Testing the Future LABORATORIES, INC.

Venstar, Inc.

REVISED TEST REPORT TO 102914-8

WiFi Thermostat
Model: Super Explorer Mini

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 102914-8A

Date of issue: October 24, 2019

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 81 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	∠
Summary of Results	
Modifications During Testing	
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.247(a)(2) 6dB Bandwidth	
15.247(b)(3) Output Power	14
15.247(e) Power Spectral Density	25
15.247(d) RF Conducted Emissions & Band Edge	33
15.247(d) Radiated Emissions & Band Edge	53
15.207 AC Conducted Emissions	71
Supplemental Information	80
Measurement Uncertainty	80
Fmissions Test Details	80

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Venstar, Inc.

9250 Owensmouth Avenue

CKC Laboratories, Inc.

Chatsworth, CA 91311

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Alex Garashin Project Number: 102914

DATE OF EQUIPMENT RECEIPT: July 29, 2019

DATE(S) OF TESTING: July 29 – August 1, 2019

Revision History

Original: Testing of the WiFi Thermostat, Model: Super Explorer Mini to FCC Part 15 Subpart C Section(s) 15.207 & 15.247 (DTS 2400-2483.5 MHz).

Revision A: Updated Band Edge summary in Section 15.247(d) to clarify BE measurement.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Steve J Belon

Page 3 of 81 Report No.: 102914-8A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.12

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Japan
Canyon Park, Bothell, WA	US0081	US1022	A-0136
Brea, CA	US0060	US1025	A-0136
Fremont, CA	US0082	US1023	A-0136
Mariposa, CA	US0103	US1024	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 81 Report No.: 102914-8A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions
None

Page 5 of 81 Report No.: 102914-8A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
WiFi Thermostat	Venstar, Inc.	Super Explorer Mini	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Development board	Texas Instrument	T005V0	NA
Mouse	Dell	MS111-P	71561-QAP-OA9P
Laptop	Lenovo	T500	2242CTO
Power Supply	Generic	MKA-412400200	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.11 b/g/n20
Operating Frequency Range:	2412-2462MHz
Modulation Type(s):	CCK / OFDM/ 64QAM
Maximum Duty Cycle:	62%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Integral 1.9dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral (External connector provided to facilitate testing)
Nominal Input Voltage:	24Vac 60Hz
Firmware / Software used for Test:	TI CC31XX/CC32XX Radio tool V 1.0.3.11

Page 6 of 81 Report No.: 102914-8A

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

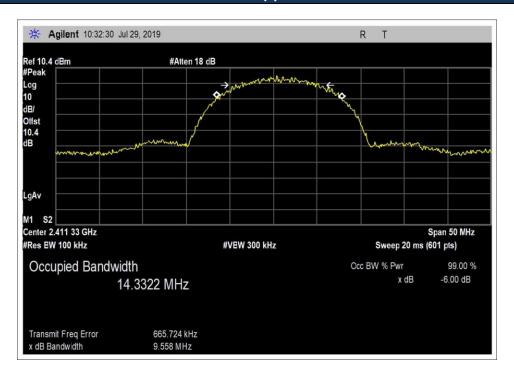
	Test Setup/Conditions					
Test Location:	Brea Lab A	Test Engineer:	E. Wong			
Test Method:	ANSI C63.10 (2013), KDB 558074 V05r02 (2019)	Test Date(s):	7/29/2019			
Configuration:	1					
Test Setup:	The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode. Freq range: 2400-2483.5MHz					
	Freq: 2412- 2462 MHz Protocol: 802.11 b/g/n20					
	Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.					
	802.11 b 2412, 2442, 2462 0	,0,0				
	802.11g 2412, 2442, 2462 1	,0,0				
	802.11n20 2412, 2442, 2462 0,	.0,0				
	The EUT has integral antenna hantenna test port. Frequency range of measurement		measurement was made with RF			

Environmental Conditions				
Temperature (°C)	25	Relative Humidity (%):	55	

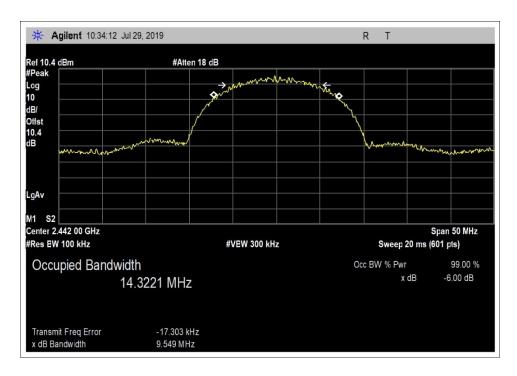
Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal I							
02672	Spectrum Analyzer	Agilent	E4446A	3/13/2019	3/13/2021		
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	12/19/2017	12/19/2019		
P07246	Cable	H&S	32022-29094K- 29094K-24TC	7/5/2018	7/5/2020		

Page 7 of 81 Report No.: 102914-8A

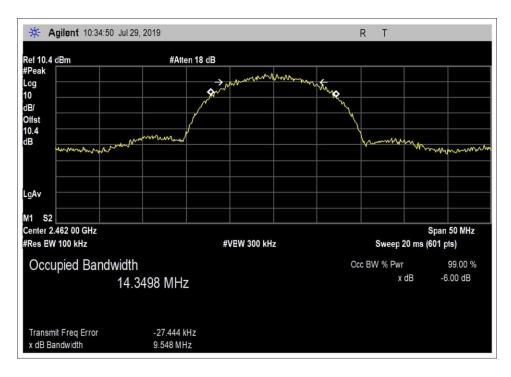
Test Data Summary					
Frequency Antenna Modulation Measured Limit (kHz) (kHz)					Results
2412	1	802.11b/ CCK	9558	≥500	Pass
2442	1	802.11b/ CCK	9549	≥500	Pass
2462	1	802.11b/ CCK	9548	≥500	Pass


Test Data Summary						
Frequency Antenna Modulation Measured Limit Results					Results	
2412	1	802.11g/OFDM	16548	≥500	Pass	
2442	1	802.11g/OFDM	16509	≥500	Pass	
2462	1	802.11g/OFDM	16543	≥500	Pass	

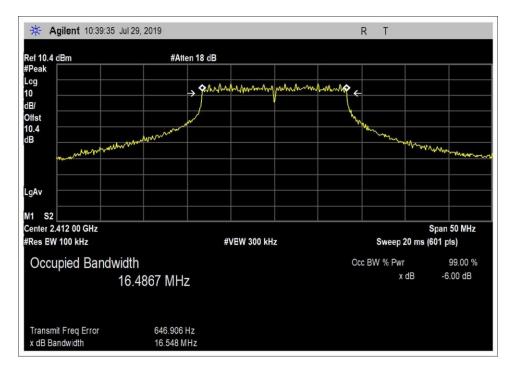
Test Data Summary						
Frequency Antenna Modulation Measured (kHz)			Limit (kHz)	Results		
2412	1	802.11n20 / 64QAM	17771	≥500	Pass	
2442	1	802.11n20 / 64QAM	17718	≥500	Pass	
2462	1	802.11n20 / 64QAM	17706	≥500	Pass	


Page 8 of 81 Report No.: 102914-8A

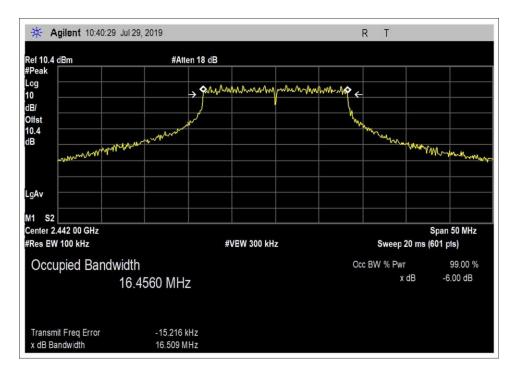
Plot(s)



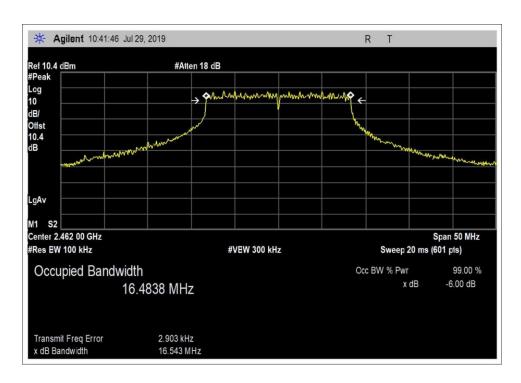
802.11b, Low Channel



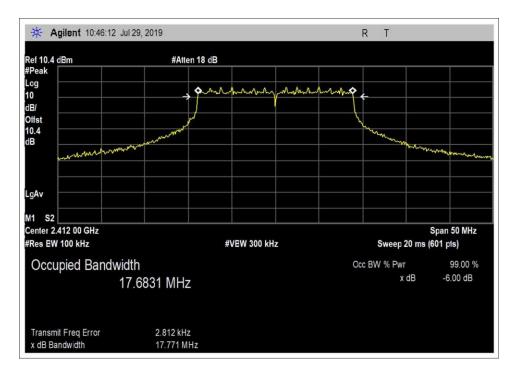
802.11b, Middle Channel



802.11b, High Channel

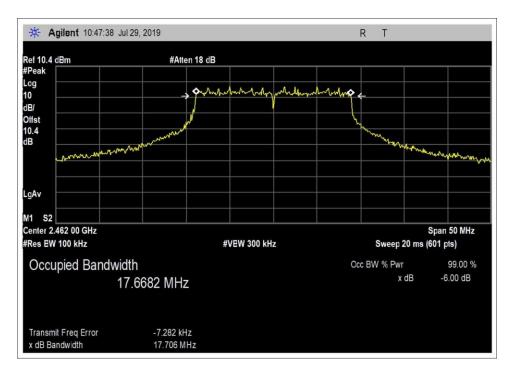


802.11g, Low Channel

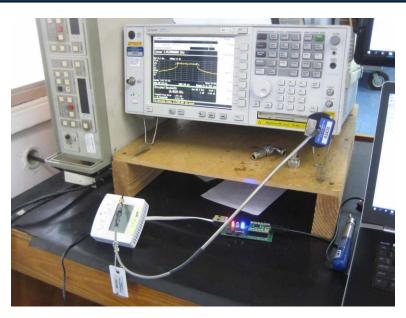


802.11g, Middle Channel

802.11g, High Channel



802.11n20, Low Channel


802.11n20, Middle Channel

802.11n20, High Channel

Test Setup Photo

Page 13 of 81 Report No.: 102914-8A

15.247(b)(3) Output Power

	Test Setup /	['] Conditions			
Test Location:	Brea Lab A	Test Engineer:	E. Wong		
Test Method:	ANSI C63.10 (2013), KDB 558074 V05r02 (2019)	Test Date(s):	7/29/2019		
Canfinunation	, ,				
Configuration:	1				
Test Setup:	The EUT is placed on test bench, connected to a laptop. The Laptop is running TI				
	CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.				
	Freq range: 2400-2483.5MHz				
	Freq: 2412- 2462 MHz				
	Protocol: 802.11 b/g/n20				
	Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.				
	802.11 b 2412, 2442, 2462 0	,0,0			
	802.11g 2412, 2442, 2462 1	,0,0			
	802.11n20 2412, 2442, 2462 0,				
	The EUT has integral antenna hantenna test port.	owever, conducted n	neasurement was made with RF		
	Frequency range of measurement	= Fundamental			

Environmental Conditions					
Temperature (°C) 26 Relative Humidity (%): 48					

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02672	Spectrum Analyzer	Agilent	E4446A	3/13/2019	3/13/2021	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	12/19/2017	12/19/2019	
P07246	Cable	H&S	32022-29094K- 29094K-24TC	7/5/2018	7/5/2020	

Page 14 of 81 Report No.: 102914-8A

Test Data Summary - Voltage Variations					
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)
2412	802.11b/ CCK	14.2	14.2	14.2	0
2442	802.11b/ CCK	14.4	14.4	14.4	0
2462	802.11b/ CCK	14.6	14.6	14.6	0

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)	
2412	802.11g /OFDM	10.4	10.4	10.4	0	
2442	802.11g /OFDM	10.4	10.4	10.4	0	
2462	802.11g /OFDM	9.8	9.8	9.8	0	

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)	
2412	802.11n20 / 64QAM	9.0	9.0	9.0	0	
2442	802.11n20 / 64QAM	9.2	9.2	9.2	0	
2462	802.11n20 / 64QAM	9.2	9.2	9.2	0	

Test performed using operational mode with the highest output power, representing worst case.

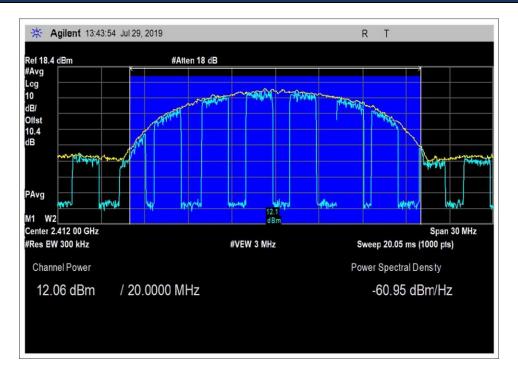
Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

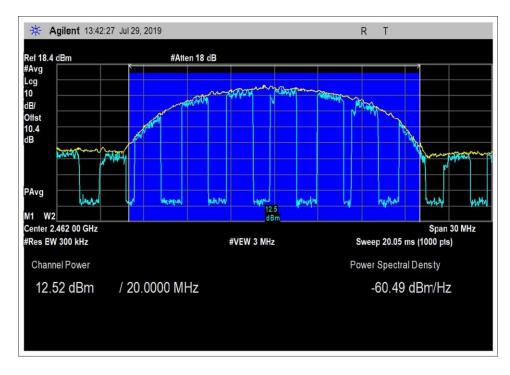
Parameter	Value
V _{Nominal} :	24
V _{Minimum} :	20.4
V _{Maximum} :	27.6

Page 15 of 81 Report No.: 102914-8A

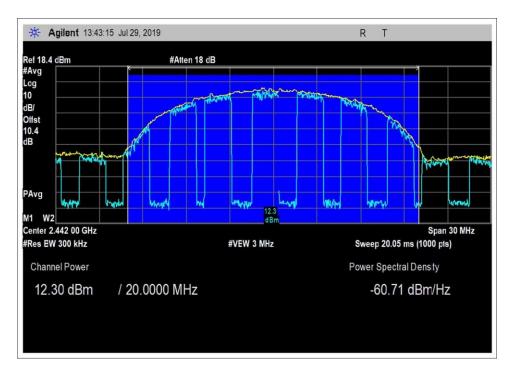
	Power Output Test Data Summary - RF Conducted Measurement					
Measuremen	Measurement Option: AVGSA-2					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
2412	802.11b/ CCK	Integral/ 1.9dBi	14.2	≤ 30	Pass	
2442	802.11b/ CCK	Integral/ 1.9dBi	14.4	≤ 30	Pass	
2462	802.11b/ CCK	Integral/ 1.9dBi	14.6	≤ 30	Pass	


	Power Output Test Data Summary - RF Conducted Measurement					
Measuremen	Measurement Option: AVGSA-2					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
2412	802.11g /OFDM	Integral/ 1.9dBi	10.4	≤ 30	Pass	
2442	802.11g /OFDM	Integral/ 1.9dBi	10.4	≤ 30	Pass	
2462	802.11g /OFDM	Integral/ 1.9dBi	9.8	≤ 30	Pass	

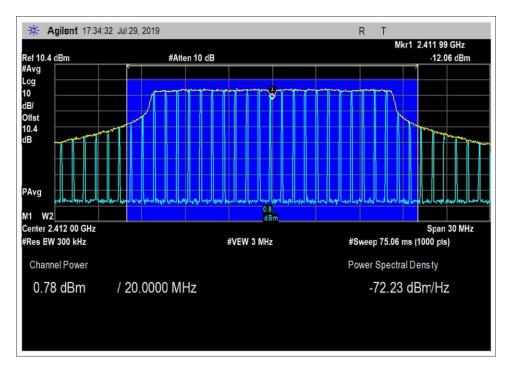
	Power Output Test Data Summary - RF Conducted Measurement					
Measuremen	Measurement Option: AVGSA-2					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
2412	802.11n20 / 64QAM	Integral/ 1.9dBi	9.0	≤ 30	Pass	
2442	802.11n20 / 64QAM	Integral/ 1.9dBi	9.2	≤ 30	Pass	
2462	802.11n20 / 64QAM	Integral/ 1.9dBi	9.2	≤ 30	Pass	


Page 16 of 81 Report No.: 102914-8A

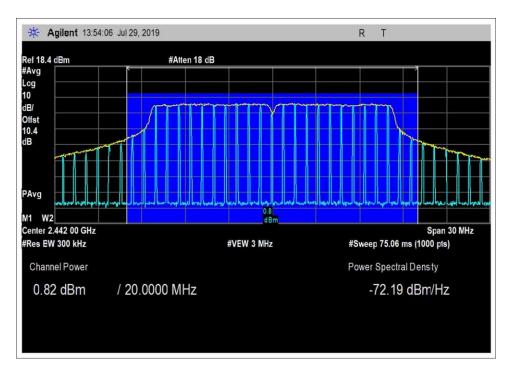
Plots



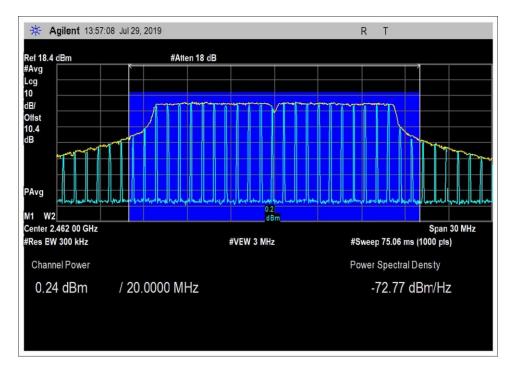
802.11b, Low Channel



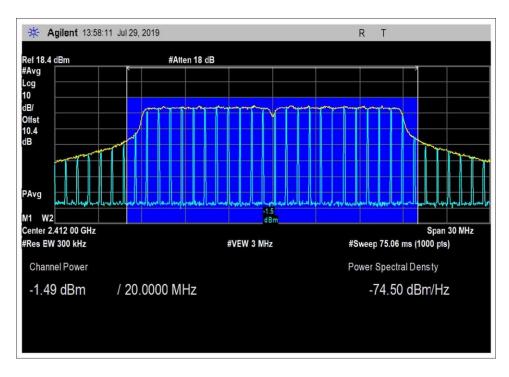
802.11b, Middle Channel



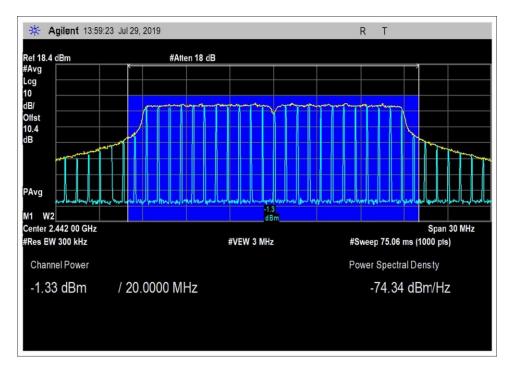
802.11b, High Channel



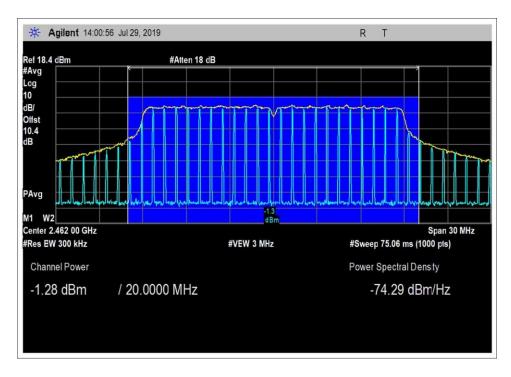
802.11g, Low Channel



802.11g, Middle Channel



802.11g, High Channel



802.11n20, Low Channel

802.11n20, Middle Channel

802.11n20, High Channel

Duty Cycle Correction Factor Test Data

Duty Cycle					
Frequency (MHz)	Modulation	Measured dBm	Duty Cycle Correction	Corrected Power dBm	
2412	802.11b/ CCK	12.1	2.1	14.2	
2442	802.11b/ CCK	12.3	2.1	14.4	
2462	802.11b/ CCK	12.5	2.1	14.6	

802.11b (1.24 ms x 5) / 10 ms = 0.62,

Duty Cycle Correction factor,10 log 1/0.62 = 2.1dB

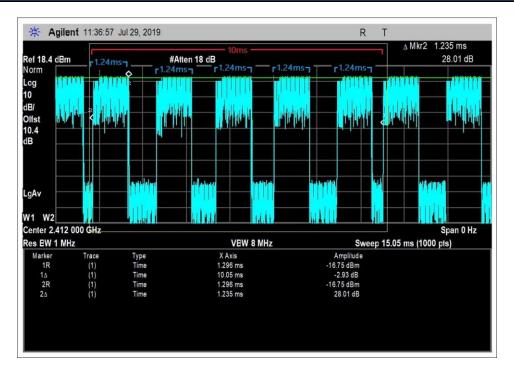
Duty Cycle					
Frequency (MHz)	Modulation	Measured dBm	Duty Cycle Correction	Corrected Power dBm	
2412	802.11g/ OFDM	0.8	9.6	10.4	
2442	802.11g/ OFDM	0.8	9.6	10.4	
2462	802.11g/ OFDM	0.2	9.6	9.8	

802.11g (0.22ms) /1.97ms = 0.11

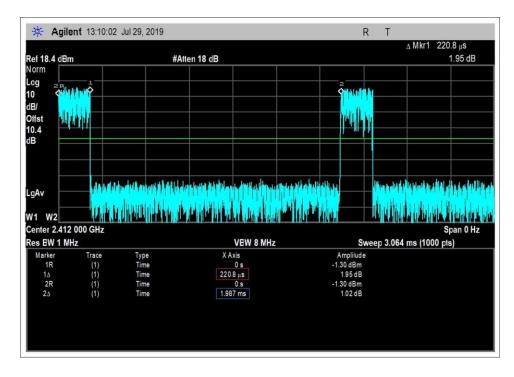
Duty Cycle Correction factor,10 Log 1/0.11 =9.6dB

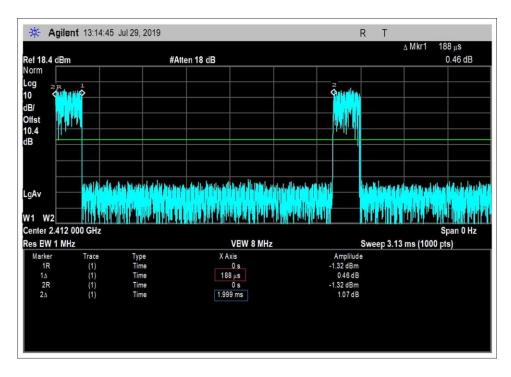
Duty Cycle					
Frequency (MHz)	Modulation	Measured dBm	Duty Cycle Correction	Corrected Power dBm	
2412	802.11n20/64QAM	-1.5	10.5	9.0	
2442	802.11n20/64QAM	-1.3	10.5	9.2	
2462	802.11n20/64QAM	-1.3	10.5	9.2	

802.11n20 (0.188ms)/1.999ms = 0.09.

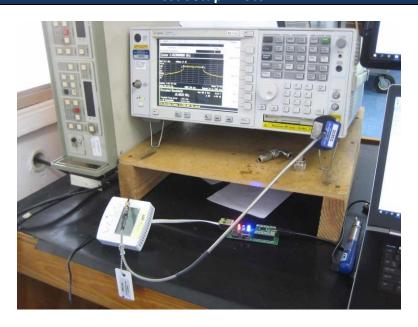

Duty Cycle Correction factor,10 Log 1/0.09 =10.5dB

Note: 10 Log 1/x, (where x is duty cycle) added to measured channel power in accordance with 9.2.2.4


Page 22 of 81 Report No.: 102914-8A


Plots

802.11b



802.11n20

Test Setup Photo

Page 24 of 81 Report No.: 102914-8A

15.247(e) Power Spectral Density

	Test Setup / Conditions / Data					
Test Location:	Brea Lab A	Test Engineer:	E. Wong			
Test Method:	ANSI C63.10 (2013), KDB 558074 v05r02 (2019)	Test Date(s):	7/29/2019			
Configuration:	1					
Test Setup:	The EUT is placed on test bend	ch, connected to a I	aptop. The Laptop is running TI			
	CC31XX/CC32XX Radio Tool V 1.0.3	3.11 to place the EUT i	n test mode.			
	Freq range: 2400-2483.5MHz					
	Freq: 2412- 2462 MHz					
	Protocol: 802.11 b/g/n20					
	Packet size 1400 byte (max) infinit Firmware Power setting listed belo					
	802.11b 2412, 2442, 2462 0,	0,0				
	802.11g 2412, 2442, 2462 1,	,0,0				
	802.11n20 2412, 2442, 2462 0,	0,0				
	The EUT has integral antenna h antenna test port.	owever, conducted r	neasurement was made with RF			
	Frequency range of measurement	= Fundamental				

Environmental Conditions				
Temperature (ºC)	26	Relative Humidity (%):	48	

Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
02672	Spectrum Analyzer	Agilent	E4446A	3/13/2019	3/13/2021	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	12/19/2017	12/19/2019	
P07246	Cable	H&S	32022-29094K- 29094K-24TC	7/5/2018	7/5/2020	

Page 25 of 81 Report No.: 102914-8A

PSD Test Data Summary - RF Conducted Measurement						
Measurement M	Measurement Method: AVGPSD-2					
Frequency (MHz)	Modulation	Measured (dBm/30kHz)	Limit (dBm/3kHz)	Results		
2412	802.11b/ CCK	-10.4	≤8	Pass		
2442	802.11b/ CCK	-9.8	≤8	Pass		
2462	802.11b/ CCK	-11.0	≤8	Pass		

PSD Test Data Summary - RF Conducted Measurement						
Measurement M	Measurement Method: AVGPSD-2					
Frequency (MHz)	Modulation	Measured (dBm/100kHz)	Limit (dBm/3kHz)	Results		
2412	802.11g/ OFDM	-7.5	≤8	Pass		
2442	802.11g/ OFDM	-7.4	≤8	Pass		
2462	802.11g/ OFDM	-6.8	≤8	Pass		

PSD Test Data Summary - RF Conducted Measurement						
Measurement M	Measurement Method: AVGPSD-2					
Frequency (MHz)	Modulation	Measured (dBm/100kHz)	Limit (dBm/3kHz)	Results		
2412	802.11n20/ 64QAM	-7.8	≤8	Pass		
2442	802.11n20/ 64QAM	-6.0	≤8	Pass		
2462	802.11n20/64QAM	-7.9	≤8	Pass		

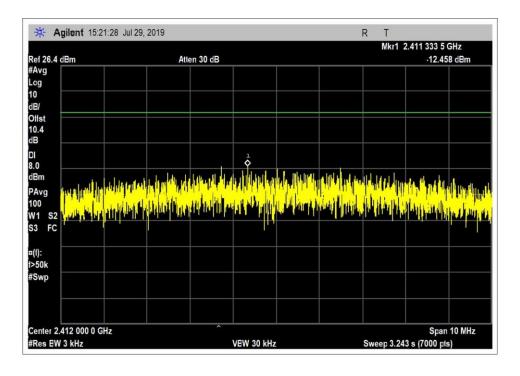
Note: 10 Log 1/x, (where x is duty cycle) added to measured PSD in accordance with 11.10.5.

Note: Measurement made with different RBW.

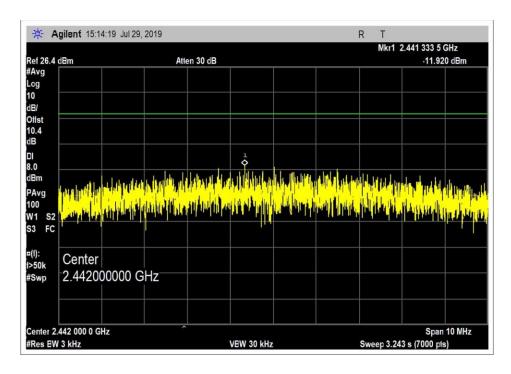
Page 26 of 81 Report No.: 102914-8A

Duty Cycle Correction Factor Test Data

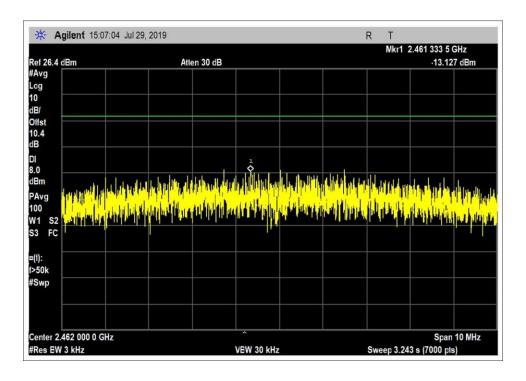
Duty Cycle				
Frequency (MHz)	Modulation	Measured dBm	Duty Cycle Corr.	Corrected Power dBm
2412	802.11b/ CCK	-12.5	2.1	-10.4
2442	802.11b/ CCK	-11.9	2.1	-9.8
2462	802.11b/ CCK	-13.1	2.1	-11.0


Duty Cycle				
Frequency (MHz)	Modulation	Measured dBm	Duty Cycle Corr.	Corrected Power dBm
2412	802.11g/ OFDM	-17.1	9.6	-7.5
2442	802.11g/ OFDM	-17.0	9.6	-7.4
2462	802.11g/ OFDM	-16.4	9.6	-6.8

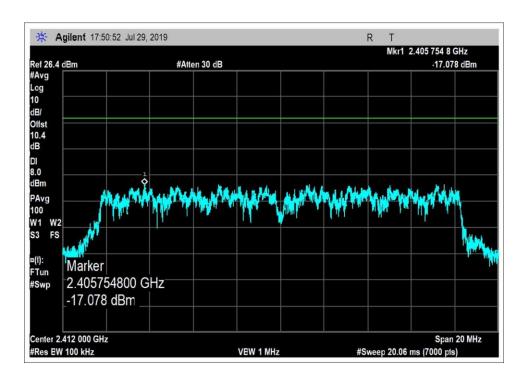
Duty Cycle					
Frequency (MHz)	Corrected Power dBm				
2412	802.11n20/64QAM	-18.3	10.5	-7.8	
2442	802.11n20/64QAM	-16.5	10.5	-6.0	
2462	802.11n20/64QAM	-18.4	10.5	-7.9	


Page 27 of 81 Report No.: 102914-8A

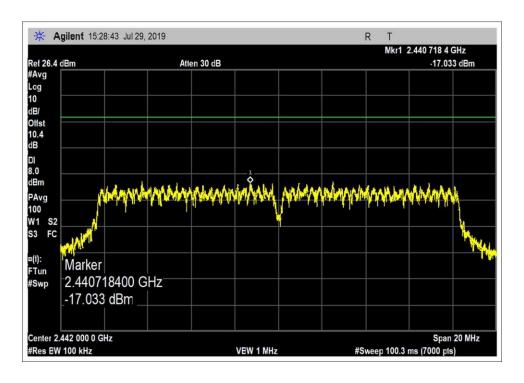
Plots



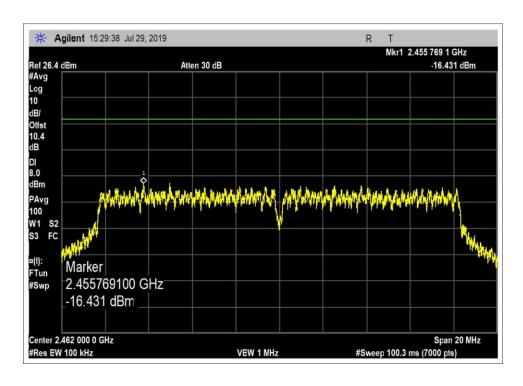
802.11b, Low Channel



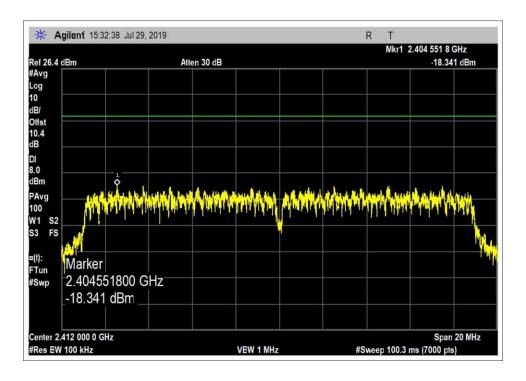
802.11b, Middle Channel



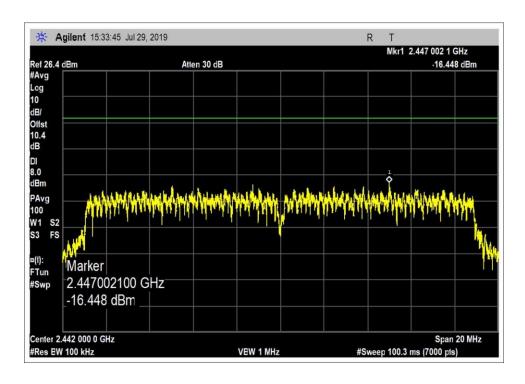
802.11b, High Channel



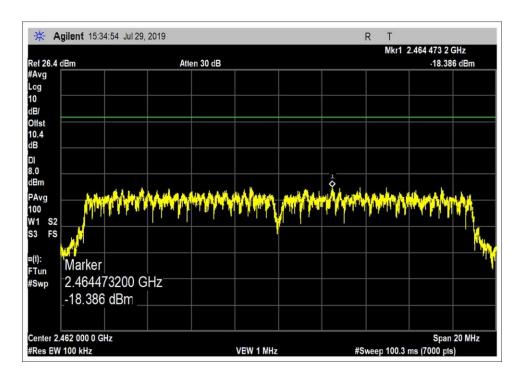
802.11g, Low Channel



802.11g, Middle Channel



802.11g, High Channel



802.11n20, Low Channel

802.11n20, Middle Channel

802.11n20, High Channel

Test Setup Photo

Page 32 of 81 Report No.: 102914-8A

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 102914
 Date: 7/30/2019

 Test Type:
 Conducted Emissions
 Time: 11:20:34

Tested By: S. Yamamoto Sequence#: 2

Software: EMITest 5.03.12 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 9kHz to 25GHz RBW=100kHz VBW=1MHz

Freq: 2412- 2462 MHz Protocol: 802.11 b

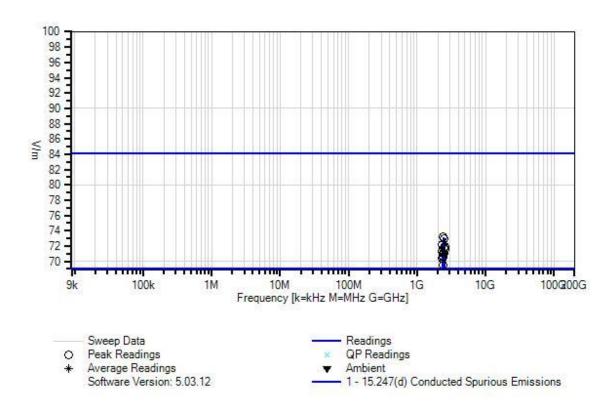
Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.

802.11 b 2412, 2442, 2462 0,0,0

The EUT has integral antenna however, conducted measurement was made with RF antenna test port.

Test environment conditions:

Temperature: 23°C Relative Humidity: 48% Atmospheric Pressure: 99kPa


All data rates / modulation types were evaluated during preliminary investigation. The test data represents worst case emissions for the investigated operational modes.

558074 D01 15.247 Meas Guidance v05r02April 2, 2019

Page 33 of 81 Report No.: 102914-8A

Venstar, Inc. WO#: 102914 Sequence#: 2 Date: 7/30/2019 15.247(d) Conducted Spurious Emissions Test Lead: 120/60Hz Antenna port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T1	AN03430	Attenuator	75A-10-12	12/19/2017	12/19/2019
T2	ANP07246	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		

# Freq MHz dBμV dB dB dB dB dB Table V/m V/m dB Ant 1 2398.530M 62.8 +10.1 +0.3 +0.0 73.2 84.1 -10.9 Anten 2 2504.770M 62.5 +10.2 +0.3 +0.0 73.0 84.1 -11.1 Anten 3 2349.380M 61.8 +10.1 +0.3 +0.0 71.9 84.1 -12.2 Anten 4 2550.290M 61.4 +10.2 +0.3 +0.0 71.8 84.1 -12.3 Anten 5 2503.730M 61.3 +10.2 +0.3 +0.0 71.6 84.1 -12.3 Anten 6 2531.650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327.870M 60.9 +10.1 +0.3 +0.0 71.1 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.4 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 68.7 84.1 -13.7 Anten 13 2490.000M 59.1 +10.1 +0.3 +0.0 68.7 84.1 -15.7 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.7 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 66.7 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.2 84.1 -15.7 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.4 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -17.9 Anten 19 4104.330M 45.3 +10.1 +0.3 +0.0 65.5 84.1 -17.9 Anten	Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	a port	
1 2398,530M 62.8 +10.1 +0.3 +0.0 73.2 84.1 -10.9 Anten 2 2504,770M 62.5 +10.2 +0.3 +0.0 73.0 84.1 -11.1 Anten 3 2349,380M 61.8 +10.1 +0.3 +0.0 72.2 84.1 -11.9 Anten 4 2550,290M 61.4 +10.2 +0.3 +0.0 71.9 84.1 -12.2 Anten 5 2503,730M 61.3 +10.2 +0.3 +0.0 71.8 84.1 -12.3 Anten 6 2531,650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327,870M 60.9 +10.1 +0.3 +0.0 71.1 84.1 -12.8 Anten 9 2483,500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 11 2358,960M 60.1 +1	#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
2 2504.770M 62.5 +10.2 +0.3 +0.0 73.0 84.1 -11.1 Anten 3 2349.380M 61.8 +10.1 +0.3 +0.0 72.2 84.1 -11.9 Anten 4 2550.290M 61.4 +10.2 +0.3 +0.0 71.9 84.1 -12.2 Anten 5 2503.730M 61.3 +10.2 +0.3 +0.0 71.8 84.1 -12.3 Anten 6 2531.650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327.870M 60.9 +10.1 +0.3 +0.0 71.3 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten		MHz	dΒμV	dB	dB	dB	dB	Table	V/m	V/m	dB	Ant
3 2349.380M 61.8 +10.1 +0.3 +0.0 72.2 84.1 -11.9 Anten 4 2550.290M 61.4 +10.2 +0.3 +0.0 71.9 84.1 -12.2 Anten 5 2503.730M 61.3 +10.2 +0.3 +0.0 71.8 84.1 -12.3 Anten 6 2531.650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327.870M 60.9 +10.1 +0.3 +0.0 71.3 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.3 +0.0 68.7 84.1 -15.7 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.3 +0.0 66.7 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.3 +0.0 66.2 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.3 +0.0 65.5 84.1 -18.6 Anten	1	2398.530M	62.8	+10.1	+0.3			+0.0	73.2	84.1	-10.9	Anten
4 2550.290M 61.4 +10.2 +0.3 +0.0 71.9 84.1 -12.2 Anten 5 2503.730M 61.3 +10.2 +0.3 +0.0 71.8 84.1 -12.3 Anten 6 2531.650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327.870M 60.9 +10.1 +0.3 +0.0 71.3 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 66.7 84.1 -15.4 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.2 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	2	2504.770M	62.5	+10.2	+0.3			+0.0	73.0	84.1	-11.1	Anten
5 2503.730M 61.3 +10.2 +0.3 +0.0 71.8 84.1 -12.3 Anten 6 2531.650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327.870M 60.9 +10.1 +0.3 +0.0 71.3 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten <td>3</td> <td>2349.380M</td> <td>61.8</td> <td>+10.1</td> <td>+0.3</td> <td></td> <td></td> <td>+0.0</td> <td>72.2</td> <td>84.1</td> <td>-11.9</td> <td>Anten</td>	3	2349.380M	61.8	+10.1	+0.3			+0.0	72.2	84.1	-11.9	Anten
6 2531.650M 61.1 +10.2 +0.3 +0.0 71.6 84.1 -12.5 Anten 7 2327.870M 60.9 +10.1 +0.3 +0.0 71.3 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -17.9 Anten	4	2550.290M	61.4	+10.2	+0.3			+0.0	71.9	84.1	-12.2	Anten
7 2327.870M 60.9 +10.1 +0.3 +0.0 71.3 84.1 -12.8 Anten 8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.2 <td< td=""><td>5</td><td>2503.730M</td><td>61.3</td><td>+10.2</td><td>+0.3</td><td></td><td></td><td>+0.0</td><td>71.8</td><td>84.1</td><td>-12.3</td><td>Anten</td></td<>	5	2503.730M	61.3	+10.2	+0.3			+0.0	71.8	84.1	-12.3	Anten
8 2370.930M 60.7 +10.1 +0.3 +0.0 71.1 84.1 -13.0 Anten 9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 <t< td=""><td>6</td><td>2531.650M</td><td>61.1</td><td>+10.2</td><td>+0.3</td><td></td><td></td><td>+0.0</td><td>71.6</td><td>84.1</td><td>-12.5</td><td>Anten</td></t<>	6	2531.650M	61.1	+10.2	+0.3			+0.0	71.6	84.1	-12.5	Anten
9 2483.500M 60.6 +10.2 +0.3 +0.0 71.1 84.1 -13.0 Anten 10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	7	2327.870M	60.9	+10.1	+0.3			+0.0	71.3	84.1	-12.8	Anten
10 2400.000M 60.3 +10.1 +0.3 +0.0 70.7 84.1 -13.4 Anten 11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 65.5 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	8	2370.930M	60.7	+10.1	+0.3			+0.0	71.1	84.1	-13.0	Anten
11 2358.960M 60.1 +10.1 +0.3 +0.0 70.5 84.1 -13.6 Anten 12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	9	2483.500M	60.6	+10.2	+0.3			+0.0	71.1	84.1	-13.0	Anten
12 2330.800M 60.0 +10.1 +0.3 +0.0 70.4 84.1 -13.7 Anten 13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	10	2400.000M	60.3	+10.1	+0.3			+0.0	70.7	84.1	-13.4	Anten
13 2400.000M 59.1 +10.1 +0.3 +0.0 69.5 84.1 -14.6 Anten 14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	11	2358.960M	60.1	+10.1	+0.3			+0.0	70.5	84.1	-13.6	Anten
14 2499.610M 58.2 +10.2 +0.3 +0.0 68.7 84.1 -15.4 Anten 15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	12	2330.800M	60.0	+10.1	+0.3			+0.0	70.4	84.1	-13.7	Anten
15 2491.460M 57.9 +10.2 +0.3 +0.0 68.4 84.1 -15.7 Anten 16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	13	2400.000M	59.1	+10.1	+0.3			+0.0	69.5	84.1	-14.6	Anten
16 2483.500M 56.2 +10.2 +0.3 +0.0 66.7 84.1 -17.4 Anten 17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	14	2499.610M	58.2	+10.2	+0.3			+0.0	68.7	84.1	-15.4	Anten
17 2313.710M 55.8 +10.1 +0.3 +0.0 66.2 84.1 -17.9 Anten 18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	15	2491.460M	57.9	+10.2	+0.3			+0.0	68.4	84.1	-15.7	Anten
18 2260.270M 55.2 +10.0 +0.3 +0.0 65.5 84.1 -18.6 Anten	16	2483.500M	56.2	+10.2	+0.3			+0.0	66.7	84.1	-17.4	Anten
	17	2313.710M	55.8	+10.1	+0.3			+0.0	66.2	84.1	-17.9	Anten
19 4104.330M 45.3 +10.1 +0.5 +0.0 55.9 84.1 -28.2 Anten	18	2260.270M	55.2	+10.0	+0.3			+0.0	65.5	84.1	-18.6	Anten
	19	4104.330M	45.3	+10.1	+0.5			+0.0	55.9	84.1	-28.2	Anten

Page 35 of 81 Report No.: 102914-8A

20 4070.250M	44.5	+10.1	+0.5	+0	0.0	55.1	84.1	-29.0	Anten
21 4019.580M	42.8	+10.2	+0.5	+0	0.0	53.5	84.1	-30.6	Anten
22 4924.010M	41.3	+10.1	+0.4	+0	0.0	51.8	84.1	-32.3	Anten
23 4884.012M	40.6	+10.1	+0.4	+0	0.0	51.1	84.1	-33.0	Anten
24 4824.007M	38.7	+10.1	+0.4	+0	0.0	49.2	84.1	-34.9	Anten
25 3215.993M	35.4	+10.2	+0.6	+0	0.0	46.2	84.1	-37.9	Anten

Page 36 of 81 Report No.: 102914-8A

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: **102914** Date: 7/30/2019 Test Type: **Conducted Emissions** Time: 13:40:47

Tested By: S. Yamamoto Sequence#: 3

Software: EMITest 5.03.12 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 9kHz to 25GHz RBW=100kHz VBW=1MHz

Freq range of EUT: 2412MHz to 2462 MHz

Protocol: 802.11 g

Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.

802.11g 2412, 2442, 2462 1,0,0

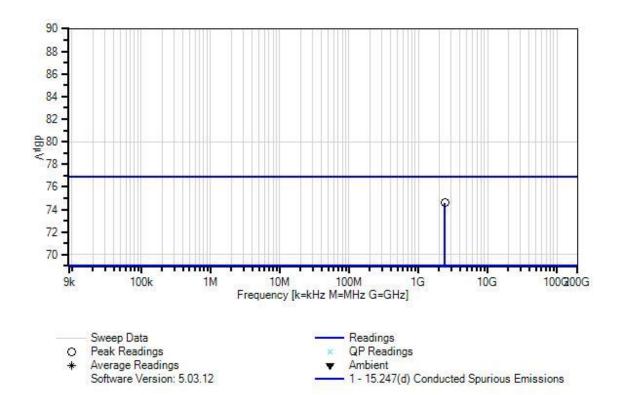
The EUT has integral antenna however, conducted measurement was made with RF antenna test port.

Frequency range of measurement = Fundamental

Test environment conditions:

Temperature: 25°C Relative Humidity: 58%

Atmospheric Pressure: 98.9kPa


All data rates / modulation types were evaluated during preliminary investigation. The test data represents worst case emissions for the investigated operational modes.

558074 D01 15.247 Meas Guidance v05r02April 2, 2019

Page 37 of 81 Report No.: 102914-8A

Venstar, Inc. WO#: 102914 Sequence#: 3 Date: 7/30/2019 15.247(d) Conducted Spurious Emissions Test Lead: 120/60Hz Antenna port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T1	AN03430	Attenuator	75A-10-12	12/19/2017	12/19/2019
T2	ANP07246	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lead	d: Antenna	ı port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2400.000M	64.2	+10.1	+0.3			+0.0	74.6	76.9	-2.3	Anten
2	2498.840M	56.8	+10.2	+0.3			+0.0	67.3	76.9	-9.6	Anten
3	2538.830M	56.7	+10.2	+0.3			+0.0	67.2	76.9	-9.7	Anten
4	2518.000M	56.6	+10.2	+0.3			+0.0	67.1	76.9	-9.8	Anten
5	2513.400M	55.9	+10.2	+0.3			+0.0	66.4	76.9	-10.5	Anten
6	2381.330M	55.6	+10.1	+0.3			+0.0	66.0	76.9	-10.9	Anten
7	2349.460M	54.8	+10.1	+0.3			+0.0	65.2	76.9	-11.7	Anten
8	2330.410M	54.2	+10.1	+0.3			+0.0	64.6	76.9	-12.3	Anten
9	2483.500M	54.1	+10.2	+0.3			+0.0	64.6	76.9	-12.3	Anten
10	2389.830M	52.3	+10.1	+0.3			+0.0	62.7	76.9	-14.2	Anten
11	2259.830M	49.2	+10.0	+0.3			+0.0	59.5	76.9	-17.4	Anten
12	2302.580M	49.1	+10.0	+0.3			+0.0	59.4	76.9	-17.5	Anten
13	2292.460M	48.8	+10.0	+0.3			+0.0	59.1	76.9	-17.8	Anten

Page 39 of 81 Report No.: 102914-8A

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 714 993 6112

Customer: Venstar, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 102914
 Date: 7/30/2019

 Test Type:
 Conducted Emissions
 Time: 14:17:42

Tested By: S. Yamamoto Sequence#: 4

Software: EMITest 5.03.12 120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on test bench, connected to a laptop. The Laptop is running TI CC31XX/CC32XX Radio Tool V 1.0.3.11 to place the EUT in test mode.

Freq range of test: 9kHz to 25GHz

Freq range of EUT: 2412MHz to 2462 MHz

Protocol: 802.11 n20

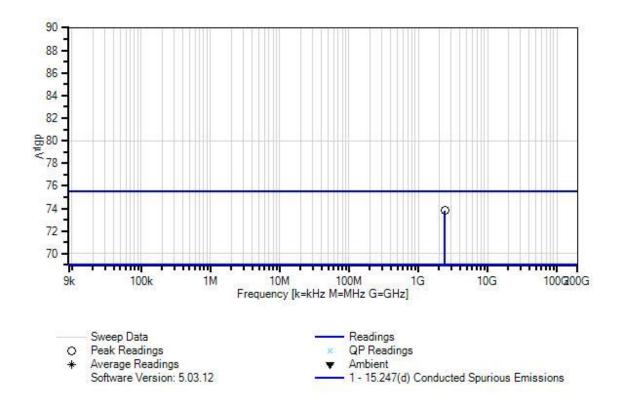
Packet size 1400 byte (max) infinite packet (0), delay 2 ms (worst case setting) Firmware Power setting listed below: range 0-15, 0 is max power setting.

802.11n20 2412, 2442, 2462 0,0,0

The EUT has integral antenna however, conducted measurement was made with RF antenna test port.

Test environment conditions:

Temperature: 23°C Relative Humidity: 49% Atmospheric Pressure: 99kPa


All data rates / modulation types were evaluated during preliminary investigation. The test data represents worst case emissions for the investigated operational modes.

558074 D01 15.247 Meas Guidance v05r02April 2, 2019

Page 40 of 81 Report No.: 102914-8A

Venstar, Inc. WO#: 102914 Sequence#: 4 Date: 7/30/2019 15.247(d) Conducted Spurious Emissions Test Lead: 120/60Hz Antenna port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	3/13/2019	3/13/2021
T1	AN03430	Attenuator	75A-10-12	12/19/2017	12/19/2019
T2	ANP07246	Cable	32022-29094K-	7/5/2018	7/5/2020
			29094K-24TC		

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2400.000M	63.4	+10.1	+0.3			+0.0	73.8	75.5	-1.7	Anten
2	2542.500M	57.2	+10.2	+0.3			+0.0	67.7	75.5	-7.8	Anten
3	2496.500M	57.2	+10.2	+0.3			+0.0	67.7	75.5	-7.8	Anten
4	2507.670M	57.1	+10.2	+0.3			+0.0	67.6	75.5	-7.9	Anten
5	2483.500M	56.4	+10.2	+0.3			+0.0	66.9	75.5	-8.6	Anten
6	2378.270M	55.2	+10.1	+0.3			+0.0	65.6	75.5	-9.9	Anten
7	2483.500M	54.9	+10.2	+0.3			+0.0	65.4	75.5	-10.1	Anten
8	2327.790M	53.3	+10.1	+0.3			+0.0	63.7	75.5	-11.8	Anten
9	2309.000M	51.8	+10.0	+0.3			+0.0	62.1	75.5	-13.4	Anten
10	2304.390M	49.5	+10.0	+0.3			+0.0	59.8	75.5	-15.7	Anten
11	2253.330M	48.8	+10.0	+0.3	_		+0.0	59.1	75.5	-16.4	Anten

Page 42 of 81 Report No.: 102914-8A

Band Edge

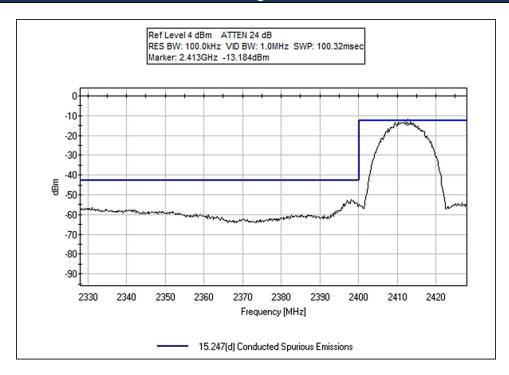
Band Edge Summary						
Limit applied: Max Power/100kHz - 30dB (When average power limit is applied).						
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results		
2400.0	802.11b/ CCK	-45.3	< - 32.3	Pass		
2483.5	802.11b/ CCK	-50.3	< - 32.3	Pass		

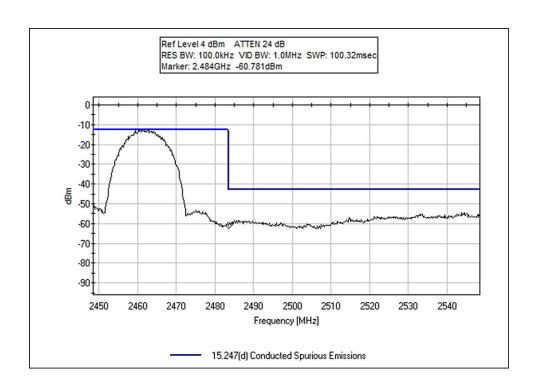
Band Edge Summary						
Limit applied: Max Power/100kHz - 30dB (When average power limit is applied).						
Frequency (MHz)	Modulation	Measured (dBm)				
2400.0	802.11g/ OFDM (CH power, PSet1)	-61.45**	< -60.68 *, **	Pass		
2483.5	802.11g/ OFDM	-53.5	< - 40.1	Pass		

^{*}Measured Max power/100kHz = -30.68dBm/100kHz hence limit = -30.68 dBm-30 = -60.68dBm/kHz

^{**}Measured power /100kHz for in-band and band edge is not duty cycle corrected as they are relative measurement.

Band Edge Summary						
Limit applied: Max Power/100kHz - 30dB (When average power limit is applied).						
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results		
2400.0	802.11n20/ 64QAM (CH power)	-62.79 **	< -60.59 *, **	Pass		
2483.5	802.11n20/ 64QAM	-53.1	< -41.4	Pass		


^{*}Measured Max power/100kHz = -30.59dBm/100kHz hence limit = -30.59 dBm-30 = -60.59dBm/kHz


Page 43 of 81 Report No.: 102914-8A

 $^{{\}tt **Measured\ power\ /100kHz\ for\ in\ -band\ and\ band\ edge\ is\ not\ duty\ cycle\ corrected\ as\ they\ are\ relative\ measurement.}$

Band Edge Plots

