$\begin{aligned} & 15 \text { 4104.750M } \\ & \text { Ave } \end{aligned}$	41.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	41.6	54.0	-12.4	Vert
$\wedge 4104.750 \mathrm{M}$	52.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	52.1	54.0	-1.9	Vert
17 266.190M	39.5	$\begin{array}{r} -27.9 \\ +12.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	$+0.0$	33.3	46.0	-12.7	Horiz
$\begin{aligned} & 187384.700 \mathrm{M} \\ & \text { Ave } \end{aligned}$	34.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	40.7	54.0	-13.3	Vert
$\wedge 7384.700 \mathrm{M}$	47.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	$+0.0$	53.3	54.0	-0.7	Vert
$20 \quad 109.090 \mathrm{M}$	39.5	$\begin{array}{r} \hline-28.0 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	$+0.0$	29.9	43.5	-13.6	Horiz
$\begin{aligned} & 217385.180 \mathrm{M} \\ & \text { Ave } \end{aligned}$	34.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	$+0.0$	40.4	54.0	-13.6	Horiz
$\wedge 7385.180 \mathrm{M}$	45.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	51.6	54.0	-2.4	Horiz
$\begin{gathered} \hline 23 \begin{array}{c} 4874.000 \mathrm{M} \\ \text { Ave } \end{array} \end{gathered}$	38.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.6 \\ +0.3 \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	$+0.0$	39.4	54.0	-14.6	Vert
$\wedge ~ 4874.000 \mathrm{M}$	49.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.6 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	$+0.0$	50.7	54.0	-3.3	Vert
$\begin{gathered} 257311.000 \mathrm{M} \\ \text { Ave } \end{gathered}$	32.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$+0.0$	38.3	54.0	-15.7	Vert
$\wedge 7311.000 \mathrm{M}$	47.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.2 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$+0.0$	53.8	54.0	-0.2	Vert
$\begin{aligned} & 27 \text { 4063.000M } \\ & \text { Ave } \end{aligned}$	37.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	37.7	54.0	-16.3	Vert
$\wedge ~ 4063.000 \mathrm{M}$	50.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	50.4	54.0	-3.6	Vert
29 9848.030M	41.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +7.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.1 \\ +0.4 \end{array}$	$\begin{array}{r} +0.0 \\ +38.3 \end{array}$	+0.0	52.4	71.2	-18.8	Horiz
309848.080 M	39.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +7.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -36.1 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +38.3 \end{array}$	$+0.0$	50.9	71.2	-20.3	Vert
$31 \quad 189.090 \mathrm{M}$	58.7	$\begin{array}{r} -28.0 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \end{aligned}$	$+0.0$	48.3	71.2	-22.9	Horiz

32	214.590M	55.2	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	46.1	71.2	-25.1	Horiz
33	203.590M	55.4	$\begin{array}{r} -28.0 \\ +9.2 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	45.3	71.2	-25.9	Horiz
34	553.450M	42.1	$\begin{array}{r} -27.6 \\ +18.8 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	44.1	71.2	-27.1	Vert
35	304.140M	48.6	$\begin{array}{r} -27.9 \\ +13.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	+0.0	43.5	71.2	-27.7	Horiz
36	308.890M	47.9	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	43.1	71.2	-28.1	Horiz
37	544.050M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	71.2	-28.1	Vert
38	544.050M	41.2	$\begin{array}{r} \hline-27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	71.2	-28.1	Vert
39	546.350M	39.1	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	41.0	71.2	-30.2	Vert
40	503.550M	38.2	$\begin{array}{r} \hline-27.7 \\ +18.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.2 \\ & +0.0 \end{aligned}$	+0.0	38.9	71.2	-32.3	Vert
41	218.150M	46.9	$\begin{array}{r} -27.9 \\ +10.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	38.0	71.2	-33.2	Vert
42	214.550M	46.8	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	37.7	71.2	-33.5	Vert
43	396.540M	38.2	$\begin{array}{r} -27.9 \\ +16.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	36.2	71.2	-35.0	Horiz
44	418.150M	36.6	$\begin{array}{r} -27.9 \\ +16.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.0 \end{aligned}$	+0.0	35.2	71.2	-36.0	Vert
45	352.700 M	38.5	$\begin{array}{r} -27.9 \\ +14.9 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	+0.0	35.2	71.2	-36.0	Vert

$\left.\begin{array}{|llrrrrrrrrrr|}\hline 46 & 306.450 \mathrm{M} & 40.0 & -27.9 & +5.9 & +0.3 & +3.2 & +0.0 & 35.0 & 71.2 & -36.2 & \text { Vert } \\ & & & +13.5 & +0.0 & +0.0 & +0.0 & & & & & \\ \hline 47 & 308.950 \mathrm{M} & 39.8 & -27.9 & +0.0 & +0.0 & & & & & \\ & & & +13.6 & +0.0 & +0.3 & +3.0 & +0.0 & +0.0 & 35.0 & 71.2 & -36.2\end{array}\right)$ Vert

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Date: 11/24/2020
Maximized Emissions
Don Nguyen
Time: 10:51:00
Sequence\#: 9
EMITest 5.03.19

Equipment Tested:

| Device Manufacturer Model \#
 Configuration 2 S/N
 Support Equipment:
 Device Manufacturer
 Configuration 2 Model \# |
| :--- | :--- | :--- | :--- |

Test Conditions / Notes:
EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.

Software setting:
Testing Frequency: 2412, 2437, 2462 MHz

Data Rate
802.11g: 6Mbps

Modulation: OFDM
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $9 \mathrm{kHz}-25000 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-25000 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
-30 dBc limit, RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $20^{\circ} \mathrm{C}$
Relative Humidity: 48\%

Site A

Test Methods: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Venstar, Inc. WO\#: 104728 Sequence\#\#: 9 Date: $11 / 24 / 2020$
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03:19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	AN00309	Preamp	8447 D	$12 / 24 / 2019$	$12 / 24 / 2021$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
		Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN01993	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T6	AN03643	Preamp	83017 A	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	AN00786	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T8	AN00849	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T9	ANP06360	Cable	$32022-29094$ K-	$5 / 29 / 2020$	$5 / 29 / 2022$
T10	ANP07246	High Pass Filter	11SH10-	$5 / 13 / 2019$	$5 / 13 / 2021$
T11	AN03385		$3000 /$ T10000-		
		Horn Antenna	$84125-80008$	$10 / 19 / 2020$	$10 / 19 / 2022$
		Horn Antenna	$62-G H-62-25$.	$8 / 1 / 2019$	$8 / 1 / 2021$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 247.830 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	49.3	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	42.6	46.0	-3.4	Horiz
$\wedge 247.830 \mathrm{M}$	52.1	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	45.4	46.0	-0.6	Horiz
$3 \quad 325.540 \mathrm{M}$	45.4	$\begin{array}{r} \hline-27.9 \\ +14.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.4 \\ & +0.0 \end{aligned}$	$+0.0$	41.2	46.0	-4.8	Horiz
$4 \quad 256.590 \mathrm{M}$	46.2	$\begin{array}{r} \hline-27.9 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	39.7	46.0	-6.3	Horiz
5 4924.000M	42.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.6 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0	43.4	54.0	-10.6	Vert
$6 \quad 109.100 \mathrm{M}$	41.9	$\begin{array}{r} \hline-28.0 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	32.3	43.5	-11.2	Vert
7 247.150M	41.4	$\begin{array}{r} -27.9 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	34.6	46.0	-11.4	Vert
$\begin{aligned} & 84102.150 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	42.2	54.0	-11.8	Vert
$\wedge 4102.150 \mathrm{M}$	53.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	52.9	54.0	-1.1	Vert
$10 \quad 266.190 \mathrm{M}$	39.5	$\begin{array}{r} -27.9 \\ +12.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	+0.0	33.3	46.0	-12.7	Horiz
$11 \quad 109.090 \mathrm{M}$	39.5	$\begin{array}{r} \hline-28.0 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	29.9	43.5	-13.6	Horiz
12 189.090M	58.7	$\begin{array}{r} -28.0 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.5 \\ & +0.0 \end{aligned}$	+0.0	48.3	63.7	-15.4	Horiz
$\begin{aligned} & 13 \text { 4104.750M } \\ & \text { Ave } \end{aligned}$	36.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	36.8	54.0	-17.2	Horiz
$\wedge 4104.750 \mathrm{M}$	49.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	48.9	54.0	-5.1	Horiz

	$\begin{aligned} & 7384.700 \mathrm{M} \\ & \text { Ave } \end{aligned}$	30.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	36.7	54.0	-17.3	Vert
\wedge	7384.700M	42.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	48.9	54.0	-5.1	Vert
17	214.590 M	55.2	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	+0.0	46.1	63.7	-17.6	Horiz
	$4018.667 \mathrm{M}$ Ave	36.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.9 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \end{array}$	+0.0	36.0	54.0	-18.0	Vert
\wedge	4018.667M	52.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.9 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.5 \end{array}$	+0.0	52.7	54.0	-1.3	Vert
20	203.590 M	55.4	$\begin{array}{r} -28.0 \\ +9.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	+0.0	45.3	63.7	-18.4	Horiz
21	553.450M	42.1	$\begin{array}{r} \hline-27.6 \\ +18.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	44.1	63.7	-19.6	Vert
22	304.140M	48.6	$\begin{array}{r} \hline-27.9 \\ +13.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	+0.0	43.5	63.7	-20.2	Horiz
23	308.890M	47.9	$\begin{array}{r} \hline-27.9 \\ +13.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.7	-20.6	Horiz
	$\begin{aligned} & \text { 4063.267M } \\ & \text { Ave } \end{aligned}$	33.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	33.4	54.0	-20.6	Vert
\wedge	4063.267M	48.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	48.2	54.0	-5.8	Vert
26	544.050M	41.2	$\begin{array}{r} \hline-27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.7	-20.6	Vert
27	544.050M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.7	-20.6	Vert
28	546.350M	39.1	$\begin{array}{r} \hline-27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	41.0	63.7	-22.7	Vert
29	503.550 M	38.2	$\begin{array}{r} -27.7 \\ +18.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \end{aligned}$	+0.0	38.9	63.7	-24.8	Vert
30	218.150M	46.9	$\begin{array}{r} \hline-27.9 \\ +10.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	+0.0	38.0	63.7	-25.7	Vert
31	214.550M	46.8	$\begin{array}{r} \hline-27.9 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	+0.0	37.7	63.7	-26.0	Vert

32	396.540M	38.2	$\begin{array}{r} -27.9 \\ +16.0 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \end{aligned}$	+0.0	36.2	63.7	-27.5	Horiz
33	418.150M	36.6	$\begin{array}{r} -27.9 \\ +16.5 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.8 \\ & +0.0 \end{aligned}$	+0.0	35.2	63.7	-28.5	Vert
34	352.700 M	38.5	$\begin{array}{r} -27.9 \\ +14.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	+0.0	35.2	63.7	-28.5	Vert
35	306.450M	40.0	$\begin{array}{r} -27.9 \\ +13.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	+0.0	35.0	63.7	-28.7	Vert
36	308.950 M	39.8	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.3 \\ & +0.0 \end{aligned}$	+0.0	35.0	63.7	-28.7	Vert
37	458.550 M	34.7	$\begin{array}{r} \hline-27.8 \\ +17.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.0 \\ & +0.0 \end{aligned}$	+0.0	34.3	63.7	-29.4	Vert
38	363.600M	36.4	$\begin{array}{r} \hline-27.9 \\ +15.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	+0.0	33.5	63.7	-30.2	Vert

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Maximized Emissions
Don Nguyen
EMITest 5.03.19

Date: 11/24/2020
Time: 10:25:41
Sequence\#: 9

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.

Software setting:
Testing Frequency: 2412, 2437, 2462 MHz
Data Rate
802.11 g : 54 Mbps

Modulation: OFDM
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0

Frequency of Measurement: $9 \mathrm{kHz}-25000 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, V B W=360 \mathrm{kHz}$
$1000-25000 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
-30 dBc limit, RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $20^{\circ} \mathrm{C}$
Relative Humidity: 48\%

Site A
Test Methods: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Venstar, Inc. WO\#: 104728 Sequence\#\#: 9 Date: $11 / 24 / 2020$
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03:19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	AN00309	Preamp	8447 D	$12 / 24 / 2019$	$12 / 24 / 2021$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
		Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN01993	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T6	AN03643	Preamp	83017 A	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	AN00786	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T8	AN00849	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T9	ANP06360	Cable	$32022-29094$ K-	$5 / 29 / 2020$	$5 / 29 / 2022$
T10	ANP07246	High Pass Filter	11SH10-	$5 / 13 / 2019$	$5 / 13 / 2021$
T11	AN03385		$3000 /$ T10000-		
		Horn Antenna	$84125-80008$	$10 / 19 / 2020$	$10 / 19 / 2022$
		Horn Antenna	$62-G H-62-25$.	$8 / 1 / 2019$	$8 / 1 / 2021$

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

Page 86 of 143

16	203.590M	55.4	$\begin{array}{r} \hline-28.0 \\ +9.2 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.6 \\ & +0.0 \end{aligned}$	+0.0	45.3	63.5	-18.2	Horiz
	$\begin{aligned} & \text { 4102.583M } \\ & \text { Ave } \end{aligned}$	35.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	35.1	54.0	-18.9	Horiz
\wedge	4102.583 M	51.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	51.6	54.0	-2.4	Horiz
19	553.450 M	42.1	$\begin{array}{r} \hline-27.6 \\ +18.8 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	44.1	63.5	-19.4	Vert
20	304.140M	48.6	$\begin{array}{r} \hline-27.9 \\ +13.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	$+0.0$	43.5	63.5	-20.0	Horiz
21	308.890M	47.9	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.5	-20.4	Horiz
22	544.050 M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.5	-20.4	Vert
23	544.050M	41.2	$\begin{array}{r} \hline-27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.5	-20.4	Vert
	$\begin{aligned} & \text { 4063.267M } \\ & \text { Ave } \end{aligned}$	33.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	$+0.0$	33.4	54.0	-20.6	Vert
\wedge	4063.267M	49.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	49.1	54.0	-4.9	Vert
26	546.350 M	39.1	$\begin{array}{r} \hline-27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	41.0	63.5	-22.5	Vert
27	503.550M	38.2	$\begin{array}{r} \hline-27.7 \\ +18.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.2 \\ & +0.0 \end{aligned}$	+0.0	38.9	63.5	-24.6	Vert
28	218.150M	46.9	$\begin{array}{r} -27.9 \\ +10.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	38.0	63.5	-25.5	Vert
29	214.550 M	46.8	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	$+0.0$	37.7	63.5	-25.8	Vert
30	396.540 M	38.2	$\begin{array}{r} -27.9 \\ +16.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	36.2	63.5	-27.3	Horiz
31	418.150M	36.6	$\begin{array}{r} \hline-27.9 \\ +16.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.8 \\ & +0.0 \end{aligned}$	+0.0	35.2	63.5	-28.3	Vert
32	352.700 M	38.5	$\begin{array}{r} -27.9 \\ +14.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	$+0.0$	35.2	63.5	-28.3	Vert

33	306.450 M	40.0	-27.9	+5.9	+0.3	+3.2	+0.0	35.0	63.5	-28.5	Vert
			+13.5	+0.0	+0.0	+0.0					
34	308.950 M	39.8	-27.9	+5.9	+0.3	+3.3	+0.0	35.0	63.5	-28.5	Vert
			+13.6	+0.0	+0.0	+0.0					
35	458.550 M	34.7	-27.8	+5.9	+0.3	+4.0	+0.0	34.3	63.5	-29.2	Vert
			+17.2	+0.0	+0.0	+0.0					
36	363.600 M	36.4	-27.9	+5.9	+0.3	+3.6	+0.0	33.5	63.5	-30.0	Vert
			+15.2	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Date: 11/24/2020
Maximized Emissions
Don Nguyen
Time: 10:26:08
Sequence\#: 10
EMITest 5.03.19

Equipment Tested:

| Device Manufacturer Model \#
 Configuration 2 S/N
 Support Equipment:
 Device Manufacturer
 Configuration 2 Model \# |
| :--- | :--- | :--- | :--- |

Test Conditions / Notes:
EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.

Software setting:
Testing Frequency: 2412, 2437, 2462 MHz

Data Rate
802.11n20: MCS0

Modulation: BPSK
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $9 \mathrm{kHz}-25000 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}, \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-25000 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
-30 dBc limit, $\mathrm{RBW}=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $20^{\circ} \mathrm{C}$
Relative Humidity: 48\%

Site A

Test Methods: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Venstar, Inc. WO\#: 104728 Sequence\#\#: 10 Date: $11 / 24 / 2020$
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

—— Readings
\times QP Readings
• Ambient

O Peak Readings

* Average Readings
Software Version: 5.03:19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	AN00309	Preamp	8447 D	$12 / 24 / 2019$	$12 / 24 / 2021$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
		Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN01993	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T6	AN03643	Preamp	83017 A	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	AN00786	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T8	AN00849	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T9	ANP06360	Cable	$32022-29094$ K-	$5 / 29 / 2020$	$5 / 29 / 2022$
T10	ANP07246	High Pass Filter	11SH10-	$5 / 13 / 2019$	$5 / 13 / 2021$
T11	AN03385		$3000 /$ T10000-		
		Horn Antenna	$84125-80008$	$10 / 19 / 2020$	$10 / 19 / 2022$
	AN01413	Horn Antenna	$62-G H-62-25$.	$8 / 1 / 2019$	$8 / 1 / 2021$

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \text { T3 } \\ \text { T7 } \\ \text { T11 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~dB} \end{gathered}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 247.600 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	48.3	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	41.6	46.0	-4.4	Horiz
$\wedge 247.600 \mathrm{M}$	52.1	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	45.4	46.0	-0.6	Horiz
$3 \quad 325.540 \mathrm{M}$	45.4	$\begin{array}{r} -27.9 \\ +14.1 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.4 \\ & +0.0 \end{aligned}$	+0.0	41.2	46.0	-4.8	Horiz
$4 \quad 256.590 \mathrm{M}$	46.2	$\begin{array}{r} -27.9 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	39.7	46.0	-6.3	Horiz
5 4105.500M	45.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	45.1	54.0	-8.9	Vert
$6 \quad 109.100 \mathrm{M}$	41.9	$\begin{array}{r} -28.0 \\ +10.6 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	32.3	43.5	-11.2	Vert
7 247.150M	41.4	$\begin{array}{r} -27.9 \\ +12.1 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	34.6	46.0	-11.4	Vert
8 4924.000M	41.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.6 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	$+0.0$	42.5	54.0	-11.5	Vert
$\begin{aligned} & 9 \text { 4104.650M } \\ & \text { Ave } \end{aligned}$	42.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	41.9	54.0	-12.1	Horiz
$\wedge 4104.650 \mathrm{M}$	53.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	53.7	54.0	-0.3	Horiz
11 266.190M	39.5	$\begin{array}{r} -27.9 \\ +12.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	+0.0	33.3	46.0	-12.7	Horiz
12 109.090M	39.5	$\begin{array}{r} -28.0 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.8 \\ & +0.0 \end{aligned}$	+0.0	29.9	43.5	-13.6	Horiz
13 189.090M	58.7	$\begin{array}{r} \hline-28.0 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \end{aligned}$	+0.0	48.3	64.1	-15.8	Horiz
$\begin{aligned} & 147386.750 \mathrm{M} \\ & \text { Ave } \end{aligned}$	30.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	36.5	54.0	-17.5	Vert
$\wedge 7386.750 \mathrm{M}$	42.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	$+0.0$	49.1	54.0	-4.9	Vert

Page 91 of 143

16	214.590M	55.2	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	+0.0	46.1	64.1	-18.0	Horiz
17	203.590M	55.4	$\begin{array}{r} \hline-28.0 \\ +9.2 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.6 \\ & +0.0 \end{aligned}$	+0.0	45.3	64.1	-18.8	Horiz
18	553.450M	42.1	$\begin{array}{r} -27.6 \\ +18.8 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \end{aligned}$	+0.0	44.1	64.1	-20.0	Vert
19	304.140M	48.6	$\begin{array}{r} -27.9 \\ +13.4 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.2 \\ & +0.0 \end{aligned}$	+0.0	43.5	64.1	-20.6	Horiz
20	$\begin{aligned} & \text { 4059.567M } \\ & \text { Ave } \end{aligned}$	33.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	33.2	54.0	-20.8	Vert
\wedge	4059.567M	47.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	47.5	54.0	-6.5	Vert
22	308.890M	47.9	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & +0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	43.1	64.1	-21.0	Horiz
23	544.050M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	64.1	-21.0	Vert
24	544.050M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	64.1	-21.0	Vert
25	546.350M	39.1	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	41.0	64.1	-23.1	Vert
26	503.550M	38.2	$\begin{array}{r} -27.7 \\ +18.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +4.2 \\ & +0.0 \end{aligned}$	+0.0	38.9	64.1	-25.2	Vert
27	218.150M	46.9	$\begin{array}{r} -27.9 \\ +10.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	+0.0	38.0	64.1	-26.1	Vert
28	214.550M	46.8	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.7 \\ & +0.0 \end{aligned}$	+0.0	37.7	64.1	-26.4	Vert
29	396.540M	38.2	$\begin{array}{r} -27.9 \\ +16.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.7 \\ & +0.0 \end{aligned}$	+0.0	36.2	64.1	-27.9	Horiz
30	418.150M	36.6	$\begin{array}{r} -27.9 \\ +16.5 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.8 \\ & +0.0 \end{aligned}$	+0.0	35.2	64.1	-28.9	Vert

31	352.700M	38.5	$\begin{array}{r} -27.9 \\ +14.9 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	$+0.0$	35.2	64.1	-28.9	Vert
32	306.450M	40.0	$\begin{array}{r} -27.9 \\ +13.5 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	+0.0	35.0	64.1	-29.1	Vert
33	308.950M	39.8	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	35.0	64.1	-29.1	Vert
34	458.550M	34.7	$\begin{array}{r} -27.8 \\ +17.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	+0.0	34.3	64.1	-29.8	Vert
35	363.600M	36.4	$\begin{array}{r} -27.9 \\ +15.2 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	$+0.0$	33.5	64.1	-30.6	Vert

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Date: 11/24/2020
Maximized Emissions
Don Nguyen
Time: 10:26:29
Sequence\#: 11
EMITest 5.03.19

Equipment Tested:

| Device Manufacturer Model \#
 Configuration 2 S/N
 Support Equipment:
 Device Manufacturer
 Configuration 2 Model \# |
| :--- | :--- | :--- | :--- |

Test Conditions / Notes:
EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.

Software setting:
Testing Frequency: 2412, 2437, 2462MHz

Data Rate
802.11n20: MCS7

Modulation: 64-QAM
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $9 \mathrm{kHz}-25000 \mathrm{MHz}$
9 kHz to 150 kHz RBW $=0.2 \mathrm{kHz}, \mathrm{VBW}=0.6 \mathrm{kHz}$.
150 kHz to 30 MHz RBW $=9 \mathrm{kHz}$, VBW $=27 \mathrm{kHz}$.
$30-1000 \mathrm{MHz}$, RBW $=120 \mathrm{kHz}, \mathrm{VBW}=360 \mathrm{kHz}$
$1000-25000 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$
-30 dBc limit, $\mathrm{RBW}=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $20^{\circ} \mathrm{C}$
Relative Humidity: 48\%

Site A

Test Methods: ANSI C63.10 (2013)
KDB 558074 D01 15.247 Meas Guidance v05r02

Venstar, Inc. WO\#: 104728 Sequence\#\#: 11 Date: $11 / 24 / 2020$
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

—— Readings
\times QP Readings
• Ambient

O Peak Readings
* Average Readings
Software Version: $5 \cdot 03.19$

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	$4 / 13 / 2020$	$4 / 13 / 2022$
T1	AN00309	Preamp	8447 D	$12 / 24 / 2019$	$12 / 24 / 2021$
T2	ANP05281	Attenuator	1B	$4 / 7 / 2020$	$4 / 7 / 2022$
T3	ANP05050	Cable	RG223/U	$12 / 24 / 2018$	$12 / 24 / 2020$
T4	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	$12 / 4 / 2018$	$12 / 4 / 2020$
		Biconilog Antenna	CBL6111C	$6 / 11 / 2019$	$6 / 11 / 2021$
T5	AN01993	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T6	AN03643	Preamp	83017 A	$5 / 20 / 2020$	$5 / 20 / 2022$
T7	AN00786	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T8	AN00849	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$
T9	ANP06360	Cable	$32022-29094$ K-	$5 / 29 / 2020$	$5 / 29 / 2022$
T10	ANP07246	High Pass Filter	11SH10-	$5 / 13 / 2019$	$5 / 13 / 2021$
T11	AN03385		$3000 /$ T10000-		
		Horn Antenna	$84125-80008$	$10 / 19 / 2020$	$10 / 19 / 2022$
	AN01413	Horn Antenna	$62-G H-62-25$.	$8 / 1 / 2019$	$8 / 1 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T2 } \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~T} 8 \\ & \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 247.890 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	48.2	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	41.5	46.0	-4.5	Horiz
$\wedge 247.890 \mathrm{M}$	51.4	$\begin{array}{r} -27.9 \\ +12.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	44.7	46.0	-1.3	Horiz
$3 \quad 325.540 \mathrm{M}$	45.4	$\begin{array}{r} \hline-27.9 \\ +14.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.4 \\ & +0.0 \end{aligned}$	+0.0	41.2	46.0	-4.8	Horiz
$4 \quad 256.590 \mathrm{M}$	46.2	$\begin{array}{r} \hline-27.9 \\ +12.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	39.7	46.0	-6.3	Horiz
54108.300 M	45.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	45.0	54.0	-9.0	Vert
$6 \quad 109.100 \mathrm{M}$	41.9	$\begin{array}{r} -28.0 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	$+0.0$	32.3	43.5	-11.2	Vert
7 247.150M	41.4	$\begin{array}{r} -27.9 \\ +12.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +2.9 \\ & +0.0 \end{aligned}$	+0.0	34.6	46.0	-11.4	Vert
8 4924.000M	41.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -37.6 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0	42.1	54.0	-11.9	Vert
$9 \quad 266.190 \mathrm{M}$	39.5	$\begin{array}{r} -27.9 \\ +12.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	+0.0	33.3	46.0	-12.7	Horiz
$10 \quad 109.090 \mathrm{M}$	39.5	$\begin{array}{r} -28.0 \\ +10.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	29.9	43.5	-13.6	Horiz
11 189.090M	58.7	$\begin{array}{r} \hline-28.0 \\ +9.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \end{aligned}$	+0.0	48.3	63.0	-14.7	Horiz
$12 \quad 214.590 \mathrm{M}$	55.2	$\begin{array}{r} \hline-27.9 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	46.1	63.0	-16.9	Horiz
$\begin{aligned} & 13 \text { 7385.880M } \\ & \text { Ave } \end{aligned}$	30.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	36.4	54.0	-17.6	Vert
$\wedge 7385.880 \mathrm{M}$	42.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.3 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.3 \end{array}$	+0.0	48.6	54.0	-5.4	Vert
15 203.590M	55.4	$\begin{array}{r} -28.0 \\ +9.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.6 \\ & +0.0 \end{aligned}$	$+0.0$	45.3	63.0	-17.7	Horiz

16	553.450M	42.1	$\begin{array}{r} \hline-27.6 \\ +18.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	44.1	63.0	-18.9	Vert
17	304.140M	48.6	$\begin{array}{r} -27.9 \\ +13.4 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	+0.0	43.5	63.0	-19.5	Horiz
18	308.890M	47.9	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.0	-19.9	Horiz
19	$\begin{aligned} & \text { 4100.483M } \\ & \text { Ave } \end{aligned}$	34.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	34.1	54.0	-19.9	Horiz
\wedge	4100.483M	52.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{gathered} +0.0 \\ -37.8 \\ +0.5 \end{gathered}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	52.1	54.0	-1.9	Horiz
21	544.050M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.0	-19.9	Vert
22	544.050M	41.2	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.5 \\ & +0.0 \end{aligned}$	+0.0	43.1	63.0	-19.9	Vert
23	$\begin{aligned} & \text { 4059.567M } \\ & \text { Ave } \end{aligned}$	33.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	33.2	54.0	-20.8	Vert
\wedge	4059.567M	49.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -37.8 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +32.4 \end{array}$	+0.0	49.6	54.0	-4.4	Vert
25	546.350M	39.1	$\begin{array}{r} -27.6 \\ +18.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +4.5 \\ & +0.0 \end{aligned}$	+0.0	41.0	63.0	-22.0	Vert
26	503.550M	38.2	$\begin{array}{r} -27.7 \\ +18.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+4.2 \\ & +0.0 \end{aligned}$	+0.0	38.9	63.0	-24.1	Vert
27	218.150M	46.9	$\begin{array}{r} -27.9 \\ +10.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	38.0	63.0	-25.0	Vert
28	214.550M	46.8	$\begin{array}{r} -27.9 \\ +10.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	37.7	63.0	-25.3	Vert
29	396.540M	38.2	$\begin{array}{r} -27.9 \\ +16.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \end{aligned}$	+0.0	36.2	63.0	-26.8	Horiz
30	418.150M	36.6	$\begin{array}{r} -27.9 \\ +16.5 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.8 \\ & +0.0 \end{aligned}$	+0.0	35.2	63.0	-27.8	Vert

31	352.700M	38.5	$\begin{array}{r} -27.9 \\ +14.9 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & +0.0 \end{aligned}$	$+0.0$	35.2	63.0	-27.8	Vert
32	306.450M	40.0	$\begin{array}{r} -27.9 \\ +13.5 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+3.2 \\ & +0.0 \end{aligned}$	+0.0	35.0	63.0	-28.0	Vert
33	308.950M	39.8	$\begin{array}{r} -27.9 \\ +13.6 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	+0.0	35.0	63.0	-28.0	Vert
34	458.550M	34.7	$\begin{array}{r} -27.8 \\ +17.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+5.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+4.0 \\ & +0.0 \end{aligned}$	+0.0	34.3	63.0	-28.7	Vert
35	363.600M	36.4	$\begin{array}{r} -27.9 \\ +15.2 \\ +0.0 \end{array}$	$\begin{aligned} & +5.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	$+0.0$	33.5	63.0	-29.5	Vert

Band Edge

Band Edge Summary					
Frequency (MHz)	Mode/Data Rate	Ant. Type	Field Strength (dBuV/m@3m)	Limit (dBuV/m@3m)	Results
2390.0	802.11b/1Mbps	Chip	49.8	<54	Pass
2400.0	802.11b/1Mbps	Chip	54.0	<70.3	Pass
2483.5	802.11b/1Mbps	Chip	51.5	<54	Pass
2390.0	802.11b/11Mbps	Chip	49.5	<54	Pass
2400.0	802.11b/11Mbps	Chip	59.6	<71.2	Pass
2483.5	802.11b/11Mbps	Chip	50.4	<54	Pass
2390.0	802.11g/6Mbps	Chip	46.8	<54	Pass
2400.0	$802.11 \mathrm{~g} / 6 \mathrm{Mbps}$	Chip	61.3	<63.7	Pass
2483.5	802.11g/6Mbps	Chip	46.9	<54	Pass
2390.0	$802.11 \mathrm{~g} / 54 \mathrm{Mbps}$	Chip	44.7	<54	Pass
2400.0	802.11g/54Mbps	Chip	61.6	<63.5	Pass
2483.5	802.11g/54Mbps	Chip	45.0	<54	Pass
2390.0	802.11n/MCSO	Chip	46.7	<54	Pass
2400.0	802.11n/MCSO	Chip	60.4	<64.1	Pass
2483.5	802.11n/MCSO	Chip	46.9	<54	Pass
2390.0	802.11n/MCS7	Chip	44.5	<54	Pass
2400.0	802.11n/MCS7	Chip	60.9	<63.0	Pass
2483.5	802.11n/MCS7	Chip	44.8	<54	Pass

Band Edge Plots

1 W
LABORATORIES, INC.

$-M_{\text {Tesating me future }}$
LABORATORIES, INC.

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Bra, CA 92823 • 714-993-6112

Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Software:

Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Maximized Emissions
Don Nguyen
EMIT est 5.03.19

Date: 11/20/2020
Time: 11:28:03
Sequence\#: 4

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software setting:
Testing Frequency: 2412, 2437, 2462 MHz
Data Rate
802.11b: 1Mbps (DSSS)

Modulation: DSSS
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $2390.0-2483.5 \mathrm{MHz}$
RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ (restricted band)
LBW $=100 \mathrm{kHz}, V B W=300 \mathrm{kHz}(-30 \mathrm{dBc})$
Test Environment Conditions:
Temperature: $20.5^{\circ} \mathrm{C}$
Relative Humidity: 47\%
Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T2	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$

Measurement Data:	Reading listed by margin.					Test Distance: 3 Meters				
\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
$\begin{aligned} & 12483.500 \mathrm{M} \\ & \text { Ave } \end{aligned}$	19.9	+0.0	+28.3	+3.3		+0.0	51.5	54.0	-2.5	Vert
^ 2483.500M	28.3	+0.0	+28.3	+3.3		+0.0	59.9	54.0	+5.9	Vert
$\begin{aligned} & 3 \text { 2390.000M } \\ & \text { Ave } \end{aligned}$	18.3	+0.0	+28.3	+3.2		+0.0	49.8	54.0	-4.2	Vert
^ 2390.000M	28.8	+0.0	+28.3	+3.2		+0.0	60.3	54.0	+6.3	Vert
52400.000 M	22.5	+0.0	+28.3	+3.2		+0.0	54.0	70.3	-16.3	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Bra, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Date: 11/20/2020
Maximized Emissions
Don Nguyen
Time: 13:54:33
Sequence\#: 5
EMIT est 5.03.19

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software setting:
Testing Frequency: 2412, 2437, 2462 MHz
Data Rate
802.11b: 11Mbps

Modulation: CCK
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0

Frequency of Measurement: $2390.0-2483.5 \mathrm{MHz}$
$\mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ (restricted band)
RBW $=100 \mathrm{kHz}, V B W=300 \mathrm{kHz}(-30 \mathrm{dBc})$
Test Environment Conditions:
Temperature: $20.5^{\circ} \mathrm{C}$
Relative Humidity: 47\%
Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#/Serial \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T2	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
$\begin{aligned} & 12483.500 \mathrm{M} \\ & \text { Ave } \end{aligned}$	18.8	+0.0	+28.3	+3.3		+0.0	50.4	54.0	-3.6	Vert
$\wedge 2483.500 \mathrm{M}$	29.6	+0.0	+28.3	+3.3		+0.0	61.2	54.0	+7.2	Vert
$\begin{aligned} & 32390.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	18.0	+0.0	+28.3	+3.2		+0.0	49.5	54.0	-4.5	Vert
$\wedge 2390.000 \mathrm{M}$	30.6	+0.0	+28.3	+3.2		+0.0	62.1	54.0	+8.1	Vert
5 2400.000M	28.1	+0.0	+28.3	+3.2		+0.0	59.6	71.2	-11.6	Vert

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Bra, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Maximized Emissions
Don Nguyen
EMIT est 5.03.19

Date: 11/20/2020
Time: 13:57:38
Sequence\#: 6

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software setting:
Testing Frequency: 2412, 2437, 2462 MHz
Data Rate
802.11g: 6Mbps

Modulation: OFDM
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $2390.0-2483.5 \mathrm{MHz}$
RBW $=1 \mathrm{MHz}, V B W=3 \mathrm{MHz}$ (restricted band)
RBW $=100 \mathrm{kHz}, V B W=300 \mathrm{kHz}(-30 \mathrm{dBc})$
Test Environment Conditions:
Temperature: $20.5^{\circ} \mathrm{C}$
Relative Humidity: 47\%
Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T2	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
12400.000 M	29.8	+0.0	+28.3	+3.2		+0.0	61.3	63.7	-2.4	Vert
$\begin{aligned} & 22483.500 \mathrm{M} \\ & \text { Ave } \end{aligned}$	15.3	+0.0	+28.3	+3.3		+0.0	46.9	54.0	-7.1	Vert
$\wedge 2483.500 \mathrm{M}$	24.5	+0.0	+28.3	+3.3		+0.0	56.1	54.0	+2.1	Vert
$\begin{aligned} & 42390.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	15.3	+0.0	+28.3	+3.2		+0.0	46.8	54.0	-7.2	Vert
\wedge 2390.000M	29.7	+0.0	+28.3	+3.2		+0.0	61.2	54.0	+7.2	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer: Venstar, Inc.
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Maximized Emissions
Don Nguyen
EMITest 5.03.19

Date: 11/20/2020
Time: 11:19:19
Sequence\#: 7

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software setting:
Testing Frequency: 2412, 2437, 2462MHz
Data Rate
802.11g: 54Mbps

Modulation: OFDM
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0

Frequency of Measurement: $2390.0-2483.5 \mathrm{MHz}$
RBW $=1 \mathrm{MHz}, V B W=3 \mathrm{MHz}$ (restricted band)
RBW $=100 \mathrm{kHz}, V B W=300 \mathrm{kHz}(-30 \mathrm{dBc})$
Test Environment Conditions:
Temperature: $20.5^{\circ} \mathrm{C}$
Relative Humidity: 47\%
Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T2	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
12400.000 M	30.1	+0.0	+28.3	+3.2		+0.0	61.6	63.5	-1.9	Vert
$\begin{aligned} & 2 \text { 2483.500M } \\ & \text { Ave } \end{aligned}$	13.4	+0.0	+28.3	+3.3		+0.0	45.0	54.0	-9.0	Vert
$\wedge 2483.500 \mathrm{M}$	26.7	+0.0	+28.3	+3.3		+0.0	58.3	54.0	+4.3	Vert
$\begin{aligned} & 42390.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	13.2	+0.0	+28.3	+3.2		+0.0	44.7	54.0	-9.3	Vert
^ 2390.000M	34.9	+0.0	+28.3	+3.2		+0.0	66.4	54.0	+12.4	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
Customer: Venstar, Inc.
Specification:
Work Order \#:
Test Type:
Tested By:
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Maximized Emissions
Don Nguyen
EMITest 5.03.19

Date: 11/20/2020
Time: 13:59:34
Sequence\#: 8

Software:

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software setting:
Testing Frequency: 2412, 2437, 2462MHz
Data Rate
802.11n: MCS0

Modulation: BPSK
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $2390.0-2483.5 \mathrm{MHz}$
RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ (restricted band)
RBW $=100 \mathrm{kHz}, V B W=300 \mathrm{kHz}(-30 \mathrm{dBc})$
Test Environment Conditions:
Temperature: $20.5^{\circ} \mathrm{C}$
Relative Humidity: 47\%
Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T2	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
12400.000 M	28.9	+0.0	+28.3	+3.2		+0.0	60.4	64.1	-3.7	Vert
$\begin{aligned} & 2 \text { 2483.500M } \\ & \text { Ave } \end{aligned}$	15.3	+0.0	+28.3	+3.3		+0.0	46.9	54.0	-7.1	Vert
$\wedge 2483.500 \mathrm{M}$	24.2	+0.0	+28.3	+3.3		+0.0	55.8	54.0	+1.8	Vert
$\begin{aligned} & 42390.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	15.2	+0.0	+28.3	+3.2		+0.0	46.7	54.0	-7.3	Vert
$\wedge 2390.000 \mathrm{M}$	28.3	+0.0	+28.3	+3.2		+0.0	59.8	54.0	+5.8	Vert

LABORATORIES, INC.

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Bra, CA 92823 • 714-993-6112
Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:
Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

104728
Maximized Emissions
Don Nguyen
EMIT est 5.03.19

Date: 11/20/2020
Time: 14:03:48
Sequence\#: 5

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

EUT is powered from 24 Vac AC Adapter and set to transmit continuously. All IO ports are populated with unterminated cables.
Software setting:
Testing Frequency: 2412, 2437, 2462 MHz
Data Rate
802.11n: MCS7

Modulation: 64-QAM
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $2390.0-2483.5 \mathrm{MHz}$
RBW $=1 \mathrm{MHz}, V B W=3 \mathrm{MHz}$ (restricted band)
RBW $=100 \mathrm{kHz}, V B W=300 \mathrm{kHz}(-30 \mathrm{dBc})$
Test Environment Conditions:
Temperature: $20.5^{\circ} \mathrm{C}$
Relative Humidity: 47\%
Test Method: ANSI C63.10 (2013) KDB 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN03643	Spectrum Analyzer	E4440A	$5 / 20 / 2020$	$5 / 20 / 2022$
T2	AN00849	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP06360	Cable	L1-PNMNM-48	$8 / 8 / 2019$	$8 / 8 / 2021$

Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
12400.000 M	29.4	+0.0	+28.3	+3.2		+0.0	60.9	63.0	-2.1	Vert
$\begin{aligned} & 2 \text { 2483.500M } \\ & \text { Ave } \end{aligned}$	13.2	+0.0	+28.3	+3.3		+0.0	44.8	54.0	-9.2	Vert
$\wedge 2483.500 \mathrm{M}$	24.8	+0.0	+28.3	+3.3		+0.0	56.4	54.0	+2.4	Vert
$\begin{aligned} & 42390.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	13.0	+0.0	+28.3	+3.2		+0.0	44.5	54.0	-9.5	Vert
^ 2390.000M	24.8	+0.0	+28.3	+3.2		+0.0	56.3	54.0	+2.3	Vert

Test Setup Photos)

Below 1GHz

Below 1GHz

Above 1 GHz

Above 1 GHz

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer:
Specification: Work Order \#: Test Type: Tested By:
Software:

Venstar, Inc.
15.207 AC Mains - Average

104728
Conducted Emissions
Don Nguyen
EMITest 5.03.19

Date: $11 / 24 / 2020$
Time: 11:21:48 AM
Sequence\#: 8
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmitting mode. Only the worst case (highest output power) mode is investigated.
Software setting:
Testing Frequency: 2437 MHz
Data Rate
802.11b: 1Mbps

Modulation: DSSS
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0
Frequency of Measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}, V B W=30 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Relative Humidity: 43\%
Pressure: 99.3 kPa

Site A

Test Method: ANSI C63.10 (2013)

Venstar. Inc. WO\#: 104728 Sequence\#\#: 8 Date: 11/24/2020 15.207 AC Mains - Average Test Lead: 120 V 60 Hz L1-Line

Sweep Data				
QP Readings				
Software Version: 5.03 .19	* Readings	Average Readings	\quad	Peak Readings
:---				
Ambient				

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
T3	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/10/2020	3/10/2021
T4	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
T5	ANP07738	Cable-Line L1(dB)	90cm-extcord	11/18/2020	11/18/2022
	ANP07738	Cable-Neutral $\mathrm{L} 2(\mathrm{~dB})$	90 cm -extcord	11/18/2020	11/18/2022

Page 135 of 143

25	2.093 M	21.7	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	$+0.0$	+0.2	$+0.0$	27.8	46.0	-18.2	L1-Li
26	1.957M	21.6	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.2	+0.0	27.7	46.0	-18.3	L1-Li
27	2.838 M	21.4	$\begin{aligned} & +5.8 \\ & +0.2 \end{aligned}$	+0.1	$+0.0$	+0.2	+0.0	27.7	46.0	-18.3	L1-Li
28	2.162 M	21.5	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.0	+0.2	+0.0	27.6	46.0	-18.4	L1-Li
29	1.217M	21.4	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	$+0.0$	+0.2	+0.0	27.5	46.0	-18.5	L1-Li
30	1.689M	21.4	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	$+0.0$	+0.2	$+0.0$	27.5	46.0	-18.5	L1-Li
31	945.248k	21.3	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.2	+0.0	27.4	46.0	-18.6	L1-Li
32	809.575k	21.1	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	$+0.0$	+0.3	+0.0	27.3	46.0	-18.7	L1-Li
33	1.417M	21.2	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.2	+0.0	27.3	46.0	-18.7	L1-Li
34	3.446M	21.0	$\begin{aligned} & \hline+5.8 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.1	+0.1	+0.0	27.3	46.0	-18.7	L1-Li
35	2.025 M	20.9	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	$+0.0$	+0.2	+0.0	27.0	46.0	-19.0	L1-Li
36	2.906M	20.7	$\begin{aligned} & +5.8 \\ & +0.2 \end{aligned}$	+0.1	$+0.0$	+0.2	+0.0	27.0	46.0	-19.0	L1-Li
37	15.067M	23.5	$\begin{array}{r} +5.8 \\ +1.1 \\ \hline \end{array}$	+0.3	+0.1	+0.2	+0.0	31.0	50.0	-19.0	L1-Li
38	674.315k	20.7	$\begin{aligned} & +5.8 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	$+0.0$	+0.3	+0.0	26.9	46.0	-19.1	L1-Li
39	2.366 M	20.7	$\begin{aligned} & +5.8 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	$+0.0$	+0.2	+0.0	26.9	46.0	-19.1	L1-Li
40	2.634 M	20.7	$\begin{aligned} & +5.8 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	+0.2	$+0.0$	26.9	46.0	-19.1	L1-Li
41	13.697M	23.3	$\begin{aligned} & +5.8 \\ & +1.0 \\ & \hline \end{aligned}$	+0.3	+0.1	+0.2	+0.0	30.7	50.0	-19.3	L1-Li
42	17.806M	23.0	$\begin{array}{r} +5.8 \\ +1.1 \\ \hline \end{array}$	+0.4	+0.2	+0.2	+0.0	30.7	50.0	-19.3	L1-Li
43	1.081 M	20.5	$\begin{aligned} & \hline+5.8 \\ & +0.0 \end{aligned}$	+0.1	$+0.0$	+0.2	+0.0	26.6	46.0	-19.4	L1-Li
44	1.354M	20.5	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.1	+0.0	+0.2	+0.0	26.6	46.0	-19.4	L1-Li
45	2.238 M	20.3	$\begin{array}{r} +5.8 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	+0.2	+0.0	26.5	46.0	-19.5	L1-Li
46	2.298M	20.1	$\begin{aligned} & \hline+5.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.2	+0.0	26.3	46.0	-19.7	L1-Li
47	2.570 M	20.1	$\begin{aligned} & \hline+5.8 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.2	+0.0	26.3	46.0	-19.7	L1-Li
48	3.174M	20.0	$\begin{aligned} & +5.8 \\ & +0.2 \end{aligned}$	+0.1	+0.1	+0.1	$+0.0$	26.3	46.0	-19.7	L1-Li
49	2.506 M	19.8	$\begin{array}{r} +5.8 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.2	+0.0	26.0	46.0	-20.0	L1-Li
50	2.706 M	19.6	$\begin{array}{r} +5.8 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	+0.2	+0.0	25.8	46.0	-20.2	L1-Li

Page 136 of 143

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112

Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc.
15.207 AC Mains - Average

104728
Conducted Emissions
Don Nguyen
EMITest 5.03.19

Date: $11 / 24 / 2020$
Time: 11:20:26 AM
Sequence\#: 7
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
EUT is powered from 24Vac AC Adapter and set to transmitting mode. Only the worst case (highest output power) mode is investigated.
Software setting:
Testing Frequency: 2437 MHz
Data Rate
802.11b: 1Mbps

Modulation: DSSS
Mode: Continuous TX/ Modulated
Packet Size: 1400 Bytes
TX Power Level: 0

Frequency of Measurement: $150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=9 \mathrm{kHz}, \mathrm{VBW}=30 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $23^{\circ} \mathrm{C}$
Relative Humidity: 43\%
Pressure: 99.3 kPa
Site A
Test Method: ANSI C63.10 (2013)

```
Venstar. Inc. WO#: 104728 Sequence#: 7 Date: 11/24/2020
15.207 AC Mains - Average Test Lead: 120V 60Hz L2-Neutral
```


Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP07545	Attenuator	SA18N10W-06	1/18/2019	1/18/2021
T2	ANP07338	Cable	2249-Y-240	12/24/2019	12/24/2021
	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/10/2020	3/10/2021
T3	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/10/2020	3/10/2021
T4	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	10/22/2019	10/22/2021
	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
	ANP07738	Cable-Line L1(dB)	90cm-extcord	11/18/2020	11/18/2022
T5	ANP07738	Cable-Neutral $\mathrm{L} 2(\mathrm{~dB})$	90 cm -extcord	11/18/2020	11/18/2022

