH	2402	4.705	Off	-55.291	-15.3	PASS
11/4DQF3K	LCH	2402	3.760	On	-56.036	-16.24	PASS
π/4DQPSK	НСН	2480	5.137	Off	-50.291	-14.86	PASS
11/4DQF3K	псп	2400	5.048	On	-50.263	-14.95	PASS
8DPSK	LCH	2402	4.710	Off	-56.126	-15.29	PASS
OUPSK	LCH	2402	4.778	On	-54.718	-15.22	PASS
0DDCK	ПСП	2490	5.299	Off	-50.034	-14.7	PASS
8DPSK	HCH	2480	4.903	On	-55.222	-15.1	PASS

Page 41 of 95

Test Graph

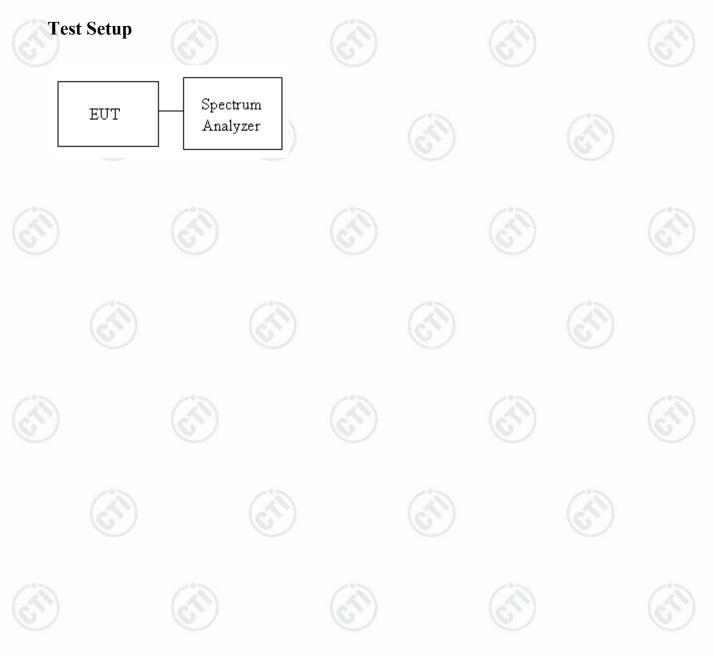
Page 42 of 95

Page 43 of 95

Page 44 of 95

Page 45 of 95

Appendix G): RF Conducted Spurious Emissions


Test Limit According to §15.247(d),

1.00	-07	10 Mar.	- 0 m	- D -
1	Limit	-20 dBc		
G		-20 000	G	(G*)

Test Procedure

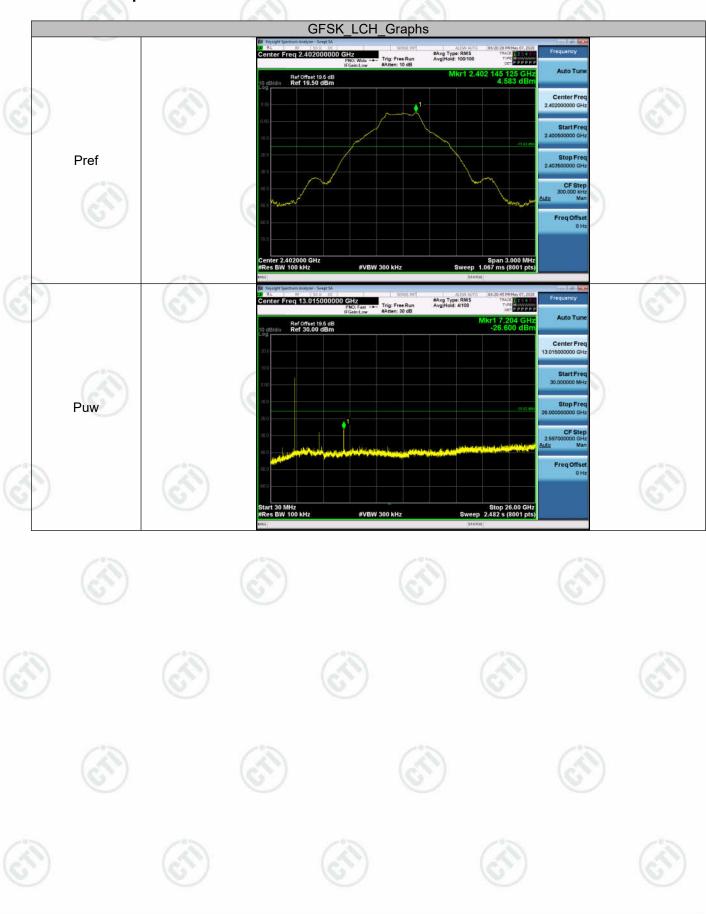
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

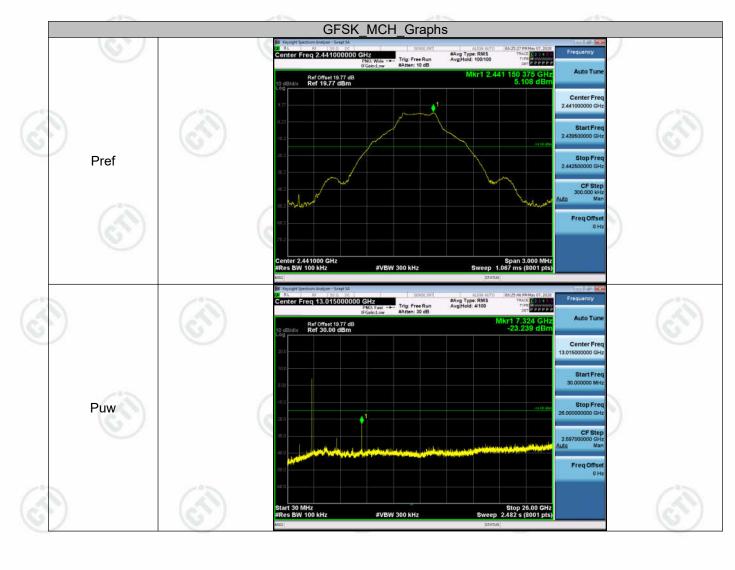
Page 46 of 95

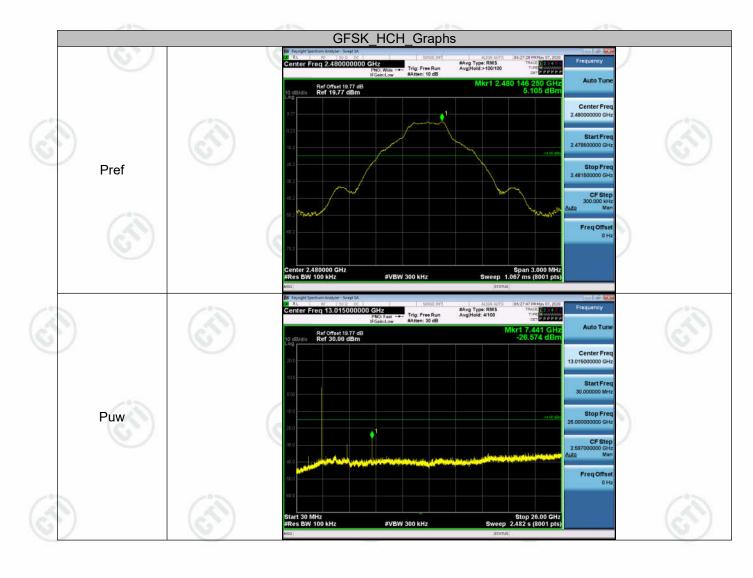
Result Table

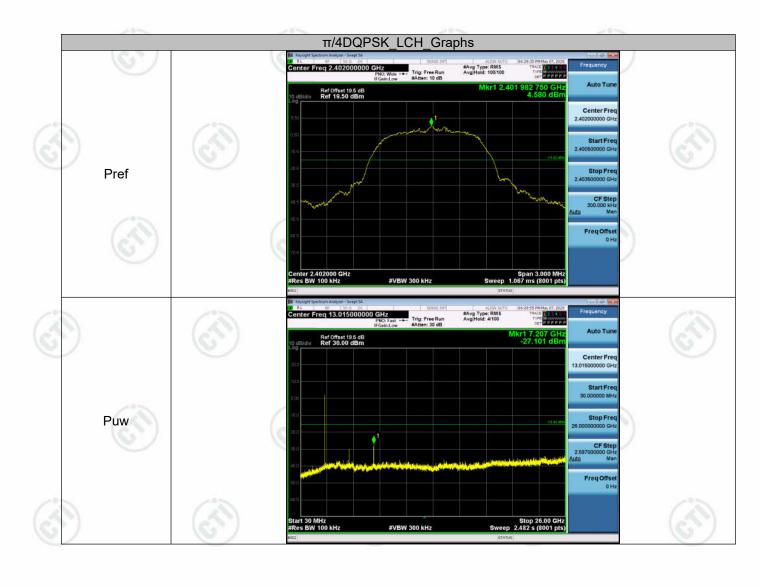
	Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict	
	GFSK	LCH	4.583	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
	GFSK	MCH	5.108	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
	GFSK	HCH	5.105	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
120	π/4DQPSK	LCH	4.58	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
5	π/4DQPSK	MCH	4.97	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
2	π/4DQPSK	HCH	5.055	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
	8DPSK	LCH	4.602	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
	8DPSK	MCH	5.229	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	
	8DPSK	HCH	5.249	<limit< td=""><td>PASS</td><td></td></limit<>	PASS	

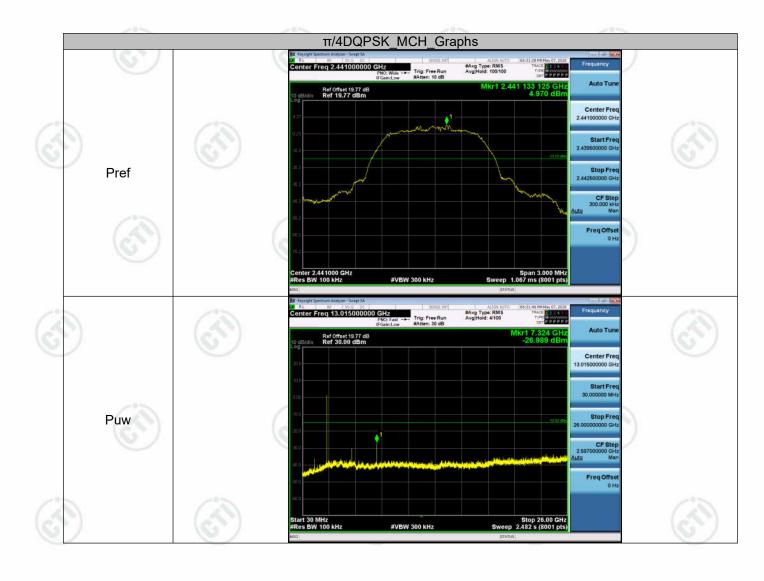


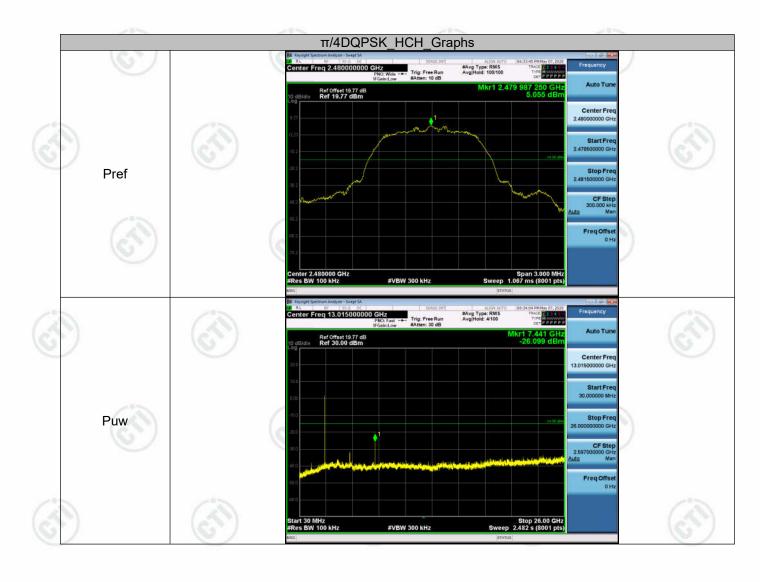
Test Graph

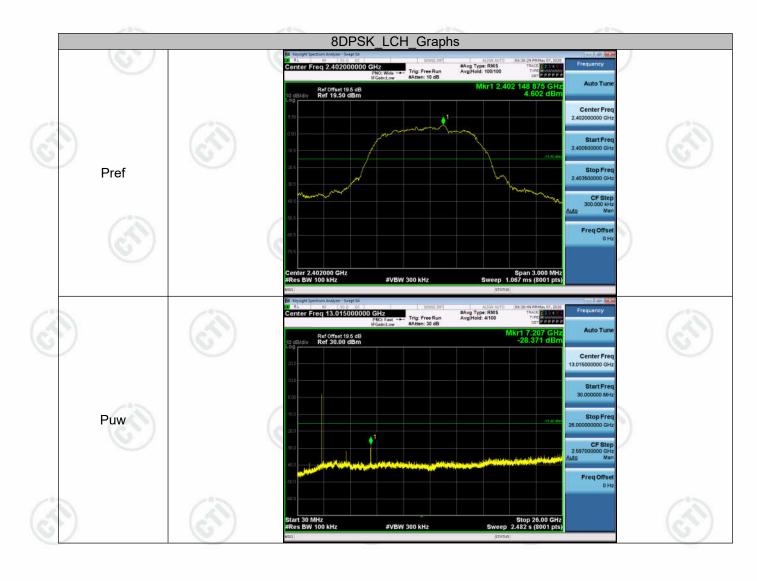


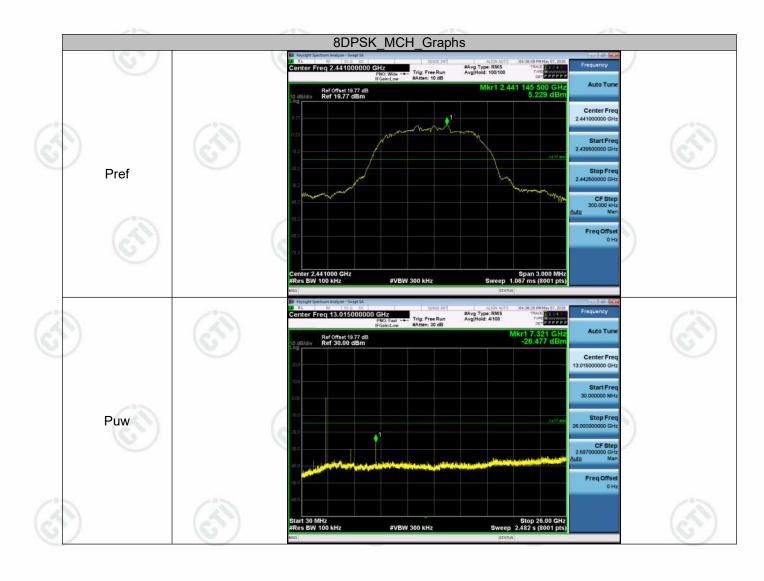








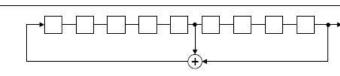




Appendix H) Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom orderec list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

20 62 46 77	7 64	8 73	16 75 1
	111		
		1 1 1	

Each frequency used equally on the average by each transmitter.

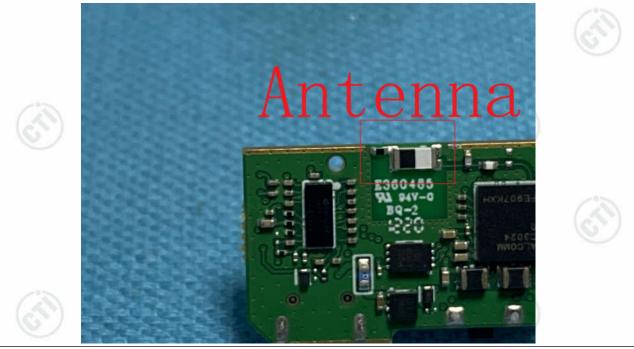
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

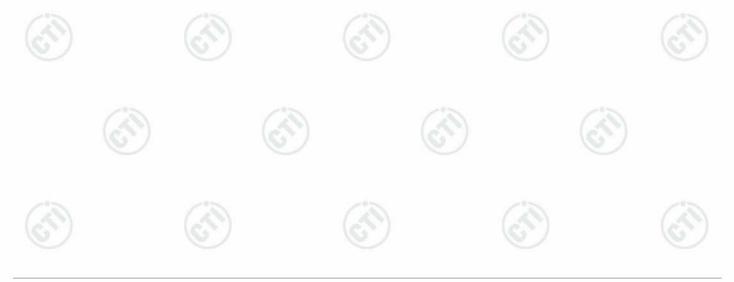
The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page 57 of 95

Appendix I) Antenna Requirement

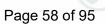
15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

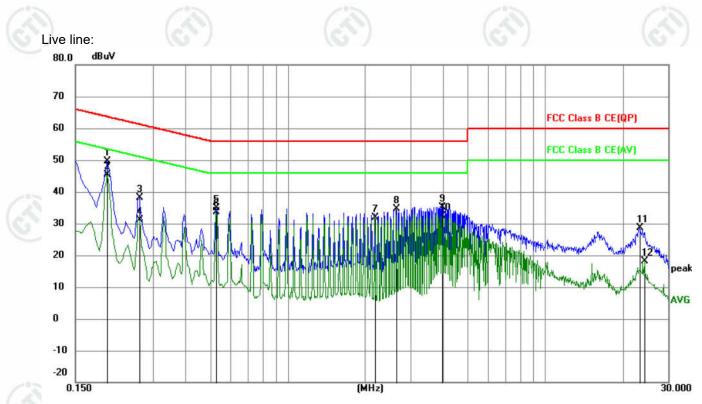
EUT Antenna:


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.8 dBi.

Appendix J) AC Power Line Conducted Emission

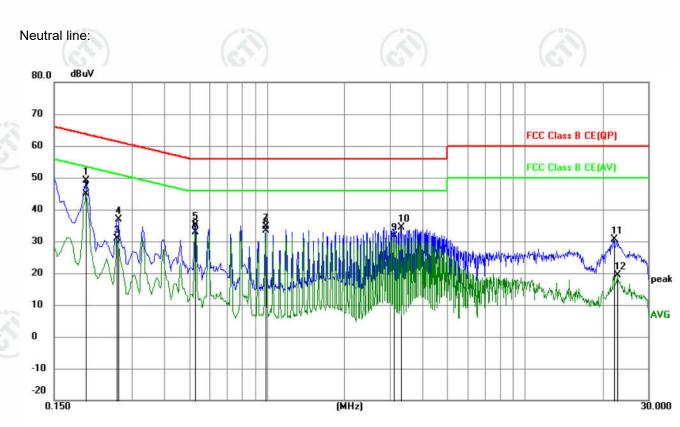
	Test Procedure:	Test frequency range :150KHz	-30MHz	C.				
		1) The mains terminal disturba	ance voltage test was	conducted in a shiel	lded room.			
(D)		2) The EUT was connected to AC power source through a LISN 1 (Line Impedan Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. T power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISN for the unit being measured. A multiple socket outlet strip was used to conner multiple power cables to a single LISN provided the rating of the LISN was not exceeded.						
		 The tabletop EUT was place reference plane. And for floc horizontal ground reference 	or-standing arrangem		•			
		 The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT and 	e vertical ground reference to the horizontal gro the boundary of the u for LISNs mounted co etween the closest po	rence plane. The ve ound reference plan unit under test and on top of the groun pints of the LISN 1 a	rtical grour e. The LIS bonded to nd reference nd the EU			
		LISN 2.						
	(c ¹)	LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement.		ive positions of eq	uipment ar			
	Limit:	5) In order to find the maximulall of the interface cables conducted measurement.		ive positions of eq according to ANSI	uipment a			
	Limit:	5) In order to find the maximulal of the interface cables	s must be changed	ive positions of eq according to ANSI	uipment a			
	Limit:	5) In order to find the maximulall of the interface cables conducted measurement.	s must be changed Limit (c	ive positions of equations of equ dBuV)	uipment a			
	Limit:	 5) In order to find the maximulall of the interface cables conducted measurement. Frequency range (MHz) 	s must be changed Limit (c Quasi-peak	ive positions of equations of equ dBuV) Average	uipment a			
	Limit:	5) In order to find the maximulall of the interface cables conducted measurement. Frequency range (MHz)	s must be changed Limit (c Quasi-peak 66 to 56*	tive positions of equations of equations of equations of ANSI BuV) Average 56 to 46*	uipment ar			

Hotline: 400-6788-333



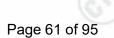
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

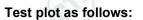
	No. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1995	39.62	10.02	49.64	63.63	-13.99	QP	
	2 *	0.1995	35.26	10.02	45.28	53.63	-8.35	AVG	
	3	0.2670	28.11	10.07	38.18	61.21	-23.03	QP	
	4	0.2670	21.14	10.07	31.21	51.21	-20.00	AVG	
	5	0.5280	24.96	10.03	34.99	56.00	-21.01	QP	
	6	0.5280	23.55	10.03	33.58	46.00	-12.42	AVG	
	7	2.1840	22.17	9.83	32.00	46.00	-14.00	AVG	
-	8	2.6475	24.78	9.83	34.61	56.00	-21.39	QP	
-	9	3.9705	25.32	9.83	35.15	56.00	-20.85	QP	
-	10	3.9705	22.64	9.83	32.47	46.00	-13.53	AVG	
-	11	23.1540	18.74	9.95	28.69	60.00	-31.31	QP	
	12	24.2835	8.27	9.95	18.22	50.00	-31.78	AVG	
-									

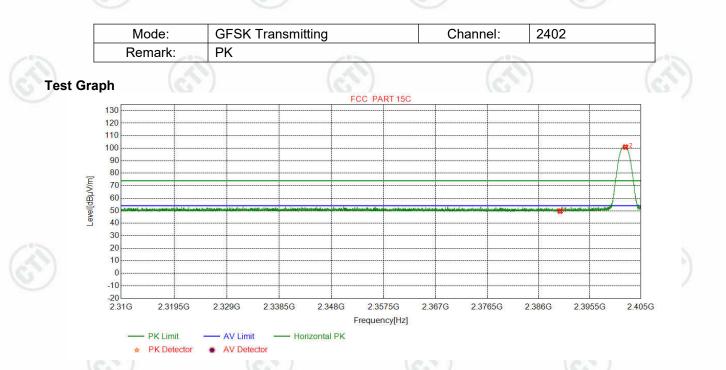
Page 60 of 95


-	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
-	1	0.1995	39.22	10.02	49.24	63.63	-14.39	QP	
-	2 *	0.1995	34.83	10.02	44.85	53.63	-8.78	AVG	
-	3	0.2625	20.87	10.07	30.94	51.35	-20.41	AVG	
	4	0.2670	26.80	10.07	36.87	61.21	-24.34	QP	
	5	0.5280	25.03	10.03	35.06	56.00	-20.94	QP	
	6	0.5280	22.76	10.03	32.79	46.00	-13.21	AVG	
	7	0.9915	24.60	9.91	34.51	56.00	-21.49	QP	
	8	0.9915	23.35	9.91	33.26	46.00	-12.74	AVG	
	9	3.1065	21.80	9.83	31.63	46.00	-14.37	AVG	
	10	3.3045	24.45	9.83	34.28	56.00	-21.72	QP	
	11	22.0830	20.62	9.94	30.56	60.00	-29.44	QP	
	12	22.8120	9.42	9.94	19.36	50.00	-30.64	AVG	
•									

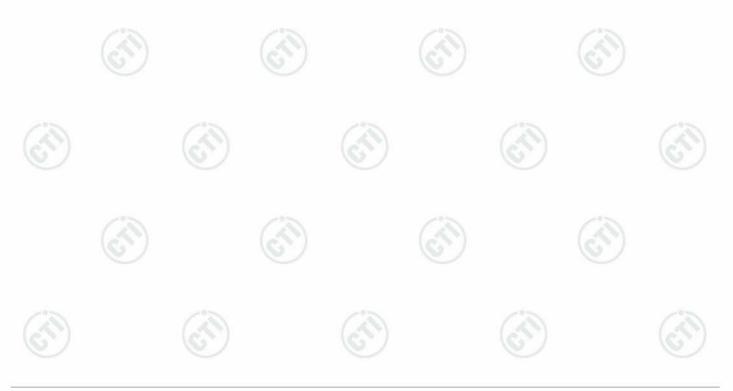
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



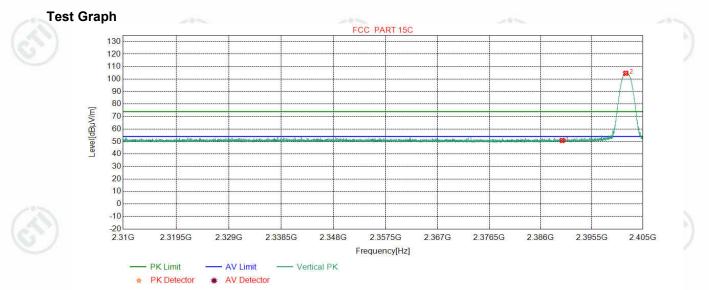

AppendixK) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
0			Peak	1MHz	3MHz	Peak	1
ン		Above 1GHz	Peak	1MHz	10Hz	Average	TC .
	Test Procedure:	 Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-anex determine the position b. The EUT was set 3 meter semi-anex was mounted on the to c. The antenna height is a determine the maximum polarizations of the anten polarizations of the anten the antenna was tuned table was turned from the antenna was tuned from the test-receiver syster Bandwidth with Maximu f. Place a marker at the example of a state of the test-receiver syster and the test state of test states and test states at the test states at thes	In the top of a rol choic camber. The of the highest ran eters away from t average of a variable-he varied from one of m value of the file enna are set to ran ission, the EUT to heights from 0 degrees to 360 or was set to Pe um Hold Mode.	tating table table wa diation. he interfer eight anter meter to fo eld strength make the n was arran 1 meter to 0 degrees t ak Detect l	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters o find the Function a	rs above the 360 degrees ving antenna above the gr rizontal and v ent. worst case and worst case and and the rotata maximum rea nd Specified	a, wh oun vertion nd the
		frequency to show com bands. Save the spect for lowest and highest	rum analyzer plo	-	emission	s in the restri	
()			rum analyzer plo channel ure as below: ve is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax	t. Repeat f , change fr form table meter and the Highes med in X, is positioni	or emission for each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	s in the restri ower and mod Anechoic Ch to 1.5 metre). positioning fo t is worse ca	dula naml r
	Limit:	 bands. Save the spectr for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Charr metre(Above 18GHz th h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedu 	rum analyzer plo channel ure as below: ve is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ	t. Repeat f , change fr form table meter and the Highes med in X, is positioni lencies me	emission for each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa	s in the restri ower and mod Anechoic Ch to 1.5 metre). positioning fo t is worse ca	dula naml r
	Limit:	 bands. Save the spectr for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the i. The radiation measure Transmitting mode, and 	rum analyzer plo channel ure as below: ve is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax	t. Repeat f , change fr form table meter and the Highes med in X, is positioni uencies me m @3m)	or emissions or each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Rei	Anechoic Cr to 1.5 metre). bositioning fo t is worse ca as complete. mark	dula naml r
	Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	rum analyzer plo channel ure as below: /e is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBuV/ 40.0	t. Repeat f , change fr form table meter and the Highes med in X, is positioni lencies me m @3m)	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Rei Quasi-po	Anechoic Cr to 1.5 metre). positioning fo t is worse ca as complete. mark eak Value	dula naml r
	Limit:	bands. Save the spectr for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	rum analyzer plo channel ure as below: //e is the test site aber and change he distance is 1 lowest channel , ments are perfor d found the X ax ires until all frequ Limit (dBuV/ 40.0 43.5	t. Repeat f , change fr form table meter and the Highes med in X, is positioni lencies me m @3m)	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Rei Quasi-po	Anechoic Cr to 1.5 metre). bositioning fo t is worse ca as complete. mark eak Value eak Value	dula naml r
() ()	Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	rum analyzer plo channel ure as below: /e is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBuV/ 40.0 43.5 46.0	t. Repeat f , change fr form table meter and the Highes med in X, is positioni iencies me m @3m)	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch to 1.5 metre). bositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	dula naml r
	Limit:	bands. Save the spectr for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz th h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	rum analyzer plo channel ure as below: ve is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBuV/ 40.0 43.5 46.0 54.0	t. Repeat f	rom Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po	Anechoic Cr to 1.5 metre). oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	dula naml r
	Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham metre(Above 18GHz t h. b. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	rum analyzer plo channel ure as below: /e is the test site ber and change he distance is 1 lowest channel , ments are perfor d found the X ax res until all frequ Limit (dBuV/ 40.0 43.5 46.0	t. Repeat f	emissions for each po 0.8 metre table is 1.5 st channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	Anechoic Ch to 1.5 metre). bositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	dula naml r

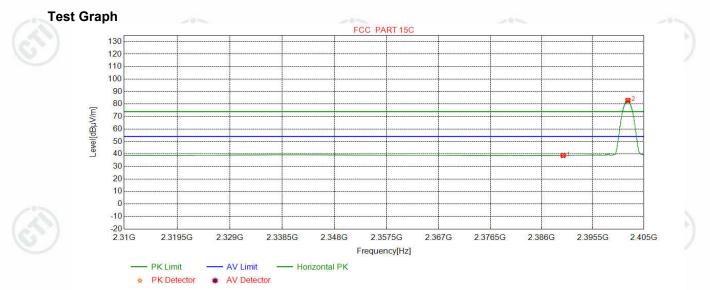


Page 62 of 95

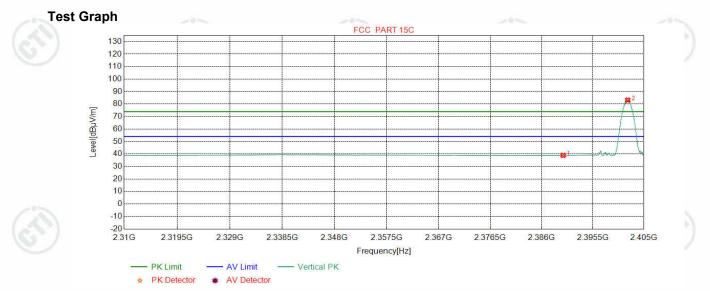
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.18	49.68	74.00	24.32	Pass	Horizontal
2	2402.1308	32.26	13.31	-43.12	98.46	100.91	74.00	-26.91	Pass	Horizontal
	6		1					2		



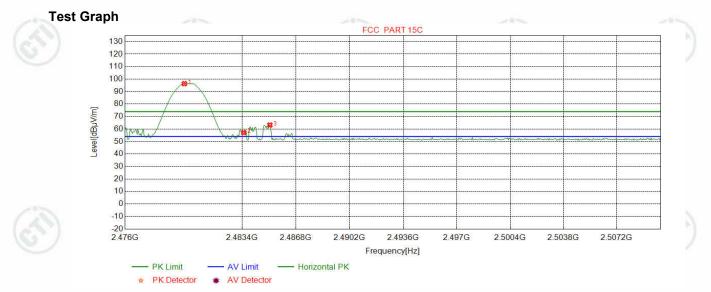
I	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	48.36	50.86	74.00	23.14	Pass	Vertical
	2	2401.8078	32.26	13.31	-43.12	102.21	104.66	74.00	-30.66	Pass	Vertical
1	100							1000			100



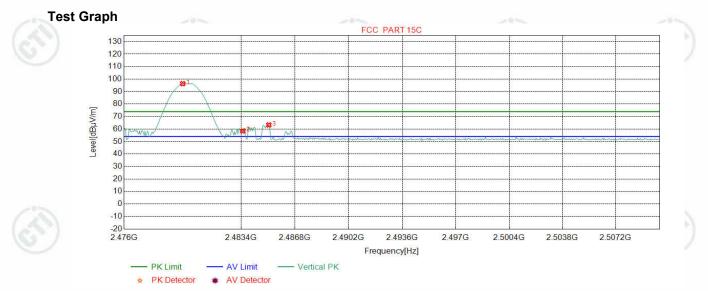
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.37	38.87	54.00	15.13	Pass	Horizontal
2	2402.0231	32.26	13.31	-43.12	80.45	82.90	54.00	-28.90	Pass	Horizontal
100				•			1000			



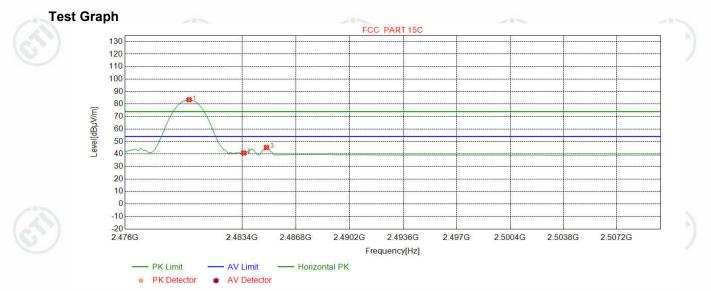
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.40	38.90	54.00	15.10	Pass	Vertical
2	2401.9915	32.26	13.31	-43.12	80.75	83.20	54.00	-29.20	Pass	Vertical
100		100					1000			



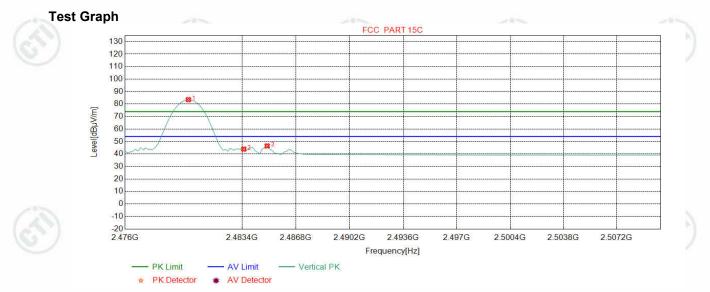
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.68	96.34	74.00	-22.34	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	54.50	57.15	74.00	16.85	Pass	Horizontal
3	2485.1489	32.38	13.37	-43.11	60.56	63.20	74.00	10.80	Pass	Horizontal
S.).	6	٠J		67)		6			G



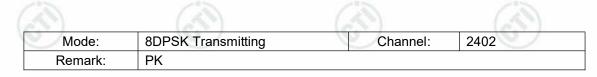
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	93.68	96.34	74.00	-22.34	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	55.72	58.37	74.00	15.63	Pass	Vertical
3	2485.1489	32.38	13.37	-43.11	60.64	63.28	74.00	10.72	Pass	Vertical
S.).	6	9		67		6)		67)

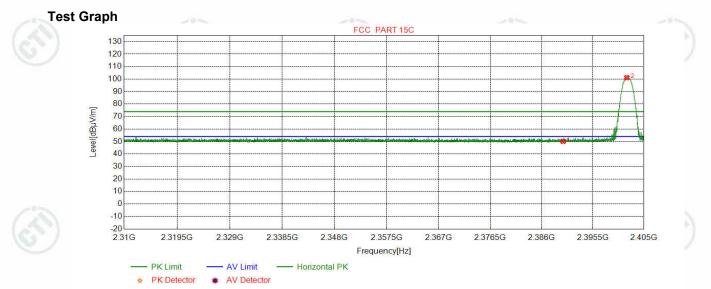


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	80.85	83.51	54.00	-29.51	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.18	40.83	54.00	13.17	Pass	Horizontal
3	2484.9362	32.38	13.37	-43.10	42.58	45.23	54.00	8.77	Pass	Horizontal
S.	1	G	9		67		6)		(GT)

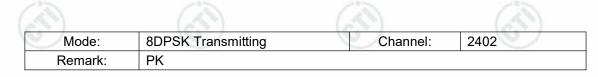


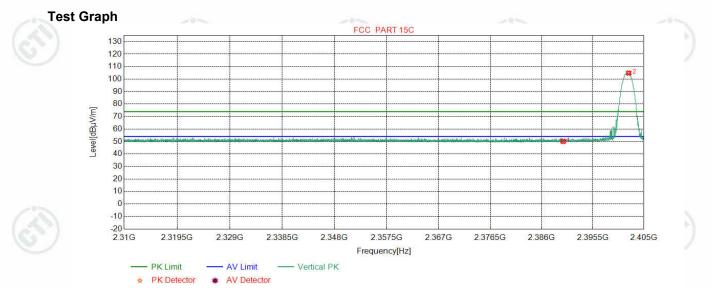
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	80.89	83.55	54.00	-29.55	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.25	43.90	54.00	10.10	Pass	Vertical
3	2484.9787	32.38	13.37	-43.10	43.85	46.50	54.00	7.50	Pass	Vertical
S.).	S	٠J		67		6)		G





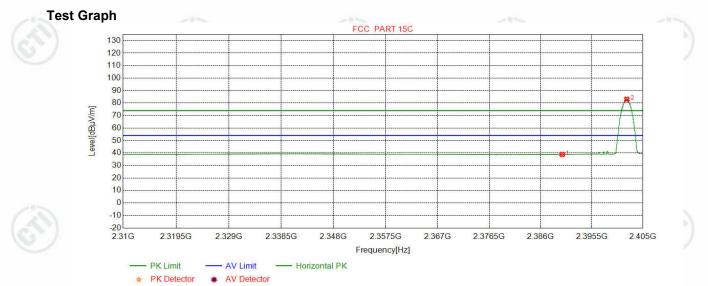
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.64	50.14	74.00	23.86	Pass	Horizontal
2	2401.8141	32.26	13.31	-43.12	98.70	101.15	74.00	-27.15	Pass	Horizontal
10							1000			



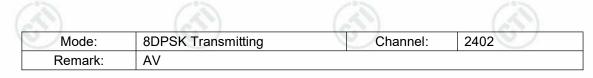


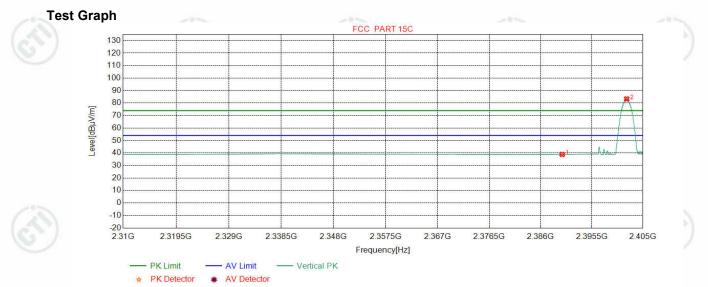
3

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.60	50.10	74.00	23.90	Pass	Vertical
2	2402.1815	32.26	13.31	-43.12	102.37	104.82	74.00	-30.82	Pass	Vertical
100							1000			1

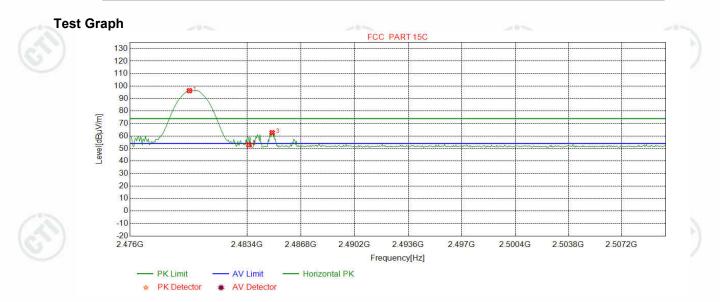


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.36	38.86	54.00	15.14	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	80.60	83.05	54.00	-29.05	Pass	Horizontal
10				•			1000			1

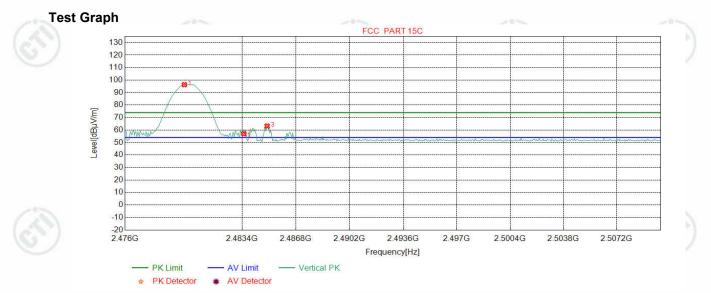




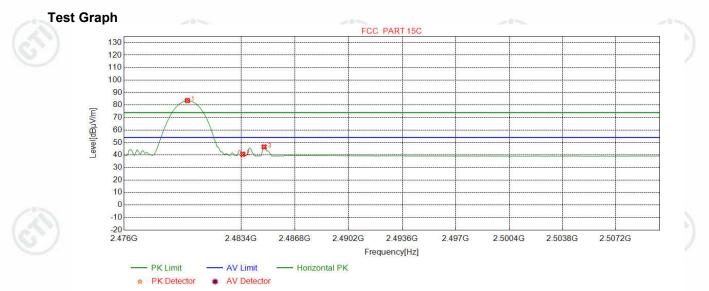
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.39	38.89	54.00	15.11	Pass	Vertical
2	2401.9788	32.26	13.31	-43.12	80.90	83.35	54.00	-29.35	Pass	Vertical
10							1000			



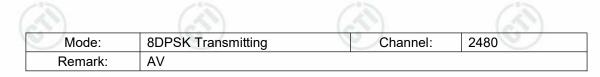
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.68	96.34	74.00	-22.34	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.32	52.97	74.00	21.03	Pass	Horizontal
3	2484.9787	32.38	13.37	-43.10	60.05	62.70	74.00	11.30	Pass	Horizontal
S.).	6	٠ <u>)</u>		67)		6)		GT)

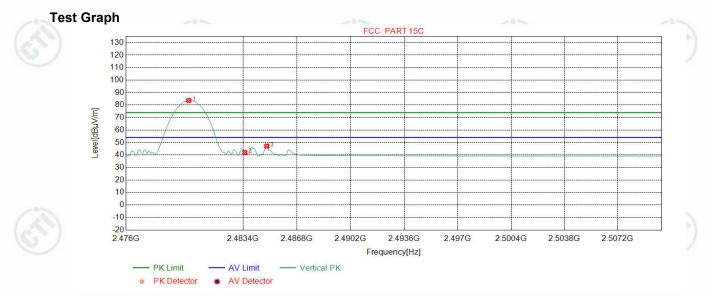


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.68	96.34	74.00	-22.34	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	54.37	57.02	74.00	16.98	Pass	Vertical
3	2484.9787	32.38	13.37	-43.10	60.54	63.19	74.00	10.81	Pass	Vertical
S.).	S	٠J		67		6)		67)



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	80.99	83.65	54.00	-29.65	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	37.98	40.63	54.00	13.37	Pass	Horizontal
3	2484.8511	32.38	13.37	-43.10	43.84	46.49	54.00	7.51	Pass	Horizontal
S.).	6	9		67)		6			G





Page 77 of 95

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	81.04	83.70	54.00	-29.70	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	39.42	42.07	54.00	11.93	Pass	Vertical
3	2484.8936	32.38	13.37	-43.10	44.48	47.13	54.00	6.87	Pass	Vertical
S)		6	7		6)		S.)		(G)

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

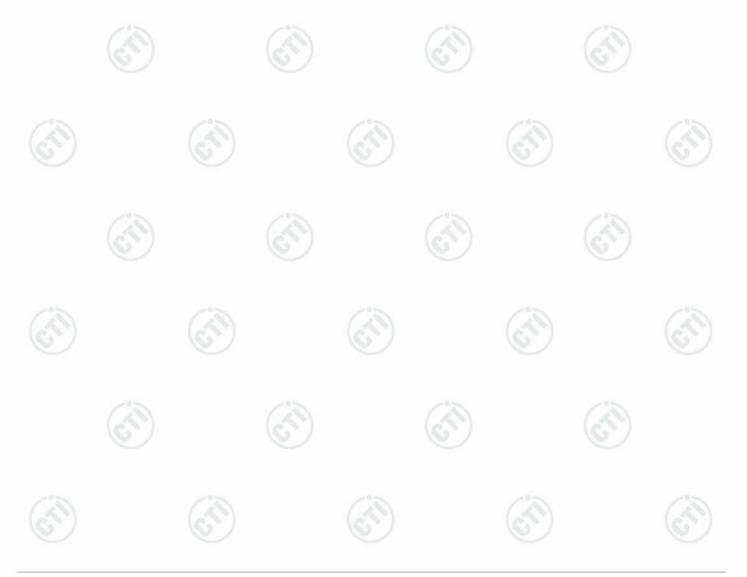
Appendix L) Radiated Spurious Emissions

	ceiver Setup:						
		Frequency	Detector	RBW	VBW	Remark	
		0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
		0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
		0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
		0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
		0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	125	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
			Peak	1MHz	3MHz	Peak	
	(G*)	Above 1GHz	Peak	1MHz	10Hz	Average	
Ге	st Procedure:				•		
).	camber. The tabl The EUT was set	aced on the top of a rotating ta e was rotated 360 degrees to t 3 meters away from the inte	determine the p	osition of th	e highest r	adiation.	
). 1.	of the field streng	ntenna tower. ght is varied from one meter t uth. Both horizontal and vertic ted emission, the EUT was a	al polarizations c	of the anteni	na are set t	o make the mea	
١.						ntonno waa tun	
	meter) and the ro	eter to 4 meters (for the test f statable table was turned from	frequency of belo n 0 degrees to 36	w 30MHz, t 0 degrees t	he antenna to find the r	a was tuned to h naximum readin	ed to eights 1 g.
	meter) and the ro The test-receiver If the emission le stopped and the	eter to 4 meters (for the test f	frequency of belo n 0 degrees to 36 ect Function and was 10dB lower d be reported. Ot	w 30MHz, t 60 degrees t Specified B than the lim herwise the	he antenna to find the r andwidth v nit specified e emissions	a was tuned to h naximum readin vith Maximum H I, then testing co that did not hav	ed to eights 1 g. old Mode. ould be re 10dB
-	meter) and the ro The test-receiver If the emission le stopped and the margin would be in a data sheet.	eter to 4 meters (for the test f tatable table was turned from system was set to Peak Dete vel of the EUT in peak mode peak values of the EUT would re-tested one by one using p	frequency of belo n 0 degrees to 36 ect Function and was 10dB lower d be reported. Ot	w 30MHz, t 60 degrees t Specified B than the lim herwise the	he antenna to find the r andwidth v nit specified e emissions	a was tuned to h naximum readin vith Maximum H I, then testing co that did not hav	ed to eights 1 g. old Mode. ould be re 10dB
ə. f. g. h.	meter) and the ro The test-receiver If the emission le stopped and the margin would be in a data sheet. ove 1GHz test p i Different betweer change form tab	eter to 4 meters (for the test f statable table was turned from system was set to Peak Dete vel of the EUT in peak mode peak values of the EUT would	frequency of belo n 0 degrees to 36 ect Function and was 10dB lower d be reported. Ot eak, quasi-peak ge from Semi- An bove 18GHz the	w 30MHz, t 50 degrees t Specified B than the lim herwise the or average echoic Cha e distance i	he antenna o find the r andwidth v it specified e emissions method as mber to ful s 1 meter a	a was tuned to h naximum readin vith Maximum H I, then testing co that did not hav specified and th ly Anechoic Cha	ed to eights 1 g. old Mode. ould be re 10dB ten reported

axis positioning which it is worse case.

Limit:		Field strength	Limit		Measurement	1
	Frequency	(microvolt/meter)		Remark	distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300	1
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30	
	1.705MHz-30MHz	30	-	-	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	1º3
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3	
	Note: 15.35(b), Unless	otherwise specifie	ed, the limi	t on peak radi	o frequency	
	emissions is 20d	3 above the maxir	num permi	tted average	emission limit	
	applicable to the			eak limit appli	ies to the total	
	peak emission lev	vel radiated by the	e device.			

j. Repeat above procedures until all frequencies measured was complete.



Page 79 of 95

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

Mode):		8DPSK	Transmit	ting		Channel:		2441			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	72.0052	8.62	0.97	-32.02	58.85	36.42	40.00	3.58	Pass	Н	PK	
2	195.0135	10.43	1.64	-31.94	42.80	22.93	43.50	20.57	Pass	Н	PK	
3	240.0260	11.94	1.84	-31.90	43.50	25.38	46.00	20.62	Pass	Н	PK	
4	360.0270	14.52	2.27	-31.84	41.71	26.66	46.00	19.34	Pass	Н	PK	
5	649.9890	19.40	3.10	-32.07	44.72	35.15	46.00	10.85	Pass	Н	PK	
6	844.9785	21.44	3.50	-31.82	40.16	33.28	46.00	12.72	Pass	Н	PK	
7	72.0052	8.62	0.97	-32.02	51.24	28.81	40.00	11.19	Pass	V	PK	
8	150.0010	7.55	1.45	-32.01	46.22	23.21	43.50	20.29	Pass	V	PK	
9	195.0135	10.43	1.64	-31.94	45.57	25.70	43.50	17.80	Pass	V	PK	
10	360.0270	14.52	2.27	-31.84	43.86	28.81	46.00	17.19	Pass	V	PK	
11	649.9890	19.40	3.10	-32.07	44.90	35.33	46.00	10.67	Pass	V	PK	
12	844.9785	21.44	3.50	-31.82	41.16	34.28	46.00	11.72	Pass	V	PK	

Page 80 of 95

Mode	e:	GFSK T	ransmitt	ing			Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1331.2331	28.23	2.79	-42.75	54.10	42.37	74.00	31.63	Pass	Н	PK	
2	2128.3128	31.88	3.62	-43.18	60.19	52.51	74.00	21.49	Pass	Н	PK	
3	4804.0000	34.50	4.55	-42.80	51.92	48.17	74.00	25.83	Pass	Н	PK	
4	7206.0000	36.31	5.81	-42.16	53.22	53.18	74.00	20.82	Pass	Н	PK	
5	9608.0000	37.64	6.63	-42.10	47.75	49.92	74.00	24.08	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.90	47.39	52.40	74.00	21.60	Pass	Н	PK	
7	1599.0599	29.05	3.07	-42.90	55.84	45.06	74.00	28.94	Pass	V	PK	
8	2128.1128	31.88	3.62	-43.18	60.02	52.34	74.00	21.66	Pass	V	PK	
9	4804.0000	34.50	4.55	-42.80	53.42	49.67	74.00	24.33	Pass	V	PK	
10	7206.2804	36.31	5.81	-42.16	54.49	54.45	74.00	19.55	Pass	V	PK	
11	9608.0000	37.64	6.63	-42.10	46.07	48.24	74.00	25.76	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.90	46.94	51.95	74.00	22.05	Pass	V	PK	
13	7206.0000	36.31	5.82	-42.16	50.85	50.82	54.00	3.18	Pass	V	AV	

Mode	:	8DPSK	Transmi	tting			Channel:		2441			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1064.8065	27.96	2.52	-43.02	56.22	43.68	74.00	30.32	Pass	Н	PK	
2	2125.9126	31.88	3.62	-43.18	56.66	48.98	74.00	25.02	Pass	Н	PK	
3	4882.0000	34.50	4.81	-42.80	50.22	46.73	74.00	27.27	Pass	Н	PK	
4	7323.0000	36.42	5.85	-42.13	51.72	51.86	74.00	22.14	Pass	Н	PK	
5	9764.0000	37.71	6.71	-42.10	47.98	50.30	74.00	23.70	Pass	Н	PK	
6	12205.0000	39.42	7.67	-41.89	46.00	51.20	74.00	22.80	Pass	Н	PK	
7	1596.4596	29.04	3.07	-42.91	54.69	43.89	74.00	30.11	Pass	V	PK	
8	2124.1124	31.87	3.61	-43.17	61.61	53.92	74.00	20.08	Pass	V	PK	
9	4882.0000	34.50	4.81	-42.80	53.27	49.78	74.00	24.22	Pass	V	PK	
10	7323.0000	36.42	5.85	-42.13	53.69	53.83	74.00	20.17	Pass	V	PK	
11	9764.0000	37.71	6.71	-42.10	47.31	49.63	74.00	24.37	Pass	V	PK	
12	12205.0000	39.42	7.67	-41.89	46.62	51.82	74.00	22.18	Pass	V	PK	

Page 81 of 95

Mode	e:	GFSK T	ransmitt	ing			Channel:		2480	2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1596.8597	29.04	3.07	-42.91	54.93	44.13	74.00	29.87	Pass	Н	PK		
2	2129.5130	31.88	3.62	-43.17	61.55	53.88	74.00	20.12	Pass	Н	PK		
3	4960.0000	34.50	4.82	-42.80	51.20	47.72	74.00	26.28	Pass	Н	PK		
4	7440.0000	36.54	5.85	-42.11	51.09	51.37	74.00	22.63	Pass	Н	PK		
5	9920.0000	37.77	6.79	-42.10	46.01	48.47	74.00	25.53	Pass	Н	PK		
6	12400.0000	39.54	7.86	-41.90	46.74	52.24	74.00	21.76	Pass	Н	PK		
7	1495.8496	28.40	2.99	-43.09	53.47	41.77	74.00	32.23	Pass	V	PK		
8	2127.5128	31.88	3.62	-43.18	59.30	51.62	74.00	22.38	Pass	V	PK		
9	4960.0000	34.50	4.82	-42.80	51.19	47.71	74.00	26.29	Pass	V	PK		
10	7440.0000	36.54	5.85	-42.11	52.71	52.99	74.00	21.01	Pass	V	PK		
11	9920.0000	37.77	6.79	-42.10	46.62	49.08	74.00	24.92	Pass	V	PK		
12	12400.0000	39.54	7.86	-41.90	47.36	52.86	74.00	21.14	Pass	V	PK		
C.	1	1	2		y and the second)		2./		J.	2		
Mode	2:		Transmi	_			Channel:		2402				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1594.4594	29.02	3.07	-42.91	55.31	44.49	74.00	29.51	Pass	Н	PK		
2	2125.9126	31.88	3.62	-43.18	61.03	53.35	74.00	20.65	Pass	Н	PK		
3	4804.0000	34.50	4.55	-42.80	52.83	49.08	74.00	24.92	Pass	Н	PK		
4	7206.0000	36.31	5.81	-42.16	53.16	53.12	74.00	20.88	Pass	Н	PK		
5	9608.0000	37.64	6.63	-42.10	46.75	48.92	74.00	25.08	Pass	Н	PK		
6	12010.0000	39.31	7.60	-41.90	46.98	51.99	74.00	22.01	Pass	Н	PK		
7	1063.8064	27.96	2.52	-43.03	56.41	43.86	74.00	30.14	Pass	V	PK		
8	2129.5130	31.88	3.62	-43.17	61.56	53.89	74.00	20.11	Pass	V	PK		
9	4804.0000	34.50	4.55	-42.80	54.05	50.30	74.00	23.70	Pass	V	PK		
10	7205.2804	36.31	5.82	-42.17	54.73	54.69	74.00	19.31	Pass	V	PK		
11	9608.0000	37.64	6.63	-42.10	46.50	48.67	74.00	25.33	Pass	V	PK		
12	12010.0000	39.31	7.60	-41.90	46.22	51.23	74.00	22.77	Pass	V	PK		
40									_				
13	7205.2794	36.31	5.82	-42.16	48.11	48.08	54.00	5.92	Pass	V	AV		

Page 82 of 95

Mode) :	8DPSK	Transmi	tting			Channel:		2441			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1328.6329	28.23	2.79	-42.76	54.75	43.01	74.00	30.99	Pass	Н	PK	
2	2132.7133	31.89	3.63	-43.18	60.69	53.03	74.00	20.97	Pass	Н	PK	
3	4882.0000	34.50	4.81	-42.80	52.84	49.35	74.00	24.65	Pass	Н	PK	
4	7323.0000	36.42	5.85	-42.13	52.78	52.92	74.00	21.08	Pass	Н	PK	
5	9764.0000	37.71	6.71	-42.10	47.60	49.92	74.00	24.08	Pass	Н	PK	
6	12205.0000	39.42	7.67	-41.89	46.41	51.61	74.00	22.39	Pass	Н	PK	
7	1598.8599	29.05	3.07	-42.90	54.51	43.73	74.00	30.27	Pass	V	PK	
8	2123.3123	31.87	3.61	-43.17	60.65	52.96	74.00	21.04	Pass	V	PK	
9	4882.0000	34.50	4.81	-42.80	50.49	47.00	74.00	27.00	Pass	V	PK	
10	7322.2882	36.42	5.85	-42.13	54.16	54.30	74.00	19.70	Pass	V	PK	
11	9764.0000	37.71	6.71	-42.10	47.85	50.17	74.00	23.83	Pass	V	PK	
12	12205.0000	39.42	7.67	-41.89	47.12	52.32	74.00	21.68	Pass	V	PK	
13	7322.2873	36.42	5.85	-42.14	47.19	47.32	54.00	6.68	Pass	V	AV	

Mode):	8DPSK	Transmi	tting			Channel:		2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1597.2597	29.04	3.07	-42.91	55.86	45.06	74.00	28.94	Pass	Н	PK	
2	2130.9131	31.88	3.62	-43.17	61.25	53.58	74.00	20.42	Pass	Н	PK	
3	4960.0000	34.50	4.82	-42.80	51.14	47.66	74.00	26.34	Pass	Н	PK	
4	7440.0000	36.54	5.85	-42.11	52.66	52.94	74.00	21.06	Pass	Н	PK	
5	9920.0000	37.77	6.79	-42.10	46.41	48.87	74.00	25.13	Pass	Н	PK	
6	12400.0000	39.54	7.86	-41.90	47.65	53.15	74.00	20.85	Pass	Н	PK	
7	1598.0598	29.05	3.07	-42.91	57.82	47.03	74.00	26.97	Pass	V	PK	
8	2124.3124	31.87	3.61	-43.17	60.23	52.54	74.00	21.46	Pass	V	PK	
9	4960.0000	34.50	4.82	-42.80	51.26	47.78	74.00	26.22	Pass	V	PK	
10	7440.0000	36.54	5.85	-42.11	53.23	53.51	74.00	20.49	Pass	V	PK	
11	9920.0000	37.77	6.79	-42.10	46.67	49.13	74.00	24.87	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.90	47.22	52.72	74.00	21.28	Pass	V	PK	

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.