Venstar, Inc.

TEST REPORT FOR

Thermostat with WiFi, Subgig, and BLE Model: Explorer 2

Tested to The Following Standards:
FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(DTS 902-928 MHz)

Report No.: 104728-12

Date of issue: January 15, 2021

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

This report contains a total of 44 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKCLaboratories, Inc.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 7
FCC Part 15 Subpart C 12
15.247(a)(2) 6dB Bandwidth 12
15.247(b)(3) Output Power 15
15.247(e) Power Spectral Density 18
15.247(d) RF Conducted Emissions \& Band Edge 20
15.247(d) Radiated Emissions \& Band Edge 24
15.207 AC Conducted Emissions 34
Supplemental Information 43
Measurement Uncertainty 43
Emissions Test Details. 43

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Venstar, Inc.
9250 Owensmouth Avenue
Chatsworth, CA 91311

Representative: Alex Garashin

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Kim Romero
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 104728

November 17, 2020
November 17, 18, 20, and 24, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2 LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .19

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082 B	A-0136
Mariposa, CA	US0103	US1024	$3082 A$	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(2)$	6dB Bandwidth	NA	Pass
$15.247(\mathrm{~b})(3)$	Output Power	NA	Pass
$15.247(\mathrm{e})$	Power Spectral Density	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing
This listis a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Thermostat with WiFi,	Venstar, Inc.	Explorer 2	NA
Subgig, and BLE			

Support Equipment:

Device	Manufacturer	Model \#	S/N
Interface board	Texas Instruments	CC1352R1	NA
$24 V a c$ Adapter	Unbranded	MKA-412400200	NA
Laptop	Lenovo	T500	NA
Laptop ACDC Adapter	Lenovo	92P1156	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Thermostat with WiFi,	Venstar, Inc.	Explorer 2	NA
Subgig, and BLE			

Support Equipment:

Device	Manufacturer	Model \#	S/N
24Vac Adapter	Unbranded	MKA-412400200	NA

$\sqrt[4]{\text { Testing the Future }}$
LABORATORIES, INC.

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	$802.15 .4 \mathrm{~g} /$ Proprietary
Operating Frequency Range:	915 MHz
Modulation Types):	$2-\mathrm{GFSK}$
Maximum Duty Cycle:	100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Chip Antenna/ -1dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral (External connector provided to facilitate testing)
Nominal Input Voltage:	24 Vac
Firmware used for Test:	$04-38-00$

EUT Photos)

Support Equipment Photo(s)

Laptop

AC/DC adapter

24Vac Adapter

Interface Board

Wifi Prog Board

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen
Test Method:	ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02	Test Date(s):	$11 / 17 / 2020$
Configuration:	1	EUT is powered from 24Vac AC Adapter and connected to a laptop via USB cable and test board. The laptop is running software SmartRF Studio 7 to activate transmitter. Software profile: "WB-DSSS 60 kbps, 2-GFSK, 195 kHz deviation, 4x spreading" RF Designed Based On: LAUNCHXL-CC1352R1 Frequency: 915MHz Symbol Rate: 480kBaud Modulation: 2-GFSK Deviation:195kHz Cap Array Delta: 20 (0x14) Mode: Continuous TX/ Modulated TX Power: 14dBm	
Frequency of meas urement: 915MHz RBW=100kHz, VBW=300kHz			

Environmental Conditions				
Temperature (으)	21.1	Relative Humidity (\%):	32	

Test Equipment

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440	$8 / 3 / 2020$	$8 / 3 / 2021$	
03432	Attenuator	Aeroflex/Weinschel	$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$	
P07246	Cable	H\&S	$32022-29094 K-$ $29094 K-24 T C ~$	$5 / 29 / 2020$	$5 / 29 / 2022$	

Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured $(\mathbf{k H z})$	Limit $(\mathbf{k H z})$	Results	
915	1	2-GFSK	563.227	≥ 500	Pass	

Plot(s)

Test Setup Photo(s)

LABORATORIES, INC.

15.247(b)(3) Output Power

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen
Test Method:	ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02	Test Date(s):	$11 / 17 / 2020$
Configuration:	1	EUT is powered from 24Vac AC Adapter and connected to a laptop via USB cable and test board. The laptop is running software SmartRF Studio 7 to activate transmitter. Software profile: "WB-DSSS 60 kbps, 2-GFSK, 195 kHz deviation, 4x spreading" RF Designed Based On: LAUNCHXL-CC1352R1 Frequency: 915MHz Symbol Rate: 480kBaud Modulation: 2-GFSK	
Deviation:195kHz			
Cap Array Delta: 20 (0x14)			
Mode: Continuous TX/ Modulated			
TX Power: 14dBm			
Frequency of measurement: 915MHz			
RBW=1MHz, VBW=3MHz			

Environmental Conditions				
Temperature (으)	21.1	Relative Humidity (\%):	32	

Test Equipment

Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due
02869	Spectrum Analyzer	Agilent	E4440	$8 / 3 / 2020$	$8 / 3 / 2021$
03432	Attenuator	Aeroflex/Weinsche I	$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$
P07246	Cable	H\&S	$32022-29094 K-$ $29094 K-24 T C ~$	$5 / 29 / 2020$	$5 / 29 / 2022$

Test Data Summary - Voltage Variations

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation	$\mathbf{V}_{\text {Minimum }}$ (dBm)	$\mathbf{V}_{\text {Nominal }}$ (dBm)	$\mathbf{V}_{\text {Maximum }}$ (dBm)	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathrm{dB})$	
915	GFSK	13.30	13.29	13.30	0.01	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V Nominal: V	24.0 Vac
V Minimum: V	20.4 Vac
	27.6 Vac

Test Data Summary - RF Conducted Measurement

Measurement Option: RBW > DTS Bandwidth

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type / Gain $(\mathbf{d B i})$	Measured $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Results
915	GFSK	-1	13.29	≤ 30	Pass

Plot(s)

Test Setup Photo(s)

LABORATORIES, INC.

15.247(e) Power Spectral Density

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen
Test Method:	ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02	Test Date(s):	$11 / 17 / 2020$
Configuration:	1	EUT is powered from 24Vac AC Adapter and connected to a laptop via USB cable and test board. The laptop is running software SmartRF Studio 7 to activate transmitter. Software profile: "WB-DSSS 60 kbps, 2-GFSK, 195 kHz deviation, 4x spreading" RF Designed Based On: LAUNCHXL-CC1352R1 Frequency: 915MHz Symbol Rate: 480kBaud Modulation: 2-GFSK Deviation:195kHz Cap Array Delta: 20 (0x14) Mode: Continuous TX/ Modulated TX Power: 14dBm Frequency of measurement: 915MHz RBW=3kHz, VBW=9kHz	

Environmental Conditions			
Temperature (으)	21.1	Relative Humidity (\%):	32

Test Equipment

Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due
02869	Spectrum Analyzer	Agilent	E4440	$8 / 3 / 2020$	$8 / 3 / 2021$
03432	Attenuator	Aeroflex/Weinschel	$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$
P07246	Cable	H\&S	$32022-29094 K-$ $29094 K-24 T C ~$	$5 / 29 / 2020$	$5 / 29 / 2022$

Test Data Summary - Conducted Measurement

Measurement Method: PKPSD

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured $(\mathbf{d B m} / \mathbf{3 k H z})$	Limit $(\mathbf{d B m} / \mathbf{3 k H z})$	Results
915	GFSK	-1	4.85	≤ 8	Pass

Plot(s)

Test Setup Photo(s)

LABORATORIES, INC.

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc.
15.247(d) Conducted Spurious Emissions

104728
Conducted Emissions
Don Nguyen
EMITest 5.03.19

Date: 11/17/2020
Time: 08:56:51
Sequence\#: 1
24Vac

Equipment Tested:

| Device Manufacturer Model \#
 Configuration 1 S/N
 Support Equipment:
 Device Manufacturer Model \#
 Configuration 1 |
| :--- | :--- | :--- | :--- |

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and connected to a laptop via USB cable and test board. The laptop is running software SmartRF Studio 7 to activate transmitter.
Software setting:
RF Designed Based On: LAUNCHXL-CC1352R1
Frequency: 915 MHz
Symbol Rate: 480kBaud
Modulation: 2-GFSK
Deviation: 195 kHz
Cap Array Delta: 20 (0x14)
Mode: Continuous TX/ Modulated
TX Power: 14dBm
Frequency of Measurement: $9 \mathrm{kHz}-10 \mathrm{GHz}$
LBW $=100 \mathrm{kHz}, \quad V B W=300 \mathrm{kHz}$

Test Environment Conditions:
Temperature: $25.4^{\circ} \mathrm{C}$
Relative Humidity: 24\%
Test Method: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07246	Cable	$32022-29094 K-$ $29094 K-24 T C ~$	$5 / 29 / 2020$	$5 / 29 / 2022$
			$90-30-34$	$10 / 22 / 2019$	$10 / 22 / 2021$
T2	AN03432	Attenuator	Spectrum Analyzer	E4440A	$5 / 20 / 2020$
	AN03643				$5 / 20 / 2022$

Measurement Data: Reading listed by margin. Test Lead: Antenna Port

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \mathrm{T} 1 \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Spec } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	2744.417M	56.3	+0.4	+29.7			+0.0	86.4	99.6	-13.2	Anten
2	8233.242M	36.9	+0.9	+29.3			+0.0	67.1	99.6	-32.5	Anten
3	9151.808M	36.4	+1.0	+29.3			+0.0	66.7	99.6	-32.9	Anten
4	4575.900M	36.3	+0.6	+29.7			+0.0	66.6	99.6	-33.0	Anten
5	5488.875M	35.4	+0.7	+29.9			+0.0	66.0	99.6	-33.6	Anten
6	7321.467M	35.3	+0.8	+29.4			+0.0	65.5	99.6	-34.1	Anten
7	1829.617M	34.7	+0.4	+29.6			+0.0	64.7	99.6	-34.9	Anten
8	3660.750M	32.9	+0.7	+29.8			+0.0	63.4	99.6	-36.2	Anten
9	6406.275M	32.2	+0.7	+29.5			+0.0	62.4	99.6	-37.2	Anten
10	457.500M	29.5	+0.1	+29.6			+0.0	59.2	99.6	-40.4	Anten
11	963.170M	28.5	+0.3	+29.6			+0.0	58.4	99.6	-41.2	Anten
12	48.000M	27.6	+0.0	+29.5			+0.0	57.1	99.6	-42.5	Anten
13	96.000 M	27.4	+0.0	+29.5			+0.0	56.9	99.6	-42.7	Anten
14	1011.170M	26.9	+0.3	+29.6			+0.0	56.8	99.6	-42.8	Anten

Band Edge

Band Edge Plots

Test Setup Photo(s)

LABORATORIES, INC.

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer: Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728 Date: 11/20/2020
Maximized Emissions Time: 09:06:15
Don Nguyen
EMITest 5.03.19
Sequence\#: 2

Equipment Tested:

Device Configuration 2	Manufacturer	Model \#	S/N
Support Equipment:			
Device Manufacturer Model \# Configuration 2 S/N			

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software profile: "WB-DSSS $60 \mathrm{kbps}, 2-\mathrm{GFSK}, 195 \mathrm{kHz}$ deviation, 4x spreading" RF Designed Based On: LAUNCHXL-CC1352R1
Frequency: 915 MHz
Symbol Rate: 480kBaud
Modulation: 2-GFSK
Deviation: 195 kHz
Cap Array Delta: 20 (0x14)
Mode: Continuous TX/ Modulated
TX Power: 14dBm

Frequency of Measurement: $9 \mathrm{kHz}-9280 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, ~ V B W=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}, \quad V B W=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, ~ R B W=120 \mathrm{kHz}, V B W=360 \mathrm{kHz}$
$1000-9280 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, V B W=3 \mathrm{MHz}$

Test Environment Conditions:
Temperature: $21.6^{\circ} \mathrm{C}$
Relative Humidity: 42\%

Test Method: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Venstar, Inc. WO\#: 104728 Sequence\#\#: 2 Date: 11/20/2020
15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
$\times \quad$ QP Readings
\times Ambient
$1-15.247$ (d) / 15.209 Radiated Spurious Emissions
0 Peak Readings

* Average Readings
Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANO0314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
	ANO3367	Horn Antenna	$62-G H-62-25$.	$8 / 1 / 2019$	$8 / 1 / 2021$
T1	AN00309	Preamp	$8447 D$	$12 / 24 / 2019$	$12 / 24 / 2021$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T5	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T6	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	AN00786	Preamp	83017 A	$5 / 20 / 2020$	$5 / 20 / 2022$
T8	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T9	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T10	ANP07246	Cable	$32022-29094 K-$	$5 / 29 / 2020$	$5 / 29 / 2022$
T11	AN03169	High Pass Filter	HM1155-11SS	$5 / 8 / 2019$	$5 / 8 / 2021$

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \hline \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \\ \hline \end{gathered}$	T4 T8 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \text { 2744.350M } \\ & \text { Ave } \end{aligned}$	53.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	+0.0	48.7	54.0	-5.3	Vert
$\wedge 2744.350 \mathrm{M}$	70.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	+0.0	66.0	54.0	+12.0	Vert
$3 \quad 962.825 \mathrm{M}$	36.7	$\begin{array}{r} -27.2 \\ +24.5 \\ +0.0 \end{array}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \end{aligned}$	+0.0	46.5	54.0	-7.5	Vert
$\begin{aligned} & 4 \text { 2744.383M } \\ & \text { Ave } \end{aligned}$	49.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	+0.0	44.7	54.0	-9.3	Horiz
$\wedge 2744.383 \mathrm{M}$	67.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	+0.0	62.2	54.0	+8.2	Horiz
6 4574.080M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -37.4 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.6 \end{array}$	+0.0	44.6	54.0	-9.4	Horiz
$7 \quad 962.850 \mathrm{M}$	33.7	$\begin{array}{r} -27.2 \\ +24.5 \\ +0.0 \end{array}$	$\begin{aligned} & +6.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.0 \end{aligned}$	+0.0	43.5	54.0	-10.5	Vert
$8 \quad 248.200 \mathrm{M}$	41.9	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	35.2	46.0	-10.8	Horiz
93659.480 M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.1 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.0 \end{array}$	+0.0	42.9	54.0	-11.1	Vert
$10 \quad 245.800 \mathrm{M}$	40.8	$\begin{array}{r} -27.9 \\ +12.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	33.9	46.0	-12.1	Horiz
11 250.700M	40.0	$\begin{array}{r} -27.9 \\ +12.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	33.4	46.0	-12.6	Horiz
$\begin{aligned} & 127318.450 \mathrm{M} \\ & \text { Ave } \end{aligned}$	33.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	+0.0	39.1	54.0	-14.9	Horiz
$\wedge 7318.450 \mathrm{M}$	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	+0.0	55.2	54.0	+1.2	Horiz
14 243.500M	37.5	$\begin{array}{r} -27.9 \\ +11.9 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	30.5	46.0	-15.5	Horiz

	$\begin{aligned} & \hline 8233.450 \mathrm{M} \\ & \text { Ave } \end{aligned}$	27.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +36.9 \end{array}$	+0.0	34.7	54.0	-19.3	Horiz
\wedge	8233.450M	43.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +36.9 \end{array}$	+0.0	50.4	54.0	-3.6	Horiz
	$\begin{aligned} & \text { 7321.380M } \\ & \text { Ave } \end{aligned}$	28.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$+0.0$	34.6	54.0	-19.4	Vert
\wedge	7321.380M	44.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$+0.0$	50.9	54.0	-3.1	Vert
19	1830.017M	68.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -38.8 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +26.9 \end{array}$	$+0.0$	60.1	88.7	-28.6	Vert
20	221.950M	46.6	$\begin{array}{r} -27.9 \\ +10.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	$+0.0$	38.0	88.7	-50.7	Horiz
21	303.100M	41.0	$\begin{array}{r} -27.9 \\ +13.4 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	$+0.0$	35.9	88.7	-52.8	Horiz
22	224.900 M	43.2	$\begin{array}{r} -27.9 \\ +10.7 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.8 \\ & +0.0 \end{aligned}$	$+0.0$	34.9	88.7	-53.8	Vert
23	303.200M	39.2	$\begin{array}{r} -27.9 \\ +13.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	$+0.0$	34.1	88.7	-54.6	Vert

Band Edge

Band Edge Summary

Limit applied: Max Power/100kHz-20dB.

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m} @ 3 \mathrm{~m})$	Limit $(\mathbf{d B u V} / \mathrm{m}$ @3m)	Results
614	GFSK	Chip Antenna	36.7	<46	Pass
902	GFSK	Chip Antenna	41.1	<88.7	Pass
928	GFSK	Chip Antenna	42.1	<88.7	Pass
960	GFSK	Chip Antenna	44.0	<54	Pass

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories Inc. • 110 N. Olinda Pl. • Area, CA 92823 • 714-993-6112		
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious Emissions		
Work Order \#:	104728	Date: 11/18/2020	Time: 09:23:51
Test Type:	Maximized Emissions	Sequence\#:	5
Tested By:	Don Nguyen		
Software:	EMITest 5.03.19		

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

EUT is powered from 24Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software profile: "WB-DSSS $60 \mathrm{kbps}, 2-\mathrm{GFSK}, 195 \mathrm{kHz}$ deviation, 4 x spreading"
RF Designed Based On: LAUNCHXL-CC1352R1
Frequency: 915 MHz
Symbol Rate: 480kBaud
Modulation: 2-GFSK
Deviation: 195kHz
Cap Array Delta: 20 (0x14)
Mode: Continuous TX/ Modulated
TX Power: 14 dBm

Frequency of Measurement: $614-960 \mathrm{MHz}$
LBW $=120 \mathrm{kHz}, ~ V B W=360 \mathrm{kHz}$ (restricted band)
LBW $=100 \mathrm{kHz}, ~ V B W=300 \mathrm{kHz}(-20 \mathrm{dBc}$ limit)

Test Environment Conditions:
Temperature: $21.6^{\circ} \mathrm{C}$
Relative Humidity: 42%

Test Method: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447 D	$12 / 24 / 2019$	$12 / 24 / 2021$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
T5	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T6	AN01993	Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$

Measurement Data:			Reading listed by margin.			Test Distance: 3 Meters					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBuV	T5 dB	T6 dB	dB	dB	Table	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Ant
1	614.000M	33.3	-27.4	+5.9	+0.4	+4.7	+0.0	36.7	46.0	-9.3	Horiz
			+0.0	+19.8							
2	960.000M	34.3	-27.2	+6.0	$+0.4$	+6.1	+0.0	44.0	54.0	-10.0	Horiz
			+0.0	+24.4							
3	928.000M	33.0	-27.2	+6.0	$+0.4$	+6.0	$+0.0$	42.1	88.7	-46.6	Horiz
			+0.0	+23.9							
4	902.000M	32.4	-27.1	+6.0	+0.4	+5.9	+0.0	41.1	88.7	-47.6	Horiz
			+0.0	+23.5							

Test Setup Photos)

Below 1GHz

Below 1GHz

Above 1 GHz

Above 1 GHz

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc.
15.207 AC Mains - Average

104728
Conducted Emissions
Don Nguyen
EMITest 5.03.19

Date: 11/24/2020
Time: 11:33:44 AM
Sequence\#: 12
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmitting mode.
Software profile: "WB-DSSS 60 kbps , 2-GFSK, 195 kHz deviation, 4 x spreading"
RF Designed Based On: LAUNCHXL-CC1352R1
Frequency: 915 MHz
Symbol Rate: 480kBaud
Modulation: 2-GFSK
Deviation: 195 kHz
Cap Array Delta: 20 (0x14)
Mode: Continuous TX/ Modulated
TX Power: 14dBm

Frequency of Measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
LBW $=9 \mathrm{kHz}, ~ V B W=30 \mathrm{kHz}$

Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Relative Humidity: 43\%
Pressure: 99.3kPa
Site A
Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
T3	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/10/2020	3/10/2021
T4	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
T5	ANP07738	Cable-Line L1(dB)	90 cm -extcord	11/18/2020	11/18/2022
	ANP07738	Cable-Neutral $\mathrm{L} 2(\mathrm{~dB})$	90cm-extcord	11/18/2020	11/18/2022

Measurement Data: Reading listed by margin. Test Lead: L1-Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T3 } \\ \text { dB } \end{gathered}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	158.726k	43.6	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.6	+0.0	50.0	55.5	-5.5	L1-Li
2	165.271k	43.4	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.4	+0.0	49.6	55.2	-5.6	L1-Li
3	213.994k	39.3	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.2	+0.0	45.3	53.0	-7.7	L1-Li
4	183.451k	39.5	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.3	+0.0	45.6	54.3	-8.7	L1-Li
5	199.450k	38.5	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.2	+0.0	44.5	53.6	-9.1	L1-Li
6	192.177k	38.5	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.2	+0.0	44.5	53.9	-9.4	L1-Li
7	17.004 M	33.0	$\begin{aligned} & +5.8 \\ & +1.1 \\ & \hline \end{aligned}$	+0.3	+0.2	+0.2	+0.0	40.6	50.0	-9.4	L1-Li
8	269.261k	34.3	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.1	+0.0	40.2	51.1	-10.9	L1-Li
9	17.400M	31.2	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	+0.4	+0.2	+0.2	+0.0	38.9	50.0	-11.1	L1-Li
10	12.652M	31.3	$\begin{aligned} & +5.8 \\ & +0.9 \end{aligned}$	+0.3	+0.1	+0.2	+0.0	38.6	50.0	-11.4	L1-Li
11	12.256M	31.2	$\begin{aligned} & +5.8 \\ & +0.8 \end{aligned}$	+0.3	+0.1	+0.2	+0.0	38.4	50.0	-11.6	L1-Li
12	474.333k	28.2	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.3	+0.0	34.3	46.4	-12.1	L1-Li
13	13.040M	30.6	$\begin{aligned} & +5.8 \\ & +0.9 \end{aligned}$	+0.3	+0.1	$+0.2$	+0.0	37.9	50.0	-12.1	L1-Li
14	13.454M	30.5	$\begin{array}{r} +5.8 \\ +0.9 \\ \hline \end{array}$	+0.3	+0.1	+0.2	+0.0	37.8	50.0	-12.2	L1-Li
15	16.634 M	30.0	$\begin{aligned} & +5.8 \\ & +1.1 \end{aligned}$	+0.3	+0.2	+0.2	+0.0	37.6	50.0	-12.4	L1-Li
16	17.914M	29.5	$\begin{aligned} & +5.8 \\ & +1.1 \\ & \hline \end{aligned}$	$+0.4$	$+0.2$	$+0.2$	+0.0	37.2	50.0	-12.8	L1-Li
17	11.860M	29.4	$\begin{aligned} & +5.8 \\ & +0.8 \end{aligned}$	+0.3	+0.1	+0.2	+0.0	36.6	50.0	-13.4	L1-Li
18	14.625 M	29.2	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	+0.3	+0.1	+0.2	+0.0	36.6	50.0	-13.4	L1-Li
19	16.238 M	28.8	$\begin{aligned} & \hline+5.8 \\ & +1.1 \\ & \hline \end{aligned}$	+0.3	+0.2	+0.2	+0.0	36.4	50.0	-13.6	L1-Li
20	12.734 M	29.0	$\begin{aligned} & +5.8 \\ & +0.9 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.2	+0.0	36.3	50.0	-13.7	L1-Li
21	15.022M	28.7	$\begin{aligned} & \hline+5.8 \\ & +1.1 \\ & \hline \end{aligned}$	+0.3	+0.1	$+0.2$	+0.0	36.2	50.0	-13.8	L1-Li
22	541.964k	25.3	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	$+0.3$	+0.0	31.4	46.0	-14.6	L1-Li
23	14.256M	28.0	$\begin{aligned} & +5.8 \\ & +1.0 \\ & \hline \end{aligned}$	+0.3	+0.1	$+0.2$	+0.0	35.4	50.0	-14.6	L1-Li
24	2.000 M	25.2	$\begin{array}{r} +5.8 \\ +0.0 \\ \hline \end{array}$	+0.1	+0.0	$+0.2$	+0.0	31.3	46.0	-14.7	L1-Li

25	13.842M	27.4	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	$+0.3$	+0.1	$+0.2$	$+0.0$	34.8	50.0	-15.2	L1-Li
26	1.898M	24.7	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.2	$+0.0$	30.8	46.0	-15.2	L1-Li
27	13.481M	27.3	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	+0.3	+0.1	$+0.2$	$+0.0$	34.7	50.0	-15.3	L1-Li
28	16.526 M	27.0	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	$+0.3$	+0.2	$+0.2$	$+0.0$	34.6	50.0	-15.4	L1-Li
29	13.526 M	27.0	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	+0.3	+0.1	$+0.2$	+0.0	34.4	50.0	-15.6	L1-Li
30	14.319M	27.0	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	$+0.3$	+0.1	$+0.2$	$+0.0$	34.4	50.0	-15.6	L1-Li
31	17.526M	26.7	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	+0.4	+0.2	$+0.2$	+0.0	34.4	50.0	-15.6	L1-Li
32	16.716M	26.7	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	+0.3	+0.2	$+0.2$	$+0.0$	34.3	50.0	-15.7	L1-Li
33	17.779M	26.6	$\begin{aligned} & +5.8 \\ & +1.1 \end{aligned}$	$+0.4$	+0.2	$+0.2$	$+0.0$	34.3	50.0	-15.7	L1-Li
34	16.508M	26.5	$\begin{array}{r} +5.8 \\ +1.1 \end{array}$	+0.3	+0.2	$+0.2$	$+0.0$	34.1	50.0	-15.9	L1-Li
35	19.373M	26.3	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	$+0.4$	+0.2	$+0.2$	$+0.0$	34.0	50.0	-16.0	L1-Li
36	14.743M	26.5	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	$+0.3$	+0.1	$+0.2$	$+0.0$	33.9	50.0	-16.1	L1-Li
37	18.490M	26.2	$\begin{array}{r} +5.8 \\ +1.1 \\ \hline \end{array}$	+0.4	+0.2	$+0.2$	$+0.0$	33.9	50.0	-16.1	L1-Li
38	13.932M	26.4	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	+0.3	+0.1	$+0.2$	+0.0	33.8	50.0	-16.2	L1-Li
39	1.626M	23.6	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.0	$+0.2$	$+0.0$	29.7	46.0	-16.3	L1-Li
40	15.445M	26.1	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	+0.3	+0.2	$+0.2$	$+0.0$	33.7	50.0	-16.3	L1-Li
41	13.148M	26.3	$\begin{array}{r} +5.8 \\ +0.9 \\ \hline \end{array}$	+0.3	+0.1	$+0.2$	$+0.0$	33.6	50.0	-16.4	L1-Li
42	18.184M	25.9	$\begin{aligned} & +5.8 \\ & +1.1 \end{aligned}$	+0.4	+0.2	$+0.2$	$+0.0$	33.6	50.0	-16.4	L1-Li
43	24.902M	25.8	$\begin{aligned} & +5.8 \\ & +1.1 \end{aligned}$	$+0.4$	+0.2	$+0.2$	$+0.0$	33.5	50.0	-16.5	L1-Li
44	608.866k	23.1	$\begin{aligned} & \hline+5.8 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.1$	+0.0	$+0.3$	+0.0	29.3	46.0	-16.7	L1-Li
45	744.854k	23.1	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.0	$+0.3$	+0.0	29.3	46.0	-16.7	L1-Li
46	15.112M	25.8	$\begin{aligned} & \hline+5.8 \\ & +1.1 \end{aligned}$	+0.3	+0.1	$+0.2$	$+0.0$	33.3	50.0	-16.7	L1-Li
47	19.004M	25.5	$\begin{aligned} & \hline+5.8 \\ & +1.1 \\ & \hline \end{aligned}$	+0.4	+0.2	+0.2	$+0.0$	33.2	50.0	-16.8	L1-Li
48	16.112 M	25.5	$\begin{array}{r} \hline+5.8 \\ +1.1 \\ \hline \end{array}$	+0.3	+0.2	+0.2	+0.0	33.1	50.0	-16.9	L1-Li
49	17.166M	25.5	$\begin{array}{r} \hline+5.8 \\ +1.1 \\ \hline \end{array}$	$+0.3$	+0.2	$+0.2$	$+0.0$	33.1	50.0	-16.9	L1-Li
50	17.607M	25.4	$\begin{array}{r} \hline+5.8 \\ +1.1 \\ \hline \end{array}$	$+0.4$	+0.2	$+0.2$	$+0.0$	33.1	50.0	-16.9	L1-Li

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.207 AC Mains - Average

104728
Conducted Emissions
Date: 11/24/2020
Time: 11:32:15 AM
Don Nguyen
EMITest 5.03.19

Sequence\#: 11
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmitting mode.
Software profile: "WB-DSSS 60 kbps , 2-GFSK, 195 kHz deviation, 4x spreading"
RF Designed Based On: LAUNCHXL-CC1352R1
Frequency: 915 MHz
Symbol Rate: 480kBaud
Modulation: 2-GFSK
Deviation: 195kHz
Cap Array Delta: 20 (0x14)
Mode: Continuous TX/ Modulated
TX Power: 14 dBm

Frequency of Measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}, V B W=30 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Relative Humidity: 43\%
Pressure: 99.3 kPa
Site A
Test Method: ANSI C63.10 (2013)

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
T3	AN00847.1	$\begin{aligned} & \text { 50uH LISN-(N) Line } \\ & 2 \end{aligned}$	3816/2NM	3/10/2020	3/10/2021
T4	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
	ANP07738	Cable-Line L1(dB)	90 cm -extcord	11/18/2020	11/18/2022
T5	ANP07738	Cable-Neutral $\mathrm{L} 2(\mathrm{~dB})$	90cm-extcord	11/18/2020	11/18/2022

Measurement Data: \quad Reading listed by margin. Test Lead: L2-Neutral

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	170.361k	39.8	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	$+0.3$	+0.0	45.9	54.9	-9.0	L2-Ne
2	155.817k	39.3	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	+0.7	+0.0	45.8	55.7	-9.9	L2-Ne
3	181.269k	36.8	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	$+0.3$	+0.0	42.9	54.4	-11.5	L2-Ne
4	212.539k	35.5	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	$+0.2$	$+0.0$	41.5	53.1	-11.6	L2-Ne
5	13.058M	31.1	$\begin{aligned} & +5.8 \\ & +0.8 \end{aligned}$	+0.3	+0.2	+0.2	+0.0	38.4	50.0	-11.6	L2-Ne
6	12.643 M	31.1	$\begin{aligned} & +5.8 \\ & +0.7 \end{aligned}$	+0.3	+0.2	+0.2	+0.0	38.3	50.0	-11.7	L2-Ne
7	16.995 M	30.1	$\begin{array}{r} +5.8 \\ +1.0 \\ \hline \end{array}$	+0.3	+0.2	$+0.2$	$+0.0$	37.6	50.0	-12.4	L2-Ne
8	17.391M	29.7	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	+0.4	+0.2	$+0.2$	$+0.0$	37.3	50.0	-12.7	L2-Ne
9	23.162M	29.4	$+5.8$	+0.4	+0.3	+0.2	+0.0	37.1	50.0	-12.9	L2-Ne
10	16.598 M	29.5	$\begin{array}{r} +5.8 \\ +0.9 \\ \hline \end{array}$	+0.3	+0.2	$+0.2$	$+0.0$	36.9	50.0	-13.1	L2-Ne
11	205.267k	34.1	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.0	+0.0	$+0.2$	+0.0	40.1	53.4	-13.3	L2-Ne
12	12.274M	29.4	$\begin{aligned} & +5.8 \\ & +0.7 \end{aligned}$	+0.3	+0.2	$+0.2$	+0.0	36.6	50.0	-13.4	L2-Ne
13	16.238 M	28.6	$\begin{aligned} & +5.8 \\ & +0.9 \end{aligned}$	+0.3	$+0.2$	$+0.2$	$+0.0$	36.0	50.0	-14.0	L2-Ne
14	13.157M	28.6	$\begin{aligned} & +5.8 \\ & +0.8 \end{aligned}$	+0.3	+0.2	+0.2	+0.0	35.9	50.0	-14.1	L2-Ne
15	15.031 M	28.5	$\begin{aligned} & +5.8 \\ & +0.9 \end{aligned}$	+0.3	+0.2	$+0.2$	$+0.0$	35.9	50.0	-14.1	L2-Ne
16	17.806M	28.3	$\begin{aligned} & +5.8 \\ & +1.0 \\ & \hline \end{aligned}$	+0.4	+0.2	+0.2	+0.0	35.9	50.0	-14.1	L2-Ne
17	13.454M	28.5	$\begin{aligned} & +5.8 \\ & +0.8 \\ & \hline \end{aligned}$	+0.3	+0.2	$+0.2$	$+0.0$	35.8	50.0	-14.2	L2-Ne
18	474.333k	26.0	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	+0.0	$+0.3$	+0.0	32.1	46.4	-14.3	L2-Ne
19	17.121M	28.2	$\begin{aligned} & +5.8 \\ & +1.0 \\ & \hline \end{aligned}$	+0.3	+0.2	+0.2	+0.0	35.7	50.0	-14.3	L2-Ne
20	14.643M	28.2	$\begin{array}{r} +5.8 \\ +0.8 \\ \hline \end{array}$	+0.3	+0.2	$+0.2$	+0.0	35.5	50.0	-14.5	L2-Ne
21	17.337 M	27.8	$\begin{aligned} & \hline+5.8 \\ & +1.0 \end{aligned}$	+0.4	+0.2	$+0.2$	+0.0	35.4	50.0	-14.6	L2-Ne
22	20.454M	27.8	$\begin{aligned} & +5.8 \\ & +1.0 \\ & \hline \end{aligned}$	+0.4	+0.2	$+0.2$	+0.0	35.4	50.0	-14.6	L2-Ne
23	13.130M	27.9	$\begin{aligned} & +5.8 \\ & +0.8 \\ & \hline \end{aligned}$	+0.3	+0.2	+0.2	+0.0	35.2	50.0	-14.8	L2-Ne
24	14.697 M	27.5	$\begin{aligned} & +5.8 \\ & +0.8 \end{aligned}$	+0.3	+0.2	$+0.2$	+0.0	34.8	50.0	-15.2	L2-Ne

25	14.238M	27.1	$\begin{aligned} & +5.8 \\ & +0.8 \end{aligned}$	+0.3	+0.2	$+0.2$	+0.0	34.4	50.0	-15.6	L2-Ne
26	14.725M	27.0	+5.8	+0.3	+0.2	$+0.2$	+0.0	34.3	50.0	-15.7	L2-Ne
			+0.8								
27	19.085M	26.7	+5.8	+0.4	$+0.2$	+0.2	$+0.0$	34.3	50.0	-15.7	L2-Ne
			+1.0								
28	17.508M	26.6	+5.8	$+0.4$	$+0.2$	$+0.2$	$+0.0$	34.2	50.0	-15.8	L2-Ne
			+1.0								
29	269.988k	29.3	+5.8	$+0.0$	+0.0	+0.1	+0.0	35.2	51.1	-15.9	L2-Ne
			+0.0								
30	541.964k	23.9	+5.8	$+0.0$	+0.0	+0.3	+0.0	30.0	46.0	-16.0	L2-Ne
			+0.0								
31	11.860M	26.5	+5.8	$+0.3$	$+0.2$	$+0.2$	$+0.0$	33.7	50.0	-16.3	L2-Ne
			+0.7								
32	17.905M	26.1	+5.8	+0.4	+0.2	+0.2	$+0.0$	33.7	50.0	-16.3	L2-Ne
			+1.0								
33	23.196M	26.0	+5.8	$+0.4$	+0.3	+0.2	+0.0	33.7	50.0	-16.3	L2-Ne
			+1.0								
34	17.148M	26.1	+5.8	$+0.3$	+0.2	+0.2	+0.0	33.6	50.0	-16.4	L2-Ne
			+1.0								
35	24.923 M	25.9	+5.8	$+0.4$	$+0.3$	$+0.2$	+0.0	33.6	50.0	-16.4	L2-Ne
			+1.0								
36	608.139k	23.2	+5.8	+0.1	$+0.0$	$+0.3$	+0.0	29.4	46.0	-16.6	L2-Ne
			+0.0								
37	13.544M	26.1	+5.8	$+0.3$	+0.2	+0.2	+0.0	33.4	50.0	-16.6	L2-Ne
			+0.8								
38	16.427M	25.8	+5.8	+0.3	+0.2	$+0.2$	+0.0	33.2	50.0	-16.8	L2-Ne
			+0.9								
39	12.355 M	25.7	+5.8	$+0.3$	$+0.2$	$+0.2$	+0.0	32.9	50.0	-17.1	L2-Ne
			+0.7								
40	17.752M	25.3	+5.8	+0.4	+0.2	$+0.2$	+0.0	32.9	50.0	-17.1	L2-Ne
			+1.0								
41	24.868M	24.9	+5.8	+0.4	+0.3	$+0.2$	+0.0	32.6	50.0	-17.4	L2-Ne
			+1.0								
42	13.842M	25.2	+5.8	+0.3	+0.2	$+0.2$	+0.0	32.5	50.0	-17.5	L2-Ne
			+0.8								
43	1.285M	22.2	+5.8	+0.1	+0.0	$+0.2$	+0.0	28.4	46.0	-17.6	L2-Ne
			$+0.1$								
44	1.826M	22.2	+5.8	+0.1	+0.0	$+0.2$	+0.0	28.4	46.0	-17.6	L2-Ne
			+0.1								
45	744.854k	22.0	+5.8	+0.1	+0.0	$+0.3$	+0.0	28.2	46.0	-17.8	L2-Ne
			+0.0								
46	2.370M	21.9	+5.8	+0.1	+0.0	$+0.2$	+0.0	28.1	46.0	-17.9	L2-Ne
			+0.1								
47	15.418M	24.6	+5.8	+0.3	+0.2	+0.2	+0.0	32.0	50.0	-18.0	L2-Ne
			+0.9								
48	1.558M	21.7	+5.8	+0.1	+0.0	+0.2	+0.0	27.9	46.0	-18.1	L2-Ne
			+0.1								
49	10.292M	24.8	+5.8	+0.3	+0.2	+0.2	+0.0	31.9	50.0	-18.1	L2-Ne
			+0.6								
50	15.688M	24.5	+5.8	+0.3	+0.2	$+0.2$	+0.0	31.9	50.0	-18.1	L2-Ne
			+0.9								

Test Setup Photo(s)

Front View

Back View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Complianceis deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cablethat produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normallyareidentified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the ta ble below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin repres ents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the meas urements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the meas urement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multi ple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with a nother feature called "peakhold," the meas urement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the meas uring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

