Venstar, Inc.

REVISED TEST REPORT FOR 104502-9

Data Concentrator with Wifi, Subgig, BLE, Model: DC500 Power Supply, Model: MKA-482400500

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 104502-9A

Date of issue: March 21, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 64 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	
15.247(a)(2) 6dB Bandwidth	12
15.247(b)(3) Output Power	
15.247(e) Power Spectral Density	25
15.247(d) RF Conducted Emissions & Band Edge	31
15.247(d) Radiated Emissions & Band Edge	
15.207 AC Conducted Emissions	55
Appendix A: Modification	62
Supplemental Information	63
Measurement Uncertainty	63
Emissions Test Details	63

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

REPORT PREPARED BY:

Venstar, Inc. 9250 Owensmouth Avenue Chatsworth, CA 91311 Lisa Bevington CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Alex Garashin

Project Number: 104502

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: January 5, 2021 January 5, 6, 12 and 13, 2021

Revision History

Original: Testing of Data Concentrator with Wifi, Subgig, BLE, DC500, Power Supply, MKA-482400500 to FCC Part 15 Subpart C Section(s), 15.207 & 15.247, (DTS 2400-2483.5 MHz).

Revision A: Update Firmware / Software used for Test in the General Product Information section.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Belos

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	Mod 1	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Mod 1: Copper tape was added to LCD display cable to suppress radiated emission below 1GHz.

See appendix A for Modification Photo.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

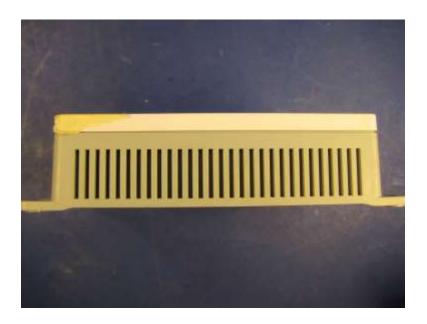
Configuration 2				
Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Data Concentrator with WiFi, Subgig, and BLE	Venstar, Inc.	DC500	07	
Power Supply	NA	MKA-482400500	NA	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
None				

General Product Information:

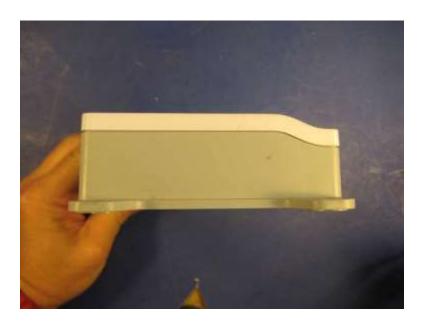
Product Information	Stand-Alone Equipment
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.11b/g/n20
Operating Frequency Range:	2412-2462MHz
	802.11b: DBPSK, 1.0 Mbps
Modulation Type(s):	802.11g: BPSK, 6.0 Mbps
	802.11n20: BPSK 6.5 Mbps
Maximum Duty Cycle:	94%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Chip Antenna , 2 dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral (External connector provided to facilitate testing)
Nominal Input Voltage:	110Vac (output: 24Vac)
Firmware / Software used for Test:	Test mode Firmware 1.0.4

EUT and Accessory Photo(s)

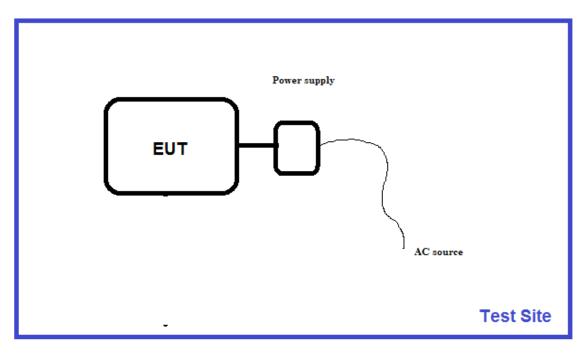
Power Supply



Page 8 of 64 Report No.: 104502-9A



Page 9 of 64 Report No.: 104502-9A



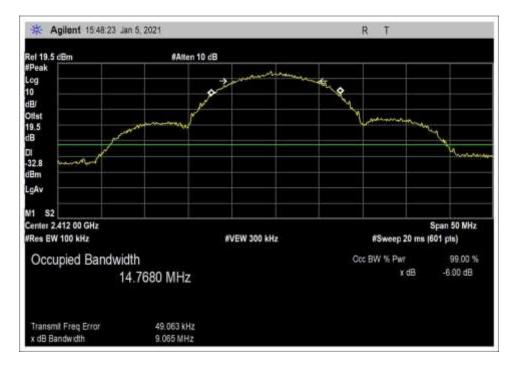
Block Diagram of Test Setup(s)

Test Setup Block Diagram

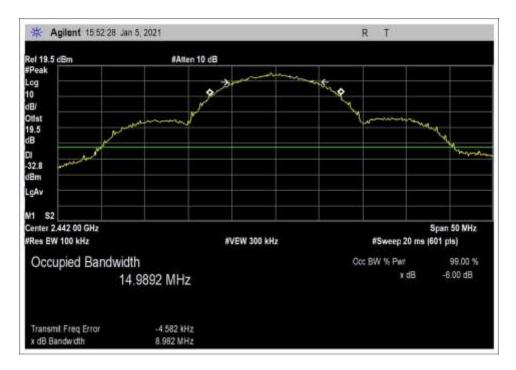
FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

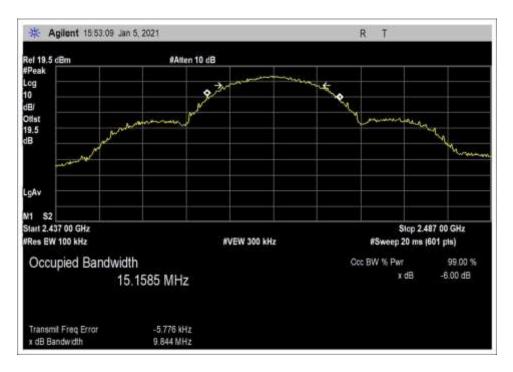
Test Setup/Conditions					
Test Location:	Brea Lab A	E. Wong			
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	1/5/2021		
Configuration:	2				
Test Setup:	Test Setup:The EUT is placed on test bench, conducted measurement made at RF2 connector.				
	Firmware power setting:				
	802.11b: 20 dBm				
	802.11g: 17dBm				
802.11n20: 17dBm					

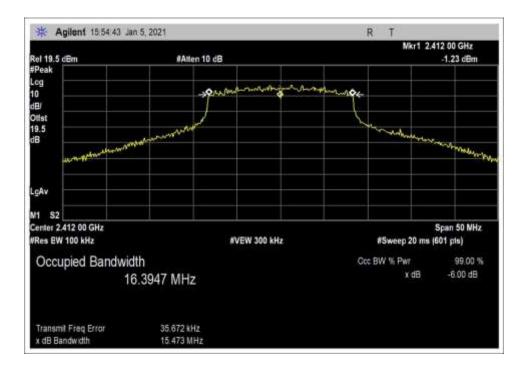

Environmental Conditions					
Temperature (^o C)	Temperature (ºC) 19.2 Relative Humidity (%): 52				

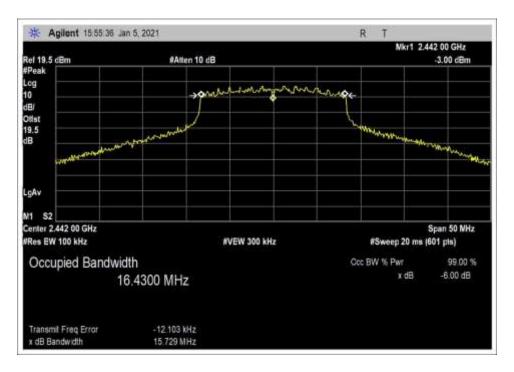
Test Equipment						
Asset#	Asset# Description Manufacturer Model Cal Date Cal Due					
02869	Spectrum Analyzer	Agilent	E4440A	8/3/2020	8/3/2021	
03431	Attenuator	Aeroflex/Weinschel	89-20-21	12/20/2019	12/20/2021	
07246	Cable	H&S	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	


	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
2412	1	802.11b	9065	≥500	Pass	
2442	1	802.11b	8982	≥500	Pass	
2462	1	802.11b	9844	≥500	Pass	
2412	1	802.11g	15473	≥500	Pass	
2442	1	802.11g	15729	≥500	Pass	
2462	1	802.11g	15477	≥500	Pass	
2412	1	802.11n20	16682	≥500	Pass	
2442	1	802.11n20	16095	≥500	Pass	
2462	1	802.11n20	15247	≥500	Pass	

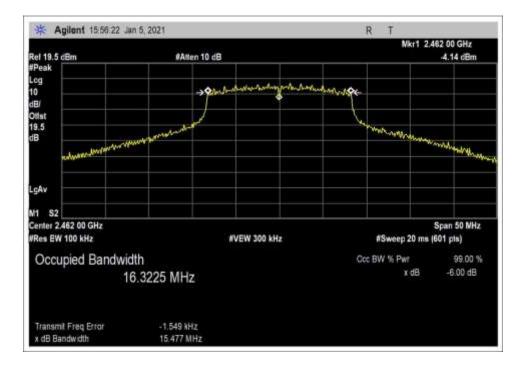
Plot(s)



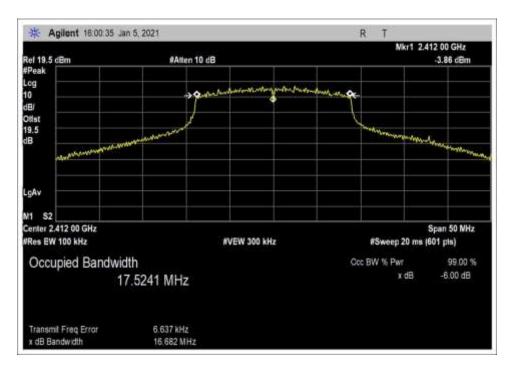


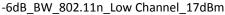


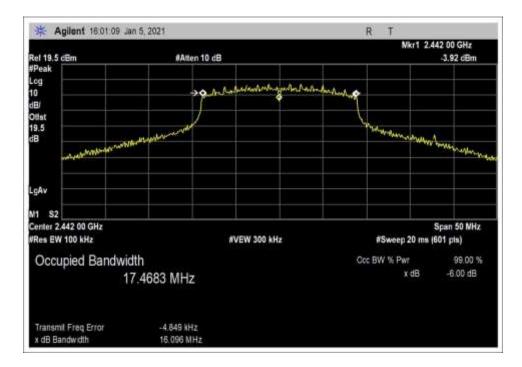
-6dB_BW_802.11b_High Channel_20dBm



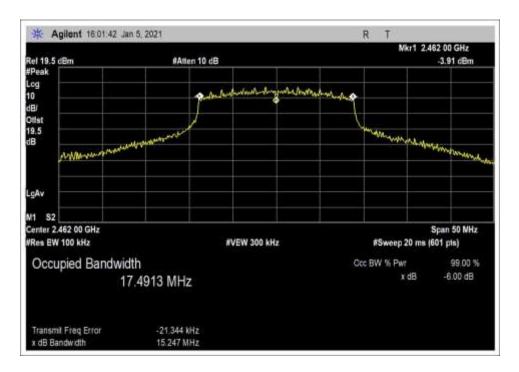
-6dB_BW_802.11g_Low Channel_17dBm

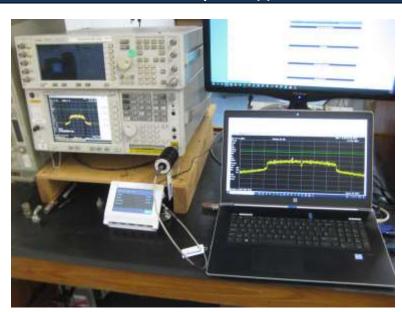






-6dB_BW_802.11g_High Channel_17dBm





-6dB_BW_802.11n_Middle Channel_17dBm

-6dB_BW_802.11n_High Channel_17dBm

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Setup / Conditions					
Test Location:	Brea Lab A	Test Engineer:	E. Wong/Don Nguyen		
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	1/13/2021		
Configuration:	2				
Test Setup:	est Setup: The EUT is placed on test bench, conducted measurement made at RF2 connector.				
	Firmware power setting:				
	802.11b: 19dBm				
	802.11g: 17dBm				
	802.11n20 :17dBm				

Environmental Conditions				
Temperature (^o C)	19.2	Relative Humidity (%):	52	

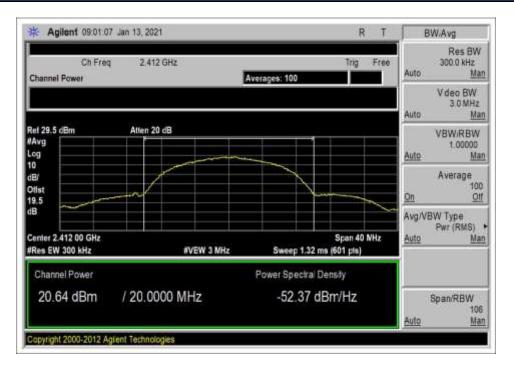
	Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	8/3/2020	8/3/2021	
03431	Attenuator	Aeroflex/Weinschel	89-20-21	12/20/2019	12/20/2021	
07246	cable	H&S	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	
07164	multimeter	Fluke	8845A/G	7/30/2019	7/30/2021	

	Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
2412	802.11b	20.64	20.64	20.64	0		
2442	802.11b	20.68	20.68	20.68	0		
2462	802.11b	20.44	20.44	20.44	0		
2412	802.11g	16.3	16.3	16.3	0		
2442	802.11g	16.3	16.3	16.3	0		
2462	802.11g	16.3	16.3	16.3	0		
2412	802.11n20	16.0	16.0	16.0	0		
2442	802.11n20	16.2	16.2	16.2	0		
2462	802.11n20	16.2	16.2	16.2	0		

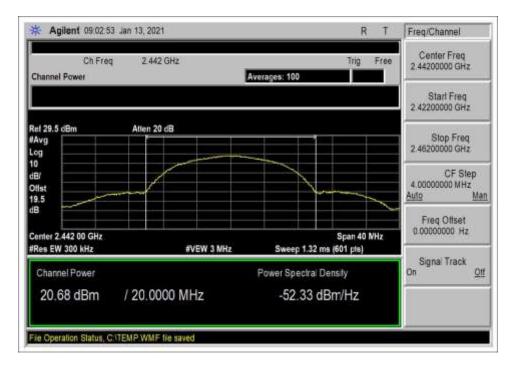
Test performed using operational mode with the highest output power, representing worst case.

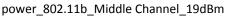
Parameter Definitions:

Measurements performed at input voltage Vnominal \pm 15%.

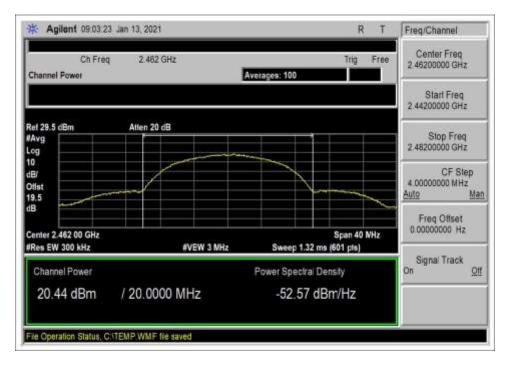

Parameter	Value
V _{Nominal} :	110
V _{Minimum} :	93.5
V _{Maximum} :	126.5

Test performed at AC main of the transformer to be sold with the product.

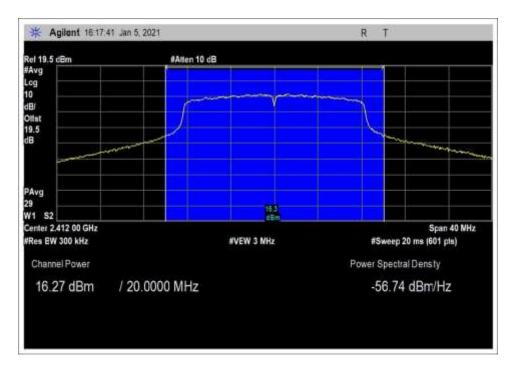

Measuremen	Test Data Summary - RF Conducted Measurement Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
2412	802.11b	Chip Antenna +2dBi	20.64	≤ 30	Pass	
2442	802.11b	Chip Antenna +2dBi	20.68	≤ 30	Pass	
2462	802.11b	Chip Antenna +2dBi	20.44	≤ 30	Pass	
2412	802.11g	Chip Antenna +2dBi	16.3	≤ 30	Pass	
2442	802.11g	Chip Antenna +2dBi	16.3	≤ 30	Pass	
2462	802.11g	Chip Antenna +2dBi	16.3	≤ 30	Pass	
2412	802.11n20	Chip Antenna +2dBi	16.0	≤ 30	Pass	
2442	802.11n20	Chip Antenna +2dBi	16.2	≤ 30	Pass	
2462	802.11n20	Chip Antenna +2dBi	16.2	≤ 30	Pass	

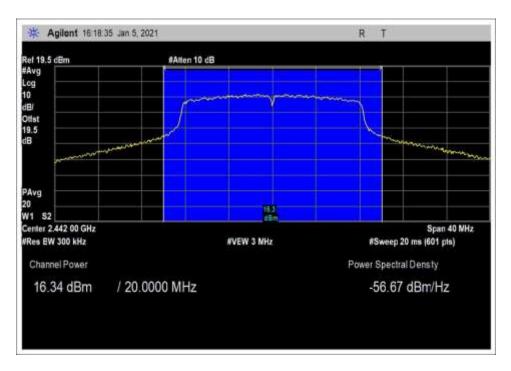


Plots

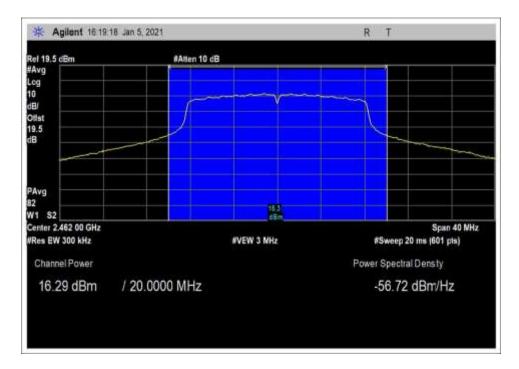


power_802.11b_Low Channel_19dBm

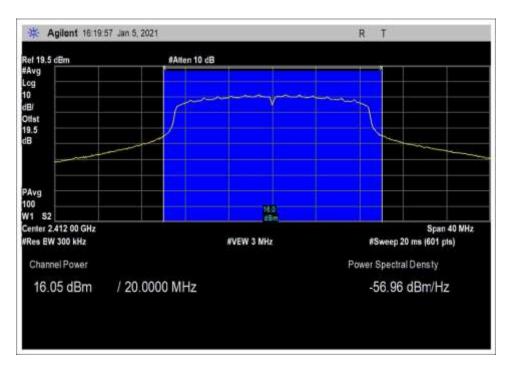




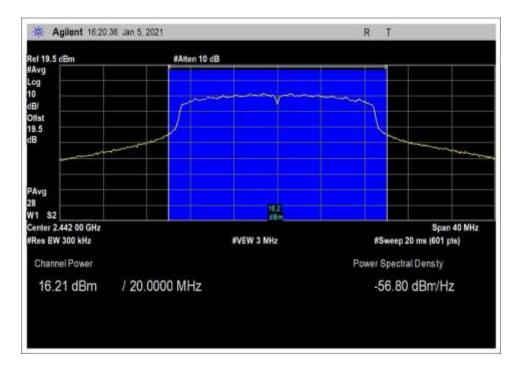
power_802.11b_High Channel_19dBm



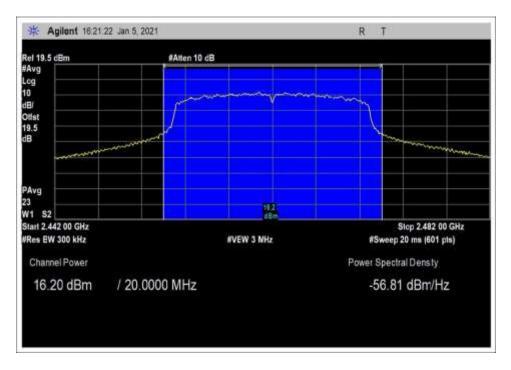
power_802.11g_Low Channel_17dBm



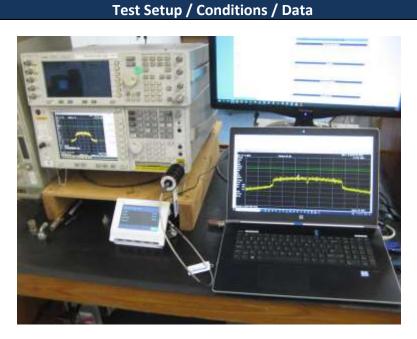
power_802.11g_Middle Channel_17dBm



power_802.11g_High Channel_17dBm



power_802.11n_Low Channel_17dBm

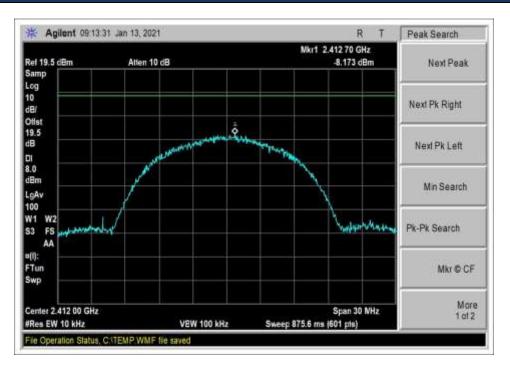


power_802.11n_Middle Channel_17dBm

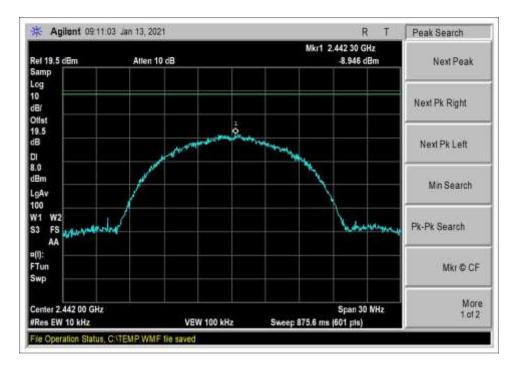
power_802.11n_High Channel_17dBm

15.247(e) Power Spectral Density

	Test Setup / Conditions / Data					
Test Location:	Brea Lab A	Test Engineer:	E. Wong/Don Nguyen			
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	1/13/2021			
Configuration:	2					
Test Setup:	The EUT is placed on test bench, co	The EUT is placed on test bench, conducted measurement made at RF2 connector.				
	Firmware power setting:					
	802.11b: 19dBm					
	802.11g: 17dBm					
	802.11n20 :17dBm					

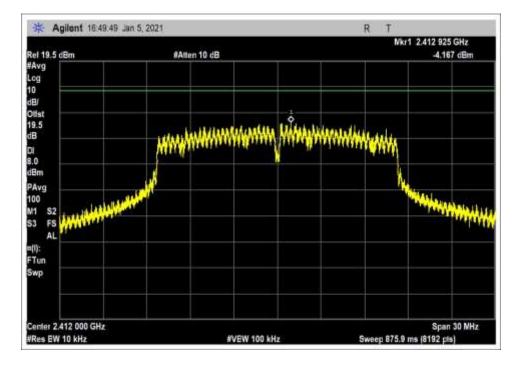

Environmental Conditions				
Temperature (^o C)	22	Relative Humidity (%):	48	

	Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
03431	Attenuator	Aeroflex/Weinschel	89-20-21	12/20/2019	12/20/2021	
07246	cable	H&S	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	

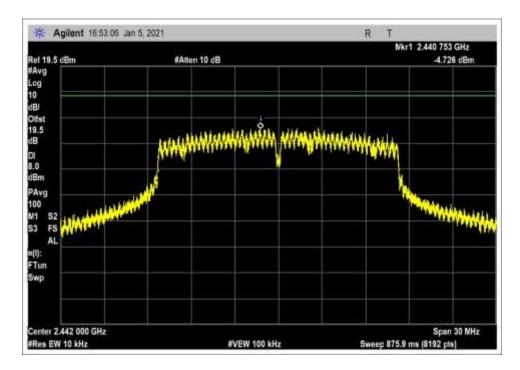

	PSD Test Data Summary - RF Conducted Measurement					
Measurement N	Nethod: AVGPSD-1					
Frequency (MHz)	Modulation	Measured (dBm/3kHz)	Limit (dBm/3kHz)	Results		
2412	802.11b	-8.2	≤8	Pass		
2442	802.11b	-8.9	≤8	Pass		
2462	802.11b	-8.6	≤8	Pass		
2412	802.11g	-4.2	≤8	Pass		
2442	802.11g	-4.7	≤8	Pass		
2462	802.11g	-10.5	≤8	Pass		
2412	802.11n20	-8.7	≤8	Pass		
2442	802.11n20	-9.1	≤8	Pass		
2462	802.11n20	-8.9	≤8	Pass		


Measurement made at RBW=10kHz.

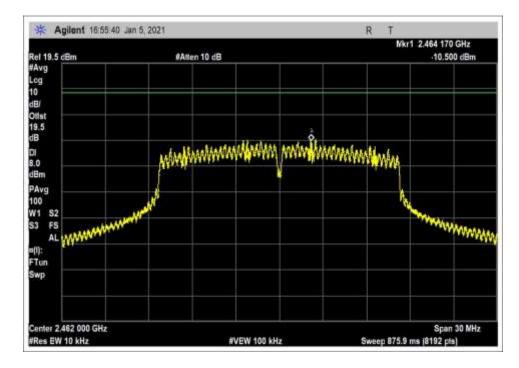
PSD_802.11b_Low Channel_19dBm


Page 26 of 64 Report No.: 104502-9A

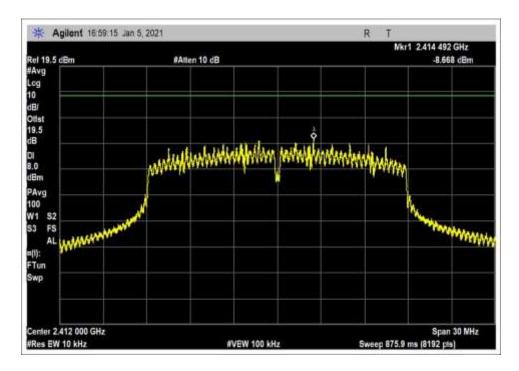
Plots



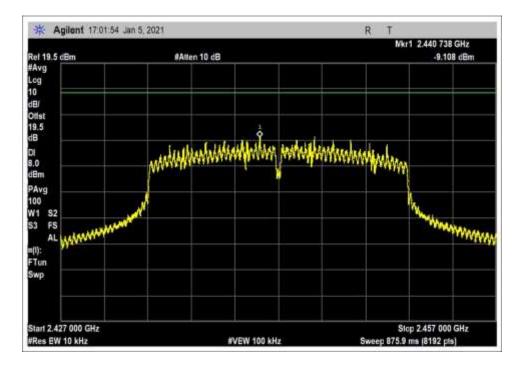
PSD_802.11b_High Channel_19dBm



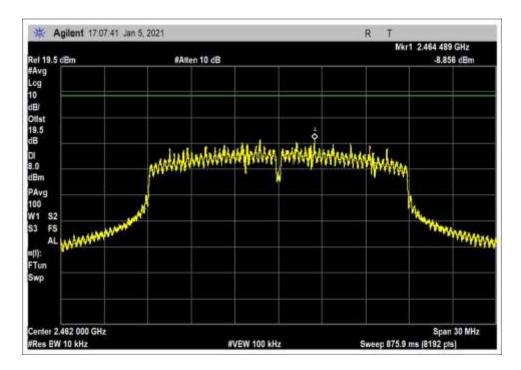
PSD_802.11g_Low Channel_17dBm



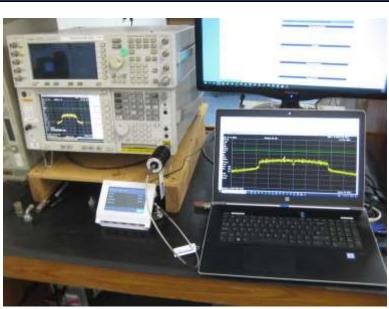
PSD_802.11g_Middle Channel_17dBm



PSD_802.11g_High Channel_17dBm



PSD_802.11n_Low Channel_17dBm

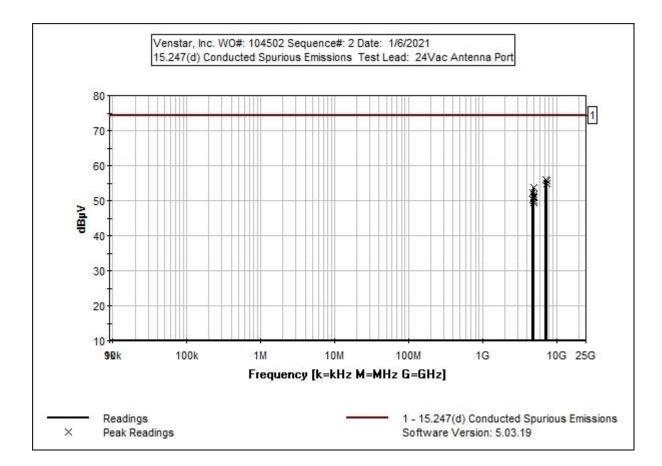


PSD_802.11n_Middle Channel_17dBm

PSD_802.11n_High Channel_17dBm

Test Setup / Conditions / Data

15.247(d) RF Conducted Emissions & Band Edge


Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 110 N. Olinda Pl. • H	Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	104502	Date:	1/6/2021
Test Type:	Conducted Emissions	Time:	12:21:32
Tested By:	E. Wong	Sequence#:	2
Software:	EMITest 5.03.19		24Vac

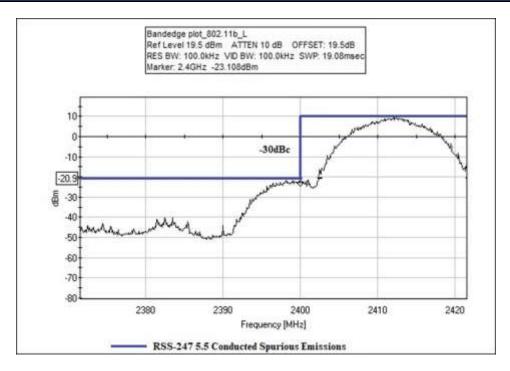
Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Configuration 2				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Configuration 2	
Test Conditions / Notes:	
The EUT is placed on the table, RF measurement performed at the antenna port.	
oftware setting:	
et Mode: Transmit	
Power setting:	
02.11b: 20dBm	
02.11g: 17dBm	
02.11n20: 17dBm	
Aodulation: 802.11b, 802.11g, 802.11n20	
Frequency: 2412, 2442, 2462MHz	
Frequency of measurement: 9kHz-25GHz	
RBW=100kHz, VBW=300kHz	

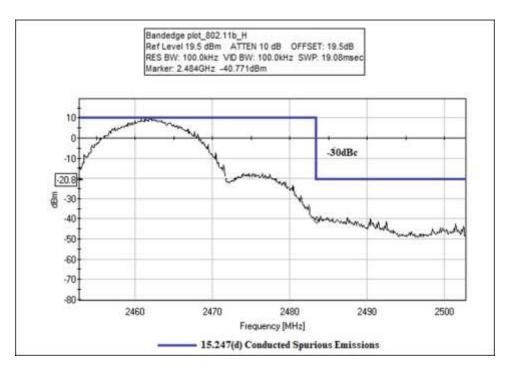
Test Equipment:

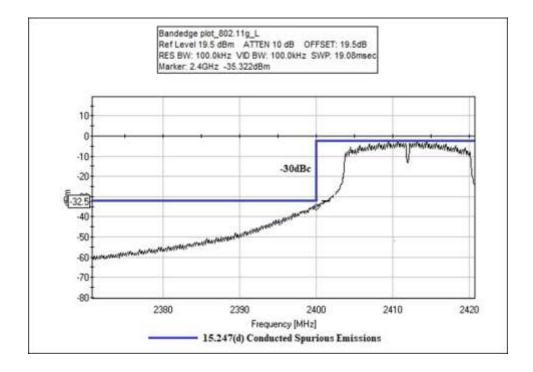
ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021	
T1	ANP07246	Cable	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	
T2	AN03431	Attenuator	89-20-21	12/20/2019	12/20/2021	

<i>Measurement Data:</i> Reading listed by margin.			Test Lead: Antenna Port								
#	Freq	Rdng	T1	T2			Dist.	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	4826.700M	32.1	+0.7	+19.4			+0.0	52.2	74.2	-22.0	Anten
									802.11n		
2	4884.700M	31.9	+0.6	+19.3			+0.0	51.8	74.2	-22.4	Anten
									802.11n		
3	4929.300M	31.0	+0.6	+19.3			+0.0	50.9	74.2	-23.3	Anten
									802.11g		
4	4826.700M	30.3	+0.7	+19.4			+0.0	50.4	74.2	-23.8	Anten
									802.11g		
5	4882.700M	30.2	+0.6	+19.3			+0.0	50.1	74.2	-24.1	Anten
									802.11g		
6	4922.700M	29.4	+0.6	+19.3			+0.0	49.3	74.2	-24.9	Anten
									802.11n		
7	7237.000M	36.1	+0.8	+19.2			+0.0	56.1	86.1	-30.0	Anten
									802.11b		
8	7384.000M	35.5	+0.9	+19.3			+0.0	55.7	86.1	-30.4	Anten
									802.11b		
9	7325.000M	35.0	+0.8	+19.2			+0.0	55.0	86.1	-31.1	Anten
									802.11b		
10	4883.300M	33.9	+0.6	+19.3			+0.0	53.8	86.1	-32.3	Anten
									802.11b		
11	4922.700M	31.2	+0.6	+19.3			+0.0	51.1	86.1	-35.0	Anten
									802.11b		

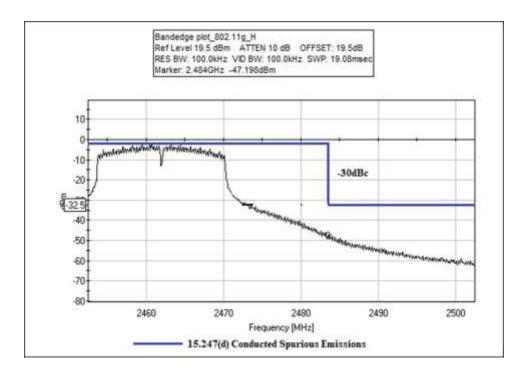


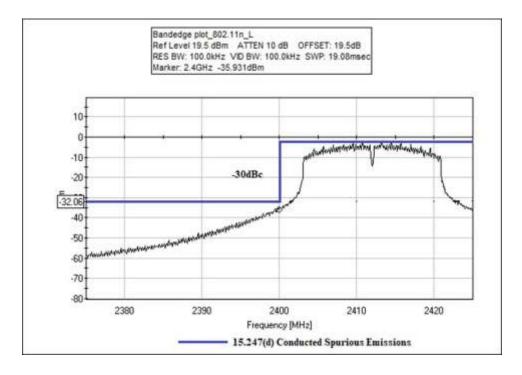
Band Edge

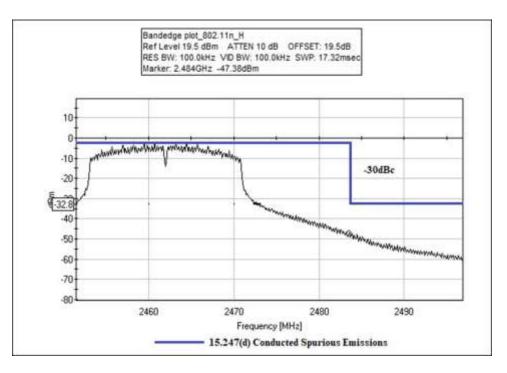

Band Edge Summary								
Limit applied: Max Power/100kHz - 30dB (When average power limit is applied).								
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results				
2400.0	802.11b	-23.1	< -20.9	Pass				
2483.5	802.11b	-40.8	<-20.8	Pass				
2400.0	802.11g	-35.1	<-32.5	Pass				
2483.5	802.11g	-47.4	<-32.5	Pass				
2400.0	802.11n	-35.9	< -32.4	Pass				
2483.5	802.11n	-47.3	< -32.8	Pass				

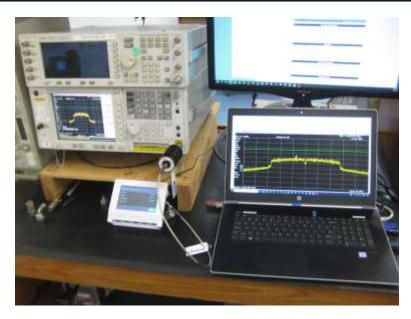

Power setting: 802.11b: 20dBm (worse case, reduced to 19dBm for radiated spur emission) 802.11g: 17dBm 802.11n: 17dBm

Band Edge Plots









Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 110 N. Olino	da Pl. • Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurio	us Emissions	
Work Order #:	104502	Date:	1/12/2021
Test Type:	Radiated Scan	Time:	14:19:06
Tested By:	E. Wong	Sequence#:	3
Software:	EMITest 5.03.19		

Equipment Tested:DeviceManufacturerModel #S/NConfiguration 2

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

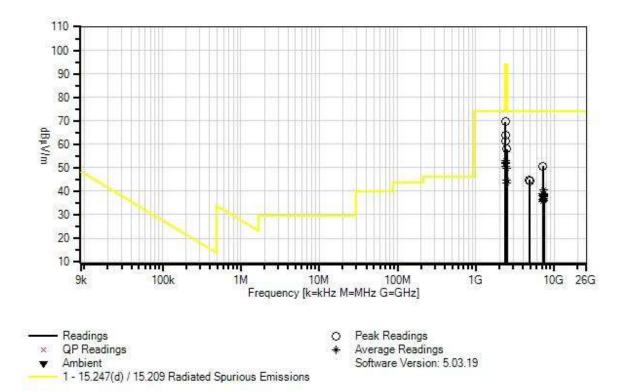
The EUT is placed on the Styrofoam platform, set in intended orientation. 5 UTP are connected to the Ethernet port. Software setting: Set Mode: Transmit

Power setting: 802.11b: 19dBm 802.11g: 17dBm 802.11n20: 17dBm

Modulation: 802.11b, 802.11g, 802.11n20

Frequency: 2412, 2442, 2462MHz

Frequency range of measurement = 9 kHz- 25 GHz. 9kH -150 kHz; RBW=200 Hz, VBW=200 Hz;150 kHz-30 MHz; RBW=9 kHz, VBW=9 kHz;30 MHz-1000 MHz; RBW=120 kHz, VBW=120 kHz,1000 MHz-25000 MHz; RBW=1MHz, VBW=1MHz.


Test environment conditions: Temperature: 19°C Relative Humidity: 38% Atmospheric Pressure: 100kPa

Upright and lay flat orientation investigation, date represent worst case (up right) Site D ANSI C63.10-2013

Modification 1 was in place during testing.

Venstar, Inc. WO#: 104502 Sequence#: 3 Date: 1/12/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

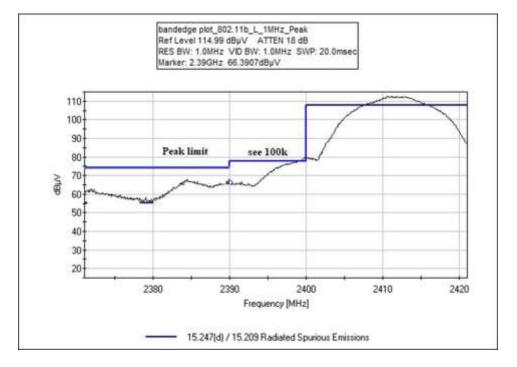
Test Equipment:

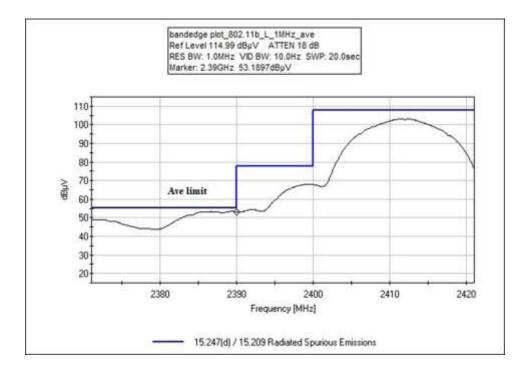
ID Asset # Description Model Calibration Date Cal Due Date T1 AN03643 Spectrum Analyzer E4440A 5/20/2020 5/20/2022 T2 AN01646 Horn Antenna 3115 3/17/2020 3/17/2022 T3 ANP07656 Cable 32022-29094K- 7/30/2020 7/30/2022 T4 AN00787 Preamp 83017A 5/31/2019 5/31/2021 T5 ANP07138 Cable ANDL1- 3/4/2019 3/4/2021 PNMNM-60 PNMNM-60 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 5/13/2019 5/13/2021 3000/T10000- O/O O/O 0/O 1/2/2020 1/2/2022 AN0010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
T2 AN01646 Horn Antenna 3115 3/17/2020 3/17/2022 T3 ANP07656 Cable 32022-29094K- 29094K-24TC 7/30/2020 7/30/2022 T4 AN00787 Preamp 83017A 5/31/2019 5/31/2021 T5 ANP07138 Cable ANDL1- PNMNM-60 3/4/2021 3/4/2021 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- O/O 5/13/2019 5/13/2021 AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
T3 ANP07656 Cable 32022-29094K- 29094K-24TC 7/30/2020 7/30/2022 T4 AN00787 Preamp 83017A 5/31/2019 5/31/2021 T5 ANP07138 Cable ANDL1- PNMNM-60 3/4/2019 3/4/2021 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- O/O 5/13/2019 5/13/2021 AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
29094K-24TC T4 AN00787 Preamp 83017A 5/31/2019 5/31/2021 T5 ANP07138 Cable ANDL1- 3/4/2019 3/4/2021 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 5/13/2019 5/13/2021 0/O
T4 AN00787 Preamp 83017A 5/31/2019 5/31/2021 T5 ANP07138 Cable ANDL1- 3/4/2019 3/4/2021 PNMNM-60 PNMNM-60 PNMNM-60 5/15/2020 5/15/2022 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 5/13/2019 5/13/2021 0/O 0/O 0/O 0/O 1/2/2020 1/2/2022 AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
T5 ANP07138 Cable ANDL1- 3/4/2019 3/4/2021 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 5/13/2019 5/13/2021 0/0 0/0 0/0 0/0 0/0 0/0 AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
PNMNM-60 T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 5/13/2019 5/13/2021 3000/T10000- 0/O 0/O 0/O 1/2/2022 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
T6 ANP04382 Cable LDF-50 5/15/2020 5/15/2022 T7 AN03385 High Pass Filter 11SH10- 5/13/2019 5/13/2021 3000/T10000- 0/0 0/0 0/0 1/2/2022 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
T7 AN03385 High Pass Filter 11SH10- 3000/T10000- O/O 5/13/2019 5/13/2021 AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
3000/T10000- O/O AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
O/O AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
AN00010 Preamp 8447D 1/2/2020 1/2/2022 AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
AN01994 Biconilog Antenna CBL6111C 4/14/2020 4/14/2022 ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
ANP05283 Attenuator ATT-0218-06- 3/26/2020 3/26/2022
NNN-02
ANP05569 Cable-Amplitude RG-214/U 12/14/2020 12/14/2022
+15C to +45C (dB)
ANP06978 Cable Sucoflex 104A 3/26/2020 3/26/2022
AN03470 Spectrum Analyzer E4440A 5/2/2019 5/2/2021
AN00314 Loop Antenna 6502 4/13/2020 4/13/2022
AN03367 Horn Antenna 62-GH-62-25. 8/1/2019 8/1/2021
AN01413 Horn Antenna 84125-80008 10/19/2020 10/19/2022

Measurement Data:Reading listed by margin.Test Distance: 3 Meters											
#	Freq	Rdng	T1	T2	T3	T4	Dist.	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB			dBµV/m	dB	Ant
1	2390.000M	54.3	+0.0	+28.3	+0.5	-39.8	+0.0	52.9	54.0	-1.1	Horiz
	Ave		+4.0	+5.6	+0.0				bandedge_	802.11g_	
2	2400.000M	65.2	+0.0	+28.3	+0.5	-39.8	+0.0	63.8	L 65.0	-1.2	Horiz
2	2400.000101	05.2	+4.0	+5.6	+0.0	-57.0	10.0	05.0	bandedge_		110112
			14.0	15.0	10.0				L_100kHz		
3	2390.000M	53.7	+0.0	+28.3	+0.5	-39.8	+0.0	52.3	54.0	-1.7	Horiz
	Ave	0011	+4.0	+5.6	+0.0	0710		0210	bandedge_		
				1010	1010				L		
4	2390.000M	53.2	+0.0	+28.3	+0.5	-39.8	+0.0	51.8	54.0	-2.2	Horiz
	Ave		+4.0	+5.6	+0.0				bandedge_	802.11b_	
									L		
^	2390.000M	73.7	+0.0	+28.3	+0.5	-39.8	+0.0	72.3	74.0	-1.7	Horiz
			+4.0	+5.6	+0.0				bandedge_	802.11n_	
									L		
^	2390.000M	72.8	+0.0	+28.3	+0.5	-39.8	+0.0	71.4	74.0	-2.6	Horiz
			+4.0	+5.6	+0.0				bandedge_	802.11g	
									_L		
^	2390.000M	66.4	+0.0	+28.3	+0.5	-39.8	+0.0	65.0	74.0	-9.0	Horiz
			+4.0	+5.6	+0.0				bandedge_	802.11b_	
-	2400.0003.6	60 0		20.2	0.7	20.0		<i>c</i> 1 1	L		
8	2400.000M	62.8	+0.0	+28.3	+0.5	-39.8	+0.0	61.4	64.0	-2.6	Horiz
			+4.0	+5.6	+0.0				bandedge_ L_ 100kHz		
9	7235.500M	34.7	+0.0	+36.7	+0.8	-40.3	+0.0	50.6	54.0	-3.4	Horiz
			+7.5	+11.0	+0.2				802.11b		
10	2384.500M	51.9	+0.0	+28.3	+0.5	-39.8	+0.0	50.5	54.0	-3.5	Horiz
	Ave		+4.0	+5.6	+0.0				bandedge_	802.11b_	
									L		
~	2384.580M	67.6	+0.0	+28.3	+0.5	-39.8	+0.0	66.2	74.0	-7.8	Horiz
			+4.0	+5.6	+0.0				bandedge_	802.11b_	
10	2492 50014	51.0	.0.0	. 20. 2	.0.5	20.0	. 0. 0	40.0	L	4.0	
12	2483.500M	51.2	+0.0	+28.2	+0.5	-39.9	+0.0	49.8	54.0	-4.2	Horiz
	Ave		+4.1	+5.7	+0.0				bandedge_ H	802.11g_	
13	2400.000M	70.9	+0.0	+28.3	+0.5	-39.8	+0.0	69.5	76.4	-6.9	Horiz
15	2-100.000141	70.7	+0.0 +4.0	+28.5	+0.3 +0.0	57.0	10.0	07.5	bandedge_		110112
			11.0	15.0	10.0				L_100kHz		
14	4824.000M	36.0	+0.0	+33.6	+0.7	-40.0	+0.0	44.9	54.0	-9.1	Vert
- '		20.0	+5.8	+8.5	+0.3				802.11b	<i>/</i>	
15	2487.920M	46.2	+0.0	+28.2	+0.5	-39.9	+0.0	44.8	54.0	-9.2	Horiz
	Ave		+4.1	+5.7	+0.0				bandedge_		
									Н	_	
16	4924.000M	35.1	+0.0	+33.8	+0.7	-39.9	+0.0	44.5	54.0	-9.5	Vert
			+5.9	+8.6	+0.3				802.11b		
17	4924.000M	35.1	+0.0	+33.8	+0.7	-39.9	+0.0	44.5	54.0	-9.5	Horiz
			+5.9	+8.6	+0.3				802.11b		

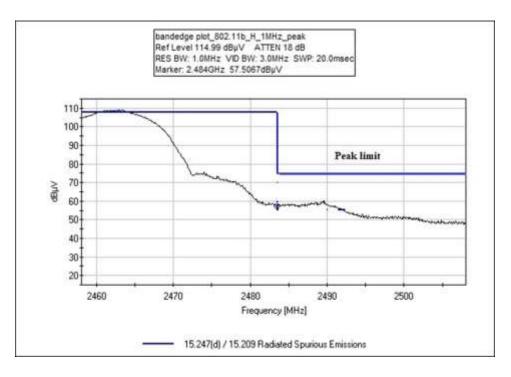
18 2483.500M	45.0	+0.0	+28.2	+0.5	-39.9	+0.0	43.6	54.0 -10.4	Horiz
Ave	1510	+4.1	+5.7	+0.0	57.7	10.0	15.0	bandedge_802.11b_	
								Н	
^ 2483.500M	72.1	+0.0	+28.2	+0.5	-39.9	+0.0	70.7	74.0 -3.3	Horiz
		+4.1	+5.7	+0.0				bandedge_802.11g_	
A 2492 500M	70.4	.0.0	. 20. 2	.05	20.0	.0.0	(0.0	H 74.0 5.0	TT
^ 2483.500M	70.4	$^{+0.0}_{+4.1}$	+28.2 +5.7	+0.5	-39.9	+0.0	69.0	74.0 -5.0	Horiz
		+4.1	+3.7	+0.0				bandedge_802.11n H	
^ 2483.500M	50.3	+0.0	+28.2	+0.5	-39.9	+0.0	48.9	54.0 -5.1	Horiz
21001000111	0010	+4.1	+5.7	+0.0	0,1,1			bandedge_802.11n_	
								Н	
^ 2483.500M	57.4	+0.0	+28.2	+0.5	-39.9	+0.0	56.0	74.0 -18.0	Horiz
		+4.1	+5.7	+0.0				bandedge_802.11b_	
22 7296 00014	22.0	.0.0	. 27.1	.0.0	40.4	.0.0	40.4	<u>H</u>	
23 7386.000M Ave	23.9	+0.0 +7.6	+37.1 +11.2	+0.8 +0.2	-40.4	+0.0	40.4	54.0 -13.6 802.11b	Horiz
24 7386.000M	22.6	+7.0 +0.0	+11.2 +37.1	+0.2 +0.8	-40.4	+0.0	39.1	54.0 -14.9	Horiz
Ave	22.0	+0.0	+37.1 +11.2	+0.3 $+0.2$	-+0.+	+0.0	39.1	802.11n	HOHZ
25 7236.000M	23.1	+0.0	+36.7	+0.2	-40.3	+0.0	39.0	54.0 -15.0	Vert
Ave		+7.5	+11.0	+0.2				802.11n	
^ 7236.000M	34.5	+0.0	+36.7	+0.8	-40.3	+0.0	50.4	54.0 -3.6	Vert
		+7.5	+11.0	+0.2				802.11n	
27 7386.000M	22.3	+0.0	+37.1	+0.8	-40.4	+0.0	38.8	54.0 -15.2	Horiz
Ave		+7.6	+11.2	+0.2				802.11g	
^ 7386.000M	36.7	+0.0	+37.1	+0.8	-40.4	+0.0	53.2	54.0 -0.8	Horiz
^ 7386.000M	34.9	+7.6 +0.0	+11.2 +37.1	+0.2 +0.8	-40.4	+0.0	51.4	802.11b 54.0 -2.6	Horiz
/380.000141	34.9	+0.0 +7.6	+37.1 +11.2	+0.8 $+0.2$	-40.4	+0.0	51.4	802.11g	HOUL
^ 7386.000M	34.4	+0.0	+37.1	+0.2	-40.4	+0.0	50.9	54.0 -3.1	Horiz
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	+7.6	+11.2	+0.2			000	802.11n	110112
31 7326.000M	22.3	+0.0	+37.0	+0.8	-40.3	+0.0	38.6	54.0 -15.4	Vert
Ave		+7.5	+11.1	+0.2				802.11n	
32 7326.000M	22.3	+0.0	+37.0	+0.8	-40.3	+0.0	38.6	54.0 -15.4	Horiz
Ave		+7.5	+11.1	+0.2				802.11b	
33 7326.000M	22.2	+0.0	+37.0	+0.8	-40.3	+0.0	38.5	54.0 -15.5	Horiz
Ave 34 7236.117M	22.3	+7.5 +0.0	+11.1 +36.7	+0.2 +0.8	-40.3		38.2	802.11n 54.0 -15.8	Horiz
Ave	22.5	+0.0 +7.5	+30.7 +11.0	+0.8 +0.2	-40.5	+0.0	38.2	54.0 -15.8 802.11g	HOUT
35 2489.330M	59.3	+0.0	+28.2	+0.2	-39.9	+0.0	57.9	74.0 -16.1	Horiz
	0710	+4.1	+5.7	+0.0	0717		0115	bandedge_802.11b_	
								Н	
36 7386.000M	21.4	+0.0	+37.1	+0.8	-40.4	+0.0	37.9	54.0 -16.1	Vert
Ave		+7.6	+11.2	+0.2				802.11b	
37 7326.050M	21.5	+0.0	+37.0	+0.8	-40.3	+0.0	37.8	54.0 -16.2	Vert
Ave	22.5	+7.5	+11.1	+0.2	40.2	.0.0	10.0	802.11g	X 7 (
^ 7326.000M	33.5	+0.0 +7.5	+37.0 +11.1	$^{+0.8}_{+0.2}$	-40.3	+0.0	49.8	54.0 -4.2 802.11n	Vert
^ 7326.050M	33.4	+7.3 +0.0	+11.1 +37.0	+0.2 +0.8	-40.3	+0.0	49.7	54.0 -4.3	Vert
7520.050141	55.7	+0.0	+37.0 +11.1	+0.3 $+0.2$	-0.J	10.0	77.1	802.11g	v crt
^ 7326.000M	32.4	+0.0	+37.0	+0.2	-40.3	+0.0	48.7	54.0 -5.3	Vert
		+7.5	+11.1	+0.2				802.11b	
•									

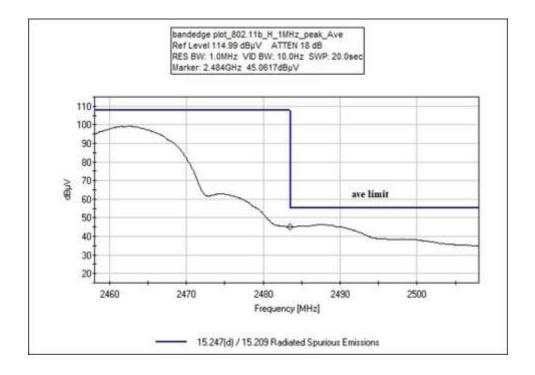
41 72	00001	20.4	.0.0	. 27.1	.0.0	40.4	.0.0	26.0	540	17 1	V
	86.000M	20.4	+0.0	+37.1	+0.8	-40.4	+0.0	36.9	54.0	-17.1	Vert
Ave	-		+7.6	+11.2	+0.2				802.11g		
^ 73	86.000M	34.6	+0.0	+37.1	+0.8	-40.4	+0.0	51.1	54.0	-2.9	Vert
			+7.6	+11.2	+0.2				802.11g		
^ 73	86.000M	33.9	+0.0	+37.1	+0.8	-40.4	+0.0	50.4	54.0	-3.6	Vert
			+7.6	+11.2	+0.2				802.11b		
44 72	36.083M	20.5	+0.0	+36.7	+0.8	-40.3	+0.0	36.4	54.0	-17.6	Horiz
Ave	e		+7.5	+11.0	+0.2				802.11b		
^ 72	36.117M	34.5	+0.0	+36.7	+0.8	-40.3	+0.0	50.4	54.0	-3.6	Horiz
			+7.5	+11.0	+0.2				802.11g		
46 73	26.000M	19.7	+0.0	+37.0	+0.8	-40.3	+0.0	36.0	54.0	-18.0	Horiz
Ave	e		+7.5	+11.1	+0.2				802.11g		
^ 73	26.000M	35.8	+0.0	+37.0	+0.8	-40.3	+0.0	52.1	54.0	-1.9	Horiz
			+7.5	+11.1	+0.2				802.11b		
^ 73	26.000M	34.1	+0.0	+37.0	+0.8	-40.3	+0.0	50.4		-3.6	Horiz
			+7.5	+11.1	+0.2				802.11n		-
^ 73	26.000M	33.3	+0.0	+37.0	+0.8	-40.3	+0.0	49.6	54.0	-4.4	Horiz
15	20.000101	00.0	+7.5	+11.1	+0.2	10.5	10.0	17.0	802.11g		HOHE
50 72	36.667M	19.6	+0.0	+36.7	+0.8	-40.3	+0.0	35.5	54.0	-18.5	Vert
Ave		17.0	+7.5	+11.0	+0.0	10.5	10.0	55.5	802.11g	10.5	vert
	- 36.667M	33.6	+0.0	+36.7	+0.2 $+0.8$	-40.3	+0.0	49.5	54.0	-4.5	Vert
12.	50.007 NI	55.0	+7.5	+11.0	+0.3	-0.J	10.0	77.5	802.11g	· - 5	ven
52 72	36.000M	19.5	+0.0	+11.0 +36.7	+0.2 +0.8	-40.3	+0.0	35.4	54.0	-18.6	Horiz
Ave		19.3	+0.0 +7.5	+30.7 +11.0	+0.8 +0.2	-40.3	+0.0	55.4	34.0 802.11n	-10.0	HULLZ
	-	22.0				40.2	.0.0	47.0		<i>C</i> 1	II.
× 72.	36.000M	32.0	+0.0	+36.7	+0.8	-40.3	+0.0	47.9	54.0	-6.1	Horiz
			+7.5	+11.0	+0.2				802.11n		

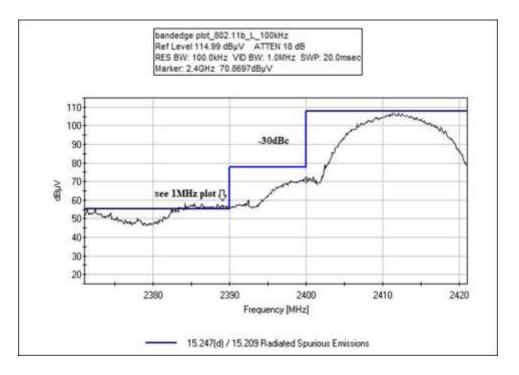


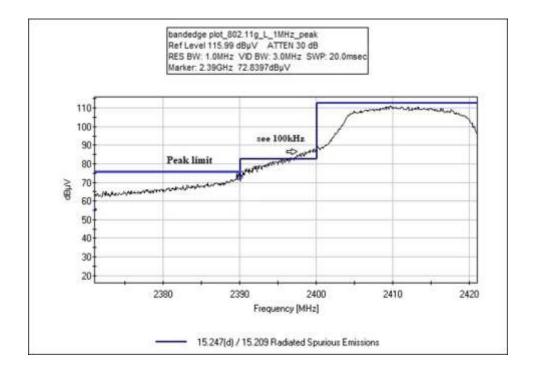

Band Edge

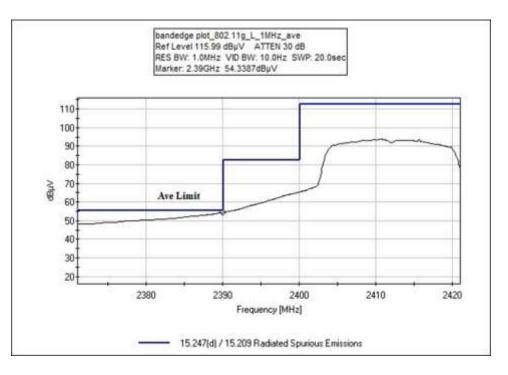
		Band Ed	ge Summary		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
2390.0	802.11b	Chip Antenna +2dBi	51.8	<54	Pass
2400.0	802.11b	Chip Antenna +2dBi	69.5	<76.4	Pass
2483.5	802.11g	Chip Antenna +2dBi	43.6	<54	Pass
2390.0	802.11g	Chip Antenna +2dBi	52.9	<54	Pass
2400.0	802.11n	Chip Antenna +2dBi	63.8	<65	Pass
2483.5	802.11n	Chip Antenna +2dBi	49.8	<54	Pass
2390.0	802.11b	Chip Antenna +2dBi	52.3	<54	Pass
2400.0	802.11b	Chip Antenna +2dBi	61.4	<64	Pass
2483.5	802.11g	Chip Antenna +2dBi	48.9	<54	Pass

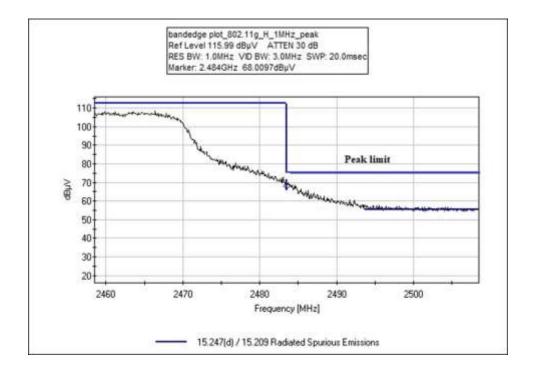


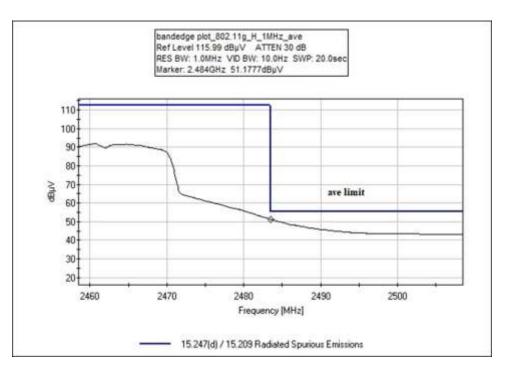

Band Edge Plots

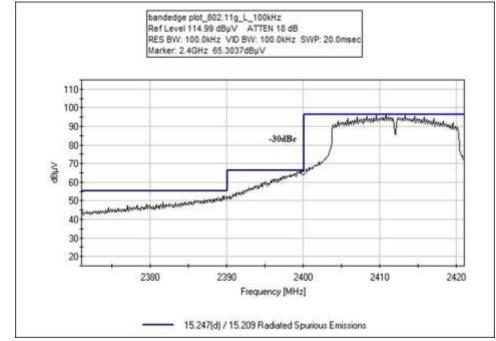


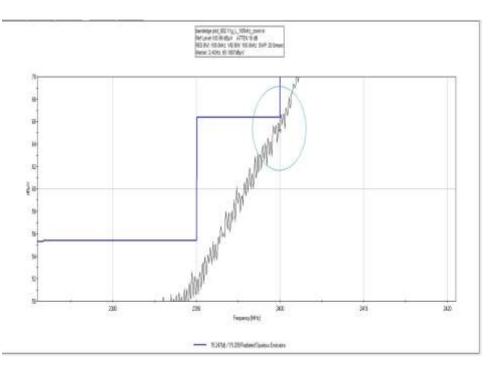


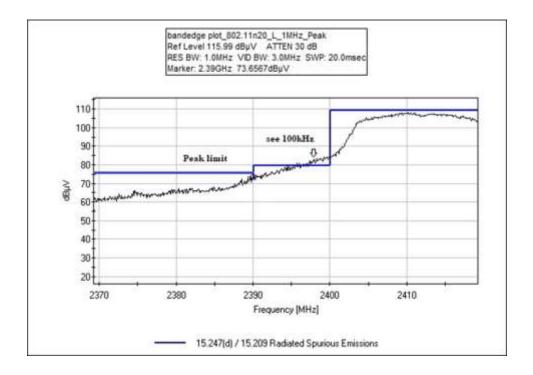


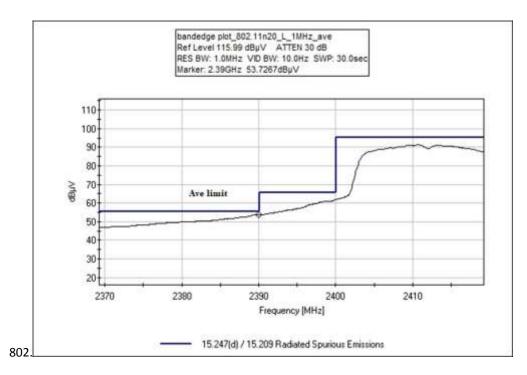


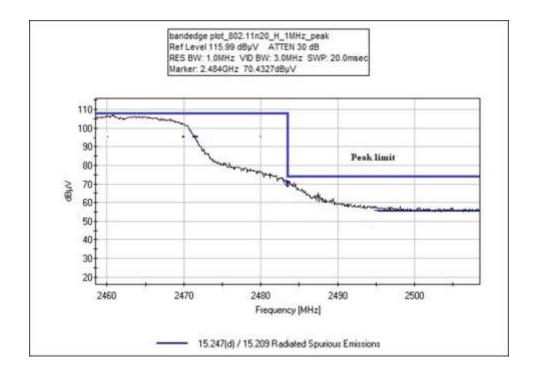

Page 47 of 64 Report No.: 104502-9A

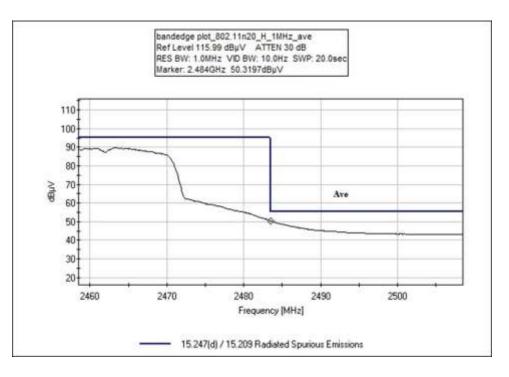


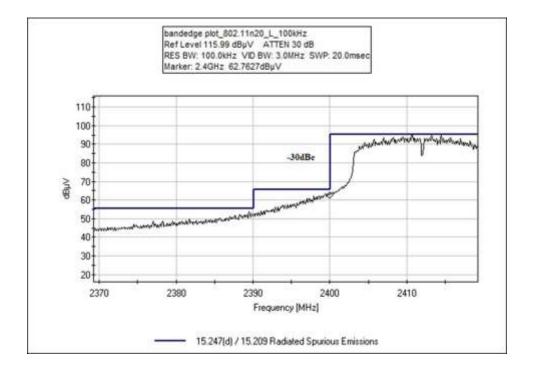


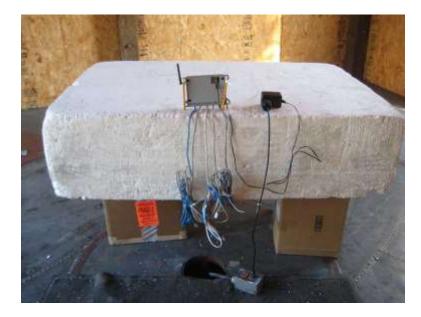



*See next page









Test Setup Photo(s)

Below 1GHz

Below 1GHz

Above 1GHz

Page 54 of 64 Report No.: 104502-9A

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 110 N. Olinda Pl. •	Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	104502	Date:	1/6/2021
Test Type:	Conducted Emissions	Time:	16:29:55
Tested By:	E. Wong	Sequence#:	7
Software:	EMITest 5.03.19		110/60Hz

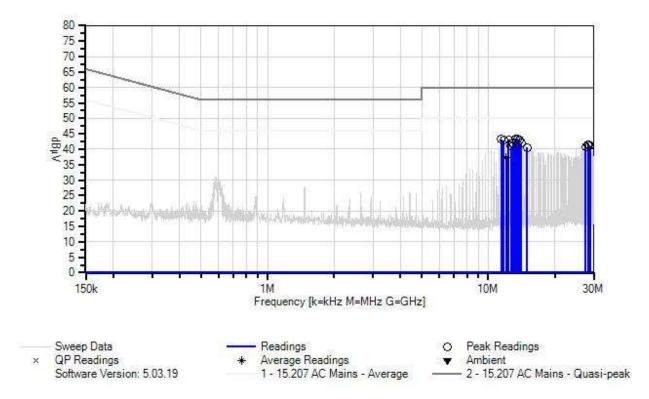
Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

The EUT is placed on the table, 5 Ethernet cables are connected to the Ethernet ports. Software setting: Set Mode: Transmit Power setting: 20dBm Modulation: DBPSK (802.11b) worst case


Frequency: 2442MHz

Frequency range of measurement = 150kHz- 30MHz. 150 kHz-30 MHz; RBW=9 kHz, VBW=30kHz ANSI C63.10-2013

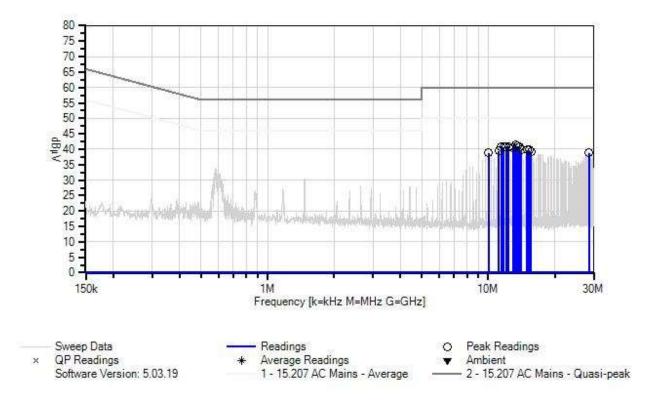
Test environment conditions: Temperature: 27°C Relative Humidity: 29% Atmospheric Pressure: 100kPa

Venstar, Inc. WO#: 104502 Sequence#: 7 Date: 1/6/2021 15.207 AC Mains - Average Test Lead: 110/60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
Т3	AN02610	High Pass Filter	HE9615-150K-	10/22/2019	10/22/2021
			50-720B		
T4	ANP07738	Cable-Line L1(dB)	90cm-extcord	12/9/2020	12/9/2022
	ANP07738	Cable-Neutral	90cm-extcord	12/9/2020	12/9/2022
		L2(dB)			
T5	AN00847.1	50uH LISN-(L) Line	3816/2NM	3/10/2020	3/10/2021
		1			
	AN00847.1	50uH LISN-(N) Line	3816/2NM	3/10/2020	3/10/2021
		2			

Measur	ement Data:	Re	ading lis	ted by ma	argin.			Test Lead	d: L1-Line	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist.	Corr	Spec	Margin	Polar
	MHz	dBµV	T5 dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.238M	36.4	+5.8	+0.3	+0.2	+0.6	+0.0	43.4	50.0	-6.6	L1-Li
			+0.1								
2	13.526M	36.4	+5.8	+0.3	+0.2	+0.6	+0.0	43.4	50.0	-6.6	L1-Li
3	11.472M	36.3	+0.1 +5.8	+0.3	+0.2	+0.5	+0.0	43.2	50.0	-6.8	L1-Li
5	11.4/2101	50.5	+0.1	+0.5	± 0.2	± 0.5	+0.0	43.2	50.0	-0.8	L1-Li
4	12.355M	36.2	+5.8	+0.3	+0.2	+0.5	+0.0	43.1	50.0	-6.9	L1-Li
			+0.1								
5	13.824M	36.1	+5.8 +0.1	+0.3	+0.2	+0.6	+0.0	43.1	50.0	-6.9	L1-Li
6	11.761M	36.0	+0.1 +5.8	+0.3	+0.2	+0.5	+0.0	42.9	50.0	-7.1	L1-Li
0	11.7011.1	20.0	+0.1	10.5	10.2	10.0	10.0	12.9	20.0	/ • •	21 21
7	12.941M	35.1	+5.8	+0.3	+0.2	+0.5	+0.0	42.0	50.0	-8.0	L1-Li
0	14 10114	24.0	+0.1	.0.2	.0.2	0.0		41.0	50.0	0.1	T 1 T 1
8	14.121M	34.9	+5.8 +0.1	+0.3	+0.2	+0.6	+0.0	41.9	50.0	-8.1	L1-Li
9	28.239M	33.9	+5.8	+0.5	+0.2	+0.9	+0.0	41.5	50.0	-8.5	L1-Li
			+0.2								
10	28.534M	33.8	+5.8	+0.5	+0.2	+0.9	+0.0	41.4	50.0	-8.6	L1-Li
11	12.652M	34.1	+0.2 +5.8	+0.3	+0.2	+0.5	+0.0	41.0	50.0	-9.0	L1-Li
11	12.03211	54.1	+0.1	+0.5	± 0.2	± 0.5	+0.0	41.0	50.0	-9.0	L1-Li
12	28.828M	33.4	+5.8	+0.5	+0.2	+0.9	+0.0	41.0	50.0	-9.0	L1-Li
			+0.2								
13	27.650M	33.1	+5.8	+0.5	+0.2	+0.9	+0.0	40.7	50.0	-9.3	L1-Li
14	15.004M	33.5	+0.2 +5.8	+0.3	+0.2	+0.7	+0.0	40.6	50.0	-9.4	L1-Li
11	10.00 101	00.0	+0.1	10.5	10.2	10.7	10.0	10.0	20.0	2.1	21 21
15	12.062M	30.4	+5.8	+0.3	+0.2	+0.5	+0.0	37.3	50.0	-12.7	L1-Li
-	Ave	27.5	+0.1	.0.2	.0.2	.0.5	.0.0	4 4 4	50.0	F <i>c</i>	T 1 T '
^	12.062M	37.5	+5.8 +0.1	+0.3	+0.2	+0.5	+0.0	44.4	50.0	-5.6	L1-Li
^	12.058M	37.4	+0.1 +5.8	+0.3	+0.2	+0.5	+0.0	44.3	50.0	-5.7	L1-Li
			+0.1								


Test Location:	CKC Laboratories Inc. • 110 N. Ol	inda Pl. • Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	104502	Date:	1/6/2021
Test Type:	Conducted Emissions	Time:	4:30:33 PM
Tested By:	E. Wong	Sequence#:	8
Software:	EMITest 5.03.19	-	110/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N				
Configuration 2							
Support Equipment:	Support Equipment:						
Device	Manufacturer	Model #	S/N				
Configuration 2							
Test Conditions / Note	es:						
The EUT is placed on	the table, 5 Ethernet cables a	re connected to the Ether	met ports.				
Software setting:							
Set Mode: Transmit							
Power setting: 20dBm							
Modulation: DBPSK (802.11b) worst case						
Frequency: 2442MHz							
Frequency range of measurement = 150kHz- 30MHz.							
150 kHz-30 MHz; RBW=9 kHz, VBW=30kHz							
ANSI C63.10-2013							
Test environment conditions:							
Temperature: 27°C							
Relative Humidity: 29%							
Atmospheric Pressure: 100kPa							

Venstar, Inc. WO#: 104502 Sequence#: 8 Date: 1/6/2021 15.207 AC Mains - Average Test Lead: 110/60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
Т3	AN02610	High Pass Filter	HE9615-150K- 50-720B	10/22/2019	10/22/2021
	ANP07738	Cable-Line L1(dB)	90cm-extcord	12/9/2020	12/9/2022
T4	ANP07738	Cable-Neutral L2(dB)	90cm-extcord	12/9/2020	12/9/2022
	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
T5	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/10/2020	3/10/2021

Measur	ement Data:	Re	ading lis	ted by ma	argin.			Test Lead	1: L2-Neu	tral	
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist.	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.238M	34.4	+5.8 +0.2	+0.3	+0.2	+0.5	+0.0	41.4	50.0	-8.6	L2-Ne
2	13.526M	34.1	+5.8 +0.2	+0.3	+0.2	+0.5	+0.0	41.1	50.0	-8.9	L2-Ne
3	11.472M	33.9	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	40.8	50.0	-9.2	L2-Ne
4	12.058M	33.9	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	40.8	50.0	-9.2	L2-Ne
5	12.355M	33.9	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	40.8	50.0	-9.2	L2-Ne
6	11.770M	33.8	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	40.7	50.0	-9.3	L2-Ne
7	13.824M	33.7	+5.8 +0.2	+0.3	+0.2	+0.5	+0.0	40.7	50.0	-9.3	L2-Ne
8	12.941M	33.6	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	40.5	50.0	-9.5	L2-Ne
9	14.121M	32.8	+5.8 +0.2	+0.3	+0.2	+0.5	+0.0	39.8	50.0	-10.2	L2-Ne
10	15.004M	32.6	+5.8 +0.2	+0.3	+0.2	+0.6	+0.0	39.7	50.0	-10.3	L2-Ne
11	15.301M	32.6	+5.8 +0.2	+0.3	+0.2	+0.6	+0.0	39.7	50.0	-10.3	L2-Ne
12	11.175M	32.6	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	39.5	50.0	-10.5	L2-Ne
13	15.589M	32.1	+5.8 +0.2	+0.3	+0.2	+0.6	+0.0	39.2	50.0	-10.8	L2-Ne
14	10.004M	31.9	+5.8 +0.2	+0.3	+0.2	+0.4	+0.0	38.8	50.0	-11.2	L2-Ne
15	28.534M	31.1	+5.8 +0.3	+0.5	+0.2	+0.9	+0.0	38.8	50.0	-11.2	L2-Ne

Test Setup Photo(s)

Page 61 of 64 Report No.: 104502-9A

Appendix A: Modification

Mod 1 = Copper tape added to LCD display ribbon cable to suppress radiated emission below 1 GHz.

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading (dBµV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST BEGINNING FREQUENCY		ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz		
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" n ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.