Venstar, Inc.

TEST REPORT FOR

Subgig Temperature Humidity Sensor Model: VENnet Sensor

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (DTS 2400-2483.5MHz)

Report No.: 105151-8

Date of issue: April 2, 2021

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 50 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	θ
FCC Part 15 Subpart C	10
15.247(a)(2) 6dB Bandwidth	10
15.247(b)(3) Output Power	15
15.247(d) RF Conducted Emissions & Band Edge	23
15.247(d) Radiated Emissions & Band Edge	31
15.247(e) Power Spectral Density	42
Supplemental Information	49
Measurement Uncertainty	49
Emissions Test Details	ΛΟ

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Venstar, Inc. Kim Romero

9250 Owensmouth Avenue CKC Laboratories, Inc.
Chatsworth, CA 91311 5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Alex Garashin Project Number: 105151

DATE OF EQUIPMENT RECEIPT: March 10, 2021

DATE(S) OF TESTING: March 10, 16, 22, and 24, 2021

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Below

Page 3 of 50 Report No.: 105151-8

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 50 Report No.: 105151-8

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	PASS
15.247(b)(3)	Output Power	NA	PASS
15.247(d)	RF Conducted Emissions & Band Edge	NA	PASS
15.247(d)	Radiated Emissions & Band Edge	NA	PASS
15.247(e)	Power Spectral Density	NA	PASS
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the manufacturer declares the EUT is battery powered.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of	Conditions

None

Page 5 of 50 Report No.: 105151-8

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Subgig Temperature Humidity Sensor	Venstar, Inc.	VENnet Sensor	NA

Support Equipment:

Device	Manufacturer	Model #	S/N	
Development Kit	Texas Instruments	CC1352R1	NA	
Laptop Computer	Lenovo	ThinkPad T500	L3B3906	

General Product Information:

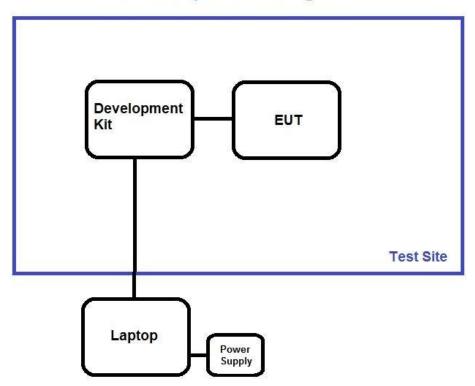
Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	2.4GHz BLE
Operating Frequency Range:	2404MHz to 2480MHz
Modulation Type(s):	GFSK
Maximum Duty Cycle:	100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Surface Mount -34.5dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	One 3V CR2450 Battery
	2.4GHz BLE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) – Packet Tx with
Firmware / Software used for Test:	AUX_ADV_IND PDU
rilliwate / Software used for Test.	2.4GHz BLE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) – Packet Tx with
	AUX_ADV_IND PDU

Page 6 of 50 Report No.: 105151-8

EUT Photo(s)

Support Equipment Photo(s)

Development Kit



Laptop

Block Diagram of Test Setup(s)

Test Setup Block Diagram

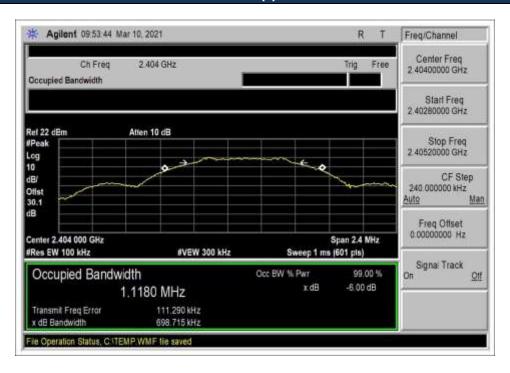
Page 9 of 50 Report No.: 105151-8

FCC Part 15 Subpart C

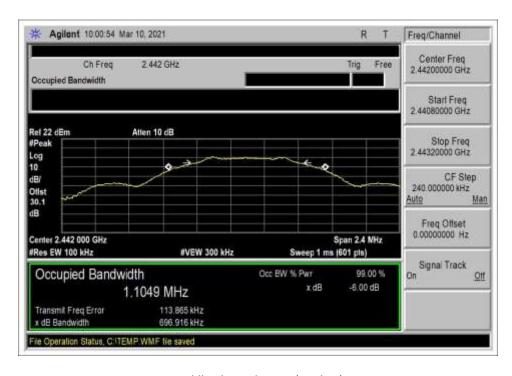
15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions					
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto		
Test Method:	ANSI C63.10 (2013), Test Date(s): 3/10/2 KDB 558074 v05r02: 04/02/2019		3/10/2021		
Configuration:	1				
Test Setup:	The equipment under test (EUT) at tabletop. The EUT is connected to the Texas Ir is connected to the support laptop EUT. The support laptop is running Texas settings of the EUT. Software setting: RF Designed Based On: LAUNCHXL-C Setting Selections: Bluetooth 5, LE Tx with AUX_ADV_IND PDU and Blue rate) - Packet Tx with AUX_ADV_IND Frequency range: 2404MHz to 2480	nstruments CC1352R1 developed via USB cable. The board is placed in the second in the	ment board. The board providing 3.3Vdc to the o 7 software to enable lbps data rate) - Packet		
	Low 2404MHz, Middle 2442MHz, His Modulation: GFSK	gh 2480MHz			
	Mode: Continuous TX/ Modulated				
	TX Power Setting: 5dBm				

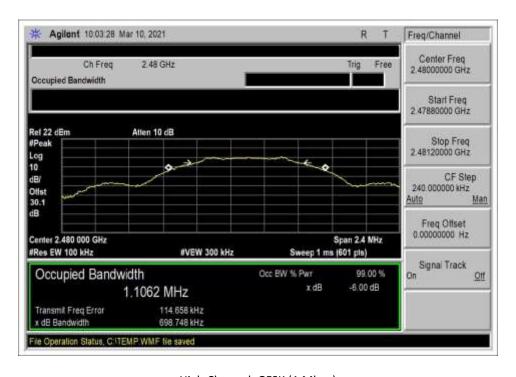
Environmental Conditions			
Temperature (°C)	20	Relative Humidity (%):	40


Test Equipment					
Asset# Description Manufacturer Model Cal Date Cal Due					
02869	Spectrum Analyzer	Agilent	E4440A	8/3/2020	8/3/2021
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/22/2019	10/22/2021
P07657	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022

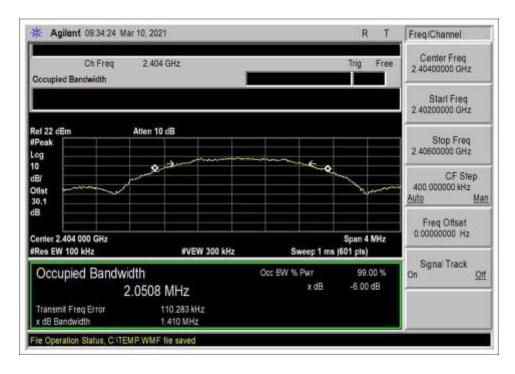
Page 10 of 50 Report No.: 105151-8


Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
2404	1	GFSK (1 Mbps)	698.7	≥500	Pass
2442	1	GFSK (1 Mbps)	696.9	≥500	Pass
2480	1	GFSK (1 Mbps)	698.7	≥500	Pass
2404	1	GFSK (2 Mbps)	1410	≥500	Pass
2442	1	GFSK (2 Mbps)	1424	≥500	Pass
2480	1	GFSK (2 Mbps)	1425	≥500	Pass

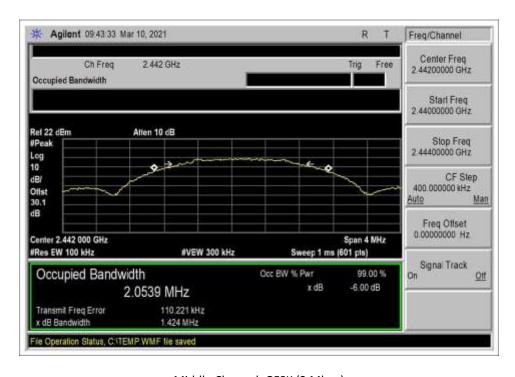
Plot(s)



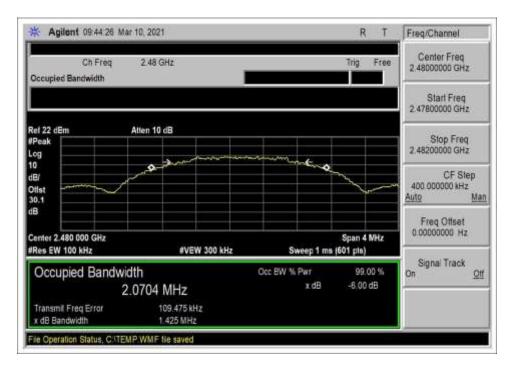
Low Channel, GFSK (1 Mbps)



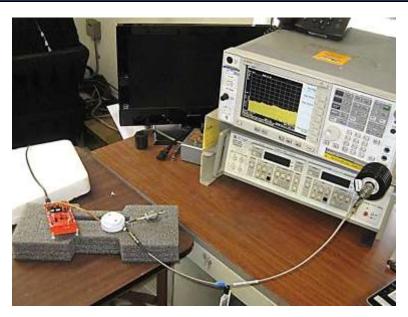
Middle Channel, GFSK (1 Mbps)



High Channel, GFSK (1 Mbps)



Low Channel, GFSK (2 Mbps)


Middle Channel, GFSK (2 Mbps)

High Channel, GFSK (2 Mbps)

Test Setup Photo(s)

Page 14 of 50 Report No.: 105151-8

15.247(b)(3) Output Power

	Test Setup/C	Conditions					
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto				
Test Method:	ANSI C63.10 (2013), Test Date(s): 3/10/2021						
	KDB 558074 v05r02: 04/02/2019						
Configuration:	1						
Test Setup:	The equipment under test (EUT) a tabletop. The EUT is connected to the Texas I is connected to the support laptop EUT. The support laptop is running Texa settings of the EUT.	nstruments CC1352 via USB cable. The	R1 development board. The board board is providing 3.3Vdc to the				
	Software setting: RF Designed Based On: LAUNCHXL-C Setting Selections: Bluetooth 5, LE Tx with AUX_ADV_IND PDU and Bluetooth - Packet Tx with AUX_ADV_IND Frequency range: 2404MHz to 2480 Low 2404MHz, Middle 2442MHz, Hi Modulation: GFSK Mode: Continuous TX/ Modulated TX Power Setting: 5dBm	1M PHY (1 Msym/s uetooth 5, LE 2M P) PDU)MHz					

Environmental Conditions						
Temperature (ºC)	20	Relative Humidity (%):	40			

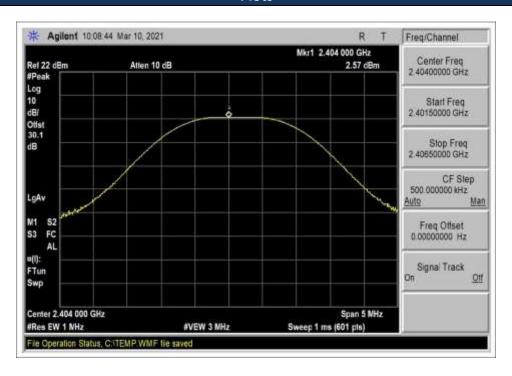
	Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due			
02869	Spectrum Analyzer	Agilent	E4440A	8/3/2020	8/3/2021			
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/22/2019	10/22/2021			
P07657	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022			

Page 15 of 50 Report No.: 105151-8

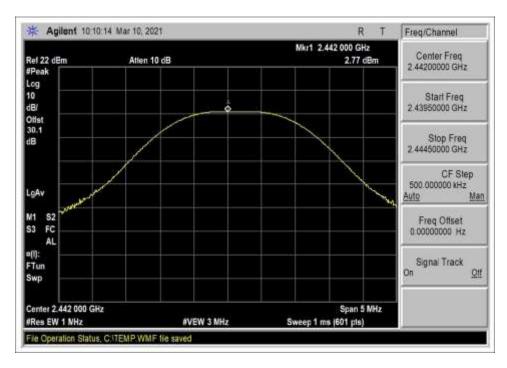
	Test Data Summary - Voltage Variations								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)				
2404	GFSK (1 Mbps) / 2	NA	2.57	NA	NA				
2442	GFSK (1 Mbps) / 2	NA	2.77	NA	NA				
2480	GFSK (1 Mbps) / 2	NA	2.96	NA	NA				
2404	GFSK (2 Mbps) / 2	NA	2.62	NA	NA				
2442	GFSK (2 Mbps) / 2	NA	2.80	NA	NA				
2480	GFSK (2 Mbps) / 2	NA	2.99	NA	NA				

Note: The EUT is normally powered by one 3V CR2450 battery. The test was performed with an input voltage equivalent to a brand new fresh CR2450 battery.

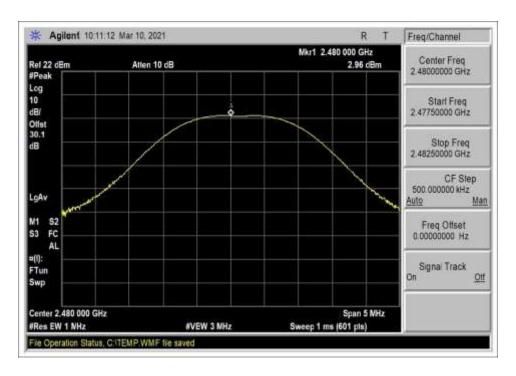
Test Data Summary - Voltage Variations


This equipment is battery powered. Power output tests were performed using an input voltage equivalent to a fresh battery.

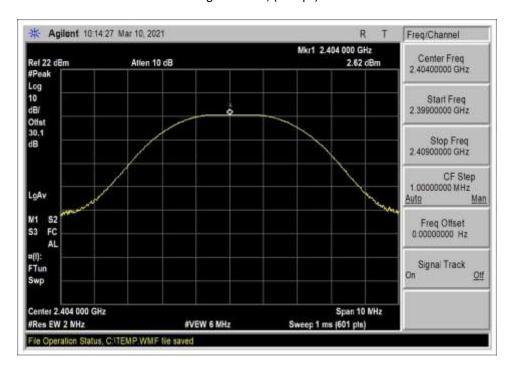
	Test Data Summary - RF Conducted Measurement								
Measuremen	Measurement Option: RBW > DTS Bandwidth								
Frequency (MHz) Ant. Type / Measured Limit Results									
2404	GFSK (1 Mbps)	Integral / -34.5	2.57	≤30	Pass				
2442	GFSK (1 Mbps)	Integral / -34.5	2.77	≤30	Pass				
2480	GFSK (1 Mbps)	Integral / -34.5	2.96	≤30	Pass				
2404	GFSK (2 Mbps	Integral / -34.5	2.62	≤30	Pass				
2442	GFSK (2 Mbps)	Integral / -34.5	2.80	≤30	Pass				
2480	GFSK (2 Mbps)	Integral / -34.5	2.99	≤30	Pass				


Page 16 of 50 Report No.: 105151-8

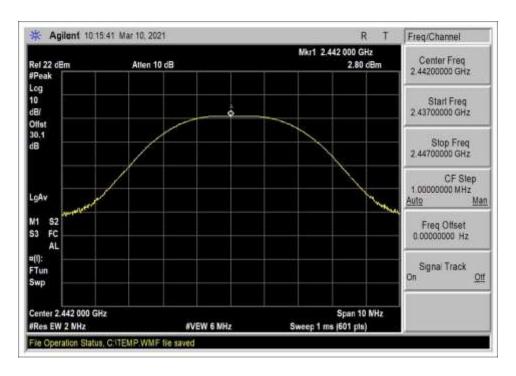
Plots



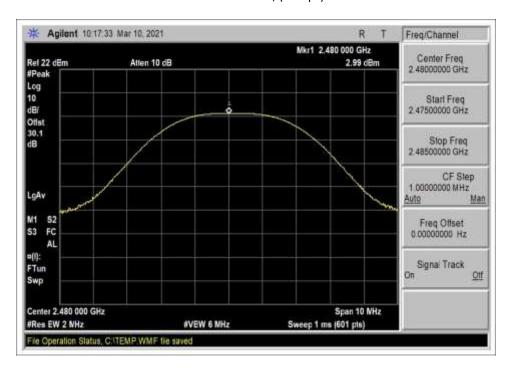
Low Channel, (1Mbps)



Middle Channel, (1Mbps)



High Channel, (1Mbps)



Low Channel, (2Mbps)

Middle Channel, (2Mbps)

High Channel, (2Mbps)

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: Venstar, Inc.

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 105151 Date: 3/22/2021
Test Type: Conducted Emissions Time: 14:34:37
Tested By: S. Yamamoto Sequence#: 0
Software: EMITest 5.03.19 3.3Vdc

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) and support equipment are located together on the table top.

The EUT is connected to the Texas Instruments CC1352R1 development board. The board is connected to the support laptop via USB cable. The board is providing 3.3Vdc to the EUT.

The EUT is normally powered by one CR2450 3V battery.

The support laptop is running Texas Instruments SmartRF Studio 7 software to enable settings of the EUT>

Software setting:

RF Designed Based On: LAUNCHXL-CC1352R1

Setting Selections: Bluetooth 5, LE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU and Bluetooth 5, LE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) - Packet Tx with

AUX_ADV_IND PDU

Frequency Range: 2404MHz to 2480MHz

Low 2404MHz, Middle 2442MHz, High 2480MHz

Modulation: GFSK

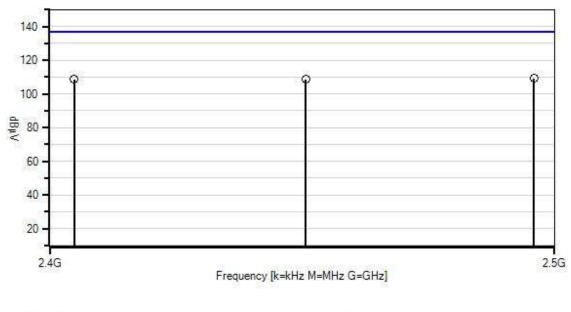
Mode: Continuous TX/ Modulated

TX Power Setting: 5dBm

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 40%

Pressure: 99kPa


Site D

Test Method ANSI C63.10 (2013) KDB 558074 v05r02: 04/02/2019

Page 20 of 50 Report No.: 105151-8

Venstar, Inc. WO#: 105151 Sequence#: 0 Date: 3/22/2021 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Lead: 3.3Vdc BLE Port

— Readings

× QP Readings

▼ Ambient
1 - 15.247(b) Power Output (2400-2483.5 MHz DTS)

O Peak Readings

* Average Readings
Software Version: 5.03.19

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
T3	ANP07657	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		

Page 21 of 50 Report No.: 105151-8

Measi	urement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: BLE Por	rt	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2480.000M	78.9	+0.0	+29.7	+0.5		+0.0	109.1	137.0	-27.9	BLE P
2	2480.000M	78.9	+0.0	+29.7	+0.5		+0.0	109.1	137.0	-27.9	BLE P
3	2442.000M	78.7	+0.0	+29.7	+0.4		+0.0	108.8	137.0	-28.2	BLE P
4	2442.000M	78.7	+0.0	+29.7	+0.4		+0.0	108.8	137.0	-28.2	BLE P
5	2404.000M	78.5	+0.0	+29.7	+0.4		+0.0	108.6	137.0	-28.4	BLE P
6	2404.000M	78.5	+0.0	+29.7	+0.4		+0.0	108.6	137.0	-28.4	BLE P

Test Setup Photo(s)

Page 22 of 50 Report No.: 105151-8

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: Venstar, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 105151 Date: 3/10/2021
Test Type: Conducted Emissions Time: 13:27:23
Tested By: S. Yamamoto Sequence#: 2

Software: EMITest 5.03.19 3.3Vdc

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) and support equipment are located together on the table top.

The EUT is connected to the Texas Instruments CC1352R1 development board. The board is connected to the support laptop via USB cable. The board is providing 3.3Vdc to the EUT.

The support laptop is running Texas Instruments SmartRF Studio 7 software to enable settings of the EUT.

Software setting:

RF Designed Based On: LAUNCHXL-CC1352R1

Setting Selections: Bluetooth 5, LE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU and Bluetooth 5, LE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) - Packet Tx with

AUX_ADV_IND PDU

Frequency range: 2404MHz to 2480MHz

Low 2404MHz, Middle 2442MHz, High 2480MHz

Modulation: GFSK

Mode: Continuous TX/ Modulated

TX Power Setting: 5dBm

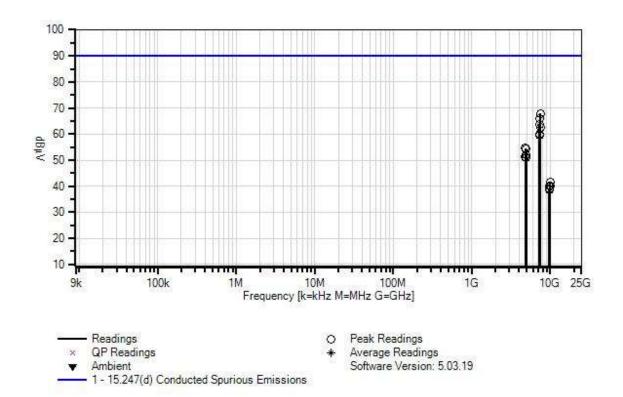
Frequency of Measurement: 9kHz to 25GHz

RBW=100kHz, VBW=300kHz

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 40%

Pressure: 99kPa


Site D

Test Method ANSI C63.10 (2013) KDB 558074 v05r02: 04/02/2019

Page 23 of 50 Report No.: 105151-8

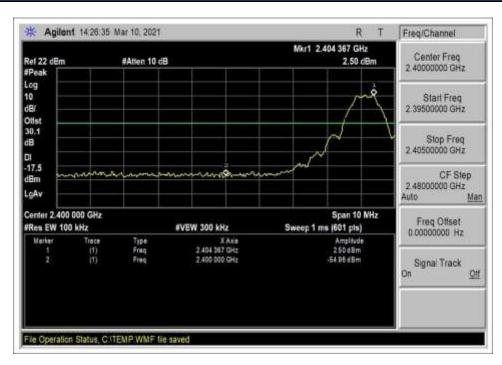
Venstar, Inc. WO#: 105151 Sequence#: 2 Date: 3/10/2021 15.247(d) Conducted Spurious Emissions Test Lead: 3.3Vdc BLE Port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T1	AN03430	Attenuator	75A-10-12	12/20/2019	12/20/2021
T2	ANP07657	Cable	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022

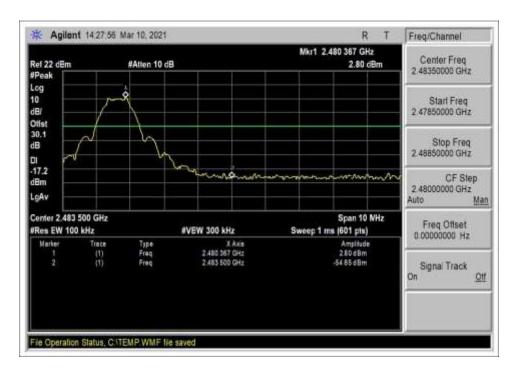
Page 24 of 50 Report No.: 105151-8

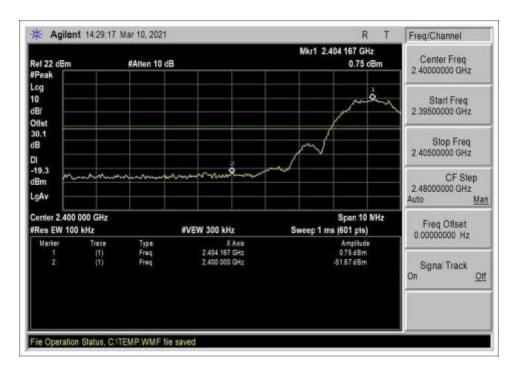
	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: BLE Po	rt	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	7439.608M	56.9	+10.1	+0.9			+0.0	67.9	90.0	-22.1	BLE P
2	7325.625M	55.0	+10.0	+0.8			+0.0	65.8	90.0	-24.2	BLE P
3	7213.083M	52.9	+9.9	+0.8			+0.0	63.6	90.0	-26.4	BLE P
4	7441.867M	51.7	+10.1	+0.9			+0.0	62.7	90.0	-27.3	BLE P
5	7211.000M	49.3	+9.9	+0.8			+0.0	60.0	90.0	-30.0	BLE P
6	7325.167M	48.9	+10.0	+0.8			+0.0	59.7	90.0	-30.3	BLE P
7	4808.750M	43.7	+10.2	+0.7			+0.0	54.6	90.0	-35.4	BLE P
8	4884.758M	43.6	+10.1	+0.7			+0.0	54.4	90.0	-35.6	BLE P
9	4960.775M	43.4	+10.1	+0.7			+0.0	54.2	90.0	-35.8	BLE P
10	4883.233M	41.2	+10.1	+0.7			+0.0	52.0	90.0	-38.0	BLE P
11	4807.283M	40.6	+10.2	+0.7			+0.0	51.5	90.0	-38.5	BLE P
12	4959.317M	40.2	+10.1	+0.7			+0.0	51.0	90.0	-39.0	BLE P
13	9919.500M	30.8	+9.8	+0.8			+0.0	41.4	90.0	-48.6	BLE P
14	9767.500M	29.5	+9.8	+0.9			+0.0	40.2	90.0	-49.8	BLE P
15	9922.550M	29.5	+9.8	+0.8			+0.0	40.1	90.0	-49.9	BLE P
16	9615.517M	28.5	+9.7	+0.7			+0.0	38.9	90.0	-51.1	BLE P
17	9770.500M	27.7	+9.8	+0.9			+0.0	38.4	90.0	-51.6	BLE P
18	9614.500M	28.0	+9.7	+0.7			+0.0	38.4	90.0	-51.6	BLE P


Page 25 of 50 Report No.: 105151-8

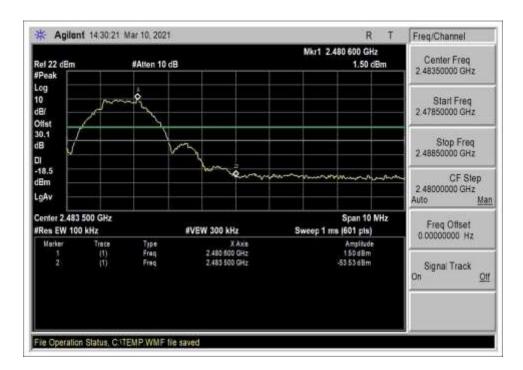
Band Edge

	Band Edge Summary							
Limit applied:	Limit applied: Max Power/100kHz - 20dB.							
Frequency (MHz) Modulation (Measured Limit Results								
2400.0	GFSK (1Mbps)	-54.96	<-17.2	Pass				
2483.5	GFSK (1Mbps)	-54.65	<-17.2	Pass				
2400.0	GFSK (2Mbps)	-51.67	<-18.5	Pass				
2483.5	GFSK (2Mbps)	-53.53	<-18.5	Pass				


Band Edge Plots


Low Channel, GFSK (1Mbps)

Page 26 of 50 Report No.: 105151-8



High Channel, GFSK (1Mbps)

Low Channel, GFSK (2Mbps)

High Channel, GFSK (2Mbps)

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: Venstar, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 105151 Date: 3/24/2021 Test Type: **Conducted Emissions** Time: 08:44:59 Sequence#: 0 Tested By: S. Yamamoto Software: EMITest 5.03.19 3.3Vdc

Equipment Tested:

Device Manufacturer Model # S/N Configuration 1

Support Equipment:

Device Manufacturer Model # S/N Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) and support equipment are located together on the table top.

The EUT is connected to the Texas Instruments CC1352R1 development board. The board is connected to the support laptop via USB cable. The board is providing 3.3Vdc to the EUT.

The support laptop is running Texas Instruments SmartRF Studio 7 software to enable settings of the EUT>

Software setting:

RF Designed Based On: LAUNCHXL-CC1352R1

Setting Selections: Bluetooth 5, LE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU and Bluetooth 5, LE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU

Frequency Range: 2404MHz to 2480MHz

Low 2404MHz, Middle 2442MHz, High 2480MHz

Modulation: GFSK

Mode: Continuous TX/ Modulated

TX Power Setting: 5dBm

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 40%

Pressure: 99kPa

Site D

Test Method ANSI C63.10 (2013) KDB 558074 v05r02: 04/02/2019

Page 29 of 50 Report No.: 105151-8

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
T3	ANP07657	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		

Measi	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: BLE Po	rt	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2400.000M	25.2	+0.0	+29.7	+0.4		+0.0	55.3	88.5	-33.2	BLE P
2	2483.500M	23.4	+0.0	+29.7	+0.5		+0.0	53.6	88.5	-34.9	BLE P
3	2483.500M	22.3	+0.0	+29.7	+0.5		+0.0	52.5	89.8	-37.4	BLE P
4	2400.000M	21.9	+0.0	+29.7	+0.4		+0.0	52.0	89.8	-37.8	BLE P

Test Setup Photo(s)

Page 30 of 50 Report No.: 105151-8

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: Venstar, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 105151 Date: 3/16/2021
Test Type: Maximized Emissions Time: 10:26:42
Tested By: S. Yamamoto Sequence#: 6

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) is located stand alone on the Styrofoam table top.

The EUT is connected to the Texas Instruments CC1352R1 development board via unshielded ribbon cable.

The development board is connected to the support laptop via USB cable. The board is providing 3.3Vdc to the EUT.

The support laptop is running Texas Instruments SmartRF Studio 7 software to enable settings of the EUT.

Software Setting:

RF Designed Based On: LAUNCHXL-CC1352R1

Setting Selections: Bluetooth 5, LE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU and Bluetooth 5, LE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU

Frequency Range: 2404MHz to 2480MHz

Low 2404MHz, Middle 2442MHz, High 2480MHz

Modulation: GFSK

Mode: Continuous TX/ Modulated

TX Power Setting: 5dBm

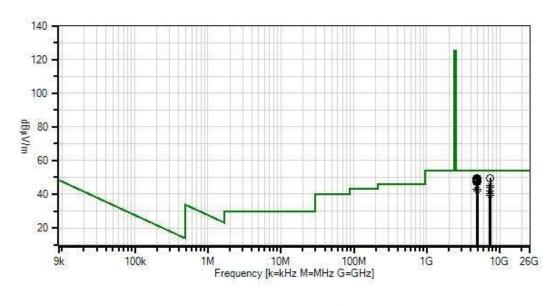
Frequency of Measurement: 9kHz-25GHz

Frequency of Datasheet: 9kHz to 25GHz 1GHz to 25GHz, RBW= 1MHz, VBW=3MHz

Test Environment Conditions:

Temperature: 19°C Relative Humidity: 40%

Pressure: 99kPa


Site D

Test Method ANSI C63.10 (2013) KDB 558074 v05r02: 04/02/2019

Page 31 of 50 Report No.: 105151-8

Venstar, Inc. WO#: 105151 Sequence#: 6 Date: 3/16/2021 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

→ 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5.03.19

Test Equipment:

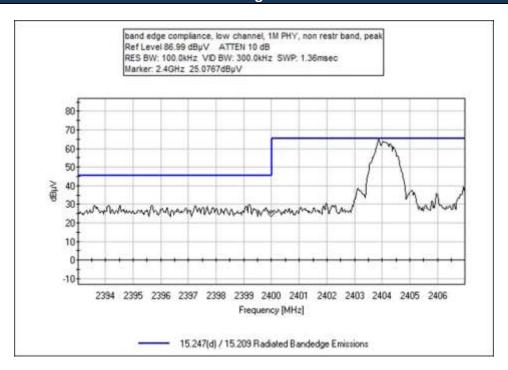
i est Equi	oment.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	ANP04382	Cable	LDF-50	5/15/2020	5/15/2022
T3	ANP07692	Cable	LDF1-50	8/20/2020	8/20/2022
T4	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T5	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
Т6	AN01646	Horn Antenna	3115	3/17/2020	3/17/2022
	AN03367	Horn Antenna	62-GH-62-25.	8/1/2019	8/1/2021
T7	AN03385	High Pass Filter	11SH10-	5/13/2019	5/13/2021
			3000/T10000-		
			0/0		
	AN01413	Horn Antenna	84125-80008	10/19/2020	10/19/2022
	ANP06978	Cable	Sucoflex 104A	3/26/2020	3/26/2022
	AN00010	Preamp	8447D	1/2/2020	1/2/2022
	ANP05569	Cable-Amplitude	RG-214/U	12/14/2020	12/14/2022
		+15C to +45C (dB)			
	ANP05283	Attenuator	ATT-0218-06-	3/26/2020	3/26/2022
			NNN-02		
	AN01994	Biconilog Antenna	CBL6111C	4/14/2020	4/14/2022
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022

Page 32 of 50 Report No.: 105151-8

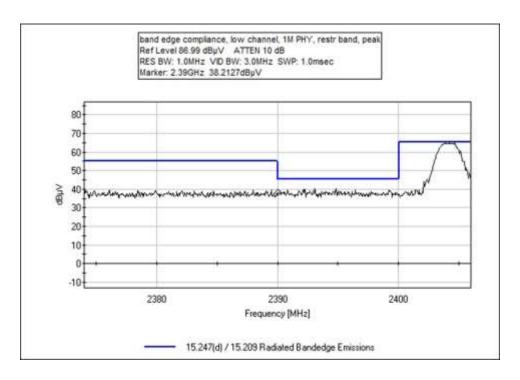
Measu	rement Data:	Reading listed by margin.				Τe	est Distance	e: 3 Meters			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4884.622M	40.2	+0.0	+8.6	+6.1	-39.9	+0.0	49.7	54.0	-4.3	Vert
			+0.7	+33.7	+0.3						
2	7441.758M	32.7	+0.0	+11.2	+7.8	-40.4	+0.0	49.6	54.0	-4.4	Vert
			+0.8	+37.3	+0.2						
3	4807.950M	40.4	+0.0	+8.5	+6.0	-40.0	+0.0	49.4	54.0	-4.6	Vert
			+0.7	+33.5	+0.3						
4	4885.300M	39.6	+0.0	+8.6	+6.1	-39.9	+0.0	49.1	54.0	-4.9	Horiz
			+0.7	+33.7	+0.3						
5	4809.233M	40.0	+0.0	+8.5	+6.0	-40.0	+0.0	49.0	54.0	-5.0	Horiz
			+0.7	+33.5	+0.3						
6	4959.275M	38.7	+0.0	+8.6	+6.2	-39.9	+0.0	48.5	54.0	-5.5	Horiz
			+0.7	+33.8	+0.4						
7	4885.250M	38.5	+0.0	+8.6	+6.1	-39.9	+0.0	48.0	54.0	-6.0	Vert
			+0.7	+33.7	+0.3						
8	4809.250M	38.2	+0.0	+8.5	+6.0	-40.0	+0.0	47.2	54.0	-6.8	Vert
			+0.7	+33.5	+0.3						
9	4959.142M	37.3	+0.0	+8.6	+6.2	-39.9	+0.0	47.1	54.0	-6.9	Vert
			+0.7	+33.8	+0.4						
10	7439.608M	28.3	+0.0	+11.2	+7.8	-40.4	+0.0	45.2	54.0	-8.8	Horiz
<u> </u>	Ave	27.0	+0.8	+37.3	+0.2	40.4	0.0	72. 0	710	0.1	** .
^	7439.608M	37.0	+0.0	+11.2	+7.8	-40.4	+0.0	53.9	54.0	-0.1	Horiz
12		27.0	+0.8	+37.3	+0.2	40.2	0.0	44.0	710	^ =	** .
12	7325.592M	27.8	+0.0	+11.1	+7.7	-40.3	+0.0	44.3	54.0	-9.7	Horiz
	Ave	27.0	+0.8	+37.0	+0.2	40.2	0.0		540	0.5	** '
^	7325.592M	37.0	+0.0	+11.1	+7.7	-40.3	+0.0	53.5	54.0	-0.5	Horiz
1.4	4002 71714	22.7	+0.8	+37.0	+0.2	20.0	. 0. 0	42.2	540	10.0	TT .
	4883.717M	33.7	+0.0	+8.6	+6.1	-39.9	+0.0	43.2	54.0	-10.8	Horiz
	Ave	41.4	+0.7	+33.7	+0.3	20.0	. 0. 0	50.0	540	2.1	TT
	4883.717M	41.4	+0.0	+8.6	+6.1	-39.9	+0.0	50.9	54.0	-3.1	Horiz
1.0	4060 72214	22.4	+0.7	+33.7	+0.3	20.0	.00	42.2	540	10.0	II
10	4960.733M	33.4	$+0.0 \\ +0.7$	+8.6 +33.8	+6.2	-39.9	+0.0	43.2	54.0	-10.8	Horiz
	Ave 4060 722M	41 D			+0.4	20.0	100	50.8	540	2.0	Horiz
	4960.733M	41.0	$+0.0 \\ +0.7$	+8.6 +33.8	+6.2 +0.4	-39.9	+0.0	30.8	54.0	-3.2	попи
10	4807.757M	33.9	+0.7	+8.5		-40.0	+0.0	42.9	54.0	-11.1	Horiz
		33.9	+0.0	+33.5	+6.0 +0.3	-4 0.0	+0.0	4 ∠.7	54.0	-11.1	HOHZ
	Ave 4807.757M	41.5	+0.7	+8.5	+6.0	-40.0	+0.0	50.5	54.0	-3.5	Horiz
	TOU 1.13/1VI	41.5	+0.0	+33.5	+0.0	-4 0.0	+0.0	50.5	54.0	-3.3	110112
20	4959.808M	32.3	+0.7	+8.6	+6.2	-39.9	+0.0	42.1	54.0	-11.9	Vert
	Ave	34.3	+0.0	+33.8	+0.2	-37.7	10.0	74.1	54.0	-11.7	v CI t
	4959.808M	40.4	+0.0	+8.6	+6.2	-39.9	+0.0	50.2	54.0	-3.8	Vert
	1,757.000141	r0.7	+0.7	+33.8	+0.4	37.7	10.0	50.2	57.0	5.0	, C11
2.2	7440.975M	25.2	+0.0	+11.2	+7.8	-40.4	+0.0	42.1	54.0	-11.9	Vert
	Ave	23.2	+0.8	+37.3	+0.2	ro. -r	10.0	14.1	57.0	11.7	, 011
	7440.975M	35.7	+0.0	+11.2	+7.8	-40.4	+0.0	52.6	54.0	-1.4	Vert
	, 110.575141	33.1	+0.8	+37.3	+0.2	.0. 1	. 0.0	32.0	2 1.0	1.1	, 011
L			. 0.0		. 0.2						

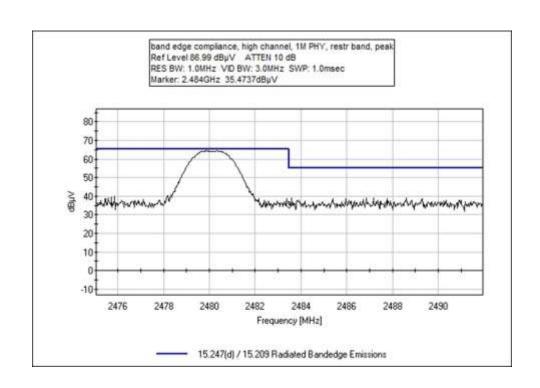
Page 33 of 50 Report No.: 105151-8

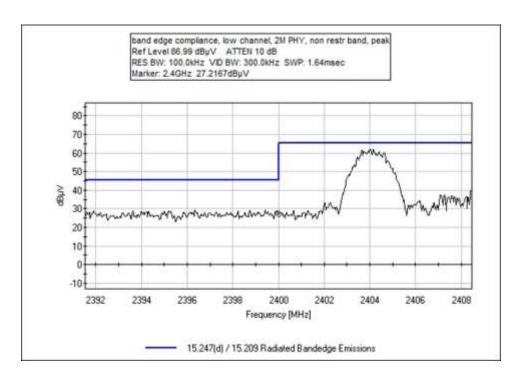
24 7325.050M	23.6	+0.0	+11.1	+7.7	-40.3	+0.0	40.1	54.0	-13.9	Horiz
Ave		+0.8	+37.0	+0.2						
^ 7325.050M	33.8	+0.0	+11.1	+7.7	-40.3	+0.0	50.3	54.0	-3.7	Horiz
		+0.8	+37.0	+0.2						
26 7442.008M	23.1	+0.0	+11.2	+7.8	-40.4	+0.0	40.0	54.0	-14.0	Horiz
Ave		+0.8	+37.3	+0.2						
^ 7442.008M	34.6	+0.0	+11.2	+7.8	-40.4	+0.0	51.5	54.0	-2.5	Horiz
		+0.8	+37.3	+0.2						
28 7325.755M	22.7	+0.0	+11.1	+7.7	-40.3	+0.0	39.2	54.0	-14.8	Vert
Ave		+0.8	+37.0	+0.2						
^ 7325.755M	34.0	+0.0	+11.1	+7.7	-40.3	+0.0	50.5	54.0	-3.5	Vert
		+0.8	+37.0	+0.2						
^ 7325.792M	31.9	+0.0	+11.1	+7.7	-40.3	+0.0	48.4	54.0	-5.6	Vert
		+0.8	+37.0	+0.2						

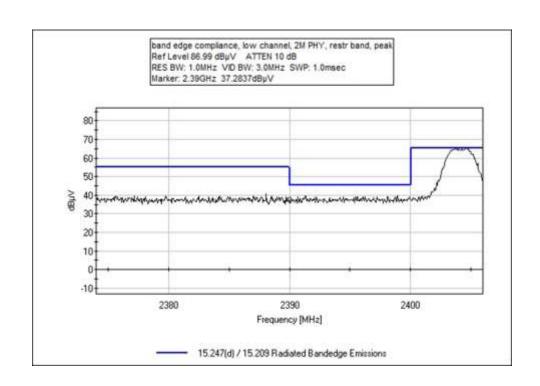

Page 34 of 50 Report No.: 105151-8

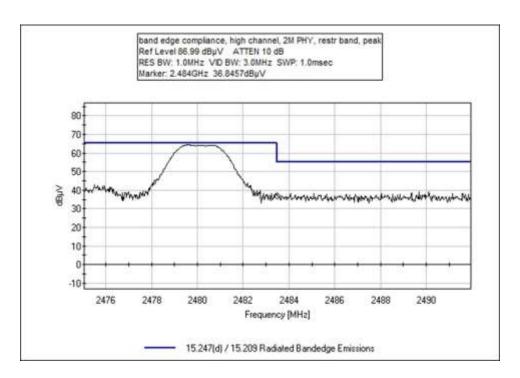
Band Edge


Band Edge Summary										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
2390.0	GFSK (1Mbps)	Integral	37.0	<54	Pass					
2400.0	GFSK (1Mbps)	Integral	23.9	<44.1	Pass					
2483.5	GFSK (1Mbps)	Integral	34.3	<54	Pass					
2390.0	GFSK (2Mbps)	Integral	36.1	<54	Pass					
2400.0	GFSK (2Mbps)	Integral	26.0	<44.1	Pass					
2483.5	GFSK (2Mbps)	Integral	35.6	<54	Pass					


Band Edge Plots


Page 35 of 50 Report No.: 105151-8





Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: Venstar, Inc.

Specification: 15.247(d) / 15.209 Radiated Bandedge Emissions

 Work Order #:
 105151
 Date: 3/16/2021

 Test Type:
 Maximized Emissions
 Time: 16:54:52

Tested By: S. Yamamoto Sequence#: 7

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is located stand alone on the Styrofoam table top.

The EUT is connected to the Texas Instruments CC1352R1 development board via unshielded ribbon cable.

The development board is connected to the support laptop via USB cable. The board is providing 3.3Vdc to the EUT.

The support laptop is running Texas Instruments SmartRF Studio 7 software to enable settings of the EUT.

Software Setting:

RF Designed Based On: LAUNCHXL-CC1352R1

Setting Selections: Bluetooth 5, LE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU and Bluetooth 5, LE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) - Packet Tx with

AUX_ADV_IND PDU

Frequency range: 2404MHz to 2480MHz

Low 2404MHz, Middle 2442MHz, High 2480MHz

Modulation: GFSK

Mode: Continuous TX/ Modulated

TX Power Setting: 5dBm

Test Environment Conditions:

Temperature: 19°C Relative Humidity: 40%

Pressure: 99kPa

Site D

Test Method ANSI C63.10 (2013) KDB 558074 v05r02: 04/02/2019

Page 39 of 50 Report No.: 105151-8

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	ANP04382	Cable	LDF-50	5/15/2020	5/15/2022
T3	ANP07692	Cable	LDF1-50	8/20/2020	8/20/2022
T4	AN00787	Preamp	83017A	5/31/2019	5/31/2021
T5	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
T6	AN01646	Horn Antenna	3115	3/17/2020	3/17/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2390.000M	38.2	+0.0	+5.6	+4.2	-39.8	+0.0	37.0	54.0	-17.0	Horiz
			+0.5	+28.3							
2	2390.000M	37.3	+0.0	+5.6	+4.2	-39.8	+0.0	36.1	54.0	-17.9	Horiz
			+0.5	+28.3							
3	2400.000M	27.2	+0.0	+5.6	+4.2	-39.8	+0.0	26.0	44.1	-18.1	Horiz
			+0.5	+28.3							
4	2483.500M	36.8	+0.0	+5.7	+4.3	-39.9	+0.0	35.6	54.0	-18.4	Horiz
			+0.5	+28.2							
5	2483.500M	35.5	+0.0	+5.7	+4.3	-39.9	+0.0	34.3	54.0	-19.7	Horiz
			+0.5	+28.2							
6	2400.000M	25.1	+0.0	+5.6	+4.2	-39.8	+0.0	23.9	44.1	-20.2	Horiz
			+0.5	+28.3							

Test Setup Photo(s)

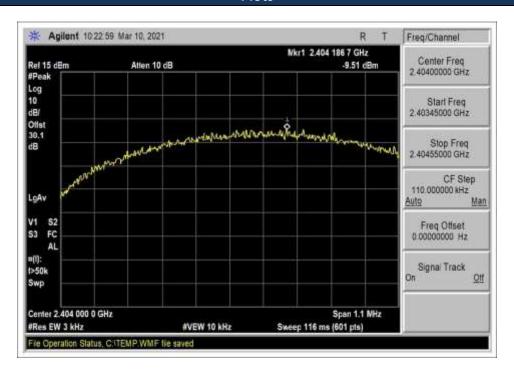
Below 1GHz

Below 1GHz

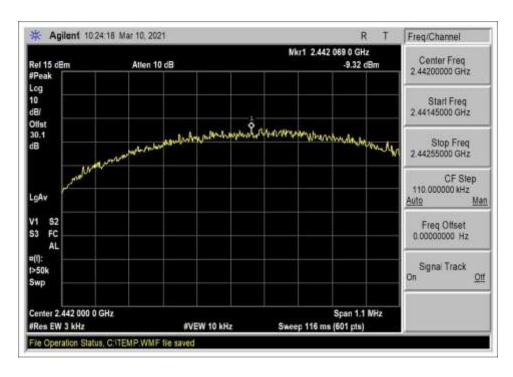
Above 1GHz

15.247(e) Power Spectral Density

	Test Setup/	Conditions	
Test Location:	Brea Lab D	Test Engineer:	S. Yamamoto
Test Method:	ANSI C63.10 (2013), KDB 558074 v05r02: 04/02/2019	Test Date(s):	3/10/2021
Configuration:	1		
Test Setup:	The equipment under test (EUT) tabletop. The EUT is connected to the Texas is connected to the support lapto EUT. The support laptop is running Texasttings of the EUT. Software setting: RF Designed Based On: LAUNCHXL-Setting Selections: Bluetooth 5, LETX with AUX_ADV_IND PDU and Brate) - Packet Tx with AUX_ADV_IN Frequency range: 2404MHz to 248 Low 2404MHz, Middle 2442MHz, FModulation: GFSK Mode: Continuous TX/ Modulated TX Power Setting: 5dBm	Instruments CC1352Ip via USB cable. The cas Instruments Smart CC1352R1 E 1M PHY (1 Msym/s lluetooth 5, LE 2M PD DDU COMHz	R1 development board. The board board is providing 3.3Vdc to the artRF Studio 7 software to enable GFSK, 1 Mbps data rate) - Packet

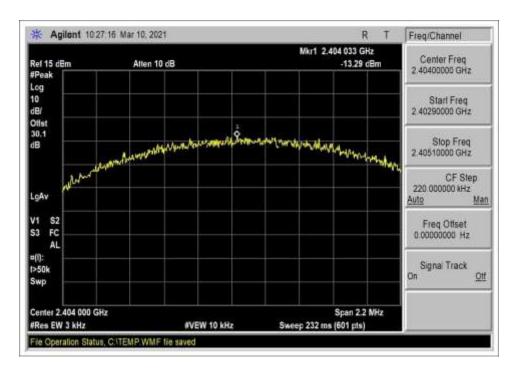

Environmental Conditions					
Temperature (ºC)	20	Relative Humidity (%):	40		

Test Data Summary - RF Conducted Measurement								
Measurement M	Measurement Method: PKPSD							
Frequency (MHz)	Modulation	Measured (dBm/3kHz)	Limit (dBm/3kHz)	Results				
2404	GFSK (1 Mbps)	-9.51	≤8	Pass				
2442	GFSK (1 Mbps)	-9.32	≤8	Pass				
2480	GFSK (1 Mbps)	-9.76	≤8	Pass				
2404	GFSK (2 Mbps)	-13.29	≤8	Pass				
2442	GFSK (2 Mbps)	-12.72	≤8	Pass				
2480	GFSK (2 Mbps)	-12.52	≤8	Pass				

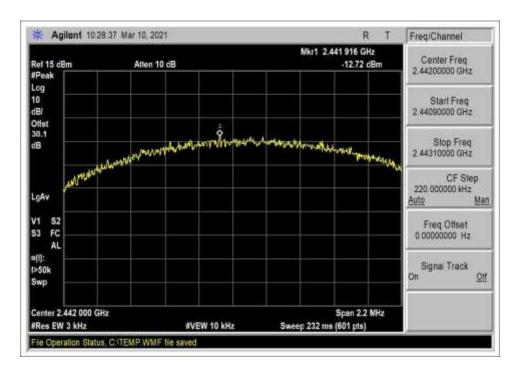

Page 42 of 50 Report No.: 105151-8

Plots

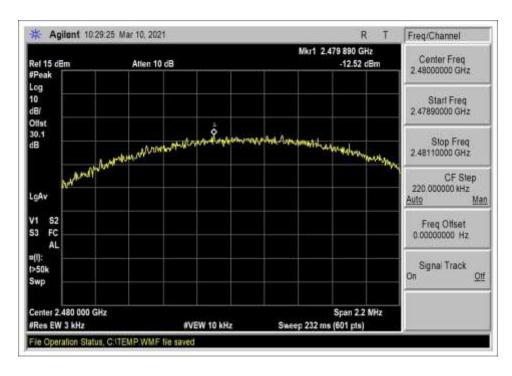
Low Channel, GFSK (1Mbps)



Middle Channel, GFSK (1Mbps)



High Channel, GFSK (1Mbps)



Low Channel, GFSK (2Mbps)

Middle Channel, GFSK (2Mbps)

High Channel, GFSK (2Mbps)

EMITest 5.03.19

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N Olinda Pl • Brea CA 92823 • 714-993-6112

Customer: Venstar, Inc.

Specification:15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)Work Order #:105151Date: 3/22/2021Test Type:Conducted EmissionsTime: 14:34:37Tested By:S. YamamotoSequence#: 0

Equipment Tested:

Software:

Device Manufacturer Model # S/N
Configuration 1

3.3Vdc

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) and support equipment are located together on the table top.

The EUT is connected to the Texas Instruments CC1352R1 development board. The board is connected to the support laptop via USB cable. The board is providing 3.3Vdc to the EUT.

The support laptop is running Texas Instruments SmartRF Studio 7 software to enable settings of the EUT>

Software Setting:

RF Designed Based On: LAUNCHXL-CC1352R1

Setting Selections: Bluetooth 5, LE 1M PHY (1 Msym/s GFSK, 1 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU and Bluetooth 5, LE 2M PHY (2 Msym/s GFSK, 2 Mbps data rate) - Packet Tx with AUX_ADV_IND PDU

Frequency Range: 2404MHz to 2480MHz

Low 2404MHz, Middle 2442MHz, High 2480MHz

Modulation: GFSK

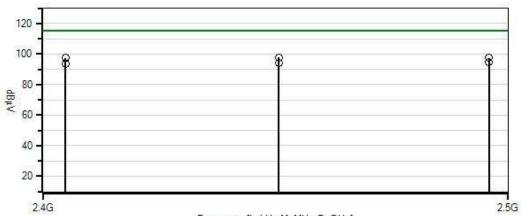
Mode: Continuous TX/ Modulated

TX Power Setting: 5dBm

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 40%

Pressure: 99kPa


Site D

Test Method ANSI C63.10 (2013) KDB 558074 v05r02: 04/02/2019

Page 46 of 50 Report No.: 105151-8

Venstar, Inc. WO#: 105151 Sequence#: 0 Date: 3/22/2021 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS) Test Lead: 3.3Vdc BLE Port

Frequency [k=kHz M=MHz G=GHz]

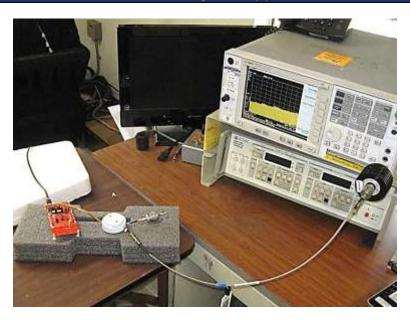
Readings Peak Readings

QP Readings Average Readings

Ambient

Software Version: 5.03.19

1 - 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)


Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/3/2020	8/3/2021
T2	AN03432	Attenuator	90-30-34	10/22/2019	10/22/2021
T3	ANP07657	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		

Measi	irement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: BLE Por	rt	
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2442.000M	67.6	+0.0	+29.7	+0.4		+0.0	97.7	115.0	-17.3	BLE P
2	2404.000M	67.4	+0.0	+29.7	+0.4		+0.0	97.5	115.0	-17.5	BLE P
3	2480.000M	67.1	+0.0	+29.7	+0.5		+0.0	97.3	115.0	-17.7	BLE P
4	2480.000M	64.4	+0.0	+29.7	+0.5		+0.0	94.6	115.0	-20.4	BLE P
5	2442.000M	64.2	+0.0	+29.7	+0.4		+0.0	94.3	115.0	-20.7	BLE P
6	2404.000M	63.6	+0.0	+29.7	+0.4		+0.0	93.7	115.0	-21.3	BLE P

Test Setup Photo(s)

Page 48 of 50 Report No.: 105151-8

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
	Meter reading (dBμV)						
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

Page 49 of 50 Report No.: 105151-8

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 50 of 50 Report No.: 105151-8