Venstar, Inc.

TEST REPORT FOR

Thermostat with WiFi, Subgig, and BLE Model: Explorer 2

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 902-928 MHz)

Report No.: 104728-12

Date of issue: January 15, 2021

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 44 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information
Test Report Information
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results
Modifications During Testing
Conditions During Testing
Equipment Under Test
General Product Information7
FCC Part 15 Subpart C
15.247(a)(2) 6dB Bandwidth12
15.247(b)(3) Output Power15
15.247(e) Power Spectral Density18
15.247(d) RF Conducted Emissions & Band Edge20
15.247(d) Radiated Emissions & Band Edge24
15.207 AC Conducted Emissions
Supplemental Information43
Measurement Uncertainty43
Emissions Test Details

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Venstar, Inc. 9250 Owensmouth Avenue Chatsworth, CA 91311 **REPORT PREPARED BY:**

Kim Romero CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Alex Garashin

Project Number: 104728

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: November 17, 2020 November 17, 18, 20, and 24, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 B

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:			
Device	Manufacturer	Model #	S/N
Thermostat with WiFi,	Venstar, Inc.	Explorer 2	NA
Subgig, and BLE			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Interface board	Texas Instruments	CC1352R1	NA	
24Vac Adapter	Unbranded	MKA-412400200	NA	
Laptop	Lenovo	T500	NA	
Laptop ACDC Adapter	Lenovo	92P1156	NA	

Configuration 2

Equipment Tested:				
Device	Manufacturer	Model #	S/N	
Thermostat with WiFi,	Venstar, Inc.	Explorer 2	NA	
Subgig, and BLE				

Support Equipment:

Device	Manufacturer	Model #	S/N
24Vac Adapter	Unbranded	MKA-412400200	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.15.4g/ Proprietary
Operating Frequency Range:	915MHz
Modulation Type(s):	2-GFSK
Maximum Duty Cycle:	100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Chip Antenna/ -1dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral (External connector provided to facilitate testing)
Nominal Input Voltage:	24Vac
Firmware used for Test:	04-38-00

Support Equipment Photo(s)

Laptop

AC/DC adapter

24Vac Adapter

Interface Board

Wifi Prog Board

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/17/2020		
	KDB 558074 D01 15.247 Meas				
	Guidance v05r02				
Configuration:	1				
Test Setup:	EUT is powered from 24Vac AC Ad	apter and connected t	o a laptop via USB cable and test		
	board. The laptop is running softw	/areSmartRF Studio 7	to activate transmitter.		
	Software profile: "WB-DSSS 60 kb	ps, <mark>2-GF</mark> SK, 195 kHz de	viation, 4x spreading"		
	RF Designed Based On: LAUNCHXL	-CC1352R1			
	Frequency: 915MHz				
	Symbol Rate: 480kBaud				
	Modulation: 2-GFSK				
	Deviation: 195kHz				
	Cap Array Delta: 20 (0x14)				
	Mode: Continuous TX/ Modulated				
	TX Power: 14dBm				
	Frequency of measurement: 915M	1Hz			
	RBW=100kHz, VBW=300kHz				

Environmental Conditions				
Temperature (°C) 21.1 Relative Humidity (%): 32				

Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
02869	Spectrum Analyzer	Agilent	E4440	8/3/2020	8/3/2021	
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/22/2019	10/22/2021	
P07246	Cable	H&S	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
915	1	2-GFSK	563.227	≥500	Pass

Plot(s)

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/17/2020		
	KDB 558074 D01 15.247 Meas				
	Guidance v05r02				
Configuration:	1				
Test Setup:	EUT is powered from 24Vac AC Ad	apter and connected t	to a laptop via USB cable and test		
	board. The laptop is running softw	vare SmartRF Studio 7	to activate transmitter.		
	Software profile: "WB-DSSS 60 kbp	os, 2-GFSK, 195 kHz de	viation, 4x spreading"		
	RF Designed Based On: LAUNCHXL-	-CC1352R1			
	Frequency: 915MHz				
	Symbol Rate: 480kBaud				
	Modulation: 2-GFSK				
	Deviation: 195kHz				
	Cap Array Delta: 20 (0x14)				
	Mode: Continuous TX/ Modulated				
	TX Power: 14dBm				
	Frequency of measurement: 915N	1Hz			
	RBW=1MHz, VBW=3MHz				

Environmental Conditions				
Temperature (ºC)	21.1	Relative Humidity (%):	32	

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440	8/3/2020	8/3/2021	
03432	Attenuator	Aeroflex/Weinsche I	90-30-34	10/22/2019	10/22/2021	
P07246	Cable	H&S	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	

Test Data Summary - Voltage Variations						
Frequency (MHz)	quency quencyModulationV MinimumV NominalV 					
915	GFSK	13.30	13.29	13.30	0.01	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal \pm 15%.

Parameter	Value
V _{Nominal} :	24.0Vac
V _{Minimum} :	20.4Vac
V _{Maximum} :	27.6Vac

Test Data Summary - RF Conducted Measurement					
Measuremen	Measurement Option: RBW > DTS Bandwidth				
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
915	GFSK	-1	13.29	≤30	Pass

Plot(s)

Test Setup Photo(s)

15.247(e) Power Spectral Density

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	11/17/2020	
	KDB 558074 D01 15.247 Meas			
	Guidance v05r02			
Configuration:	1			
Test Setup:	EUT is powered from 24Vac AC Ad	apter and connected t	o a laptop via USB cable and test	
	board. The laptop is running softw	/areSmartRF Studio 7	to activate transmitter.	
	Software profile: "WB-DSSS 60 kbp	os, 2-GFSK, 195 kHz de	viation, 4x spreading"	
	RF Designed Based On: LAUNCHXL-	-CC1352R1		
	Frequency: 915MHz			
	Symbol Rate: 480kBaud			
	Modulation: 2-GFSK			
	Deviation: 195kHz			
	Cap Array Delta: 20 (0x14)			
	Mode: Continuous TX/ Modulated			
	TX Power: 14dBm			
	Frequency of measurement: 915N	1Hz		
	RBW=3kHz, VBW=9kHz			

Environmental Conditions				
Temperature (^o C)	21.1	Relative Humidity (%):	32	

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440	8/3/2020	8/3/2021	
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/22/2019	10/22/2021	
P07246	Cable	H&S	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022	

Test Data Summary - Conducted Measurement						
Measuremen	Measurement Method: PKPSD					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/3kHz)	Limit (dBm/3kHz)	Results	
915	GFSK	-1	4.85	≤8	Pass	

Plot(s)

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 110 N. Olinda Pl. •	Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	104728	Date:	11/17/2020
Test Type:	Conducted Emissions	Time:	08:56:51
Tested By:	Don Nguyen	Sequence#:	1
Software:	EMITest 5.03.19		24Vac

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

11 11			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

EUT is powered from 24Vac AC Adapter and connected to a laptop via USB cable and test board. The laptop is running software SmartRF Studio 7 to activate transmitter. Software setting: RF Designed Based On: LAUNCHXL-CC1352R1 Frequency: 915MHz Symbol Rate: 480kBaud Modulation: 2-GFSK Deviation: 195kHz Cap Array Delta: 20 (0x14) Mode: Continuous TX/ Modulated TX Power: 14dBm Frequency of Measurement: 9kHz-10GHz RBW=100kHz, VBW=300kHz Test Environment Conditions: Temperature: 25.4°C Relative Humidity: 24% Test Method: ANSI C63.10 (2013)

KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07246	Cable	32022-29094K-	5/29/2020	5/29/2022
			29094K-24TC		
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	a Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2744.417M	56.3	+0.4	+29.7			+0.0	86.4	99.6	-13.2	Anten
2	8233.242M	36.9	+0.9	+29.3			+0.0	67.1	99.6	-32.5	Anten
3	9151.808M	36.4	+1.0	+29.3			+0.0	66.7	99.6	-32.9	Anten
4	4575.900M	36.3	+0.6	+29.7			+0.0	66.6	99.6	-33.0	Anten
5	5488.875M	35.4	+0.7	+29.9			+0.0	66.0	99.6	-33.6	Anten
6	7321.467M	35.3	+0.8	+29.4			+0.0	65.5	99.6	-34.1	Anten
	1000 4100 4			2 0 4					00.6	24.0	
7	1829.617M	34.7	+0.4	+29.6			+0.0	64.7	99.6	-34.9	Anten
	2660 7501 6			20.0			0.0	(2.1	00.6	262	
8	3660.750M	32.9	+0.7	+29.8			+0.0	63.4	99.6	-36.2	Anten
	(40(075))	22.2	.07	. 20.5			.0.0	(2.4	00.6	27.0	
9	6406.275M	32.2	+0.7	+29.5			+0.0	62.4	99.6	-37.2	Anten
10	457 500M	20.5	+0.1	120.6				50.2	00.6	40.4	Anton
10	437.300M	29.3	± 0.1	+29.0			+0.0	39.2	99.0	-40.4	Anten
11	063 170M	28.5	+0.3	120.6				58 /	00.6	41.2	Anton
11	903.170W	26.5	+0.5	+29.0			± 0.0	36.4	99.0	-41.2	Anten
12	48.000M	27.6	+0.0	+20.5			+0.0	57.1	00.6	12.5	Anton
12	40.000101	27.0	+0.0	729.5			+0.0	57.1	99.0	-42.5	Anten
13	96.000M	27.4	+0.0	+29.5			+0.0	56.9	99.6	-42.7	Anten
15	J0.000	27.4	10.0	127.5			10.0	50.7	<i>))</i> .0	72.7	7 miten
14	1011 170M	26.9	+0.3	+29.6			+0.0	56.8	99.6	-42.8	Anten
17	101111/0141	20.7	10.5	127.0			10.0	20.0	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.0	1 111011

Band Edge

Band Edge Plots

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 11	0 N. Olinda Pl. • Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated	l Spurious Emissions	
Work Order #:	104728	Date:	11/20/2020
Test Type:	Maximized Emissions	Time:	09:06:15
Tested By:	Don Nguyen	Sequence#:	2
Software:	EMITest 5.03.19		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

EUT is powered from 24Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables. Software profile: "WB-DSSS 60 kbps, 2-GFSK, 195 kHz deviation, 4x spreading" RF Designed Based On: LAUNCHXL-CC1352R1 Frequency: 915MHz Symbol Rate: 480kBaud Modulation: 2-GFSK Deviation: 195kHz Cap Array Delta: 20 (0x14) Mode: Continuous TX/ Modulated TX Power: 14dBm Frequency of Measurement: 9kHz-9280MHz 9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz. 150kHz to 30MHz RBW=9kHz, VBW=27kHz. 30-1000MHz, RBW=120kHz, VBW=360kHz 1000-9280MHz, RBW=1MHz, VBW=3MHz

Test Environment Conditions: Temperature: 21.6°C Relative Humidity: 42%

 Test Method:
 ANSI C63.10 (2013)

 KDB 558074
 D01 15.247
 Meas Guidance v05r02

Venstar, Inc. WO#: 104728 Sequence#: 2 Date: 11/20/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022
	AN03367	Horn Antenna	62-GH-62-25.	8/1/2019	8/1/2021
T1	AN00309	Preamp	8447D	12/24/2019	12/24/2021
T2	ANP05281	Attenuator	1B	4/7/2020	4/7/2022
Т3	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020
T4	ANP05198	Cable-Amplitude	8268	12/4/2018	12/4/2020
		+15C to +45C (dB)			
T5	AN01993	Biconilog Antenna	CBL6111C	6/11/2019	6/11/2021
T6	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
T7	AN00786	Preamp	83017A	5/20/2020	5/20/2022
Т8	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
Т9	ANP06360	Cable	L1-PNMNM-48	8/8/2019	8/8/2021
T10	ANP07246	Cable	32022-29094K-	5/29/2020	5/29/2022
			29094K-24TC		
T11	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2744.350M	53.5	+0.0	+0.0	+0.0	+0.0	+0.0	48.7	54.0	-5.3	Vert
	Ave		+0.0	+0.0	-38.5	+29.7					
			+3.4	+0.4	+0.2						
^	2744.350M	70.8	+0.0	+0.0	+0.0	+0.0	+0.0	66.0	54.0	+12.0	Vert
			+0.0	+0.0	-38.5	+29.7					
			+3.4	+0.4	+0.2						
3	962.825M	36.7	-27.2	+6.0	+0.4	+6.1	+0.0	46.5	54.0	-7.5	Vert
			+24.5	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
4	2744.383M	49.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.7	54.0	-9.3	Horiz
	Ave		+0.0	+0.0	-38.5	+29.7					
		(7)	+3.4	+0.4	+0.2						
^	2744.383M	67.0	+0.0	+0.0	+0.0	+0.0	+0.0	62.2	54.0	+8.2	Horiz
			+0.0	+0.0	-38.5	+29.7					
	4554 0000 6	44.1	+3.4	+0.4	+0.2	0.0	0.0	11.6	54.0	0.1	
6	4574.080M	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	44.6	54.0	-9.4	Horiz
			+0.0	+0.0	-37.4	+32.6					
7	060 05014	22.7	+4.5	+0.6	+0.2	. (1	.0.0	12.5	540	10.5	N <i>T</i> (
/	962.850M	33.7	-21.2	+6.0	+0.4	+6.1	+0.0	43.5	54.0	-10.5	vert
			+24.3	+0.0	+0.0	+0.0					
0	248 20014	41.0	+0.0	+0.0	+0.0	120	+0.0	25.0	16.0	10.9	Homin
0	248.200M	41.9	-27.9	+3.9	+0.2	+2.9	+0.0	55.2	40.0	-10.8	HOUT
			+12.2	+0.0	+0.0	+0.0					
0	3650 /80M	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	120	54.0	11.1	Vort
,	3037. 4 00WI	77.1	+0.0	+0.0	-38.1	+32.0	10.0	72.7	54.0	-11.1	ven
			+4.0	+0.0	+0.2	152.0					
10	245 800M	40.8	_27.9	+5.9	+0.2	+2.9	+0.0	33.9	46.0	-12.1	Horiz
10	245.000101	-10.0	+12.0	+0.0	+0.2	+0.0	10.0	55.7	40.0	12.1	HOLE
			+0.0	+0.0	+0.0						
11	250.700M	40.0	-27.9	+5.9	+0.2	+2.9	+0.0	33.4	46.0	-12.6	Horiz
		1010	+12.3	+0.0	+0.0	+0.0	1010	0011		12:0	1101112
			+0.0	+0.0	+0.0						
12	7318.450M	33.1	+0.0	+0.0	+0.0	+0.0	+0.0	39.1	54.0	-14.9	Horiz
	Ave		+0.0	+0.0	-37.3	+36.2					-
			+6.1	+0.8	+0.2						
^	7318.450M	49.2	+0.0	+0.0	+0.0	+0.0	+0.0	55.2	54.0	+1.2	Horiz
			+0.0	+0.0	-37.3	+36.2					
			+6.1	+0.8	+0.2						
14	243.500M	37.5	-27.9	+5.9	+0.2	+2.9	+0.0	30.5	46.0	-15.5	Horiz
			+11.9	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

15	8233.450M	27.3	+0.0	+0.0	+0.0	+0.0	+0.0	34.7	54.0	-19.3	Horiz
	Ave		+0.0	+0.0	-37.2	+36.9					
			+6.5	+0.9	+0.3						
^	8233.450M	43.0	+0.0	+0.0	+0.0	+0.0	+0.0	50.4	54.0	-3.6	Horiz
			+0.0	+0.0	-37.2	+36.9					
			+6.5	+0.9	+0.3						
17	7321.380M	28.6	+0.0	+0.0	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Vert
	Ave		+0.0	+0.0	-37.3	+36.2					
			+6.1	+0.8	+0.2						
^	7321.380M	44.9	+0.0	+0.0	+0.0	+0.0	+0.0	50.9	54.0	-3.1	Vert
			+0.0	+0.0	-37.3	+36.2					
			+6.1	+0.8	+0.2						
19	1830.017M	68.6	+0.0	+0.0	+0.0	+0.0	+0.0	60.1	88.7	-28.6	Vert
			+0.0	+0.0	-38.8	+26.9					
			+2.8	+0.4	+0.2						
20	221.950M	46.6	-27.9	+5.9	+0.2	+2.7	+0.0	38.0	88.7	-50.7	Horiz
			+10.5	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
21	303.100M	41.0	-27.9	+5.9	+0.3	+3.2	+0.0	35.9	88.7	-52.8	Horiz
			+13.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
22	224.900M	43.2	-27.9	+5.9	+0.2	+2.8	+0.0	34.9	88.7	-53.8	Vert
			+10.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
23	303.200M	39.2	-27.9	+5.9	+0.3	+3.2	+0.0	34.1	88.7	-54.6	Vert
			+13.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
1											

Band Edge

	Band Edge Summary					
Limit applied	: Max Power/100k	Hz - 20dB.				
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results	
614	GFSK	Chip Antenna	36.7	< 46	Pass	
902	GFSK	Chip Antenna	41.1	< 88.7	Pass	
928	GFSK	Chip Antenna	42.1	< 88.7	Pass	
960	GFSK	Chip Antenna	44.0	< 54	Pass	

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 11	0 N. Olinda Pl. • Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated	l Spurious Emissions	
Work Order #:	104728	Date:	11/18/2020
Test Type:	Maximized Emissions	Time:	09:23:51
Tested By:	Don Nguyen	Sequence#:	5
Software:	EMITest 5.03.19	_	

Equipment Tested:

Equipment Testeut			
Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			
Test Conditions / Notes	5:		
EUT is powered from	n 24Vac AC Adapter and	l set to transmit continuou	sly. All IO ports are populated with
unterminated cables.			
Software profile: "WB-	DSSS 60 kbps, 2-GFSK, 1	95 kHz deviation, 4x sprea	ding"
RF Designed Based On	LAUNCHXL-CC1352R1		
Frequency: 915MHz			
Symbol Rate: 480kBaud			
Modulation: 2-GFSK			
Deviation: 195kHz			
Cap Array Delta: 20 (0x	(14)		
Mode: Continuous TX/	Modulated		
TX Power: 14dBm			
Frequency of Measuren	nent:614-960MHz		
RBW=120kHz, VBW=	360kHz (restricted band)		
RBW = 100 kHz, VBW = 3	300kHz (-20dBc limit)		
Test Environment Cond	itions		
Temperature: 21.6°C			
Relative Humidity: 4204			
Relative Humany. 42%			

Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	12/24/2019	12/24/2021
Т2	ANP05281	Attenuator	1B	4/7/2020	4/7/2022
Т3	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020
T4	ANP05198	Cable-Amplitude	8268	12/4/2018	12/4/2020
		+15C to +45C (dB)			
T5	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
Т6	AN01993	Biconilog Antenna	CBL6111C	6/11/2019	6/11/2021

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	614.000M	33.3	-27.4	+5.9	+0.4	+4.7	+0.0	36.7	46.0	-9.3	Horiz
			+0.0	+19.8							
2	960.000M	34.3	-27.2	+6.0	+0.4	+6.1	+0.0	44.0	54.0	-10.0	Horiz
			+0.0	+24.4							
3	928.000M	33.0	-27.2	+6.0	+0.4	+6.0	+0.0	42.1	88.7	-46.6	Horiz
			+0.0	+23.9							
4	902.000M	32.4	-27.1	+6.0	+0.4	+5.9	+0.0	41.1	88.7	-47.6	Horiz
			+0.0	+23.5							

Test Setup Photo(s)

Below 1GHz

Below 1GHz

Above 1GHz

Above 1GHz

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 110 N. Olinda Pl. •	Brea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	104728	Date:	11/24/2020
Test Type:	Conducted Emissions	Time:	11:33:44 AM
Tested By:	Don Nguyen	Sequence#:	12
Software:	EMITest 5.03.19		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

EUT is powered from 24Vac AC Adapter and set to transmitting mode.
Software profile: "WB-DSSS 60 kbps, 2-GFSK, 195 kHz deviation, 4x spreading"
RF Designed Based On: LAUNCHXL-CC1352R1
Frequency: 915MHz
Symbol Rate: 480kBaud
Modulation: 2-GFSK
Deviation: 195kHz
Cap Array Delta: 20 (0x14)
Mode: Continuous TX/ Modulated
TX Power: 14dBm
Frequency of Measurement: 150kHz-30MHz
RBW=9kHz, VBW=30kHz
Test Environment Conditions:
Temperature: 23°C
Relative Humidity: 43%
Pressure: 99.3kPa
Site A

Test Method: ANSI C63.10 (2013)

Venstar, Inc. WO#: 104728 Sequence#: 12 Date: 11/24/2020 15.207 AC Mains - Average Test Lead: 120V 60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
Т3	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/10/2020	3/10/2021
T4	AN02610	High Pass Filter	HE9615-150K- 50-720B	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
T5	ANP07738	Cable-Line L1(dB)	90cm-extcord	11/18/2020	11/18/2022
	ANP07738	Cable-Neutral L2(dB)	90cm-extcord	11/18/2020	11/18/2022

Measur	ement Data:	Re	Reading listed by margin.				Test Lead: L1-Line				
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	158.726k	43.6	+5.8	+0.0	+0.0	+0.6	+0.0	50.0	55.5	-5.5	L1-Li
	165 0711-	42.4	+0.0	.0.0	.0.0	+0.4	.0.0	40.6	55.0	5.0	T 1 T :
Z	105.2/1K	45.4	+5.8 +0.0	+0.0	+0.0	+0.4	+0.0	49.0	55.2	-3.0	LI-LI
3	213.994k	39.3	+5.8	+0.0	+0.0	+0.2	+0.0	45.3	53.0	-7.7	L1-Li
-			+0.0								
4	183.451k	39.5	+5.8	+0.0	+0.0	+0.3	+0.0	45.6	54.3	-8.7	L1-Li
			+0.0						~ ~ ~		
5	199.450k	38.5	+5.8	+0.0	+0.0	+0.2	+0.0	44.5	53.6	-9.1	L1-Li
6	102 177k	38.5	+0.0	+0.0	+0.0	+0.2	+0.0	44.5	53.0	0 /	I 1_I i
0	1 <i>72</i> .177K	50.5	+0.0	10.0	10.0	10.2	10.0		55.7	-7.4	
7	17.004M	33.0	+5.8	+0.3	+0.2	+0.2	+0.0	40.6	50.0	-9.4	L1-Li
			+1.1								
8	269.261k	34.3	+5.8	+0.0	+0.0	+0.1	+0.0	40.2	51.1	-10.9	L1-Li
0	17 40014	21.2	+0.0	+0.4	+0.2	10.2	+0.0	28.0	50.0	11.1	III:
9	17.400101	51.2	+3.8	+0.4	+0.2	+0.2	+0.0	38.9	30.0	-11.1	LI-LI
10	12.652M	31.3	+5.8	+0.3	+0.1	+0.2	+0.0	38.6	50.0	-11.4	L1-Li
			+0.9								
11	12.256M	31.2	+5.8	+0.3	+0.1	+0.2	+0.0	38.4	50.0	-11.6	L1-Li
- 10	151 0001		+0.8				0.0				
12	474.333k	28.2	+5.8	+0.0	+0.0	+0.3	+0.0	34.3	46.4	-12.1	LI-Li
13	13.040M	30.6	+0.0	+0.3	+0.1	+0.2	+0.0	37.9	50.0	-12.1	L1-Li
15	15.0 10101	50.0	+0.9	10.5	10.1	10.2	10.0	51.9	50.0	12.1	
14	13.454M	30.5	+5.8	+0.3	+0.1	+0.2	+0.0	37.8	50.0	-12.2	L1-Li
			+0.9								
15	16.634M	30.0	+5.8	+0.3	+0.2	+0.2	+0.0	37.6	50.0	-12.4	L1-Li
16	17.91/M	29.5	+1.1	+0.4	±0.2	+0.2	+0.0	37.2	50.0	_12.8	I 1_I i
10	17.714101	27.5	+1.1	10.4	10.2	10.2	10.0	51.2	50.0	-12.0	
17	11.860M	29.4	+5.8	+0.3	+0.1	+0.2	+0.0	36.6	50.0	-13.4	L1-Li
			+0.8								
18	14.625M	29.2	+5.8	+0.3	+0.1	+0.2	+0.0	36.6	50.0	-13.4	L1-Li
10	16 2201	20.0	+1.0	+0.2	+0.2	+0.2		26.4	50.0	126	III:
19	10.238M	28.8	+5.8 +1.1	+0.5	+0.2	+0.2	+0.0	30.4	50.0	-13.0	LI-LI
20	12.734M	29.0	+5.8	+0.3	+0.1	+0.2	+0.0	36.3	50.0	-13.7	L1-Li
			+0.9								
21	15.022M	28.7	+5.8	+0.3	+0.1	+0.2	+0.0	36.2	50.0	-13.8	L1-Li
			+1.1								
22	541.964k	25.3	+5.8	+0.0	+0.0	+0.3	+0.0	31.4	46.0	-14.6	L1-Li
23	14 256M	28.0	+0.0	+0.3	+0.1	+0.2	+0.0	35.4	50.0	-14.6	L1-Li
23	17.20011	20.0	+1.0	10.5	10.1	F U. Z	10.0	55.4	50.0	-14.0	
24	2.000M	25.2	+5.8	+0.1	+0.0	+0.2	+0.0	31.3	46.0	-14.7	L1-Li
			+0.0								

25	13.842M	27.4	+5.8	+0.3	+0.1	+0.2	+0.0	34.8	50.0	-15.2	L1-Li
26	1.898M	24.7	+5.8	+0.1	+0.0	+0.2	+0.0	30.8	46.0	-15.2	L1-Li
			+0.0								
27	13.481M	27.3	+5.8	+0.3	+0.1	+0.2	+0.0	34.7	50.0	-15.3	L1-Li
			+1.0								
28	16.526M	27.0	+5.8	+0.3	+0.2	+0.2	+0.0	34.6	50.0	-15.4	L1-Li
20	12 52 (14	27.0	+1.1	.0.2	0.1	.0.2	.00	24.4	50.0	15.0	T1T:
29	13.520101	27.0	+5.8	+0.3	+0.1	+0.2	+0.0	54.4	50.0	-15.0	LI-LI
20	14 210M	27.0	+1.0	+0.3	+0.1	+0.2		34.4	50.0	15.6	I I I I
50	14.31914	27.0	+1.0	+0.5	+0.1	+0.2	+0.0	J 4 .4	50.0	-15.0	
31	17.526M	26.7	+5.8	+0.4	+0.2	+0.2	+0.0	34.4	50.0	-15.6	L1-Li
01	1102011		+1.1				1010	0	2010	1010	21 21
32	16.716M	26.7	+5.8	+0.3	+0.2	+0.2	+0.0	34.3	50.0	-15.7	L1-Li
			+1.1								
33	17.779M	26.6	+5.8	+0.4	+0.2	+0.2	+0.0	34.3	50.0	-15.7	L1-Li
			+1.1								
34	16.508M	26.5	+5.8	+0.3	+0.2	+0.2	+0.0	34.1	50.0	-15.9	L1-Li
25	10 27214	26.2	+1.1	+0.4	.0.2	.0.2	.00	24.0	50.0	16.0	T 1 T :
35	19.3/3M	26.3	+5.8	+0.4	+0.2	+0.2	+0.0	34.0	50.0	-16.0	LI-Li
36	14 743M	26.5	+1.1	+0.3	+0.1	+0.2	+0.0	33.0	50.0	16.1	I I I I
50	14.745101	20.5	+1.0	+0.5	+0.1	+0.2	+0.0	55.9	50.0	-10.1	
37	18.490M	26.2	+5.8	+0.4	+0.2	+0.2	+0.0	33.9	50.0	-16.1	L1-Li
0,	101190101		+1.1				1010	0017	2010	1011	21 21
38	13.932M	26.4	+5.8	+0.3	+0.1	+0.2	+0.0	33.8	50.0	-16.2	L1-Li
			+1.0								
39	1.626M	23.6	+5.8	+0.1	+0.0	+0.2	+0.0	29.7	46.0	-16.3	L1-Li
			+0.0								
40	15.445M	26.1	+5.8	+0.3	+0.2	+0.2	+0.0	33.7	50.0	-16.3	L1-Li
41	12 14914	26.2	+1.1	+0.2	+0.1	10.2	+0.0	22.6	50.0	16.4	T 1 T :
41	15.146101	20.5	+3.8	+0.3	+0.1	+0.2	+0.0	33.0	30.0	-10.4	
42	18 184M	25.9	+5.8	+0.4	+0.2	+0.2	+0.0	33.6	50.0	-164	L1-Li
12	10.10 101	23.7	+1.1	10.1	10.2	10.2	10.0	55.0	50.0	10.1	
43	24.902M	25.8	+5.8	+0.4	+0.2	+0.2	+0.0	33.5	50.0	-16.5	L1-Li
			+1.1								
44	608.866k	23.1	+5.8	+0.1	+0.0	+0.3	+0.0	29.3	46.0	-16.7	L1-Li
			+0.0								
45	744.854k	23.1	+5.8	+0.1	+0.0	+0.3	+0.0	29.3	46.0	-16.7	L1-Li
			+0.0								
46	15.112M	25.8	+5.8	+0.3	+0.1	+0.2	+0.0	33.3	50.0	-16.7	L1-Li
47	10.004M	25.5	+1.1	+0.4	10.2	10.2	+0.0	22.2	50.0	16.0	T1T:
47	19.004101	23.3	+3.8 +1 1	+0.4	+0.2	+0.2	+0.0	33.2	50.0	-10.8	
48	16.112M	25.5	+5.8	+0.3	+0.2	+0.2	+0.0	33.1	50.0	-169	L1-Li
	10,1121,1	20.0	+1.1	10.0	10.2	10.2	10.0	23.1	20.0	10.7	
49	17.166M	25.5	+5.8	+0.3	+0.2	+0.2	+0.0	33.1	50.0	-16.9	L1-Li
			+1.1								
50	17.607M	25.4	+5.8	+0.4	+0.2	+0.2	+0.0	33.1	50.0	-16.9	L1-Li
			+1.1								

Test Location:	CKC Laboratories Inc. • 110 N. Olinda Pl. • B	rea, CA 92823	• 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	104728	Date:	11/24/2020
Test Type:	Conducted Emissions	Time:	11:32:15 AM
Tested By:	Don Nguyen	Sequence#:	11
Software:	EMITest 5.03.19		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #		S/N					
Configuration 2									
Support Equipment:									
Device	Manufacturer	Model #		S/N					
Configuration 2									
Test Conditions / Notes:									
EUT is powered from 24Vac	e AC Adapter and set to trans	mitting mo	ode.						
Software profile: "WB-DSS	S 60 kbps, 2-GFSK, 195 kHz	deviation	, 4x spreading"						
RF Designed Based On: LA	UNCHXL-CC1352R1								
Frequency: 915MHz									
Symbol Rate: 480kBaud									
Modulation: 2-GFSK									
Deviation: 195kHz									
Cap Array Delta: 20 (0x14)	11-41								
TV Douger 14dPm	Julated								
TA FOwer. 14ubili									
Frequency of Measurement:	150kHz-30MHz								
RBW=9kHz, VBW=30kHz									
Test Environment Condition	18:								
Temperature: 23°C									
Relative Humidity: 43%									
Pressure: 99.3kPa									
Site A									
Test Method: ANSI C63	5.10 (2013)								

Venstar, Inc. WO#: 104728 Sequence#: 11 Date: 11/24/2020 15.207 AC Mains - Average Test Lead: 120V 60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
Т3	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/10/2020	3/10/2021
T4	AN02610	High Pass Filter	HE9615-150K- 50-720B	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
	ANP07738	Cable-Line L1(dB)	90cm-extcord	11/18/2020	11/18/2022
T5	ANP07738	Cable-Neutral L2(dB)	90cm-extcord	11/18/2020	11/18/2022

Measurement Data: Reading listed by margin.				Test Lead: L2-Neutral							
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	170.361k	39.8	+5.8 +0.0	+0.0	+0.0	+0.3	+0.0	45.9	54.9	-9.0	L2-Ne
2	155.817k	39.3	+5.8	+0.0	+0.0	+0.7	+0.0	45.8	55.7	-9.9	L2-Ne
3	181.269k	36.8	+5.8	+0.0	+0.0	+0.3	+0.0	42.9	54.4	-11.5	L2-Ne
4	212.539k	35.5	+5.8	+0.0	+0.0	+0.2	+0.0	41.5	53.1	-11.6	L2-Ne
5	13.058M	31.1	+5.8	+0.3	+0.2	+0.2	+0.0	38.4	50.0	-11.6	L2-Ne
6	12.643M	31.1	+5.8 +0.7	+0.3	+0.2	+0.2	+0.0	38.3	50.0	-11.7	L2-Ne
7	16.995M	30.1	+5.8 +1.0	+0.3	+0.2	+0.2	+0.0	37.6	50.0	-12.4	L2-Ne
8	17.391M	29.7	+5.8 +1.0	+0.4	+0.2	+0.2	+0.0	37.3	50.0	-12.7	L2-Ne
9	23.162M	29.4	+5.8 +1.0	+0.4	+0.3	+0.2	+0.0	37.1	50.0	-12.9	L2-Ne
10	16.598M	29.5	+5.8 +0.9	+0.3	+0.2	+0.2	+0.0	36.9	50.0	-13.1	L2-Ne
11	205.267k	34.1	+5.8 +0.0	+0.0	+0.0	+0.2	+0.0	40.1	53.4	-13.3	L2-Ne
12	12.274M	29.4	+5.8 +0.7	+0.3	+0.2	+0.2	+0.0	36.6	50.0	-13.4	L2-Ne
13	16.238M	28.6	+5.8 +0.9	+0.3	+0.2	+0.2	+0.0	36.0	50.0	-14.0	L2-Ne
14	13.157M	28.6	+5.8 +0.8	+0.3	+0.2	+0.2	+0.0	35.9	50.0	-14.1	L2-Ne
15	15.031M	28.5	+5.8 +0.9	+0.3	+0.2	+0.2	+0.0	35.9	50.0	-14.1	L2-Ne
16	17.806M	28.3	+5.8 +1.0	+0.4	+0.2	+0.2	+0.0	35.9	50.0	-14.1	L2-Ne
17	13.454M	28.5	+5.8 +0.8	+0.3	+0.2	+0.2	+0.0	35.8	50.0	-14.2	L2-Ne
18	474.333k	26.0	+5.8 +0.0	+0.0	+0.0	+0.3	+0.0	32.1	46.4	-14.3	L2-Ne
19	17.121M	28.2	+5.8 +1.0	+0.3	+0.2	+0.2	+0.0	35.7	50.0	-14.3	L2-Ne
20	14.643M	28.2	+5.8 +0.8	+0.3	+0.2	+0.2	+0.0	35.5	50.0	-14.5	L2-Ne
21	17.337M	27.8	+5.8 +1.0	+0.4	+0.2	+0.2	+0.0	35.4	50.0	-14.6	L2-Ne
22	20.454M	27.8	+5.8	+0.4	+0.2	+0.2	+0.0	35.4	50.0	-14.6	L2-Ne
23	13.130M	27.9	+5.8	+0.3	+0.2	+0.2	+0.0	35.2	50.0	-14.8	L2-Ne
24	14.697M	27.5	+5.8 +0.8	+0.3	+0.2	+0.2	+0.0	34.8	50.0	-15.2	L2-Ne

25	14.238M	27.1	+5.8	+0.3	+0.2	+0.2	+0.0	34.4	50.0	-15.6	L2-Ne
26	14.725M	27.0	+5.8	+0.3	+0.2	+0.2	+0.0	34.3	50.0	-15.7	L2-Ne
27	19.085M	26.7	+5.8	+0.4	+0.2	+0.2	+0.0	34.3	50.0	-15.7	L2-Ne
28	17.508M	26.6	+5.8	+0.4	+0.2	+0.2	+0.0	34.2	50.0	-15.8	L2-Ne
29	269.988k	29.3	+5.8	+0.0	+0.0	+0.1	+0.0	35.2	51.1	-15.9	L2-Ne
30	541.964k	23.9	+5.8 +0.0	+0.0	+0.0	+0.3	+0.0	30.0	46.0	-16.0	L2-Ne
31	11.860M	26.5	+5.8 +0.7	+0.3	+0.2	+0.2	+0.0	33.7	50.0	-16.3	L2-Ne
32	17.905M	26.1	+5.8 +1.0	+0.4	+0.2	+0.2	+0.0	33.7	50.0	-16.3	L2-Ne
33	23.196M	26.0	+5.8 +1.0	+0.4	+0.3	+0.2	+0.0	33.7	50.0	-16.3	L2-Ne
34	17.148M	26.1	+5.8 +1.0	+0.3	+0.2	+0.2	+0.0	33.6	50.0	-16.4	L2-Ne
35	24.923M	25.9	+5.8 +1.0	+0.4	+0.3	+0.2	+0.0	33.6	50.0	-16.4	L2-Ne
36	608.139k	23.2	+5.8 +0.0	+0.1	+0.0	+0.3	+0.0	29.4	46.0	-16.6	L2-Ne
37	13.544M	26.1	+5.8 +0.8	+0.3	+0.2	+0.2	+0.0	33.4	50.0	-16.6	L2-Ne
38	16.427M	25.8	+5.8 +0.9	+0.3	+0.2	+0.2	+0.0	33.2	50.0	-16.8	L2-Ne
39	12.355M	25.7	+5.8 +0.7	+0.3	+0.2	+0.2	+0.0	32.9	50.0	-17.1	L2-Ne
40	17.752M	25.3	+5.8 +1.0	+0.4	+0.2	+0.2	+0.0	32.9	50.0	-17.1	L2-Ne
41	24.868M	24.9	+5.8 +1.0	+0.4	+0.3	+0.2	+0.0	32.6	50.0	-17.4	L2-Ne
42	13.842M	25.2	+5.8 +0.8	+0.3	+0.2	+0.2	+0.0	32.5	50.0	-17.5	L2-Ne
43	1.285M	22.2	+5.8 +0.1	+0.1	+0.0	+0.2	+0.0	28.4	46.0	-17.6	L2-Ne
44	1.826M	22.2	+5.8 +0.1	+0.1	+0.0	+0.2	+0.0	28.4	46.0	-17.6	L2-Ne
45	744.854k	22.0	+5.8 +0.0	+0.1	+0.0	+0.3	+0.0	28.2	46.0	-17.8	L2-Ne
46	2.370M	21.9	+5.8 +0.1	+0.1	+0.0	+0.2	+0.0	28.1	46.0	-17.9	L2-Ne
47	15.418M	24.6	+5.8 +0.9	+0.3	+0.2	+0.2	+0.0	32.0	50.0	-18.0	L2-Ne
48	1.558M	21.7	+5.8 +0.1	+0.1	+0.0	+0.2	+0.0	27.9	46.0	-18.1	L2-Ne
49	10.292M	24.8	+5.8 +0.6	+0.3	+0.2	+0.2	+0.0	31.9	50.0	-18.1	L2-Ne
50	15.688M	24.5	+5.8 +0.9	+0.3	+0.2	+0.2	+0.0	31.9	50.0	-18.1	L2-Ne

Test Setup Photo(s)

Front View

Back View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS					
	Meter reading	(dBµV)			
+	Antenna Factor	(dB/m)			
+	CableLoss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

<u>Quasi-Peak</u>

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

<u>Average</u>

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.