Venstar, Inc.

TEST REPORT FOR

WiFi Thermostat Models: Explorer Mini, T2000, T2050, T2100, T2150

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 99771-7

Date of issue: May 31, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 91 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.247(a)(2) 6dB Bandwidth	7
15.247(b)(3) Output Power	13
15.247(e) Power Spectral Density	22
15.247(d) RF Conducted Emissions & Band Edge	32
15.247(d) Radiated Emissions & Band Edge	49
15.207 AC Conducted Emissions	81
Supplemental Information	90
Measurement Uncertainty	90
Emissions Test Details	90

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Venstar, Inc. 9250 Owensmouth Avenue Chatsworth, CA 91311 **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

REPRESENTATIVE: Alex Garashin

Project Number: 99771

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: May 3, 2017 May 3-13, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Brea D, CA	US0060	SL2-IN-E-1146R	3082D-2	US1025	A-0147

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

The following model has been tested by CKC Laboratories: WiFi Thermostat, Exploere Mini

The manufacturer states that the following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested models:

T2000 T2050 T2100

T2150

Configuration 1

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
WiFi Thermostat	Venstar, Inc.	Explorer Mini	NA	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Laptop Computer	Lenovo	ThinkPad T500	L3B3906	
USB to Serial programming adapter board				

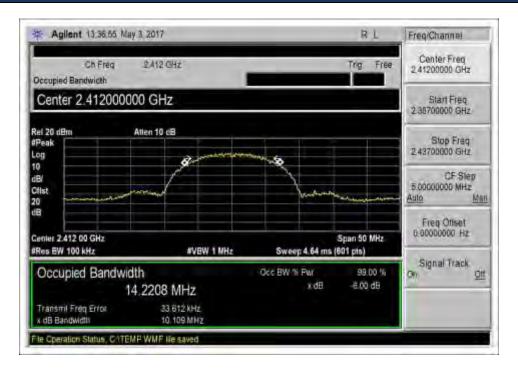
General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.11b/g/n20
Operating Frequency Range:	2412MHz to 2462MHz
Modulation Type(s):	DSSS, CCK, OFDM, BPSK, QPSK, 16-QAM, 64-QAM
Maximum Duty Cycle:	99%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Chip and 1.9dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	3.3Vdc
Firmware / Software used for Test:	Texas Instruments CC3120/CC3220 Radio Tool v0.8.5973.20907

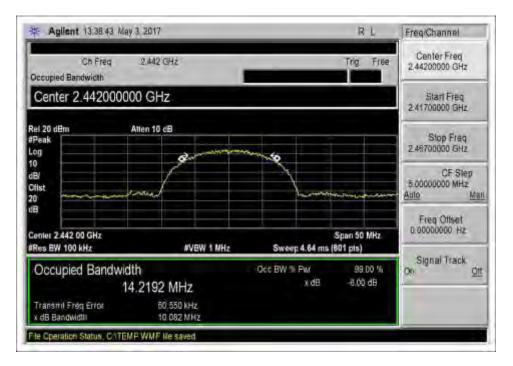
FCC Part 15 Subpart C

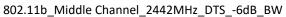
15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions				
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto	
Test Method:	ANSI C63.10 (2013), KDB 558074 v04 2017	Test Date(s):	5/3/2017	
Configuration:	Configuration: 1			
Test Setup: Antenna port of EUT connected to spectrum analyzer using a coaxial cable and attenuator.				

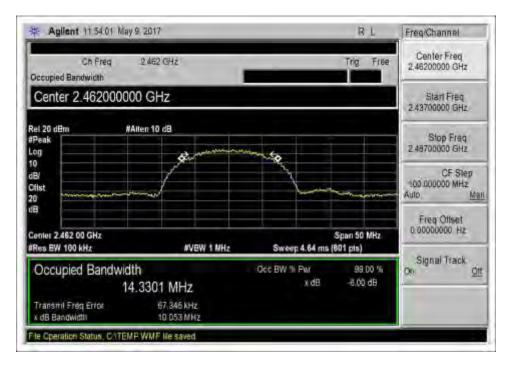

Environmental Conditions				
Temperature (^o C) 20 Relative Humidity (%): 45				

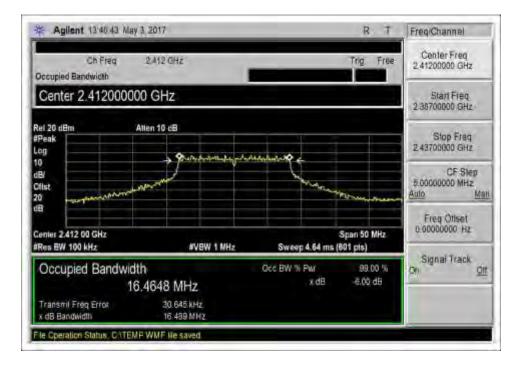
Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
02869	Spectrum Analyzer	Agilent	E4440A	7/8/2016	7/8/2017	
03431	Attenuator	Aeroflex/Weinschel	89-20-21	11/2/2015	11/2/2017	
P06544	Cable	Astro Steel	32026-29094K- 29094K-36TC	11/2/2015	11/2/2017	

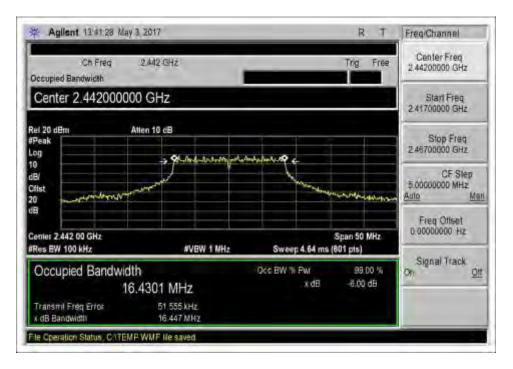

	Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
2412	1	ССК	10109	≥500	Pass	
2442	1	ССК	10082	≥500	Pass	
2462	1	ССК	10053	≥500	Pass	
2412	1	OFDM	16489	≥500	Pass	
2442	1	OFDM	16447	≥500	Pass	
2462	1	OFDM	16476	≥500	Pass	
2412	1	BPSK	17674	≥500	Pass	
2442	1	BPSK	17717	≥500	Pass	
2462	1	BPSK	17601	≥500	Pass	



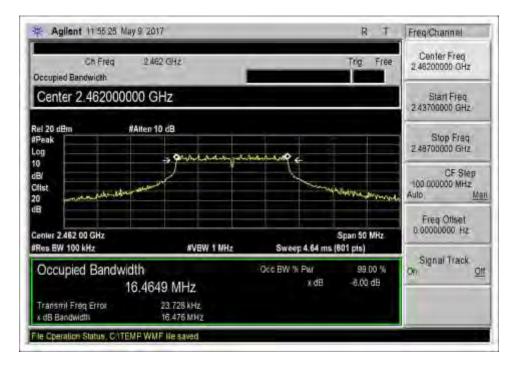
Plots



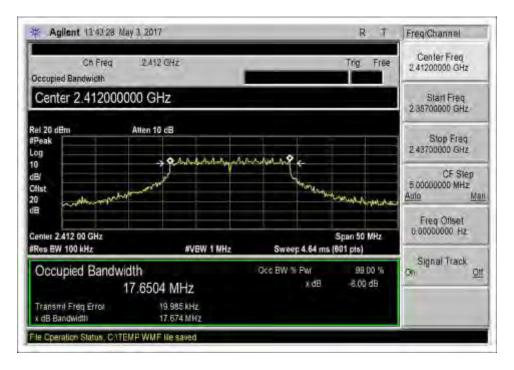




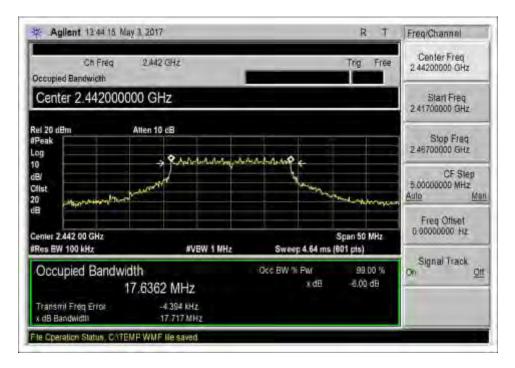
802.11b_High Channel_2462MHz_DTS_-6dB_BW



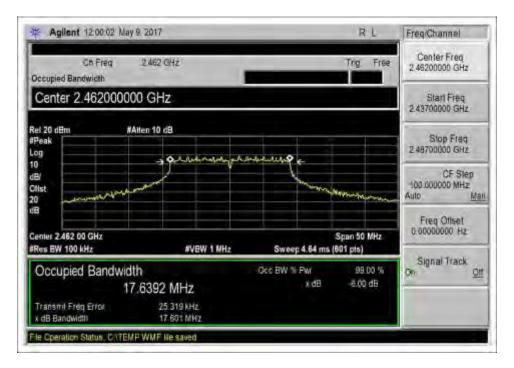
802.11g_Low Channel_2412MHz_DTS_-6dB_BW



802.11g_Middle Channel_2442MHz_DTS_-6dB_BW



802.11g_High Channel_2462MHz_DTS_-6dB_BW



802.11n20_Low Channel_2412MHz_DTS_-6dB_BW

802.11n20_Middle Channel_2442MHz_DTS_-6dB_BW

802.11n20_High Channel_2462MHz_DTS_-6dB_BW

Test Setup Photo

15.247(b)(3) Output Power

Test Setup / Conditions				
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto	
Test Method:	ANSI C63.10 (2013), KDB 558074 v04 2017	Test Date(s):	5/3/2017	
Configuration: 1				
Test Setup: Antenna port of EUT connected to spectrum analyzer using a coaxial cable and attenuator.				

Environmental Conditions			
Temperature (^o C)	20	Relative Humidity (%):	45

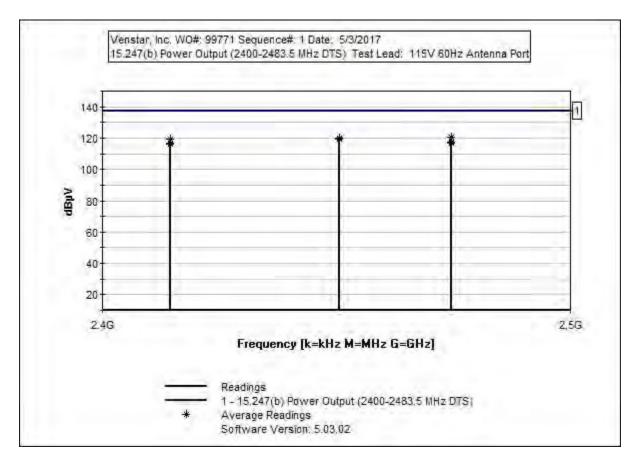
	Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
02869	Spectrum Analyzer	Agilent	E4440A	7/8/2016	7/8/2017		
03431	Attenuator	Aeroflex/Weinschel	89-20-21	11/2/2015	11/2/2017		
P06544	Cable	Astro Steel	32026-29094K-	11/2/2015	11/2/2017		
P00544	Cable	ASTIO STEEL	29094K-36TC	11/2/2015	11/2/2017		

	Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
2142	CCK / 1	12.5	12.5	12.5	0		
2442	CCK / 1	13	13	13	0		
2462	CCK / 1	13.4	13.4	13.4	0		
2142	OFDM / 1	10	10	10	0		
2442	OFDM / 1	12.9	12.9	12.9	0		
2462	OFDM / 1	10.2	10.2	10.2	0		
2142	BPSK / 1	9.4	9.4	9.4	0		
2442	BPSK / 1	12.6	12.6	12.6	0		
2462	BPSK / 1	9.5	9.5	9.5	0		

Parameter Definitions:

Measurements performed at input voltage Vnominal \pm 15%.

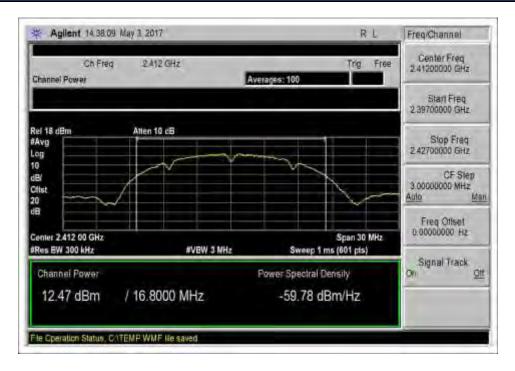
Parameter	Value
V _{Nominal} :	115Vac
V _{Minimum} :	97Vac
V _{Maximum} :	132Vac

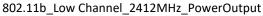


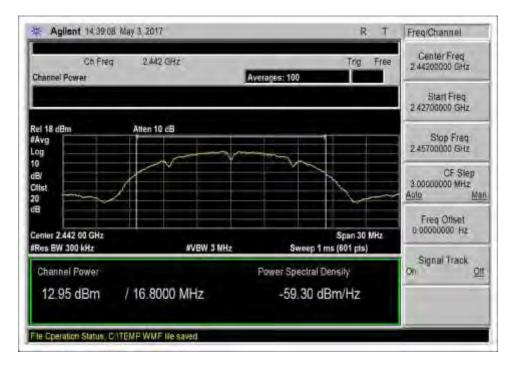
	Test Data Summary - RF Conducted Measurement							
Measuremen	Measurement Option: AVGSA-1							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results			
2142	ССК	Chip / 1.9	12.5	≤ 30	Pass			
2442	CCK	Chip / 1.9	13	≤ 30	Pass			
2462	CCK	Chip / 1.9	13.4	≤ 30	Pass			
2142	OFDM	Chip / 1.9	10	≤ 30	Pass			
2442	OFDM	Chip / 1.9	12.9	≤ 30	Pass			
2462	OFDM	Chip / 1.9	10.2	≤ 30	Pass			
2142	BPSK	Chip / 1.9	9.4	≤ 30	Pass			
2442	BPSK	Chip / 1.9	12.6	≤ 30	Pass			
2462	BPSK	Chip / 1.9	9.5	≤ 30	Pass			

Test Setup / Conditions / Data

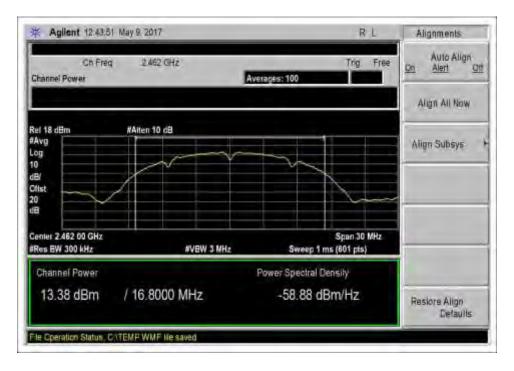
Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 110 N. Venstar, Inc. 15.247(b) Power Output (2400- 99771 Conducted Emissions S. Yamamoto EMITest 5.03.02	2483.5 MHz DTS) D	ate: 5/3/2017 me: 15:31:07		
Equipment Test			115 V 0011Z		
Device	Manufacturer	Model #	S/N		
Configuration 1					
Support Equipm	ent:				
Device	Manufacturer	Model #	S/N		
Configuration 1					
Test Conditions	/ <i>Notes:</i> e: 2412MHz to 2462MHz				
	2412MHz, 2442MHz, 2462MHz				
Firmware power					
	3.0.0-31.2.0.0.0-2.2.0.4				
	Iodulation: CCK, OFDM, BPSK				
Antenna type: Ch					
Antenna Gain: 1.	9dBi.				
Duty Cycle: >989	6				
Test Method: KD	B 558074 D01 v04 2017, AVGSA	-1.			
Test Mode: Conti	nuous transmit				
	Test Setup: EUT antenna port connected to spectrum analyzer input using coaxial cable and attenuator				
Modifications Added: None					
Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board.					
	port is connected to the spectrum		xial cable and attenuator.		
	ted 802.11b, 802.11g, and 802.11n	20.			
Site D.					

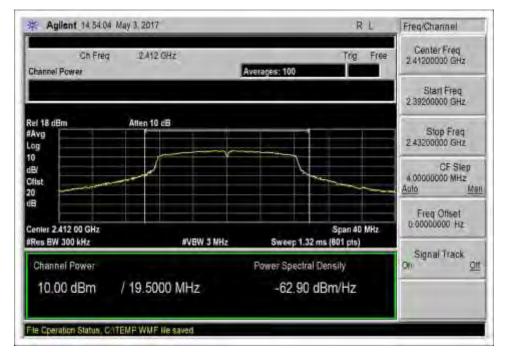

Test Equipment:

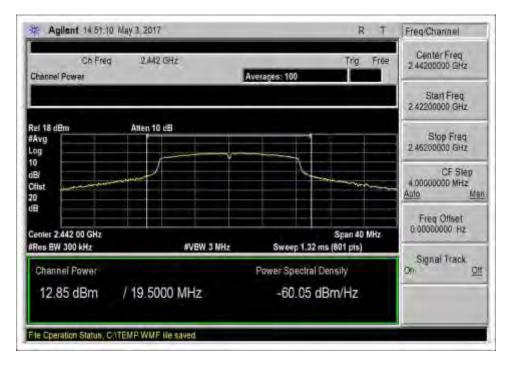

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP06544	Cable	32026-29094K- 29094K-36TC	11/2/2015	11/2/2017
Т3	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017


Meası	rement Data:	R	eading list	ted by ma	argin.			Test Lea	nd: Antenna	Port	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2462.000M	100.4	+0.0	+0.7	+19.3		+0.0	120.4	137.0	-16.6	Anten
	Ave								802.11b		
2	2442.000M	100.0	+0.0	+0.7	+19.3		+0.0	120.0	137.0	-17.1	Anten
	Ave								802.11b		
3	2442.000M	99.9	+0.0	+0.7	+19.3		+0.0	119.9	137.0	-17.2	Anten
	Ave								802.11g		
4	2442.000M	99.6	+0.0	+0.7	+19.3		+0.0	119.6	137.0	-17.4	Anten
	Ave								802.11n20		
5	2412.000M	99.5	+0.0	+0.7	+19.3		+0.0	119.5	137.0	-17.5	Anten
	Ave								802.11b		
6	2462.000M	97.2	+0.0	+0.7	+19.3		+0.0	117.2	137.0	-19.8	Anten
	Ave								802.11g		
7	2412.000M	97.0	+0.0	+0.7	+19.3		+0.0	117.0	137.0	-20.0	Anten
	Ave								802.11g		
8	2462.000M	96.5	+0.0	+0.7	+19.3		+0.0	116.5	137.0	-20.5	Anten
	Ave								802.11n20		
9	2412.000M	96.4	+0.0	+0.7	+19.3		+0.0	116.4	137.0	-20.6	Anten
	Ave								802.11n20		

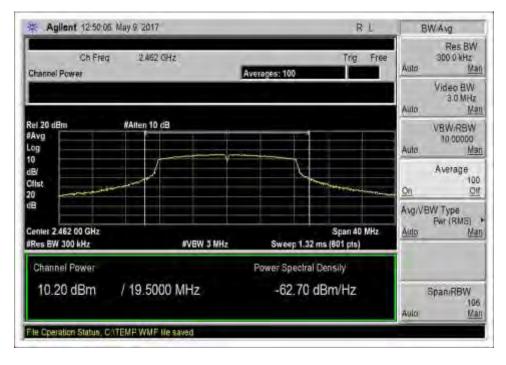
Plots



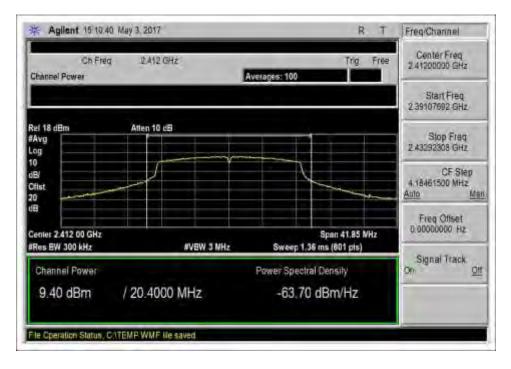




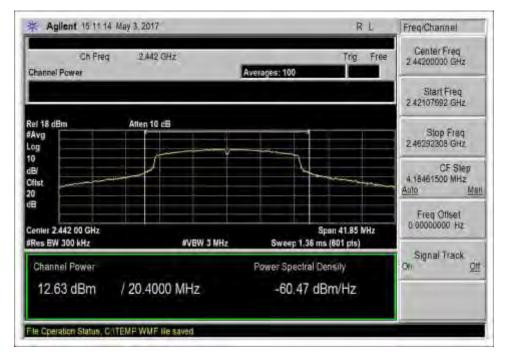
802.11b_High Channel_2462MHz_PowerOutput



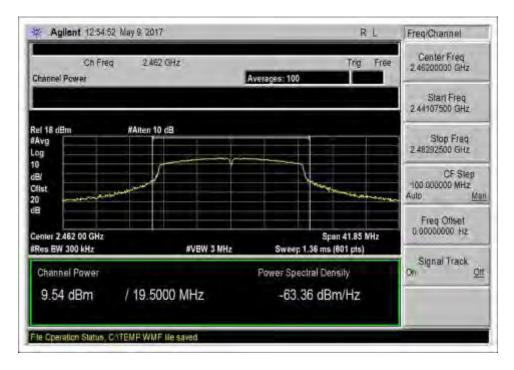
802.11g_Low Channel_2412MHz_PowerOutput



802.11g_Middle Channel_2442MHz_PowerOutput



802.11g_High Channel_2462MHz_PowerOutput



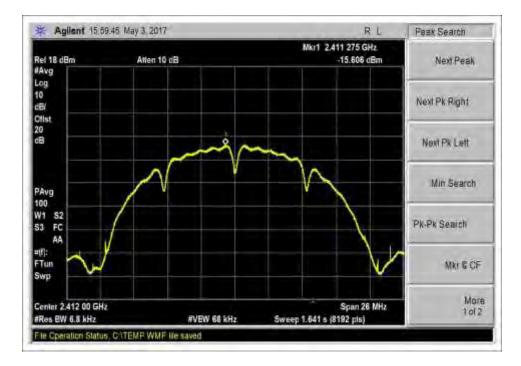
802.11n20_Low Channel_2412MHz_PowerOutput

802.11n20_Middle Channel_2442MHz_PowerOutput

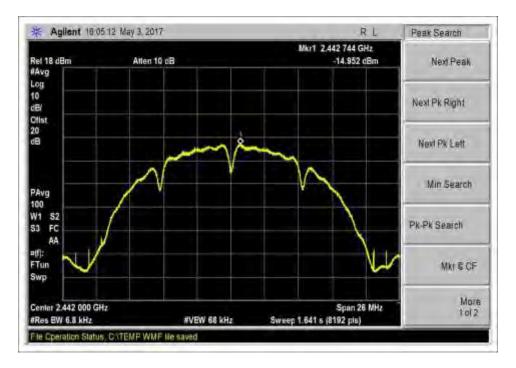
802.11n20_High Channel_2462MHz_PowerOutput

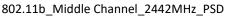
Test Setup Photo

15.247(e) Power Spectral Density

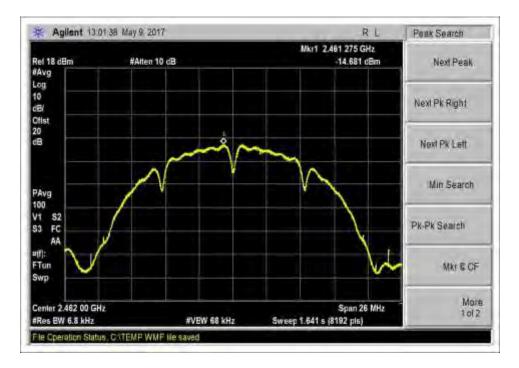

	Test Setup / Conditions / I	Data			
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto		
Test Method:	ANSI C63.10 (2013), KDB 558074 v04 2017	Test Date(s):	5/3/2017		
Configuration:	Configuration: 1				
Test Setup:	Antenna port of EUT connected to spectrum analyzer using a coaxial cable and attenuator.				

Environmental Conditions				
Temperature (^o C)	20	Relative Humidity (%):	45	


	Test Data Summary - RF Conducted Measurement						
Measurement N	Measurement Method: AVGPSD-1						
Frequency (MHz)	Modulation	Measured (dBm/6.8kHz)	Limit (dBm/3kHz)	Results			
2142	ССК	-15.6	≤8	Pass			
2442	ССК	-15	≤8	Pass			
2462	ССК	-14.7	≤8	Pass			
2142	OFDM	-19.4	≤8	Pass			
2442	OFDM	-16.9	≤8	Pass			
2462	OFDM	-18.5	≤8	Pass			
2142	BPSK	-19.8	≤8	Pass			
2442	BPSK	-17	≤8	Pass			
2462	BPSK	-19.2	≤8	Pass			



Plots

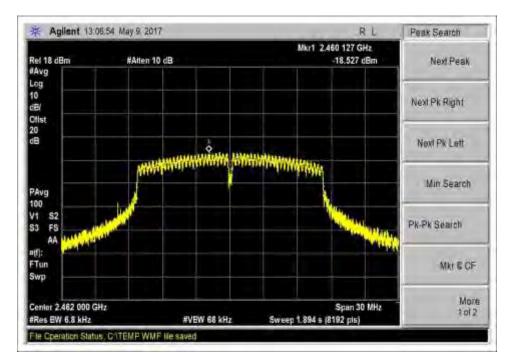


802.11b_Low Channel_2412MHz_PSD

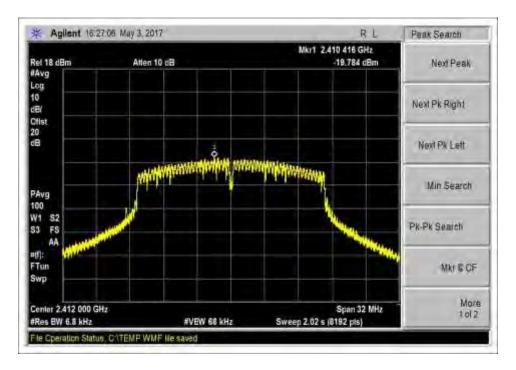




802.11b_High Channel_2462MHz_PSD

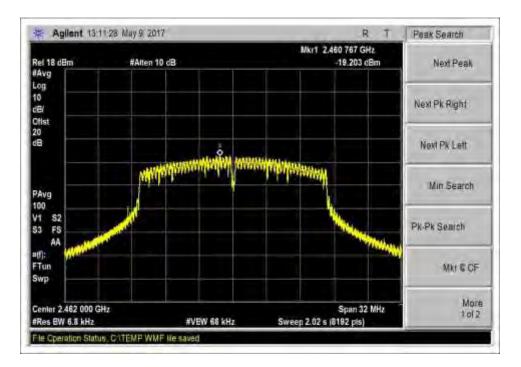


802.11g_Low Channel_2412MHz_PSD



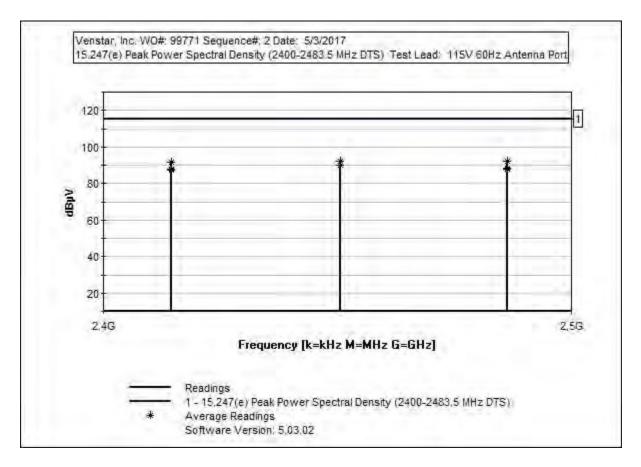
802.11g_Middle Channel_2442MHz_PSD

802.11g_High Channel_2462MHz_PSD



802.11n20_Low Channel_2412MHz_PSD

802.11n20_Middle Channel_2442MHz_PSD


802.11n20_High Channel_2462MHz_PSD

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 110 N. Venstar, Inc. 15.247(e) Peak Power Spectral 2 99771 Conducted Emissions S. Yamamoto EMITest 5.03.02	Density (2400-2483.5 Da	MHz DTS) ite: 5/3/2017 ne: 15:31:07		
Equipment Test					
Device	Manufacturer	Model #	S/N		
Configuration 1					
Support Equipn	nent:				
Device	Manufacturer	Model #	S/N		
Configuration 1					
Test Conditions	/ Notes:				
Frequency Rang	ge: 2412MHz to 2462MHz				
	: 2412MHz, 2442MHz, 2462MHz				
Firmware power					
	.3.0.0-31.2.0.0.0-2.2.0.4				
	Iodulation: CCK, OFDM, BPSK				
Antenna type: Cl					
Antenna Gain: 1.					
Duty Cycle: >98					
	DB 558074 D01 v04, AVGPSD-1.				
Test Mode: Cont		1	· 1 · 11 · 1 · /· · ·		
-	antenna port connected to spectrum	i analyzer input using c	coaxial cable and attenuator		
Modifications Ac		to the lenter correct.	n via a gamial ta LICD intenfaga harand		
Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT antenna port is connected to the spectrum analyzer input via coaxial cable and attenuator.					
	ted 802.11b, 802.11g, and 802.11n		nai caole and allenualor.		
Site D.	acu 802.110, 802.11g, anu 802.11h	20.			
Sile D.					

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP06544	Cable	32026-29094K- 29094K-36TC	11/2/2015	11/2/2017
Т3	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017

Meast	urement Data:	Re	eading list	ted by ma	argin.			Test Lea	ad: Antenna	Port	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2472.000M	72.3	+0.0	+0.7	+19.3		+0.0	92.3	115.0	-22.7	Anten
	Ave								802.11b		
2	2442.000M	72.0	+0.0	+0.7	+19.3		+0.0	92.0	115.0	-23.0	Anten
	Ave								802.11b		
3	2412.000M	71.4	+0.0	+0.7	+19.3		+0.0	91.4	115.0	-23.6	Anten
	Ave								802.11b		
4	2442.000M	70.1	+0.0	+0.7	+19.3		+0.0	90.1	115.0	-24.9	Anten
	Ave								802.11g		
5	2442.000M	70.0	+0.0	+0.7	+19.3		+0.0	90.0	115.0	-25.0	Anten
	Ave								802.11n20		
6	2472.000M	68.5	+0.0	+0.7	+19.3		+0.0	88.5	115.0	-26.5	Anten
	Ave								802.11g		
7	2472.000M	67.8	+0.0	+0.7	+19.3		+0.0	87.8	115.0	-27.2	Anten
	Ave								802.11n20		
8	2412.000M	67.6	+0.0	+0.7	+19.3		+0.0	87.6	115.0	-27.4	Anten
	Ave								802.11g		
9	2412.000M	67.2	+0.0	+0.7	+19.3		+0.0	87.2	115.0	-27.8	Anten
	Ave								802.11n20		

Test Setup Photo

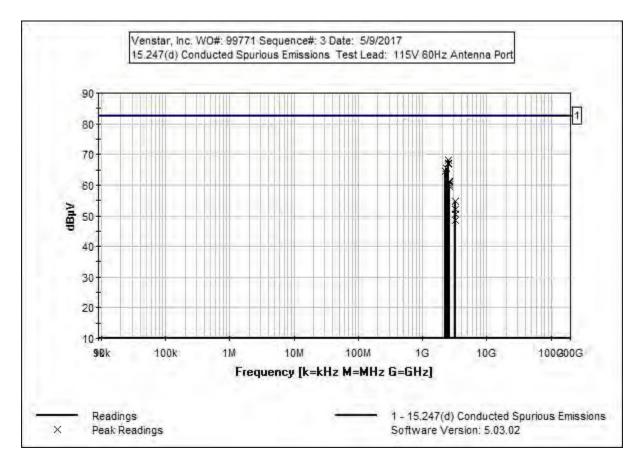
15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Pl • 1	Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	99771	Date:	5/9/2017
Test Type:	Conducted Emissions	Time:	14:07:05
Tested By:	S. Yamamoto	Sequence#:	3
Software:	EMITest 5.03.02	-	115V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			


Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: 9kHz to 25GHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: CCK Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 Test Mode: Continuous transmit Test Setup: EUT antenna port connected to spectrum analyzer input using coaxial cable and attenuator Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT antenna port is connected to the spectrum analyzer input via coaxial cable and attenuator. The EUT was tested 802.11b. Site D.

Test Equipment:

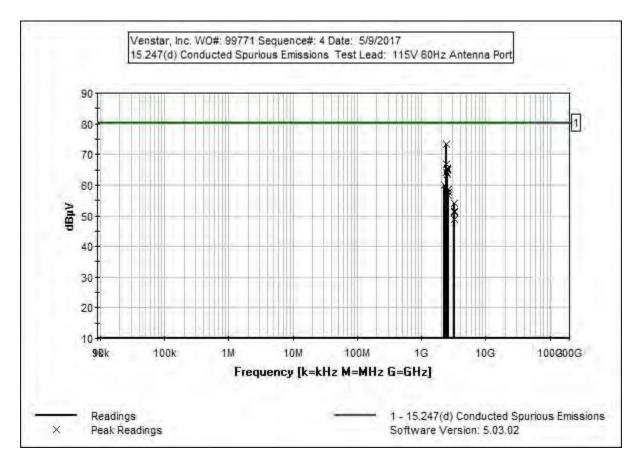
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T1	ANP06544	Cable	32026-29094K- 29094K-36TC	11/2/2015	11/2/2017
T2	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Antenna	ı Port	
#	Freq MHz	Rdng dBµV	T1 dB	T2 dB	dB	dB	Dist Table	Corr dBµV	Spec dBµV	Margin dB	Polar Ant
1	2543.500M	48.1	+0.7	+19.3			+0.0	68.1	82.5	-14.4	Anten
2	2562.700M	47.2	+0.7	+19.3			+0.0	67.2	82.5	-15.3	Anten
3	2517.900M	46.7	+0.7	+19.3			+0.0	66.7	82.5	-15.8	Anten
4	2391.300M	45.5	+0.7	+19.3			+0.0	65.5	82.5	-17.0	Anten
5	2305.200M	44.6	+0.6	+19.3			+0.0	64.5	82.5	-18.0	Anten
6	2624.000M	41.4	+0.7	+19.3			+0.0	61.4	82.5	-21.1	Anten
7	2600.600M	41.1	+0.7	+19.3			+0.0	61.1	82.5	-21.4	Anten
8	2632.400M	40.4	+0.7	+19.3			+0.0	60.4	82.5	-22.1	Anten
9	2573.000M	39.7	+0.7	+19.3			+0.0	59.7	82.5	-22.8	Anten
10	3216.000M	34.6	+0.8	+19.4			+0.0	54.8	82.5	-27.7	Anten
11	3256.000M	32.0	+0.8	+19.4			+0.0	52.2	82.5	-30.3	Anten
12	3282.667M	30.2	+0.8	+19.4			+0.0	50.4	82.5	-32.1	Anten
13	3296.000M	28.3	+0.8	+19.4			+0.0	48.5	82.5	-34.0	Anten

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Pl • B	rea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	99771	Date:	5/9/2017
Test Type:	Conducted Emissions	Time:	14:26:20
Tested By:	S. Yamamoto	Sequence#:	4
Software:	EMITest 5.03.02		115V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				


Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

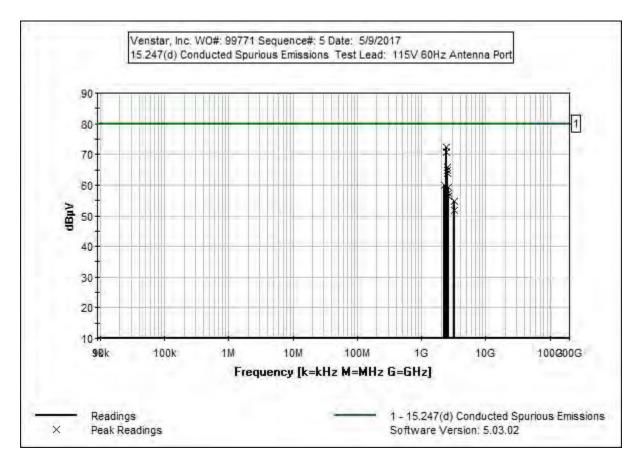
Frequency Range: 9kHz to 25GHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: OFDM Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 Test Mode: Continuous transmit Test Setup: EUT antenna port connected to spectrum analyzer input using coaxial cable and attenuator Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT antenna port is connected to the spectrum analyzer input via coaxial cable and attenuator. The EUT was tested 802.11g. Site D.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T1	ANP06544	Cable	32026-29094K- 29094K-36TC	11/2/2015	11/2/2017
T2	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Antenna	Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2399.721M	53.3	+0.7	+19.3			+0.0	73.3	80.2	-6.9	Anten
2	2395.541M	46.9	+0.7	+19.3			+0.0	66.9	80.2	-13.3	Anten
3	2554.525M	45.6	+0.7	+19.3			+0.0	65.6	80.2	-14.6	Anten
4	2529.100M	45.3	+0.7	+19.3			+0.0	65.3	80.2	-14.9	Anten
5	2543.170M	45.0	+0.7	+19.3			+0.0	65.0	80.2	-15.2	Anten
6	2396.000M	44.1	+0.7	+19.3			+0.0	64.1	80.2	-16.1	Anten
7	2502.290M	43.6	+0.7	+19.3			+0.0	63.6	80.2	-16.6	Anten
8	2307.500M	40.0	+0.6	+19.3			+0.0	59.9	80.2	-20.3	Anten
9	2635.835M	38.8	+0.7	+19.3			+0.0	58.8	80.2	-21.4	Anten
10	2620.670M	37.8	+0.7	+19.3			+0.0	57.8	80.2	-22.4	Anten
11	2602.300M	37.8	+0.7	+19.3			+0.0	57.8	80.2	-22.4	Anten
12	2573.000M	36.7	+0.7	+19.3			+0.0	56.7	80.2	-23.5	Anten
13	3216.000M	33.9	+0.8	+19.4			+0.0	54.1	80.2	-26.1	Anten
14	3282.687M	31.3	+0.8	+19.4			+0.0	51.5	80.2	-28.7	Anten
15	3256.025M	31.1	+0.8	+19.4			+0.0	51.3	80.2	-28.9	Anten
16	3296.000M	28.7	+0.8	+19.4			+0.0	48.9	80.2	-31.3	Anten

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Pl • B	rea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	99771	Date:	5/9/2017
Test Type:	Conducted Emissions	Time:	14:28:27
Tested By:	S. Yamamoto	Sequence#:	5
Software:	EMITest 5.03.02		115V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				


Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range: 9kHz to 25GHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: BPSK Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 Test Mode: Continuous transmit Test Setup: EUT antenna port connected to spectrum analyzer input using coaxial cable and attenuator Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT antenna port is connected to the spectrum analyzer input via coaxial cable and attenuator. The EUT was tested 802.11n20. Site D.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T1	ANP06544	Cable	32026-29094K- 29094K-36TC	11/2/2015	11/2/2017
T2	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	a Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2397.937M	52.5	+0.7	+19.3			+0.0	72.5	80.0	-7.5	Anten
2	2396.109M	50.6	+0.7	+19.3			+0.0	70.6	80.0	-9.4	Anten
3	2517.300M	45.7	+0.7	+19.3			+0.0	65.7	80.0	-14.3	Anten
4	2541.220M	45.0	+0.7	+19.3			+0.0	65.0	80.0	-15.0	Anten
5	2562.230M	44.0	+0.7	+19.3			+0.0	64.0	80.0	-16.0	Anten
6	2302.560M	40.0	+0.6	+19.3			+0.0	59.9	80.0	-20.1	Anten
7	2600.500M	39.2	+0.7	+19.3			+0.0	59.2	80.0	-20.8	Anten
8	2625.200M	37.3	+0.7	+19.3			+0.0	57.3	80.0	-22.7	Anten
9	2575.600M	36.5	+0.7	+19.3			+0.0	56.5	80.0	-23.5	Anten
10	2638.680M	36.5	+0.7	+19.3			+0.0	56.5	80.0	-23.5	Anten
11	3216.000M	34.4	+0.8	+19.4			+0.0	54.6	80.0	-25.4	Anten
12	3256.000M	31.7	+0.8	+19.4			+0.0	51.9	80.0	-28.1	Anten

Band Edge

	Band Edge Summary								
Limit applied:	Max Power/100kHz - 30dB (When	average power limit	is applied).						
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results					
2400.0	ССК	-43.4	< -24.5	Pass					
2483.5	ССК	-43.8	< -24.5	Pass					
2400.0	OFDM	-33.4	< -26.8	Pass					
2483.5	OFDM	-43.5	< -26.8	Pass					
2400.0	BPSK	-33.9	< -27	Pass					
2483.5	BPSK	-45.6	< -27	Pass					

Test Setup / Conditions / Data

Test Location: Customer: Specification:	CKC Laboratories, Inc. • 110 N. Venstar, Inc. 15.247(d) Conducted Spurious	Emissions		
Work Order #:	99771	Da		
Test Type:	Conducted Emissions	Tim		
Tested By:	S. Yamamoto	Sequence		
Software:	EMITest 5.03.02		115V 60Hz	
Equipment Test	ed:			
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipm	nent:			
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions	/ Notes:			
Frequency Rang	e: 2399MHz to 2484.5MHz			
Frequency tested:	2412MHz, 2462MHz			
Firmware power				
	.3.0.0-31.2.0.0.0-2.2.0.4			
Protocol /MCS/M	Iodulation: CCK			
Antenna type: Ch	ip			
Antenna Gain: 1.				
Duty Cycle: >98%				
	B 558074 D01 v04			
Test Mode: Conti				
	antenna port connected to spectrum	n analyzer input using c	oaxial cable and attenuator	r
Modifications Ad				
	ment under test (EUT) is connecte			ace board.
	port is connected to the spectrum	analyzer input via coax	ial cable and attenuator.	
The EUT was tes	ted 802.11b.			
Site D.				

ID	O Asset #	ŧ	Descri	ption		Model		Calibratio	n Date	Cal Due D	ate
T1	1 AN028	69	Spectr	um Anal	yzer	E4440A		7/8/2016		7/8/2017	
T2	2 ANP06	544	Cable			32026-290)94К-	11/2/2015	5	11/2/2017	7
						29094K-36	5TC				
ТЗ	3 AN034	31	Attenu	uator		89-20-21		11/2/2015	5	11/2/2017	7
Measu #	urement Data: Freq MHz	Rdng dBuV	eading lis T1 dB	ted by ma T2 dB	argin. T3 dB	dB	Dist Table	Test Lead Corr dBuV	l: Antenna Spec dBµV	a Port Margin dB	Polar Ant
1	2483.500M	43.2	+0.0	+0.7	+19.3		+0.0	63.2	82.5	-19.3	Anten
2	2400.000M	43.6	+0.0	+0.7	+19.3	3	+0.0	63.6	82.5	-18.9	Anten

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Pl • H	Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	99771	Date:	5/3/2017
Test Type:	Conducted Emissions	Time:	17:47:21
Tested By:	S. Yamamoto	Sequence#:	4
Software:	EMITest 5.03.02		115V 60Hz

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range: 2399MHz to 2484.5MHz Frequency tested: 2412MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: OFDM Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 Test Mode: Continuous transmit Test Setup: EUT antenna port connected to spectrum analyzer input using coaxial cable and attenuator Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT antenna port is connected to the spectrum analyzer input via coaxial cable and attenuator. The EUT was tested 802.11g. Site D.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
			29094K-36TC		
T3	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017

Meas	urement Data:	Re	eading lis	ted by ma	argin.	. Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2400.000M	53.6	+0.0	+0.7	+19.3		+0.0	73.6	80.2	-6.6	Anten
2	2 2483.500M	43.5	+0.0	+0.7	+19.3		+0.0	63.5	80.2	-16.7	Anten

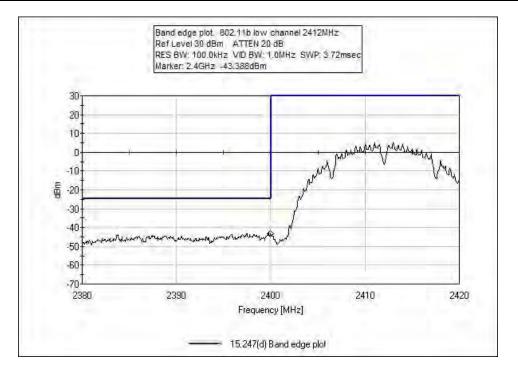
Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Pl • H	Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	99771	Date:	5/3/2017
Test Type:	Conducted Emissions	Time:	17:55:47
Tested By:	S. Yamamoto	Sequence#:	5
Software:	EMITest 5.03.02		115V 60Hz

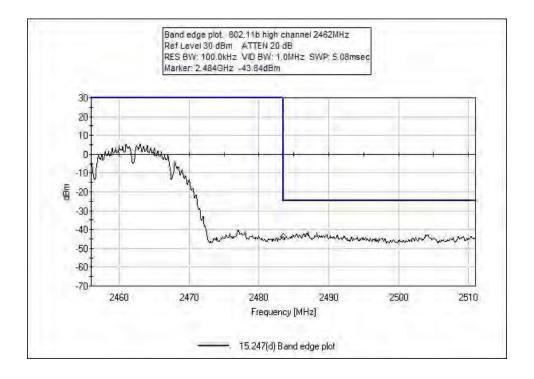
Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

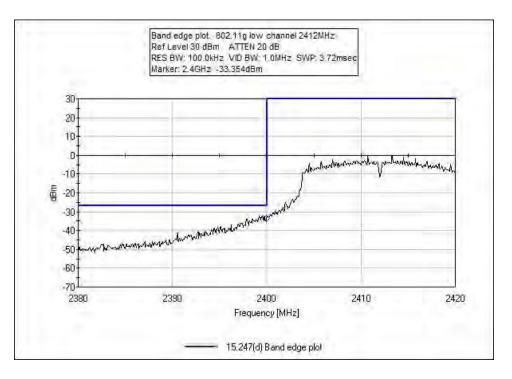
Device	Manufacturer	Model #	S/N
Configuration 1			

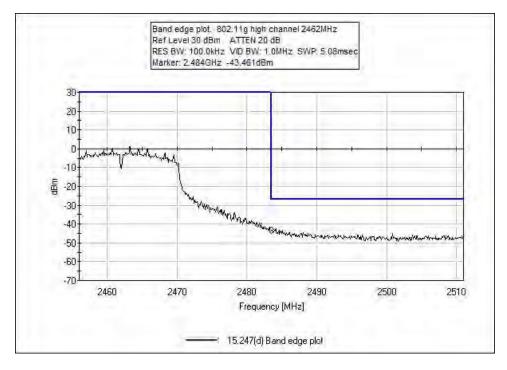
Test Conditions / Notes:

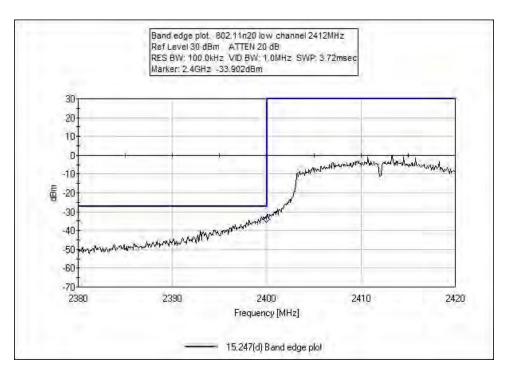

Frequency Range: 2399MHz to 2484.5MHz Frequency tested: 2412MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: BPSK Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 Test Mode: Continuous transmit Test Setup: EUT antenna port connected to spectrum analyzer input using coaxial cable and attenuator Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT antenna port is connected to the spectrum analyzer input via coaxial cable and attenuator. The EUT was tested 802.11n20. Site D.

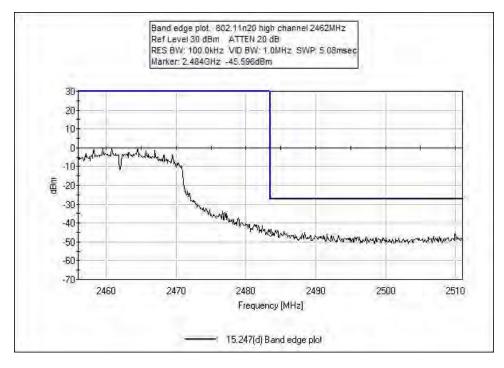

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
			29094K-36TC		
Т3	AN03431	Attenuator	89-20-21	11/2/2015	11/2/2017

Meas	urement Data:	R	eading lis	ted by ma	argin.	. Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2400.000M	53.1	+0.0	+0.7	+19.3		+0.0	73.1	80.0	-6.9	Anten
2	2 2483.500M	41.4	+0.0	+0.7	+19.3		+0.0	61.4	80.0	-18.6	Anten




Band Edge Plots





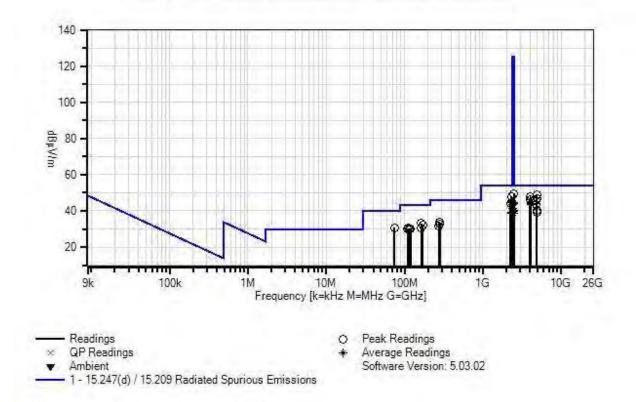
Test Setup Photo

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By:	CKC Laboratories, Inc. • 110 N Venstar, Inc. 15.247(d) / 15.209 Radiated Sp 99771 Maximized Emissions S. Yamamoto	purious Emissions Da	nte: 5/10/2017 ne: 20:24:31						
Software:	EMITest 5.03.02	Sequence	μ. 0						
Equipment Test	ed:								
Device	Manufacturer	Model #	S/N						
Configuration 1									
Support Equipn	ient:								
Device	Manufacturer	Model #	S/N						
Configuration 1									
Test Conditions	/ Notes:								
Frequency Rang	ge: 9kHz to 25GHz								
Frequency tested	: 2412MHz, 2442MHz, 2462MHz	,							
Firmware power	setting: 0								
EUT firmware: 3	.3.0.0-31.2.0.0.0-2.2.0.4								
Protocol /MCS/N	Iodulation: CCK								
• 1	Antenna type: Chip								
	Antenna Gain: 1.9dBi.								
Duty Cycle: >989									
	Test Method: KDB 558074 D01 v04 2017, ANSI C63.10 2013								
Test Mode: Cont	inuous transmit								

Test Mode: Continuous transmit


Test Setup: EUT with integral antenna.

Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT was tested 802.11b.

Site D. Temperature: 20°C Relative Humidity: 45%

Venstar, Inc. WO#: 99771 Sequence#: 6 Date: 5/10/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

T1 AN02869 Spectrum Analyzer E4440A 7/8/2016 7/8/2017 T2 ANP04382 Cable LDF-50 6/6/2016 6/6/2018 T3 ANP07139 Cable ANDL1- 3/1/2017 3/1/2019 PNMNM-48 74 AN01646 Horn Antenna 3115 3/4/2016 3/4/2018 T5 AN00787 Preamp 83017A 6/10/2015 6/10/2017 T6 ANP06544 Cable 32026-29094K- 11/2/2015 11/2/2017 29094K-36TC 29094K-36TC 7 6/15/2015 6/15/2017 3000/T10000- 7 AN03385 High Pass Filter 11SH10- 6/15/2015 7/17/2017 AN03367 Horn Antenna- 62-GH-62-25. 7/17/2015 7/17/2017 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 AN03430 Attenuator 75A-10-12 11/2/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 5/5/2018	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T3 ANP07139 Cable ANDL1- PNMNM-48 3/1/2017 3/1/2019 T4 AN01646 Horn Antenna 3115 3/4/2016 3/4/2018 T5 AN00787 Preamp 83017A 6/10/2015 6/10/2017 T6 ANP06544 Cable 32026-29094K- 29094K-36TC 11/2/2015 11/2/2017 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/0 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 5/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447	T1	AN02869	-	E4440A	7/8/2016	7/8/2017
PNMNM-48 T4 AN01646 Horn Antenna 3115 3/4/2016 3/4/2018 T5 AN00787 Preamp 83017A 6/10/2015 6/10/2017 T6 ANP06544 Cable 32026-29094K- 29094K-36TC 11/2/2015 11/2/2017 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/0 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05575 Cable RG223/U 4/5/2016 5/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018	T2	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
T4 AN01646 Horn Antenna 3115 3/4/2016 3/4/2018 T5 AN00787 Preamp 83017A 6/10/2015 6/10/2017 T6 ANP06544 Cable 32026-29094K- 29094K-36TC 11/2/2015 11/2/2017 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/0 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN0010 Preamp 8447D 3/14/2016 3/14/2018	Т3	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
T5 AN00787 Preamp 83017A 6/10/2015 6/10/2017 T6 ANP06544 Cable 32026-29094K- 29094K-36TC 11/2/2015 11/2/2017 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/0 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG223/U 4/5/2016 4/5/2018 T10 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/10/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018				PNMNM-48		
T6 ANP06544 Cable 32026-29094K- 29094K-36TC 11/2/2015 11/2/2017 T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/O 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG223/U 4/5/2016 4/5/2018 T10 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	T4	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018
29094K-36TC T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/0 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	T5	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T7 AN03385 High Pass Filter 11SH10- 3000/T10000- 0/0 6/15/2015 6/15/2017 AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/10/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	T6	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
3000/T10000- O/O AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 AN01413 Horn Antenna 84125-80008 10/7/2016 10/7/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018				29094K-36TC		
O/O AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 AN01413 Horn Antenna 84125-80008 10/7/2016 10/7/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	T7	AN03385	High Pass Filter	11SH10-	6/15/2015	6/15/2017
AN03367 Horn Antenna- ANSI C63.5 Calibration 62-GH-62-25. 7/17/2015 7/17/2017 AN01413 Horn Antenna 84125-80008 10/7/2016 10/7/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018				3000/T10000-		
ANSI C63.5 Calibration AN01413 Horn Antenna 84125-80008 10/7/2016 T8 AN03430 Attenuator 75A-10-12 T9 ANP05569 Cable-Amplitude RG-214/U +15C to +45C (dB) T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 3/14/2018				0/0		
Calibration AN01413 Horn Antenna 84125-80008 10/7/2016 10/7/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018		AN03367	Horn Antenna-	62-GH-62-25.	7/17/2015	7/17/2017
AN01413 Horn Antenna 84125-80008 10/7/2016 10/7/2018 T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018			ANSI C63.5			
T8 AN03430 Attenuator 75A-10-12 11/2/2015 11/2/2017 T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018			Calibration			
T9 ANP05569 Cable-Amplitude +15C to +45C (dB) RG-214/U 12/7/2016 12/7/2018 T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018		AN01413	Horn Antenna	84125-80008	10/7/2016	10/7/2018
+15C to +45C (dB) T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	Т8	AN03430	Attenuator	75A-10-12	11/2/2015	11/2/2017
T10 ANP05555 Cable RG223/U 4/5/2016 4/5/2018 T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	Т9	ANP05569	Cable-Amplitude	RG-214/U	12/7/2016	12/7/2018
T11 ANP05275 Attenuator 1W 5/5/2016 5/5/2018 T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018			+15C to +45C (dB)			
T12 AN01995 Biconilog Antenna CBL6111C 5/10/2016 5/10/2018 T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	T10	ANP05555	Cable	RG223/U	4/5/2016	4/5/2018
T13 AN00010 Preamp 8447D 3/14/2016 3/14/2018	T11	ANP05275	Attenuator	1W	5/5/2016	5/5/2018
	T12	AN01995	Biconilog Antenna	CBL6111C	5/10/2016	5/10/2018
AN00314 Loop Antenna 6502 5/20/2016 5/20/2018	T13	AN00010	Preamp	8447D	3/14/2016	3/14/2018
		AN00314	Loop Antenna	6502	5/20/2016	5/20/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	2497.470M	44.2	+0.0	+6.1	+3.1	+25.2	+0.0	49.7	54.0	-4.3	Horiz
			-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	4924.117M	44.6	+0.0	+9.0	+4.3	+30.0	+0.0	48.9	54.0	-5.1	Horiz
			-40.1	+1.0	+0.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	2315.930M	43.4	+0.0	+5.8	+2.8	+24.8	+0.0	47.9	54.0	-6.1	Horiz
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	4070.970M	46.1	+0.0	+8.0	+3.9	+28.8	+0.0	47.6	54.0	-6.4	Horiz
			-40.4	+0.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

5 4923.975M	42.4	+0.0	+9.0	+4.3	+30.0	+0.0	46.7	54.0	-7.3	Vert
		-40.1	+1.0	+0.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
6 4020.780M	45.0	+0.0	+8.0	+3.9	+28.7	+0.0	46.4	54.0	-7.6	Vert
		-40.4	+0.9	+0.3	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
7 4069.200M	44.8	+0.0	+8.0	+3.9	+28.8	+0.0	46.3	54.0	-7.7	Vert
		-40.4	+0.9	+0.3	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
8 4020.633M	44.8	+0.0	+8.0	+3.9	+28.7	+0.0	46.2	54.0	-7.8	Horiz
Ave		-40.4	+0.9	+0.3	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4020.630M	48.9	+0.0	+8.0	+3.9	+28.7	+0.0	50.3	54.0	-3.7	Horiz
		-40.4	+0.9	+0.3	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
10 4823.968M	42.0	+0.0	+8.8	+4.2	+30.0	+0.0	45.7	54.0	-8.3	Vert
		-40.4	+1.0	+0.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
11 2363.600M	40.5	+0.0	+5.9	+2.9	+24.9	+0.0	45.3	54.0	-8.7	Vert
Ave		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0		• •					• •	
^ 2363.600M	52.1	+0.0	+5.9	+2.9	+24.9	+0.0	56.9	54.0	+2.9	Vert
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
	•••	+0.0		• •						
13 2380.200M	39.8	+0.0	+6.0	+2.9	+24.9	+0.0	44.8	54.0	-9.2	Vert
Ave		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0		10.0				F A O		X 7
^ 2380.200M	51.1	+0.0	+6.0	+2.9	+24.9	+0.0	56.1	54.0	+2.1	Vert
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
16 74 6403 6	40.0	+0.0					20 7	10.0	0.0	V 7 ·
15 74.540M	43.2	+0.0	+0.8	+0.0	+0.0	+0.0	30.7	40.0	-9.3	Vert
		+0.0	+0.0	+0.0	+0.0					
		+0.8	+0.1	+6.0	+7.0					
16 0000 0670 5	40.0	-27.2	15.0	10.0	1010		44.5	54.0	0.4	X 7 ·
16 2330.267M	40.0	+0.0	+5.9	+2.8	+24.8	+0.0	44.6	54.0	-9.4	Vert
Ave		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
	10.1	+0.0				. 0. 0	50 0			
^ 2330.267M	48.4	+0.0	+5.9	+2.8	+24.8	+0.0	53.0	54.0	-1.0	Vert
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

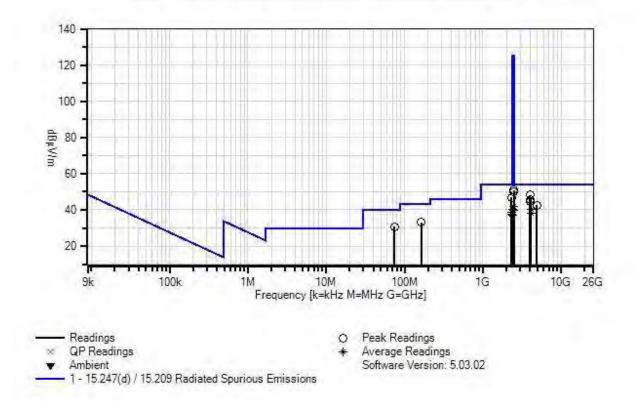
18 2493.658M	38.9	+0.0	+6.1	+3.1	+25.2	+0.0	44.4	54.0	-9.6	Vert
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2493.658M	49.6	+0.0	+6.1	+3.1	+25.2	+0.0	55.1	54.0	+1.1	Vert
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2493.634M	40.9	+0.0	+6.1	+3.1	+25.2	+0.0	46.4	54.0	-7.6	Vert
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
21 2483.500M	38.8	+0.0	+6.1	+3.1	+25.2	+0.0	44.3	54.0	-9.7	Vert
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	. = ~				4.4.5		0.5	
22 2248.450M	40.0	+0.0	+5.8	+2.7	+24.6	+0.0	44.2	54.0	-9.8	Vert
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
00 4104 0000 5	40.4	+0.0		10.0			12.0	5 4 0	10.1	
23 4104.333M	42.4	+0.0	+8.0	+3.9	+28.9	+0.0	43.9	54.0	-10.1	Horiz
Ave		-40.4	+0.9	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
	40.4	+0.0		• •	• • • •			- 4 0		
^ 4104.333M	49.4	+0.0	+8.0	+3.9	+28.9	+0.0	50.9	54.0	-3.1	Horiz
		-40.4	+0.9	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
25 162 (24) (41.0	+0.0	+1.0				22.2	42.5	10.2	N 7 4
25 163.624M	41.0	+0.0	+1.3	+0.0	+0.0	+0.0	33.2	43.5	-10.3	Vert
		+0.0	+0.0	+0.0	+0.0					
		+1.3	+0.2	+6.0	+10.3					
26 4101 06704	12.0	-26.9		12.0	100.0		42.5	54.0	10.5	X 7 (
26 4101.867M	42.0	+0.0	+8.0	+3.9	+28.9	+0.0	43.5	54.0	-10.5	Vert
Ave		-40.4	+0.9	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
^ 4101 867M	10 5	+0.0	10.0	12.0	1200		51.0	540	2.0	V. A
^ 4101.867M	49.5	+0.0	+8.0	+3.9	+28.9	+0.0	51.0	54.0	-3.0	Vert
		-40.4	$^{+0.9}_{+0.0}$	+0.2	+0.0					
		$^{+0.0}_{+0.0}$	± 0.0	+0.0	+0.0					
70 7207 06714	20 5		± <i>6</i> 0	±2.0	±24.0		43.5	54.0	10.5	Vont
28 2383.867M	38.5	+0.0	+6.0	+2.9	+24.9	+0.0	43.3	54.0	-10.5	Vert
Ave		-39.6 +0.0	$^{+0.7}_{+0.0}$	$^{+0.0}_{+0.0}$	$^{+10.1}_{+0.0}$					
		$^{+0.0}_{+0.0}$	± 0.0	± 0.0	+0.0					
^ 2383.867M	51.4	+0.0 +0.0	+6.0	+2.9	+24.9	+0.0	56.4	54.0	+2.4	Vert
2363.60/M	51.4	+0.0 -39.6	+0.0 +0.7		+24.9 +10.1	+0.0	50.4	54.0	⊤∠.4	vert
		-39.0 +0.0	+0.7 +0.0	$^{+0.0}_{+0.0}$	+10.1 +0.0					
		$^{+0.0}_{+0.0}$	+0.0	± 0.0	± 0.0					
20 4822 07114	20.6		+8.8	+4.2	±20.0		12 2	54.0	10.7	Uaria
30 4823.971M	39.6	+0.0 -40.4	$^{+8.8}_{+1.0}$	$^{+4.2}_{+0.1}$	+30.0	+0.0	43.3	54.0	-10.7	Horiz
		+0.0	$^{+1.0}_{+0.0}$	$^{+0.1}_{+0.0}$	$^{+0.0}_{+0.0}$					
		$^{+0.0}_{+0.0}$	F0.0	FU.U	+0.0					
		±0.0								

							0.5				I
31	170.923M	40.5	+0.0	+1.4	+0.0	+0.0	+0.0	32.3	43.5	-11.2	Vert
			+0.0	+0.0	+0.0	+0.0					
			+1.3	+0.2	+6.0	+9.8					
32	280 050M	28.0	-26.9	+1.7		+0.0		33.9	16.0	-12.1	Hamin
32	280.050M	38.0	$^{+0.0}_{+0.0}$	+1.7 +0.0	$^{+0.0}_{+0.0}$	+0.0 $+0.0$	+0.0	55.9	46.0	-12.1	Horiz
			$^{+0.0}_{+1.7}$	+0.0 +0.2	+0.0 $+6.0$	+0.0 +12.9					
			-26.6	+0.2	± 0.0	+12.9					
22	2381.200M	36.6	+0.0	+6.0	+2.9	+24.9	+0.0	41.6	54.0	-12.4	Horiz
33	Ave	50.0	+0.0 -39.6	+0.0 +0.7	+2.9 $+0.0$	+24.9 +10.1	± 0.0	41.0	54.0	-12.4	HOLIZ
	Ave		+0.0	+0.7 +0.0	+0.0 $+0.0$	+10.1 +0.0					
			+0.0	+0.0	10.0	10.0					
^	2381.200M	47.4	+0.0	+6.0	+2.9	+24.9	+0.0	52.4	54.0	-1.6	Horiz
	2301.200101	т/.т	-39.6	+0.0	+0.0	+10.1	10.0	52.4	54.0	-1.0	TIOTIZ
			+0.0	+0.0	+0.0	+0.0					
			+0.0	10.0	10.0	0.0					
35	163.629M	38.3	+0.0	+1.3	+0.0	+0.0	+0.0	30.5	43.5	-13.0	Horiz
55	105.027111	50.5	+0.0	+0.0	+0.0	+0.0	. 0.0	50.5	10.0	15.0	110112
			+1.3	+0.2	+6.0	+10.3					
			-26.9	. 0.2	0.0	10.5					
36	283.575M	36.9	+0.0	+1.7	+0.0	+0.0	+0.0	32.9	46.0	-13.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+1.7	+0.2	+6.0	+13.0					
			-26.6								
37	112.760M	38.1	+0.0	+1.1	+0.0	+0.0	+0.0	30.4	43.5	-13.1	Vert
			+0.0	+0.0	+0.0	+0.0					
			+1.0	+0.1	+6.0	+11.1					
			-27.0								
38	116.400M	37.5	+0.0	+1.1	+0.0	+0.0	+0.0	30.2	43.5	-13.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+1.1	+0.1	+6.0	+11.4					
			-27.0								
39	120.017M	37.2	+0.0	+1.1	+0.0	+0.0	+0.0	30.1	43.5	-13.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+1.1	+0.1	+6.0	+11.6					
			-27.0								
40	109.097M	38.2	+0.0	+1.0	+0.0	+0.0	+0.0	30.1	43.5	-13.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+1.0	+0.1	+6.0	+10.9					
	4000 0000 5		-27.1	10.0				40.0	<i></i>	11.0	
41	4883.980M	35.9	+0.0	+8.9	+4.3	+30.0	+0.0	40.0	54.0	-14.0	Horiz
			-40.2	+1.0	+0.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
40	2499 5223 5	245	+0.0	1 (1	10.1	125.2		40.0	540	14.0	II ·
	2488.533M	34.5	+0.0	+6.1	+3.1	+25.2	+0.0	40.0	54.0	-14.0	Horiz
	Ave		-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
^	2400 52224	17 5	+0.0	161	1 2 1	125.2		52.0	540	1.0	II! -
~	2488.533M	47.5	+0.0	+6.1	+3.1	+25.2	+0.0	53.0	54.0	-1.0	Horiz
			-39.7 +0.0	$^{+0.7}_{+0.0}$	+0.0 +0.0	+10.1 +0.0					
				⊤0.0	+0.0	+0.0					
			+0.0								

44 2483.500M	34.5	+0.0	+6.1	+3.1	+25.2	+0.0	40.0	54.0	-14.0	Vert
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2483.500M	47.6	+0.0	+6.1	+3.1	+25.2	+0.0	53.1	54.0	-0.9	Vert
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2483.500M	44.0	+0.0	+6.1	+3.1	+25.2	+0.0	49.5	54.0	-4.5	Vert
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
47 272.700M	36.1	+0.0	+1.7	+0.0	+0.0	+0.0	31.9	46.0	-14.1	Vert
		+0.0	+0.0	+0.0	+0.0					
		+1.7	+0.2	+6.0	+12.8					
		-26.6								
48 2490.678M	34.3	+0.0	+6.1	+3.1	+25.2	+0.0	39.8	54.0	-14.2	Vert
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2490.678M	48.0	+0.0	+6.1	+3.1	+25.2	+0.0	53.5	54.0	-0.5	Vert
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
50 2363.600M	34.4	+0.0	+5.9	+2.9	+24.9	+0.0	39.2	54.0	-14.8	Horiz
Ave		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2363.600M	45.8	+0.0	+5.9	+2.9	+24.9	+0.0	50.6	54.0	-3.4	Horiz
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
52 4883.971M	35.0	+0.0	+8.9	+4.3	+30.0	+0.0	39.1	54.0	-14.9	Vert
		-40.2	+1.0	+0.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

52 2220 750M	24.5		15.0	120	124.9		20.1	54.0	14.0	Horiz
53 2330.750M	34.5	+0.0	+5.9	+2.8	+24.8	+0.0	39.1	54.0	-14.9	Horiz
Ave		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2330.750M	45.1	+0.0	+5.9	+2.8	+24.8	+0.0	49.7	54.0	-4.3	Horiz
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
55 2321.619M	34.3	+0.0	+5.8	+2.8	+24.8	+0.0	38.8	54.0	-15.2	Vert
Ave		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2321.620M	47.4	+0.0	+5.8	+2.8	+24.8	+0.0	51.9	54.0	-2.1	Vert
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
57 2483.500M	32.9	+0.0	+6.1	+3.1	+25.2	+0.0	38.4	54.0	-15.6	Horiz
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2483.500M	43.5	+0.0	+6.1	+3.1	+25.2	+0.0	49.0	54.0	-5.0	Horiz
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0			0.0					
		. 0.0								

Test Location:	CKC Laboratories, Inc. • 110 N. Olin	nda Pl • Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurio	ous Emissions	
Work Order #:	99771	Date:	5/13/2017
Test Type:	Maximized Emissions	Time:	16:06:11
Tested By:	S. Yamamoto	Sequence#:	7
Software:	EMITest 5.03.02		


Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: 9kHz to 25GHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: OFDM Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 2017, ANSI C63.10 2013 Test Mode: Continuous transmit Test Setup: EUT with integral antenna. Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT was tested 802.11g. Site D.

Venstar, Inc. WO#: 99771 Sequence#: 7 Date: 5/13/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
Т3	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
			PNMNM-48		
T4	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018
T5	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T6	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
			29094K-36TC		
T7	AN03385	High Pass Filter	11SH10-	6/15/2015	6/15/2017
			3000/T10000-		
			0/0		
	AN03367	Horn Antenna-	62-GH-62-25.	7/17/2015	7/17/2017
		ANSI C63.5			
		Calibration			
	AN01413	Horn Antenna	84125-80008	10/7/2016	10/7/2018
Т8	AN03430	Attenuator	75A-10-12	11/2/2015	11/2/2017
Т9	ANP05569	Cable-Amplitude	RG-214/U	12/7/2016	12/7/2018
		+15C to +45C (dB)			
T10	ANP05555	Cable	RG223/U	4/5/2016	4/5/2018
T11	ANP05275	Attenuator	1W	5/5/2016	5/5/2018
T12	AN01995	Biconilog Antenna	CBL6111C	5/10/2016	5/10/2018
T13	AN00010	Preamp	8447D	3/14/2016	3/14/2018
	AN00314	Loop Antenna	6502	5/20/2016	5/20/2018

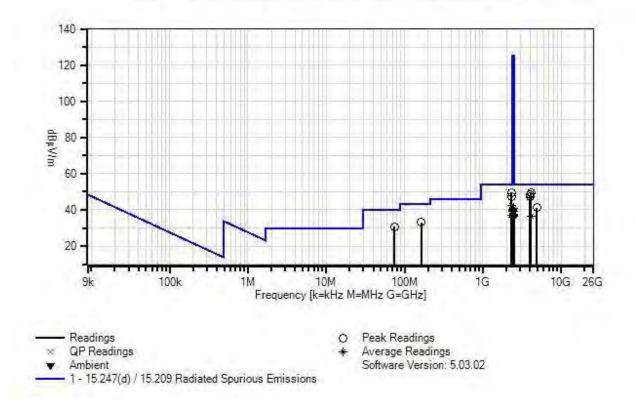
Measu	rement Data:	R	Reading listed by margin.				Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2497.718M	45.3	+0.0	+6.1	+3.1	+25.2	+0.0	50.8	54.0	-3.2	Horiz
			-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	2494.995M	44.4	+0.0	+6.1	+3.1	+25.2	+0.0	49.9	54.0	-4.1	Horiz
			-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	4022.360M	46.8	+0.0	+8.0	+3.9	+28.7	+0.0	48.2	54.0	-5.8	Horiz
			-40.4	+0.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	2323.090M	42.5	+0.0	+5.8	+2.8	+24.8	+0.0	47.0	54.0	-7.0	Horiz
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

-	40(0.000) (11.0			12.0	100.0		15.7	54.0	0.0	TT '
5	4069.230M	44.2	+0.0	+8.0	+3.9	+28.8	+0.0	45.7	54.0	-8.3	Horiz
			-40.4	+0.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	4021.000M	44.1	+0.0	+8.0	+3.9	+28.7	+0.0	45.5	54.0	-8.5	Vert
			-40.4	+0.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	74.540M	43.2	+0.0	+0.8	+0.0	+0.0	+0.0	30.7	40.0	-9.3	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.8	+0.1	+6.0	+7.0					
			-27.2								
8	4070.920M	42.8	+0.0	+8.0	+3.9	+28.8	+0.0	44.3	54.0	-9.7	Vert
			-40.4	+0.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
9	163.624M	41.0	+0.0	+1.3	+0.0	+0.0	+0.0	33.2	43.5	-10.3	Vert
Í	100.02 101		+0.0	+0.0	+0.0	+0.0	0.0			10.0	
			+1.3	+0.2	+6.0	+10.3					
			-26.9	10.2	10.0	10.5					
10	4924.300M	38.4	+0.0	+9.0	+4.3	+30.0	+0.0	42.7	54.0	-11.3	Vert
10	4924.300M	J0.4	-40.1	+1.0	+0.1	+0.0	10.0	72.7	54.0	-11.5	ven
			+0.0	+1.0 +0.0	+0.1 +0.0	+0.0 +0.0					
				± 0.0	± 0.0	± 0.0					
11	4024 2021 (27.0	+0.0		1.1.2	120.0		40.0	54.0	11.0	TT '
11	4924.283M	37.9	+0.0	+9.0	+4.3	+30.0	+0.0	42.2	54.0	-11.8	Horiz
			-40.1	+1.0	+0.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
	2498.158M	36.3	+0.0	+6.1	+3.1	+25.2	+0.0	41.8	54.0	-12.2	Vert
	Ave		-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	2498.158M	50.8	+0.0	+6.1	+3.1	+25.2	+0.0	56.3	54.0	+2.3	Vert
			-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	2498.158M	38.9	+0.0	+6.1	+3.1	+25.2	+0.0	44.4	54.0	-9.6	Vert
			-39.7	+0.7	+0.0	+10.1			-		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
15	2389.804M	35.3	+0.0	+6.0	+2.9	+25.0	+0.0	40.4	54.0	-13.6	Vert
	Ave	55.5	-39.6	+0.0	+0.0	+10.1	. 0.0	10.1	5 1.0	13.0	, 011
	1110		+0.0	+0.7	+0.0	+0.0					
			+0.0	0.0	0.0	0.0					
^	2389.804M	54.0		±6 0	120	±25.0		60.0	54.0	14 N	Vort
	2307.004W	54.9	+0.0	+6.0	+2.9	+25.0	+0.0	60.0	54.0	+6.0	Vert
			-39.6	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

	410445	20.0						40.2		1.2 -	
	4104.167M	38.8	+0.0	+8.0	+3.9	+28.9	+0.0	40.3	54.0	-13.7	Horiz
	Ave		-40.4	+0.9	+0.2	+0.0					
			+0.0	+0.0	+0.0	+0.0					
^	4104.167M	49.5	+0.0 +0.0	+8.0	+3.9	+28.9		51.0	54.0	-3.0	Hamir
,,,	4104.107W	49.5	+0.0 -40.4	+8.0 +0.9	+3.9 $+0.2$	+28.9 $+0.0$	+0.0	51.0	54.0	-3.0	Horiz
			+0.0	+0.9 +0.0	+0.2 $+0.0$	+0.0 +0.0					
			+0.0	+0.0	10.0	10.0					
10	2377.200M	35.0	+0.0	+6.0	+2.9	+24.9	+0.0	40.0	54.0	-14.0	Vert
	Ave	55.0	-39.6	+0.0 +0.7	+0.0	+24.9 +10.1	10.0	40.0	54.0	-14.0	ven
	Ave		+0.0	+0.7 +0.0	+0.0	+10.1 +0.0					
			+0.0	10.0	10.0	10.0					
^	2377.200M	50.1	+0.0	+6.0	+2.9	+24.9	+0.0	55.1	54.0	+1.1	Vert
	2377.200101	50.1	-39.6	+0.0	+0.0	+10.1	10.0	55.1	54.0	1.1	ven
			+0.0	+0.0	+0.0	+0.0					
			+0.0	10.0	10.0	0.0					
21	2498.900M	34.5	+0.0	+6.1	+3.1	+25.2	+0.0	40.0	54.0	-14.0	Vert
	Ave	5 1.5	-39.7	+0.1	+0.0	+10.1	. 0.0	10.0	5 1.0	17.0	, 011
	1100		+0.0	+0.0	+0.0	+0.0					
			+0.0	. 0.0	0.0	. 0.0					
^	2498.900M	47.6	+0.0	+6.1	+3.1	+25.2	+0.0	53.1	54.0	-0.9	Vert
	2190090000	17.0	-39.7	+0.7	+0.0	+10.1	0.0	00.1	5 110	0.9	, eit
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	2498.900M	31.6	+0.0	+6.1	+3.1	+25.2	+0.0	37.1	54.0	-16.9	Vert
		0110	-39.7	+0.7	+0.0	+10.1	0.0	0,11	0.110	1000	
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
24	2313.584M	34.3	+0.0	+5.8	+2.8	+24.8	+0.0	38.8	54.0	-15.2	Vert
	Ave		-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	2313.580M	46.6	+0.0	+5.8	+2.8	+24.8	+0.0	51.1	54.0	-2.9	Vert
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
26	4104.570M	36.8	+0.0	+8.0	+3.9	+28.9	+0.0	38.3	54.0	-15.7	Vert
	Ave		-40.4	+0.9	+0.2	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	4104.570M	48.6	+0.0	+8.0	+3.9	+28.9	+0.0	50.1	54.0	-3.9	Vert
			-40.4	+0.9	+0.2	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
28	2337.937M	32.9	+0.0	+5.9	+2.8	+24.8	+0.0	37.5	54.0	-16.5	Vert
	Ave		-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	2337.940M	46.3	+0.0	+5.9	+2.8	+24.8	+0.0	50.9	54.0	-3.1	Vert
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

50 022N 4	22.5		15.0	12.0	124.0		27.2	54.0	167	TT ·
	32.5			-		+0.0	37.3	54.0	-16./	Horiz
e		-39.6		+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
58.930M	46.2	+0.0	+5.9	+2.9	+24.9	+0.0	51.0	54.0	-3.0	Horiz
		-39.6	+0.6	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
89.902M	32.1	+0.0	+6.0	+2.9	+25.0	+0.0	37.2	54.0	-16.8	Horiz
e		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
89.902M	52.2	+0.0	+6.0	+2.9	+25.0	+0.0	57.3	54.0	+3.3	Horiz
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
84.800M	32.0	+0.0	+6.0	+2.9	+24.9	+0.0	37.0	54.0	-17.0	Horiz
e		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
84.800M	46.5	+0.0	+6.0	+2.9	+24.9	+0.0	51.5	54.0	-2.5	Horiz
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0						
		+0.0								
	58.930M 89.902M 89.902M 84.800M	58.930M 46.2 89.902M 32.1 89.902M 52.2 84.800M 32.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

Test Location:	CKC Laboratories, Inc. • 110 N. Olir	nda Pl • Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurio	us Emissions	
Work Order #:	99771	Date:	5/13/2017
Test Type:	Maximized Emissions	Time:	16:14:30
Tested By:	S. Yamamoto	Sequence#:	8
Software:	EMITest 5.03.02		


Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Frequency Range: 9kHz to 25GHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: BPSK Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 2017, ANSI C63.10 2013 Test Mode: Continuous transmit Test Setup: EUT with integral antenna. Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT was tested 802.11n20. Site D.

Venstar, Inc. WO#: 99771 Sequence#: 8 Date: 5/13/2017 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

	Accet #	Description	Madal	Calibratian Data	Cal Due Data
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
Т3	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
			PNMNM-48		
T4	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018
T5	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T6	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
			29094K-36TC		
T7	AN03385	High Pass Filter	11SH10-	6/15/2015	6/15/2017
			3000/T10000-		
			0/0		
	AN03367	Horn Antenna-	62-GH-62-25.	7/17/2015	7/17/2017
		ANSI C63.5			
		Calibration			
	AN01413	Horn Antenna	84125-80008	10/7/2016	10/7/2018
Т8	AN03430	Attenuator	75A-10-12	11/2/2015	11/2/2017
Т9	ANP05555	Cable	RG223/U	4/5/2016	4/5/2018
T10	ANP05569	Cable-Amplitude	RG-214/U	12/7/2016	12/7/2018
		+15C to +45C (dB)			
T11	AN01995	Biconilog Antenna	CBL6111C	5/10/2016	5/10/2018
T12	ANP05275	Attenuator	1W	5/5/2016	5/5/2018
T13	AN00010	Preamp	8447D	3/14/2016	3/14/2018
	AN00314	Loop Antenna	6502	5/20/2016	5/20/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2314.706M	45.1	+0.0	+5.8	+2.8	+24.8	+0.0	49.6	54.0	-4.4	Vert
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	4101.200M	47.7	+0.0	+8.0	+3.9	+28.9	+0.0	49.2	54.0	-4.8	Horiz
			-40.4	+0.9	+0.2	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	4068.870M	47.0	+0.0	+8.0	+3.9	+28.8	+0.0	48.5	54.0	-5.5	Horiz
			-40.4	+0.9	+0.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	2322.800M	43.0	+0.0	+5.8	+2.8	+24.8	+0.0	47.5	54.0	-6.5	Horiz
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

5 4	020 02014	16.0			12.0	100 7		477 4	54.0	((TT '
54	020.920M	46.0	+0.0	+8.0	+3.9	+28.7	+0.0	47.4	54.0	-6.6	Horiz
			-40.4	+0.9	+0.3	+0.0					
			$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0					
6.4	024.310M	46.0	+0.0 +0.0	+8.0	+3.9	+28.7	+0.0	47.4	54.0	-6.6	Vert
04	-024.310M	40.0	+0.0 -40.4	+0.9	+3.9 +0.3	+28.7 +0.0	± 0.0	4/.4	54.0	-0.0	ven
			+0.0	+0.9 +0.0	+0.3 +0.0	+0.0 +0.0					
			+0.0	10.0	10.0	10.0					
7 4	071.750M	45.7	+0.0	+8.0	±2 0	+28.8	+0.0	47.2	54.0	-6.8	Vert
/ 4	-0/1./30W	43.7	+0.0 -40.4	+0.9	+3.9 +0.3	+28.8 $+0.0$	± 0.0	47.2	54.0	-0.8	ven
			+0.0	+0.9 +0.0	+0.3 +0.0	+0.0 +0.0					
			+0.0	10.0	10.0	10.0					
8	74.540M	43.2	+0.0	+0.8	+0.0	+0.0	+0.0	30.7	40.0	-9.3	Vert
0	/4.340101	43.2	+0.0 +0.0	+0.8 +0.0	+0.0 +0.0	+0.0 +0.0	± 0.0	30.7	40.0	-9.5	ven
			+0.0 +0.1	+0.0 +0.8							
			+0.1 -27.2	+0.8	+7.0	+6.0					
9	163.624M	41.0	+0.0	±1 2	+0.0	+0.0	+0.0	33.2	43.5	-10.3	Vert
9	103.024101	41.0	$^{+0.0}_{+0.0}$	+1.3 +0.0	+0.0 +0.0	+0.0 +0.0	± 0.0	33.2	43.3	-10.5	vert
			+0.0 +0.2								
			+0.2 -26.9	+1.3	+10.3	+6.0					
10.2	262 40014	27.0		15.0	12.0	124.0		42.7	54.0	11.2	V +
	362.400M	37.9	+0.0	+5.9	+2.9	+24.9	+0.0	42.7	54.0	-11.3	Vert
A	ve		-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
A 2	262 40014	<i>c</i> 1 <i>7</i>	+0.0	15.0	12.0	124.0		565	54.0	10.5	N 7 (
^ 2	362.400M	51.7	+0.0	+5.9	+2.9	+24.9	+0.0	56.5	54.0	+2.5	Vert
			-39.6	+0.6	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
10.4	000 075) (26.0	+0.0	10.0	. 1.2	120.0		41.0	54.0	10.0	TT '
12 4	923.975M	36.9	+0.0	+9.0	+4.3	+30.0	+0.0	41.2	54.0	-12.8	Horiz
			-40.1	+1.0	+0.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0			• • • •			- 4 0	10.0	
13 4	924.158M	36.8	+0.0	+9.0	+4.3	+30.0	+0.0	41.1	54.0	-12.9	Vert
			-40.1	+1.0	+0.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	100 5000 5		+0.0					41.0		1	
	483.500M	35.5	+0.0	+6.1	+3.1	+25.2	+0.0	41.0	54.0	-13.0	Vert
A	ve		-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
	40.5.1003.5		+0.0				. 0. 0	40 -		10.0	
	495.133M	35.2	+0.0	+6.1	+3.1	+25.2	+0.0	40.7	54.0	-13.3	Vert
A	ve		-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^ 2	495.133M	39.3	+0.0	+6.1	+3.1	+25.2	+0.0	44.8	54.0	-9.2	Vert
			-39.7	+0.7	+0.0	+10.1					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

17 2379.600M	35.1	+0.0	+6.0	+2.9	+24.9	+0.0	40.1	54.0	-13.9	Vert
Ave		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2379.600M	49.8	+0.0	+6.0	+2.9	+24.9	+0.0	54.8	54.0	+0.8	Vert
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
19 2382.400M	34.9	+0.0	+6.0	+2.9	+24.9	+0.0	39.9	54.0	-14.1	Vert
Ave		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
	40.4	+0.0		• •						
^ 2382.400M	49.1	+0.0	+6.0	+2.9	+24.9	+0.0	54.1	54.0	+0.1	Vert
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
A1 A () A		+0.0					20.1		1 4 9	
21 2483.500M	33.6	+0.0	+6.1	+3.1	+25.2	+0.0	39.1	54.0	-14.9	Vert
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
	10.7	+0.0	16.1	10.1	105.0	10.0	55.0	54.0	1.1.0	T 7
^ 2483.500M	49.7	+0.0	+6.1	+3.1	+25.2	+0.0	55.2	54.0	+1.2	Vert
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
A 2492 500M	44.0	+0.0	1 (1	12.1	125.2		50.4	54.0	2.0	V. A
^ 2483.500M	44.9	+0.0	+6.1	+3.1	+25.2	+0.0	50.4	54.0	-3.6	Vert
		-39.7 +0.0	+0.7	+0.0	+10.1					
		$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0					
24 2389.867M	34.0	+0.0 +0.0	+6.0	+2.9	+25.0	+0.0	39.1	54.0	-14.9	Vert
	34.0	-39.6	+0.0 +0.7	+2.9 $+0.0$	+23.0 +10.1	± 0.0	39.1	54.0	-14.9	ven
Ave		+0.0	+0.7 +0.0	+0.0 $+0.0$	+10.1 +0.0					
		+0.0 +0.0	± 0.0	± 0.0	± 0.0					
^ 2389.867M	52.0	+0.0	+6.0	+2.9	+25.0	+0.0	57.1	54.0	+3.1	Vert
2309.00/101	52.0	-39.6	+0.0	+0.0	+23.0 +10.1	10.0	57.1	54.0	- 5.1	ven
		+0.0	+0.7 +0.0	+0.0 $+0.0$	+10.1 +0.0					
		+0.0	0.0	0.0	0.0					
26 2483.500M	32.1	+0.0	+6.1	+3.1	+25.2	+0.0	37.6	54.0	-16.4	Horiz
Ave	52.1	-39.7	+0.1 +0.7	+0.0	+23.2 +10.1	0.0	57.0	5-10	10.4	110112
1110		+0.0	+0.0	+0.0	+0.0					
		+0.0	. 0.0	. 0.0	. 0.0					
^ 2483.500M	47.0	+0.0	+6.1	+3.1	+25.2	+0.0	52.5	54.0	-1.5	Horiz
2703.300141	17.0	-39.7	+0.1 $+0.7$	+0.0	+23.2 +10.1	0.0	52.5	54.0	1.5	TIOUT
		+0.0	+0.0	+0.0	+0.0					
		+0.0	5.0	0.0	0.0					
28 2368.133M	32.2	+0.0	+5.9	+2.9	+24.9	+0.0	37.1	54.0	-16.9	Horiz
Ave		-39.6	+0.7	+0.0	+10.1	0.0	- ,	2	- 0.9	
		+0.0	+0.0	+0.0	+0.0					
		+0.0	5.0	5.0	0.0					
^ 2368.130M	46.3	+0.0	+5.9	+2.9	+24.9	+0.0	51.2	54.0	-2.8	Horiz
		-39.6	+0.7	+0.0	+10.1	0.0		2		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
		5.0								

30 2382.267M	32.0	+0.0	+6.0	+2.9	+24.9	+0.0	37.0	54.0	-17.0	Horiz
Ave		-39.6	+0.7	+0.0	+10.1			• • • •		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2382.267M	46.4	+0.0	+6.0	+2.9	+24.9	+0.0	51.4	54.0	-2.6	Horiz
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
32 2495.930M	31.4	+0.0	+6.1	+3.1	+25.2	+0.0	36.9	54.0	-17.1	Horiz
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2495.930M	45.8	+0.0	+6.1	+3.1	+25.2	+0.0	51.3	54.0	-2.7	Horiz
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
34 4100.800M	35.0	+0.0	+8.0	+3.9	+28.9	+0.0	36.5	54.0	-17.5	Vert
Ave		-40.4	+0.9	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4100.800M	46.9	+0.0	+8.0	+3.9	+28.9	+0.0	48.4	54.0	-5.6	Vert
		-40.4	+0.9	+0.2	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
36 2491.503M	30.9	+0.0	+6.1	+3.1	+25.2	+0.0	36.4	54.0	-17.6	Horiz
Ave		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2491.503M	46.4	+0.0	+6.1	+3.1	+25.2	+0.0	51.9	54.0	-2.1	Horiz
		-39.7	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
38 2389.067M	30.6	+0.0	+6.0	+2.9	+25.0	+0.0	35.7	54.0	-18.3	Horiz
Ave		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 2389.067M	47.4	+0.0	+6.0	+2.9	+25.0	+0.0	52.5	54.0	-1.5	Horiz
		-39.6	+0.7	+0.0	+10.1					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

Band Edge

	Band Edge Summary									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
2390.0	CCK	Chip	44.8	<54	Pass					
2400.0	ССК	Chip	51.5	<66.2	Pass					
2483.5	ССК	Chip	44.3	<54	Pass					
2390.0	OFDM	Chip	40.4	<54	Pass					
2400.0	OFDM	Chip	59.2	<62.4	Pass					
2483.5	OFDM	Chip	41.5	<54	Pass					
2390.0	BPSK	Chip	39.1	<54	Pass					
2400.0	BPSK	Chip	57.3	<63.9	Pass					
2483.5	BPSK	Chip	41.0	<54	Pass					

Peak level does not exceed 20dB above the average limit

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software: Equipment Test	CKC Laboratories, Inc. • 110 N. Venstar, Inc. 15.247(d) / 15.209 Radiated Sp 99771 Maximized Emissions S. Yamamoto EMITest 5.03.02	urious Emissions D	ate: 5/13/2017 me: 15:32:56					
Device	Manufacturer	Model #	S/N					
Configuration 1								
Support Equipm	ent:							
Device	Manufacturer	Model #	S/N					
Configuration 1								
Frequency Rang Frequency tested: Firmware power 3 EUT firmware: 3 Protocol /MCS/M Antenna type: Ch Antenna Gain: 1.9 Duty Cycle: >989 Test Method: KD Test Mode: Conti Test Setup: EUT Modifications Ad								

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
Т3	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
			PNMNM-48		
T4	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018
T5	AN00787	Preamp	83017A	6/10/2015	6/10/2017
Т6	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
			29094K-36TC		
T7	AN03430	Attenuator	75A-10-12	11/2/2015	11/2/2017

Me	asurement Data:	Re	eading lis	ted by ma	argin.	n. Test Distance: 3 Meters					
#	≠ Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 2390.000M	39.7	+0.0	+6.0	+2.9	+25.0	+0.0	44.8	54.0	-9.2	Vert
	Ave		-39.6	+0.7	+10.1						
	2 2483.500M	38.8	+0.0	+6.1	+3.1	+25.2	+0.0	44.3	54.0	-9.7	Vert
	Ave		-39.7	+0.7	+10.1						
	3 2400.000M	46.4	+0.0	+6.0	+2.9	+25.0	+0.0	51.5	66.2	-14.7	Vert
			-39.6	+0.7	+10.1						

Test Location:	CKC Laboratories, Inc. • 110 N. Ol	inda Pl • Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spuri	ous Emissions	
Work Order #:	99771	Date:	5/13/2017
Test Type:	Maximized Emissions	Time:	15:17:31
Tested By:	S. Yamamoto	Sequence#:	7
Software:	EMITest 5.03.02		

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 1			
Test Conditions / Notes:			

Frequency Range: 2390MHz to 2485MHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: OFDM Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 2017, ANSI C63.10 2013 Test Mode: Continuous transmit Test Setup: EUT with integral antenna. Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT was tested 802.11g. Site D.

ID	Asset #	Description	Model	Calibration Date	Cal Due Date		
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017		
T2	ANP04382	Cable	le LDF-50 6/6/		6/6/2018		
Т3	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019		
			PNMNM-48				
T4	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018		
T5	AN00787	Preamp	83017A	6/10/2015	6/10/2017		
Т6	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017		
			29094K-36TC				
T7	AN03430	Attenuator	75A-10-12	11/2/2015	11/2/2017		

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters							
	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
Γ	1	2400.000M	54.1	+0.0	+6.0	+2.9	+25.0	+0.0	59.2	62.4	-3.2	Vert
				-39.6	+0.7	+10.1						
Γ	2	2483.500M	36.0	+0.0	+6.1	+3.1	+25.2	+0.0	41.5	54.0	-12.5	Vert
		Ave		-39.7	+0.7	+10.1						
	3	2390.000M	35.3	+0.0	+6.0	+2.9	+25.0	+0.0	40.4	54.0	-13.6	Vert
		Ave		-39.6	+0.7	+10.1						

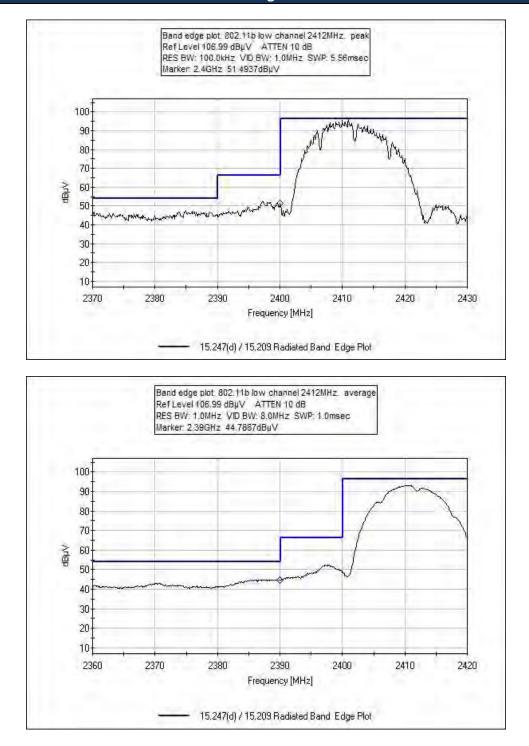
Test Location:	CKC Laboratories, Inc. • 110 N. C	Dlinda Pl • Brea CA 92823	• 714 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Sput	rious Emissions	
Work Order #:	99771	Date:	5/13/2017
Test Type:	Maximized Emissions	Time:	15:17:31
Tested By:	S. Yamamoto	Sequence#:	8
Software:	EMITest 5.03.02	-	

Equipment Tested:

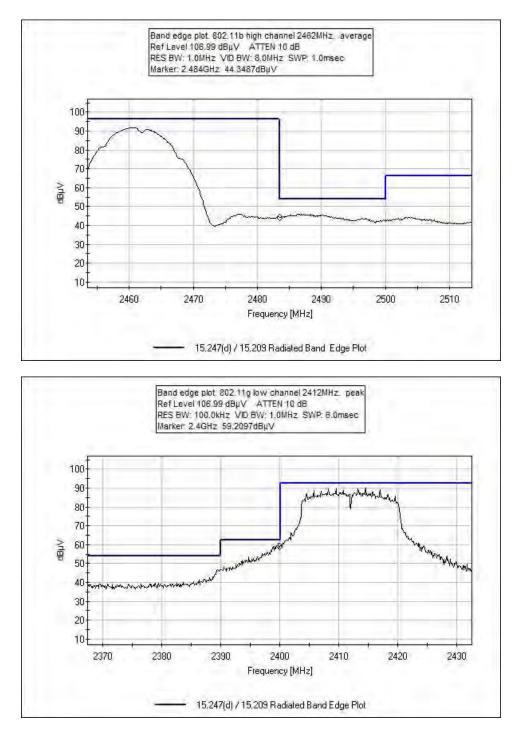
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

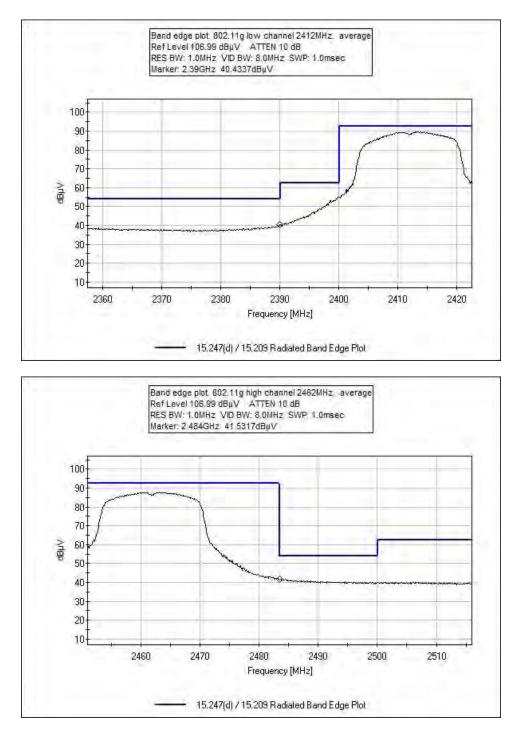
Test Conditions / Notes:

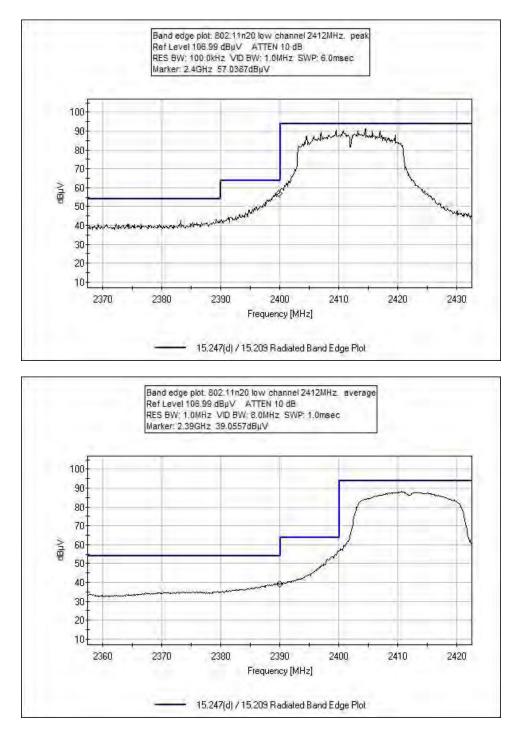
Frequency Range: 2390MHz to 2485MHz Frequency tested: 2412MHz, 2442MHz, 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: BPSK Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 2017, ANSI C63.10 2013 Test Mode: Continuous transmit Test Setup: EUT with integral antenna. Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT was tested 802.11n20. Site D.


Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T2	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
Т3	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
			PNMNM-48		
T4	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018
T5	AN00787	Preamp	83017A	6/10/2015	6/10/2017
T6	ANP06544	Cable	32026-29094K-	11/2/2015	11/2/2017
			29094K-36TC		
T7	AN03430	Attenuator	75A-10-12	11/2/2015	11/2/2017


1	Measu	rement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
	#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6	T7						
		MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
	1	2400.000M	52.2	+0.0	+6.0	+2.9	+25.0	+0.0	57.3	63.9	-6.6	Vert
				-39.6	+0.7	+10.1						
	2	2483.500M	35.5	+0.0	+6.1	+3.1	+25.2	+0.0	41.0	54.0	-13.0	Vert
		Ave		-39.7	+0.7	+10.1						
	3	2390.000M	34.0	+0.0	+6.0	+2.9	+25.0	+0.0	39.1	54.0	-14.9	Vert
		Ave		-39.6	+0.7	+10.1						


Band Edge Plots

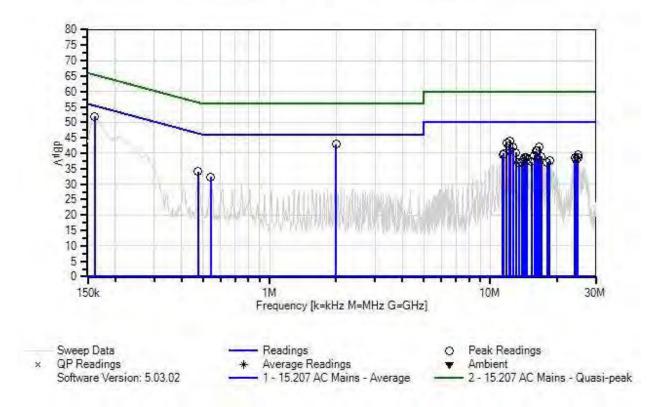




Test Setup Photos

Below 1GHz

Above 1GHz


15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:								
<i>Equipment Test</i> Device	Manufacturer	Model #	S/N					
Configuration 1								
Support Equips	nent							
Device	Manufacturer	Model #	S/N					
Configuration 1								
<i>Test Conditions</i> Frequency Rang Frequency tested	ge: 150kHz to 30MHz							
Firmware power								
	3.3.0.0-31.2.0.0.0-2.2.0.4							
	Adulation: CCK							
Antenna type: Cl								
Antenna Gain: 1.	9dBi.							
Duty Cycle: >98	%							
Test Method: KI	DB 558074 D01 v04 2017							
Test Mode: Cont								
	with integral antenna.							
Modifications A								
1 1 1	× /	to the laptop comput	ter via a serial to USB interface board.					
The EUT was tes	sted 802.11b.							
Site D.	°C							
Temperature: 20 Relative Humidi								
Relative numidi	iy. 5570							

Venstar, Inc. WO#: 99771 Sequence#: 9 Date: 5/8/2017 15.207 AC Mains - Average Test Lead: 115V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T1	AN02343	High Pass Filter	HE9615-150K-	1/25/2017	1/25/2019
			50-720B		
T2	ANP01910	Cable	RG-142	11/30/2015	11/30/2017
Т3	ANP06085	Attenuator	SA18N10W-09	11/14/2016	11/14/2018
T4	AN00847.1	50uH LISN-Line 1	3816/2NM	3/14/2017	3/14/2018
		(L1)			
	AN00847.1	50uH LISN-Line2	3816/2NM	3/14/2017	3/14/2018
		(L2)			
T5	ANP06986	Cable-Line 1(dB)	1m-extcord	5/12/2016	5/12/2018
	ANP06986	Cable-Line 2(dB)	1m-extcord	5/12/2016	5/12/2018

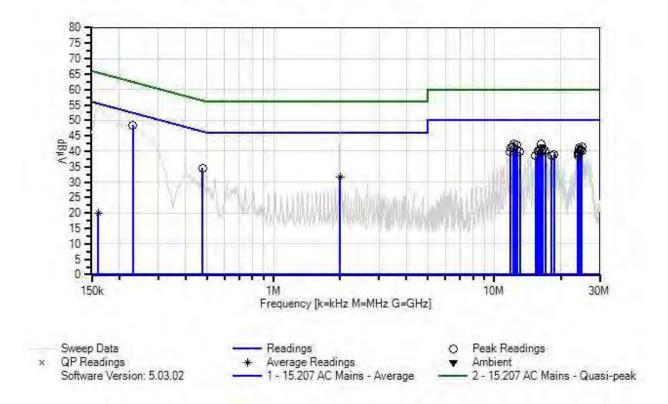
Measur	ement Data:	Re	eading list	ted by ma	ırgin.			Test Lead	1: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	T5 dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2.004M	<u>37.1</u>	+0.1	+0.0	+5.7	+0.0	+0.0	43.0	<u>46.0</u>	-3.0	Line
1	2.004101	57.1	+0.1 +0.1	± 0.0	+3.7	+0.0	± 0.0	43.0	40.0	-3.0	Line
2	161.635k	45.7	+0.5	+0.0	+5.7	+0.0	+0.0	51.9	55.4	-3.5	Line
			+0.0								
3	12.274M	37.4	+0.1	+0.1	+5.8	+0.1	+0.0	44.1	50.0	-5.9	Line
			+0.6								
4	11.878M	36.7	+0.1	+0.1	+5.7	+0.1	+0.0	43.3	50.0	-6.7	Line
			+0.6								
5	12.184M	35.8	+0.1	+0.1	+5.7	+0.1	+0.0	42.4	50.0	-7.6	Line
			+0.6								
6	16.634M	35.0	+0.1	+0.1	+5.8	+0.2	+0.0	42.1	50.0	-7.9	Line
			+0.9					44.0			
7	12.661M	35.2	+0.1	+0.1	+5.8	+0.1	+0.0	41.9	50.0	-8.1	Line
	16 10136	22.6	+0.6	10.1	15.0			40.7	50.0	0.2	T '
8	16.121M	33.6	$^{+0.1}_{+0.9}$	+0.1	+5.8	+0.2	+0.0	40.7	50.0	-9.3	Line
9	16.247M	33.6	+0.9 +0.1	+0.1	+5.8	+0.2	+0.0	40.7	50.0	-9.3	Line
9	10.24/101	55.0	+0.1 +0.9	± 0.1	73.0	+0.∠	± 0.0	40.7	50.0	-9.5	Line
10	13.067M	33.4	+0.9 +0.1	+0.1	+5.8	+0.1	+0.0	40.2	50.0	-9.8	Line
10	13.007101	55.4	+0.1 +0.7	+0.1	15.0	10.1	10.0	40.2	50.0	-9.0	LIIC
11	11.481M	33.3	+0.1	+0.1	+5.7	+0.1	+0.0	39.9	50.0	-10.1	Line
11	11.40111	55.5	+0.1	0.1	10.1	0.1	10.0	57.7	50.0	10.1	Line
12	24.936M	31.8	+0.2	+0.2	+5.8	+0.2	+0.0	39.5	50.0	-10.5	Line
			+1.3								
13	11.409M	32.9	+0.1	+0.1	+5.7	+0.1	+0.0	39.5	50.0	-10.5	Line
			+0.6								
14	15.833M	32.2	+0.1	+0.1	+5.8	+0.2	+0.0	39.3	50.0	-10.7	Line
			+0.9								
15	17.031M	31.7	+0.1	+0.1	+5.8	+0.2	+0.0	38.9	50.0	-11.1	Line
			+1.0								
16	24.141M	31.1	+0.2	+0.2	+5.7	+0.2	+0.0	38.7	50.0	-11.3	Line
			+1.3								

17	14.562M	31.8	+0.1 +0.8	+0.1	+5.8	+0.1	+0.0	38.7	50.0	-11.3	Line
18	24.957M	30.9	+0.2 +1.3	+0.2	+5.8	+0.2	+0.0	38.6	50.0	-11.4	Line
19	14.247M	31.8	$^{+0.1}_{+0.7}$	+0.1	+5.8	+0.1	+0.0	38.6	50.0	-11.4	Line
20	14.652M	31.1	$^{+0.1}_{+0.8}$	+0.1	+5.8	+0.1	+0.0	38.0	50.0	-12.0	Line
21	24.580M	30.3	+0.2 +1.3	+0.2	+5.8	+0.2	+0.0	38.0	50.0	-12.0	Line
22	14.148M	31.1	$^{+0.1}_{+0.7}$	+0.1	+5.8	+0.1	+0.0	37.9	50.0	-12.1	Line
23	16.517M	30.7	$^{+0.1}_{+0.9}$	+0.1	+5.8	+0.2	+0.0	37.8	50.0	-12.2	Line
24	475.061k	28.1	$^{+0.2}_{+0.0}$	+0.0	+5.7	+0.0	+0.0	34.0	46.4	-12.4	Line
25	18.598M	30.4	$^{+0.1}_{+1.0}$	+0.1	+5.7	+0.2	+0.0	37.5	50.0	-12.5	Line
26	15.346M	30.4	$^{+0.1}_{+0.8}$	+0.1	+5.8	+0.1	+0.0	37.3	50.0	-12.7	Line
27	18.121M	30.0	$^{+0.1}_{+1.0}$	+0.1	+5.7	+0.2	+0.0	37.1	50.0	-12.9	Line
28	13.860M	30.3	+0.1 +0.7	+0.1	+5.8	+0.1	+0.0	37.1	50.0	-12.9	Line
29	13.463M	30.2	$^{+0.1}_{+0.7}$	+0.1	+5.8	+0.1	+0.0	37.0	50.0	-13.0	Line
30	542.691k	26.4	+0.2 +0.0	+0.0	+5.7	+0.0	+0.0	32.3	46.0	-13.7	Line

Test Location: Customer:	CKC Laboratories, Inc. • 110 N. Olin Venstar, Inc.	nda Pl • Brea CA 92823	• 714 993-6112
	,		
Specification:	15.207 AC Mains - Average		
Work Order #:	99771	Date:	5/8/2017
Test Type:	Conducted Emissions	Time:	17:12:42
Tested By:	S. Yamamoto	Sequence#:	10
Software:	EMITest 5.03.02	-	115V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	


Configuration 1

Test Conditions / Notes:

Frequency Range: 150kHz to 30MHz Frequency tested: 2462MHz Firmware power setting: 0 EUT firmware: 3.3.0.0-31.2.0.0.0-2.2.0.4 Protocol /MCS/Modulation: CCK Antenna type: Chip Antenna Gain: 1.9dBi. Duty Cycle: >98% Test Method: KDB 558074 D01 v04 Test Mode: Continuous transmit Test Setup: EUT with integral antenna. Modifications Added: None Setup: The equipment under test (EUT) is connected to the laptop computer via a serial to USB interface board. The EUT was tested 802.11b. Site D. Temperature: 20°C Relative Humidity: 35%

Venstar, Inc. WO#: 99771 Sequence#: 10 Date: 5/8/2017 15.207 AC Mains - Average Test Lead: 115V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	7/8/2016	7/8/2017
T1	AN02343	High Pass Filter	HE9615-150K-	1/25/2017	1/25/2019
			50-720B		
T2	ANP01910	Cable	RG-142	11/30/2015	11/30/2017
Т3	ANP06085	Attenuator	SA18N10W-09	11/14/2016	11/14/2018
	AN00847.1	50uH LISN-Line 1	3816/2NM	3/14/2017	3/14/2018
		(L1)			
T4	AN00847.1	50uH LISN-Line2	3816/2NM	3/14/2017	3/14/2018
		(L2)			
	ANP06986	Cable-Line 1(dB)	1m-extcord	5/12/2016	5/12/2018
T5	ANP06986	Cable-Line 2(dB)	1m-extcord	5/12/2016	5/12/2018

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	1: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	T5 dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	230.719k	42.5	+0.2	+0.0	+5.7	+0.0	+0.0	48.4	<u>52.4</u>	-4.0	Neutr
-	2000/17/1		+0.0	010	017	0.0	010		0200		1.000
2	12.283M	35.7	+0.1	+0.1	+5.8	+0.2	+0.0	42.5	50.0	-7.5	Neutr
			+0.6								
3	16.247M	35.2	+0.1	+0.1	+5.8	+0.2	+0.0	42.3	50.0	-7.7	Neutr
			+0.9								
4	12.670M	35.1	+0.1	+0.1	+5.8	+0.2	+0.0	41.9	50.0	-8.1	Neutr
			+0.6								
5	24.943M	33.7	+0.2	+0.2	+5.8	+0.3	+0.0	41.5	50.0	-8.5	Neutr
	12 10214	24.6	+1.3	+0.1		10.0		41.2	50.0	0.7	
6	12.193M	34.6	+0.1	+0.1	+5.7	+0.2	+0.0	41.3	50.0	-8.7	Neutr
7	11.887M	34.5	+0.6 +0.1	+0.1	+5.7	+0.2	+0.0	41.2	50.0	-8.8	Noute
/	11.00/101	54.5	+0.1 +0.6	± 0.1	+3.7	+0.2	± 0.0	41.2	30.0	-0.0	Neutr
8	24.141M	33.3	+0.0	+0.2	+5.7	+0.3	+0.0	41.0	50.0	-9.0	Neutr
0	27.171101	55.5	+1.3	10.2	10.1	10.5	0.0	41.0	50.0	2.0	iteuti
9	16.616M	33.6	+0.1	+0.1	+5.8	+0.2	+0.0	40.7	50.0	-9.3	Neutr
-			+0.9								
10	16.121M	33.6	+0.1	+0.1	+5.8	+0.2	+0.0	40.7	50.0	-9.3	Neutr
			+0.9								
11	12.589M	33.8	+0.1	+0.1	+5.8	+0.2	+0.0	40.6	50.0	-9.4	Neutr
			+0.6								
12	24.532M	32.6	+0.2	+0.2	+5.8	+0.3	+0.0	40.4	50.0	-9.6	Neutr
			+1.3								
13	24.388M	32.6	+0.2	+0.2	+5.7	+0.3	+0.0	40.3	50.0	-9.7	Neutr
			+1.3								
14	17.040M	33.0	+0.1	+0.1	+5.8	+0.2	+0.0	40.2	50.0	-9.8	Neutr
1.7	16 6 400 5	22.0	+1.0	+ 0 1	1.5.0	10.2		40.1	50.0	0.0	N T /
15	15.743M	33.0	+0.1	+0.1	+5.8	+0.2	+0.0	40.1	50.0	-9.9	Neutr
1.0	24.90515	22.2	+0.9	10.2	150	10.2		40.1	50.0	0.0	NT - 4
16	24.895M	32.3	+0.2	+0.2	+5.8	+0.3	+0.0	40.1	50.0	-9.9	Neutr
			+1.3								

17	16.526M	32.9	$^{+0.1}_{+0.9}$	+0.1	+5.8	+0.2	+0.0	40.0	50.0	-10.0	Neutr
18	15.842M	32.7	+0.1 +0.9	+0.1	+5.8	+0.2	+0.0	39.8	50.0	-10.2	Neutr
19	11.806M	33.1	$^{+0.1}_{+0.6}$	+0.1	+5.7	+0.2	+0.0	39.8	50.0	-10.2	Neutr
20	13.085M	32.8	$^{+0.1}_{+0.7}$	+0.1	+5.8	+0.2	+0.0	39.7	50.0	-10.3	Neutr
21	23.922M	31.7	+0.2 +1.3	+0.2	+5.7	+0.3	+0.0	39.4	50.0	-10.6	Neutr
22	23.963M	31.6	+0.2 +1.3	+0.2	+5.7	+0.3	+0.0	39.3	50.0	-10.7	Neutr
23	24.039M	31.6	+0.2 +1.3	+0.2	+5.7	+0.3	+0.0	39.3	50.0	-10.7	Neutr
24	18.607M	31.8	$^{+0.1}_{+1.0}$	+0.1	+5.7	+0.2	+0.0	38.9	50.0	-11.1	Neutr
25	23.977M	31.0	+0.2 +1.3	+0.2	+5.7	+0.3	+0.0	38.7	50.0	-11.3	Neutr
26	18.211M	31.5	$^{+0.1}_{+1.0}$	+0.1	+5.7	+0.2	+0.0	38.6	50.0	-11.4	Neutr
27	15.346M	31.5	$^{+0.1}_{+0.8}$	+0.1	+5.8	+0.2	+0.0	38.5	50.0	-11.5	Neutr
28	475.788k	28.7	$^{+0.2}_{+0.0}$	+0.0	+5.7	+0.0	+0.0	34.6	46.4	-11.8	Neutr
29	2.004M Ave	25.6	$^{+0.1}_{+0.1}$	+0.0	+5.7	+0.0	+0.0	31.5	46.0	-14.5	Neutr
^	2.004M	40.7	$^{+0.1}_{+0.1}$	+0.0	+5.7	+0.0	+0.0	46.6	46.0	+0.6	Neutr
31	160.908k Ave	13.6	+0.5 +0.0	+0.0	+5.7	+0.0	+0.0	19.8	55.4	-35.6	Neutr
^	160.908k	48.3	+0.5 +0.0	+0.0	+5.7	+0.0	+0.0	54.5	55.4	-0.9	Neutr

Test Setup Photo

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading	(dBµV)			
+	Antenna Factor	(dB/m)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.