Venstar, Inc.

TEST REPORT FOR

WiFi Thermostat Model: One Lite Thermostat

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5MHz)

Report No.: 107533-7

Date of issue: January 26, 2023

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 118 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	
15.247(a)(2) 6dB Bandwidth	13
15.247(b)(3) Output Power	30
15.247(d) RF Conducted Emissions & Band Edge	44
15.247(d) Radiated Emissions & Band Edge	62
15.247(e) Power Spectral Density	95
15.207 AC Conducted Emissions	108
Supplemental Information	
Measurement Uncertainty	117
Emissions Test Details	117

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

REPORT PREPARED BY:

Venstar, Inc. 9250 Owensmouth Avenue Chatsworth, CA 91311 Kim Romero CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Corey McTigue

Project Number: 107533

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: September 28, 2022 September 28 and 30, 2022 October 10 - 12, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Belo

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

C Laboratories Proprietary Software Version	
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	N/A	Pass
15.247(b)(3)	Output Power	N/A	Pass
15.247(d)	RF Conducted Emissions & Band Edge	N/A	Pass
15.247(d)	Radiated Emissions & Band Edge	N/A	Pass
15.247(e)	Power Spectral Density	N/A	Pass
15.207	AC Conducted Emissions	N/A	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1				
Equipment Tested:				
Device	Manufacturer	Model #	S/N	
WiFi Thermostat	Venstar, Inc.	One Lite Thermostat	2220000024	
Support Equipment:				
	· · · · ·		- 1	

Device	Manufacturer	Model #	S/N
24Vac Power Supply	Generic	MKA-412400200	none
Laptop Computer	Lenovo	Thinkpad T500	L3B3906
USB to Serial Module	FTDI	FT2232H	none

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	DTS		
Operating Frequency Range:	2412MHz to 2462MHz		
Modulation Type(s):	802.11g/n20		
Maximum Duty Cycle:	98%		
Number of TX Chains:	1		
Antenna Type(s) and Gain:	Integral/1.6dBi		
Beamforming Type:	N/A		
Antenna Connection Type:	Integral		
Nominal Input Voltage:	24VAC 60Hz		
Firmware / Software used for Test:	EspRFTestTool		
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes			
full responsibility.			

EUT Photo(s)

Front View

Back View

Left Side View

Right Side View

Top View

Bottom View

Support Equipment Photo(s)

24Vac Power Supply

Laptop Computer

USB to Serial Module

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	S. Yamamoto	
Test Method:	ANSI C63.10 (2013), KDB 558074 Test Date(s): 9/28/2022			
Configuration:	1			
Test Setup:	The antenna port connector of the EUT is connected to the input of the spectrum			
analyzer using a coaxial cable and attenuator.				

Environmental Conditions				
Temperature (°C) 23 Relative Humidity (%): 42				

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
02672	Spectrum Analyzer	Agilent	E4446A	5/9/2022	5/9/2024
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/28/2021	10/28/2023
P07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
2412	1	802.11g 6M	16395	≥500	Pass
2437	1	802.11g 6M	16407	≥500	Pass
2462	1	802.11g 6M	16401	≥500	Pass
2412	1	802.11g 54M	16532	≥500	Pass
2437	1	802.11g 54M	16526	≥500	Pass
2462	1	802.11g 54M	16523	≥500	Pass
2412	1	802.11n20 MCS0	17656	≥500	Pass
2437	1	802.11n20 MCS0	17653	≥500	Pass
2462	1	802.11n20 MCS0	17648	≥500	Pass
2412	1	802.11n20 MCS7	17800	≥500	Pass
2437	1	802.11n20 MCS7	17793	≥500	Pass
2462	1	802.11n20 MCS7	17795	≥500	Pass

Plot(s)

DTS BW 802.11g 6M

Low Channel

Page 14 of 118 Report No.: 107533-7

Middle Channel

High Channel

DTS BW 802.11g 54M

Low Channel

High Channel

DTS BW 802.11n20 MCS0

Low Channel

High Channel

DTS BW 802.11n20 MCS7

Low Channel

High Channel

OBW 802.11g 6M

Low Channel

High Channel

OBW 802.11g 54M

Low Channel

High Channel

Page 25 of 118 Report No.: 107533-7

OBW 802.11n20 MCS0

High Channel

Page 27 of 118 Report No.: 107533-7

OBW 802.11n20 MCS7

Low Channel

High Channel

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	S. Yamamoto	
Test Method:	ANSI C63.10 (2013), KDB 558074 Test Date(s): 9/30/2022			
Configuration: 1				
Test Setup:	Setup: The antenna port connector of the EUT is connected to the input of the spectrum			
analyzer using a coaxial cable and attenuator.				

Environmental Conditions					
Temperature (^o C)	23	Relative Humidity (%):	49		

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
02672	Spectrum Analyzer	Agilent	E4446A	5/9/2022	5/9/2024
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/28/2021	10/28/2023
P07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024

Test Data Summary - Voltage Variations					
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)
2412	802.11g 6M	15.61	15.61	15.61	0.0
2437	802.11g 6M	15.25	15.25	15.25	0.0
2462	802.11g 6M	15.00	15.00	15.00	0.0
2412	802.11g 54M	12.60	12.60	12.60	0.0
2437	802.11g 54M	11.87	11.87	11.87	0.0
2462	802.11g 54M	11.65	11.65	11.65	0.0
2412	802.11n20 MCS0	15.70	15.70	15.70	0.0
2437	802.11n20 MCS0	15.10	15.10	15.10	0.0
2462	802.11n20 MCS0	15.01	15.01	15.01	0.0
2412	802.11n20 MCS7	11.40	11.40	11.40	0.0
2437	802.11n20 MCS7	10.70	10.70	10.70	0.0
2462	802.11n20 MCS7	10.45	10.45	10.45	0.0

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	24Vac
V _{Minimum} :	20.4Vac
V _{Maximum} :	27.6Vac

Test Data Summary - RF Conducted Measurement					
Measurement Option: AVGSA-1					
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
2412	802.11g 6M	Integral / 1.6	15.61	≤ 30	Pass
2437	802.11g 6M	Integral / 1.6	15.25	≤ 30	Pass
2462	802.11g 6M	Integral / 1.6	15.00	≤ 30	Pass
2412	802.11g 54M	Integral / 1.6	12.60	≤ 30	Pass
2437	802.11g 54M	Integral / 1.6	11.87	≤ 30	Pass
2462	802.11g 54M	Integral / 1.6	11.65	≤ 30	Pass
2412	802.11n20 MCS0	Integral / 1.6	15.70	≤ 30	Pass
2437	802.11n20 MCS0	Integral / 1.6	15.10	≤ 30	Pass
2462	802.11n20 MCS0	Integral / 1.6	15.01	≤ 30	Pass
2412	802.11n20 MCS7	Integral / 1.6	11.40	≤ 30	Pass
2437	802.11n20 MCS7	Integral / 1.6	10.70	≤ 30	Pass
2462	802.11n20 MCS7	Integral / 1.6	10.45	≤ 30	Pass

Plot Data

Low Channel

Page 32 of 118 Report No.: 107533-7

Middle Channel

High Channel

802.11g 54M

Low Channel

High Channel

802.11n20 MCS0

Low Channel

High Channel

802.11n20 MCS7

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 North	h Olinda Place • Brea, CA	92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(b) Power Output (2400-2	483.5 MHz DTS)	
Work Order #:	107533	Date:	9/30/2022
Test Type:	Conducted Emissions	Time:	14:56:56
Tested By:	S. Yamamoto	Sequence#:	1
Software:	EMITest 5.03.20		24Vac

Equipment Tested:

1 1				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via WiFi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequencies: Low channel 2412MHz Middle channel 2437MHz High channel 2462MHz

Rates: 802.11g: 6Mbps (OFDM), 54Mbps (OFDM) 802.11n20: MCS0 (BPSK), MCS7 (64-QAM)

Modulation: OFDM, BPSK, 64-QAM Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 2412MHz to 2462MHz RBW=300kHz, VBW=3MHz

ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	ANP07658	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
Т3	AN03432	Attenuator	90-30-34	10/28/2021	10/28/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	ı Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2412.000M	92.6	+0.0	+0.5	+29.6		+0.0	122.7	137.0	-14.3	Anten
2	2412.000M	92.5	+0.0	+0.5	+29.6		+0.0	122.6	137.0	-14.4	Anten
3	2437.000M	92.2	+0.0	+0.5	+29.6		+0.0	122.3	137.0	-14.8	Anten
4	2437.000M	92.0	+0.0	+0.5	+29.6		+0.0	122.1	137.0	-14.9	Anten
5	2462.000M	91.9	+0.0	+0.4	+29.6		+0.0	121.9	137.0	-15.1	Anten
6	2462.000M	91.9	+0.0	+0.4	+29.6		+0.0	121.9	137.0	-15.1	Anten
7	2412.000M	89.5	+0.0	+0.5	+29.6		+0.0	119.6	137.0	-17.4	Anten
8	2437.000M	88.8	+0.0	+0.5	+29.6		+0.0	118.9	137.0	-18.1	Anten
9	2462.000M	88.6	+0.0	+0.4	+29.6		+0.0	118.6	137.0	-18.5	Anten
10	2412.000M	88.3	+0.0	+0.5	+29.6		+0.0	118.4	137.0	-18.6	Anten
11	2437.000M	87.6	+0.0	+0.5	+29.6		+0.0	117.7	137.0	-19.3	Anten
12	2462.000M	87.3	+0.0	+0.4	+29.6		+0.0	117.4	137.0	-19.7	Anten

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions/ Data

CKC Laboratories, Inc. • 110 North Olinda Plac	ce • Brea, CA	92823 • 714-993-6112
Venstar, Inc.		
15.247(d) Conducted Spurious Emissions		
107533	Date:	10/10/2022
Conducted Emissions	Time:	09:19:54
S. Yamamoto	Sequence#:	4
EMITest 5.03.20		24Vac
	CKC Laboratories, Inc. • 110 North Olinda Plac Venstar, Inc. 15.247(d) Conducted Spurious Emissions 107533 Conducted Emissions S. Yamamoto EMITest 5.03.20	CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA Venstar, Inc. 15.247(d) Conducted Spurious Emissions 107533 Date: Conducted Emissions Time: S. Yamamoto Sequence#: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	

Configuration 1

Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequencies: Low channel 2412MHz Middle channel 2437MHz High channel 2462MHz

Rates: 802.11g: 6Mbps (OFDM), 54Mbps (OFDM)

Modulation: OFDM Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 9kHz to 25GHz RBW=100kHz, VBW=300kHz 30dBc limit line

Test Environment Conditions: Temperature: 23°C Humidity: 54% Pressure: 99kPa

ANSI C63.10-2013, KDB 558074 558074 D01 15.247 Meas Guidance v05r02

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP07658	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
T2	AN03432	Attenuator	90-30-34	10/28/2021	10/28/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	a Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2240.083M	24.6	+0.4	+29.6			+0.0	54.6	81.9	-27.3	Anten
2	7238.230M	24.0	+0.9	+29.6			+0.0	54.5	81.9	-27.4	Anten
3	2240.117M	24.0	+0.4	+29.6			+0.0	54.0	81.9	-27.9	Anten
4	2240.106M	23.0	+0.4	+29.6			+0.0	53.0	81.9	-28.9	Anten
5	2240.109M	22.6	+0.4	+29.6			+0.0	52.6	81.9	-29.3	Anten
6	2240.083M	20.9	+0.4	+29.6			+0.0	50.9	81.9	-31.0	Anten
7	2240.120M	20.9	+0.4	+29.6			+0.0	50.9	81.9	-31.0	Anten
8	7306.030M	20.5	+0.9	+29.5			+0.0	50.9	81.9	-31.0	Anten
9	7233.230M	19.1	+0.9	+29.6			+0.0	49.6	81.9	-32.3	Anten
10	7316.570M	18.8	+0.9	+29.5			+0.0	49.2	81.9	-32.7	Anten
11	7386.330M	18.7	+0.8	+29.5			+0.0	49.0	81.9	-32.9	Anten
12	4881.370M	18.3	+0.7	+29.6			+0.0	48.6	81.9	-33.3	Anten
13	7387.670M	18.2	+0.8	+29.5			+0.0	48.5	81.9	-33.4	Anten
14	9752.830M	18.2	+1.0	+29.3			+0.0	48.5	81.9	-33.4	Anten
15	9743.470M	17.5	+1.0	+29.3			+0.0	47.8	81.9	-34.1	Anten
16	9650.530M	17.4	+0.9	+29.4			+0.0	47.7	81.9	-34.2	Anten
17	9852.230M	17.4	+1.0	+29.2			+0.0	47.6	81.9	-34.3	Anten
18	4926.430M	17.0	+0.7	+29.6			+0.0	47.3	81.9	-34.6	Anten
19	4828.330M	16.9	+0.7	+29.7			+0.0	47.3	81.9	-34.6	Anten
20	9654.370M	16.7	+0.9	+29.4			+0.0	47.0	81.9	-34.9	Anten
21	4874.200M	16.6	+0.7	+29.6			+0.0	46.9	81.9	-35.0	Anten
22	4820.770M	16.5	+0.7	+29.7			+0.0	46.9	81.9	-35.0	Anten
23	9845.900M	16.2	+1.0	+29.2			+0.0	46.4	81.9	-35.5	Anten
24	4916.800M	15.3	+0.7	+29.6			+0.0	45.6	81.9	-36.3	Anten

Test Location:	CKC Laboratories, Inc. • 110 North Olinda Plac	ce • Brea, CA	92823 • 7149936112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	107533	Date:	10/10/2022
Test Type:	Conducted Emissions	Time:	09:30:18
Tested By:	S. Yamamoto	Sequence#:	5
Software:	EMITest 5.03.20		24Vac

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			

Configuration 1

Test Conditions / Notes: The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequencies: Low channel 2412MHz Middle channel 2437MHz High channel 2462MHz

Rates: 802.11n20: MCS0 (BPSK), MCS7 (64-QAM)

Modulation: BPSK, 64-QAM Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 9kHz to 25GHz RBW=100kHz, VBW=300kHz 30dBc limit line

Test Environment Conditions: Temperature: 23°C Humidity: 54% Pressure: 99kPa

ANSI C63.10-2013, KDB 558074 558074 D01 15.247 Meas Guidance v05r02

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T2	AN03432	Attenuator	90-30-34	10/28/2021	10/28/2023

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Antenna	a Port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2240.115M	25.9	+0.4	+29.6			+0.0	55.9	82.1	-26.2	Anten
2	2240.101M	24.5	+0.4	+29.6			+0.0	54.5	82.1	-27.6	Anten
3	7240.070M	23.9	+0.9	+29.6			+0.0	54.4	82.1	-27.7	Anten
4	2240.123M	22.8	+0.4	+29.6			+0.0	52.8	82.1	-29.3	Anten
5	2240.114M	22.5	+0.4	+29.6			+0.0	52.5	82.1	-29.6	Anten
6	2240.089M	21.3	+0.4	+29.6			+0.0	51.3	82.1	-30.8	Anten
7	7385.770M	20.7	+0.8	+29.5			+0.0	51.0	82.1	-31.1	Anten
8	2240.104M	20.9	+0.4	+29.6			+0.0	50.9	82.1	-31.2	Anten
9	7316.900M	20.4	+0.9	+29.5			+0.0	50.8	82.1	-31.3	Anten
10	7240.770M	18.6	+0.9	+29.6			+0.0	49.1	82.1	-33.0	Anten
11	7395.830M	18.3	+0.8	+29.5			+0.0	48.6	82.1	-33.5	Anten
12	7318.730M	18.1	+0.9	+29.5			+0.0	48.5	82.1	-33.6	Anten
13	9738.770M	18.1	+1.0	+29.3			+0.0	48.4	82.1	-33.7	Anten
14	9846.200M	18.0	+1.0	+29.2			+0.0	48.2	82.1	-33.9	Anten
15	9639.730M	17.7	+0.9	+29.4			+0.0	48.0	82.1	-34.1	Anten
16	4818.330M	17.5	+0.7	+29.7			+0.0	47.9	82.1	-34.2	Anten
17	4925.870M	17.4	+0.7	+29.6			+0.0	47.7	82.1	-34.4	Anten
18	9647.270M	17.1	+0.9	+29.4			+0.0	47.4	82.1	-34.7	Anten
19	9839.700M	17.0	+1.0	+29.2			+0.0	47.2	82.1	-34.9	Anten
20	4825.300M	16.2	+0.7	+29.7			+0.0	46.6	82.1	-35.5	Anten
21	4881.770M	16.3	+0.7	+29.6			+0.0	46.6	82.1	-35.5	Anten
22	4931.800M	16.2	+0.7	+29.6			+0.0	46.5	82.1	-35.6	Anten
23	9745.970M	16.0	+1.0	+29.3			+0.0	46.3	82.1	-35.8	Anten
24	4881.970M	15.9	+0.7	+29.6			+0.0	46.2	82.1	-35.9	Anten

Band Edge

	Band Edge Summary									
Limit applied:	Limit applied: Max Power/100kHz - 30dB (When average power limit is applied).									
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results						
2400.0	802.11g 6M	-30.6	< -25.1	Pass						
2483.5	802.11g 6M	-39.5	< -25.1	Pass						
2400.0	802.11g 54M	-39.0	< -25.1	Pass						
2483.5	802.11g 54M	-45.9	< -25.1	Pass						
2400.0	802.11n20 MCS0	-29.7	< -24.9	Pass						
2483.5	802.11n20 MCS0	-36.7	< -24.9	Pass						
2400.0	802.11n20 MCS7	-38.8	< -24.9	Pass						
2483.5	802.11n20 MCS7	-46.2	< -24.9	Pass						

Band Edge Plots

802.11g 6M

Low Channel

Low Channel (Zoom)

High Channel

802.11g 54M

Low Channel

High Channel

802.11n20 MCS0

Low Channel

Low Channel (Zoom)

High Channel

Low Channel

High Channel

Test Data Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 714-993-6112 Venstar. Inc. Customer: 15.247(d) Conducted Band Edge Specification: Work Order #: 107533 Date: 10/10/2022 Test Type: **Conducted Emissions** Time: 10:47:28 Tested By: S. Yamamoto Sequence#: 7 Software: EMITest 5.03.20 24Vac **Equipment Tested:** Device Manufacturer Model # S/N Configuration 1 Support Equipment: Device Manufacturer Model # S/N Configuration 1 Test Conditions / Notes: The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel. **Testing Frequencies:** Low channel 2412MHz High channel 2462MHz Rates: 802.11g: 6Mbps (OFDM), 54Mbps (OFDM) Modulation: OFDM Mode: Continuous Modulated TX Power Level Setting: 0 Frequency of measurement: 2400MHz to 2483.5MHz RBW=100kHz, VBW=300kHz 30dBc limit line Test Environment Conditions: Temperature: 23°C Humidity: 54% Pressure: 99kPa ANSI C63.10-2013; KDB 558074 558074 D01 15.247 Meas Guidance v05r02

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP07658	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
T2	AN03432	Attenuator	90-30-34	10/28/2021	10/28/2023

Measurement Data: H			eading lis	ted by ma	argin.	. Test Lead: Antenna Por			a Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2400.000M	46.3	+0.5	+29.6			+0.0	76.4	81.9	-5.5	Anten
2	2400.000M	37.9	+0.5	+29.6			+0.0	68.0	81.9	-13.9	Anten
3	2483.500M	37.5	+0.4	+29.6			+0.0	67.5	81.9	-14.4	Anten
4	2483.500M	31.1	+0.4	+29.6			+0.0	61.1	81.9	-20.8	Anten

Test Location:	CKC Laboratories, Inc. • 110 North Olind	la Place • Brea, CA	92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Band Edge		
Work Order #:	107533	Date:	10/10/2022
Test Type:	Conducted Emissions	Time:	11:02:37
Tested By:	S. Yamamoto	Sequence#:	8
Software:	EMITest 5.03.20		24Vac

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequencies: Low channel 2412MHz High channel 2462MHz

Rates: 802.11n20: MCS0 (BPSK), MCS7 (64-QAM)

Modulation: BPSK, 64-QAM Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 2400MHz to 2483.5MHz RBW=100kHz, VBW=300kHz 30dBc limit line

Test Environment Conditions: Temperature: 23°C Humidity: 54% Pressure: 99kPa

ANSI C63.10-2013; KDB 558074 558074 D01 15.247 Meas Guidance v05r02

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP07658	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
T2	AN03432	Attenuator	90-30-34	10/28/2021	10/28/2023

Measu	Measurement Data:		Reading listed by margin.			in. Test Lead: Antenna Port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2400.000M	47.2	+0.5	+29.6			+0.0	77.3	82.1	-4.8	Anten
2	2483.500M	40.3	+0.4	+29.6			+0.0	70.3	82.1	-11.8	Anten
3	2400.000M	38.1	+0.5	+29.6			+0.0	68.2	82.1	-13.9	Anten
4	2483.500M	30.8	+0.4	+29.6			+0.0	60.8	82.1	-21.3	Anten

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions/ Data

CKC Laboratories, Inc. • 110 North Olind	la Place • Brea, CA	92823 • 714-993-6112
Venstar, Inc.		
15.247(d) / 15.209 Radiated Spurious E	Emissions	
107533	Date:	10/12/2022
Radiated Scan	Time:	15:31:20
S. Yamamoto	Sequence#:	15
EMITest 5.03.20		
	CKC Laboratories, Inc. • 110 North Olind Venstar, Inc. 15.247(d) / 15.209 Radiated Spurious H 107533 Radiated Scan S. Yamamoto EMITest 5.03.20	CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA Venstar, Inc. 15.247(d) / 15.209 Radiated Spurious Emissions 107533 Date: Radiated Scan Time: S. Yamamoto Sequence#: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

support Bympinenni			
Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

The EUT is transmitting continuously at >=98%.

Testing Frequency: Low channel 2412MHz Middle Channel 2437MHz High channel 2462MHz

Rates: 802.11g: 6Mbps (OFDM), 54Mbps (OFDM)

Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 9kHz to 25GHz RBW=100kHz, VBW=300kHz NRB RBW=1MHz, VBW=3MHz RB > 1GHz RBW=120kHz, VBW=1.2MHz RB >30MHz, < 1GHz RBW=9kHz, VBW=30kHz RB > 150kHz, < 30MHz RBW=200Hz, VBW=1kHz RB > 9kHz, < 150kHz

In the frequency range <1000MHz, no EUT emissions were measurable within 20dB of the limit.

Test Environment Conditions: Temperature: 23°C Humidity: 59% Pressure: 99kP ANSI C63.10 (2013), KDB 558074

Venstar, Inc. WO#: 107533 Sequence#: 15 Date: 10/12/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

× QP Readings

Ambient Ŧ

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

Average Readings *

Software Version: 5.03.20

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	AN00786	Preamp	83017A	5/23/2022	5/23/2024
Τ4	ANP07655	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
T5	AN03385	High Pass Filter	11SH10- 3000/T10000- O/O	5/17/2021	5/17/2023
Т6	AN03367	Horn Antenna	62-GH-62-25.	8/3/2021	8/3/2023
	AN00309	Preamp	8447D	12/13/2021	12/13/2023
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024
	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
	AN01413	Horn Antenna	84125-80008	10/19/2020	10/19/2022
	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	12/21/2020	12/21/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1 T5	T2 T6	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	7309.570M	44.4	+6.1 +0.2	+36.3 +0.0	-36.9	+0.8	+0.0	50.9	54.0 802.11g 6N	-3.1 M	Horiz
2	4878.150M	48.9	+4.8	+33.2	-37.4	+0.7	+0.0	50.5	54.0	-3.5	Horiz
	1000 0000	10 -	+0.3	+0.0		0.5	0.0	10.0	802.11g 54	IM	
3	4823.370M	48.5	+4.8 +0.3	+33.0 +0.0	-37.4	+0.7	+0.0	49.9	54.0 802.11g 61	-4.1 M	Vert
4	4820.030M	46.9	+4.8	+33.0	-37.4	+0.7	+0.0	48.3	54.0	-5.7	Horiz
5	4022.06714	16.1	+0.5	+0.0	27.4	07		49.0	602.11g 34		Harin
3	4925.9071vi Ave	40.4	+4.8 +0.3	+33.2 +0.0	-57.4	+0.7	+0.0	48.0	54.0 802.11g 6l	-0.0 M	HOUT
^	4923.970M	59.0	+4.8	+33.2	-37.4	+0.7	+0.0	60.6	54.0	+6.6	Horiz
			+0.3	+0.0					802.11g 6M	N	
7	4872.933M	45.8	+4.8	+33.2	-37.4	+0.7	+0.0	47.4	54.0	-6.6	Vert
			+0.3	+0.0					802.11g 54	M	
8	4921.800M	45.7	+4.8	+33.2	-37.4	+0.7	+0.0	47.3	54.0	-6.7	Vert
	Ave		+0.3	+0.0					802.11g 6M	N	
^	4921.800M	59.3	+4.8	+33.2	-37.4	+0.7	+0.0	60.9	54.0	+6.9	Vert
			+0.3	+0.0					802.11g 61	N	
10	7310.117M	39.5	+6.1	+36.3	-36.9	+0.8	+0.0	46.0	54.0	-8.0	Horiz
			+0.2	+0.0					802.11g 54	M	
11	4824.942M	44.1	+4.8	+33.0	-37.4	+0.7	+0.0	45.5	54.0	-8.5	Vert
			+0.3	+0.0					802.11g 54	M	
12	7385.833M	38.5	+6.1	+36.5	-36.9	+0.8	+0.0	45.2	54.0	-8.8	Horiz
	Ave		+0.2	+0.0					802.11g 61	N	
^	7385.833M	51.4	+6.1	+36.5	-36.9	+0.8	+0.0	58.1	54.0	+4.1	Horiz
			+0.2	+0.0					802.11g 61	M	
14	4874.017M	42.7	+4.8	+33.2	-37.4	+0.7	+0.0	44.3	54.0	-9.7	Vert
	Ave		+0.3	+0.0					802.11g 61	M	
^	4874.017M	54.9	+4.8	+33.2	-37.4	+0.7	+0.0	56.5	54.0	+2.5	Vert
			+0.3	+0.0					802.11g 61	<u> </u>	
16	14470.540	39.0	+8.9	+0.0	-35.6	+1.2	+0.0	42.9	54.0	-11.1	Vert
	M		+0.0	+29.4					802.11g 6M	M	
17	14473.170	39.0	+8.9	+0.0	-35.6	+1.2	+0.0	42.9	54.0	-11.1	Horiz
	М		+0.0	+29.4							
									802.11g 54	łM	
18	14473.500	38.6	+8.9	+0.0	-35.6	+1.2	+0.0	42.5	54.0	-11.5	Horiz
	М		+0.0	+29.4							
									802.11g 61	M	
19	4925.333M	40.9	+4.8	+33.2	-37.4	+0.7	+0.0	42.5	54.0	-11.5	Horiz
	Ave		+0.3	+0.0					802.11g 54	M	
^	4925.330M	52.4	+4.8	+33.2	-37.4	+0.7	+0.0	54.0	54.0	+0.0	Horiz
			+0.3	+0.0					802.11g 54	M	
21	9850.320M	43.1	+7.0	+37.9	-36.1	+0.9	+0.0	53.1	65.3	-12.2	Horiz
			+0.3	+0.0					802.11g 6M	A	

22 14473.430	37.8	+8.9	+0.0	-35.6	+1.2	+0.0	41.7	54.0	-12.3	Vert
М		+0.0	+29.4							
								802.11g 54	M	
23 12185.200	39.9	+8.2	+0.0	-36.4	+1.3	+0.0	41.6	54.0	-12.4	Horiz
М		+0.0	+28.6							
								802.11g 6N	1	
24 4873.800M	39.9	+4.8	+33.2	-37.4	+0.7	+0.0	41.5	54.0	-12.5	Horiz
Ave		+0.3	+0.0					802.11g 6N	Л	
^ 4873.800M	51.6	+4.8	+33.2	-37.4	+0.7	+0.0	53.2	54.0	-0.8	Horiz
		+0.3	+0.0					802.11g 6N	1	
26 12189.030	39.4	+8.2	+0.0	-36.4	+1.3	+0.0	41.1	54.0	-12.9	Vert
М		+0.0	+28.6							
								802.11g 54	M	
27 12311.000	39.2	+8.3	+0.0	-36.4	+1.3	+0.0	40.8	54.0	-13.2	Vert
М		+0.0	+28.4							
								802.11g 6N	1	
28 12184.400	39.2	+8.1	+0.0	-36.4	+1.3	+0.0	40.8	54.0	-13.2	Vert
М		+0.0	+28.6							
								802.11g 6N	1	
29 12315.400	39.0	+8.3	+0.0	-36.4	+1.3	+0.0	40.6	54.0	-13.4	Vert
М		+0.0	+28.4							
								802.11g 54	M	
30 4919.900M	39.0	+4.8	+33.2	-37.4	+0.7	+0.0	40.6	54.0	-13.4	Vert
Ave		+0.3	+0.0					802.11g 54	M	
^ 4919.900M	53.1	+4.8	+33.2	-37.4	+0.7	+0.0	54.7	54.0	+0.7	Vert
		+0.3	+0.0					802.11g 54	·M	
32 7385.933M	33.6	+6.1	+36.5	-36.9	+0.8	+0.0	40.3	54.0	-13.7	Vert
Ave		+0.2	+0.0					802.11g 6N	Λ	
^ 7385.930M	45.3	+6.1	+36.5	-36.9	+0.8	+0.0	52.0	54.0	-2.0	Vert
		+0.2	+0.0					802.11g 6N	1	
34 12311.970	38.6	+8.3	+0.0	-36.4	+1.3	+0.0	40.2	54.0	-13.8	Horiz
М		+0.0	+28.4							
								802.11g 54	M	
35 4818.167M	38.6	+4.8	+33.0	-37.4	+0.7	+0.0	40.0	54.0	-14.0	Horiz
Ave		+0.3	+0.0					802.11g 6N	/1	
^ 4818.167M	52.2	+4.8	+33.0	-37.4	+0.7	+0.0	53.6	54.0	-0.4	Horiz
		+0.3	+0.0					802.11g 6N	Л	

37	12311.500	38.4	+8.3	+0.0	-36.4	+1.3	+0.0	40.0	54.0	-14.0	Horiz
	Μ		+0.0	+28.4							
									802.11g 6N	M	
38	12061.630	38.3	+8.1	+0.0	-36.4	+1.3	+0.0	39.6	54.0	-14.4	Vert
	Μ		+0.0	+28.3							
									802.11g 6N	M	
39	12060.020	38.4	+8.0	+0.0	-36.4	+1.3	+0.0	39.6	54.0	-14.4	Vert
	Μ		+0.0	+28.3							
									802.11g 54	М	
40	12062.180	38.2	+8.1	+0.0	-36.4	+1.3	+0.0	39.5	54.0	-14.5	Horiz
	Μ		+0.0	+28.3							
									802.11g 54	М	
41	9850.320M	40.7	+7.0	+37.9	-36.1	+0.9	+0.0	50.7	65.3	-14.6	Horiz
			+0.3	+0.0					802.11g 6N	M	
42	9750.330M	36.8	+7.0	+37.7	-36.0	+0.9	+0.0	46.7	65.3	-18.6	Horiz
			+0.3	+0.0					802.11g 6N	M	
43	14622.480	37.9	+8.9	+0.0	-35.5	+1.2	+0.0	42.1	65.3	-23.2	Horiz
	Μ		+0.0	+29.6							
									802.11g 54	М	

Test Location:	CKC Laboratories, Inc. • 110 North (Olinda Place • Brea, CA	92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurio	us Emissions	
Work Order #:	107533	Date:	10/12/2022
Test Type:	Radiated Scan	Time:	16:56:37
Tested By:	S. Yamamoto	Sequence#:	16
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				

Configuration 1 Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel. The EUT is transmitting continuously at >=98%. Testing Frequency: Low channel 2412MHz Middle Channel 2437MHz High channel 2462MHz Rates: 802.11n20: MCS0 (BPSK), MCS7 (64-QAM) Mode: Continuous Modulated TX Power Level Setting: 0 Frequency of measurement: 9kHz to 25GHz RBW=100kHz, VBW=300kHz NRB RBW=1MHz, VBW=3MHz RB > 1GHz RBW=120kHz, VBW=1.2MHz RB >30MHz, <1GHz RBW=9kHz, VBW=30kHz RB > 150kHz, < 30MHz RBW=200Hz, VBW=1kHz RB > 9kHz, < 150kHzIn the frequency range <1000MHz, no EUT emissions were measurable within 20dB of the limit. Test Environment Conditions: Temperature: 23°C Humidity: 59% Pressure: 99kPa ANSI C63.10 (2013), KDB 558074

Venstar, Inc. WO#: 107533 Sequence#: 16 Date: 10/12/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

× QP Readings

Ambient

 Average Readings Software Version: 5.03.20

Ambient Software
1 - 15.247(d) / 15.209 Radiated Spurious Emissions

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	AN00786	Preamp	83017A	5/23/2022	5/23/2024
T4	ANP07655	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
T5	AN03385	High Pass Filter	11SH10- 3000/T10000- O/O	5/17/2021	5/17/2023
Т6	AN03367	Horn Antenna	62-GH-62-25.	8/3/2021	8/3/2023
	AN00309	Preamp	8447D	12/13/2021	12/13/2023
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024
	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
	AN01413	Horn Antenna	84125-80008	10/19/2020	10/19/2022
	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
	ANP05198	Cable-Amplitude +15C to +45C (dB)	8268	12/21/2020	12/21/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	4876.800M	48.2	+4.8	+33.2	-37.4	+0.7	+0.0	49.8	54.0	-4.2	Horiz
			+0.3	+0.0					802.11n20	MCS7	
2	7390.570M	42.7	+6.1	+36.5	-36.9	+0.8	+0.0	49.4	54.0	-4.6	Horiz
			+0.2	+0.0					802.11n20	MCS7	
3	4824.200M	47.1	+4.8	+33.0	-37.4	+0.7	+0.0	48.5	54.0	-5.5	Horiz
			+0.3	+0.0					802.11n20	MCS7	
4	4925.533M	46.5	+4.8	+33.2	-37.4	+0.7	+0.0	48.1	54.0	-5.9	Horiz
	Ave		+0.3	+0.0		~ -			802.11n20	MCS0	
^	4925.533M	61.5	+4.8	+33.2	-37.4	+0.7	+0.0	63.1	54.0	+9.1	Horiz
	1050 0001 (45.0	+0.3	+0.0					802.11n20	MCS0	**
6	4872.930M	45.8	+4.8	+33.2	-37.4	+0.7	+0.0	47.4	54.0	-6.6	Vert
		10.1	+0.3	+0.0	240				802.11n20	MCS/	**
1	7388.770M	40.4	+6.1	+36.5	-36.9	+0.8	+0.0	47.1	54.0	-6.9	Vert
	1000 0000 0		+0.2	+0.0				1	802.11n20	MCS/	**
8	4922.983M	44.0	+4.8	+33.2	-37.4	+0.7	+0.0	45.6	54.0	-8.4	Vert
-	Ave	50.1	+0.3	+0.0	07.4	0.7	0.0	<0 7	802.11n20	MCS0	X 7 .
~	4922.983M	59.1	+4.8	+33.2	-37.4	+0.7	+0.0	60.7	54.0	+6.7	Vert
10		20.0	+0.3	+0.0	240				802.11n20	MCS0	**
10	7387.158M	38.8	+6.1	+36.5	-36.9	+0.8	+0.0	45.5	54.0	-8.5	Vert
	Ave	1.5.1	+0.2	+0.0	240				802.11n20	MCS0	**
~	7387.160M	46.4	+6.1	+36.5	-36.9	+0.8	+0.0	53.1	54.0	-0.9	Vert
10	7207.07714	20.0	+0.2	+0.0	260	0.0	0.0	447	802.11n20	MCS0	
12	/38/.06/M	38.0	+6.1	+36.5	-36.9	+0.8	+0.0	44.7	54.0	-9.3	Horiz
	Ave	54.0	+0.2	+0.0	260	0.0	0.0	<0 7	802.11n20	MCS0	
Λ	/38/.06/M	54.0	+6.1	+36.5	-36.9	+0.8	+0.0	60.7	54.0	+6.7	Horiz
1.4	4072 (05) (41.4	+0.2	+0.0	27.4	.07	.0.0	42.0	802.11n20	MCS0	
14	48/2.685M	41.4	+4.8	+33.2	-37.4	+0.7	+0.0	43.0	54.0	-11.0	Horiz
•	Ave	561	+0.3	+0.0	27.4	.07	.0.0		802.11n20	MCSU	TT ·
~	48/2.685M	56.1	+4.8	+33.2	-37.4	+0.7	+0.0	57.7	54.0	+3.7	Horiz
1.6	4004 0001	41.7	+0.5	+0.0	27.4	.07	.0.0	40.0	802.11n20	MC50	N <i>T</i> (
16	4824.233M	41.5	+4.8	+33.0	-37.4	+0.7	+0.0	42.9	54.0	-11.1 MC87	Vert
17	14471 070	20.7	+0.5	+0.0	25.6	.1.0	.0.0	10.0	802.11n20	MC5/	V
17	144/1.9/0	38.7	+8.9	+0.0	-35.0	+1.2	+0.0	42.6	54.0	-11.4	vert
	IVI		+0.0	+29.4					802 11n20	MCS0	
18	14474 270	38.7	<u>⊥8 0</u>	+0.0	-35.6	±1.2	+0.0	12.6	54.0	_11.4	Horiz
10	M	50.7	+0.0	+29.4	-55.0	11.2	10.0	72.0	54.0	-11.4	HOLL
	171		10.0	127.4					802.11n20	MCS0	
19	4873 467M	40.7	+4.8	+33.2	-37.4	+0.7	+0.0	42.3	54.0	-117	Vert
17	Ave	10.7	+0.3	+0.0	57.1	10.7	10.0	12.3	802.11n20	MCS0	vert
^	4873.467M	55.0	+4.8	+33.2	-37.4	+0.7	+0.0	56.6	54.0	+2.6	Vert
			+0.3	+0.0				2 0.0	802.11n20	MCS0	
21	14471.670	38.1	+8.9	+0.0	-35.6	+1.2	+0.0	42.0	54.0	-12.0	Vert
	М		+0.0	+29.4							
									802.11n20	MCS7	

22	14474.900	38.0	+8.9	+0.0	-35.6	+1.2	+0.0	41.9	54.0	-12.1	Horiz
	Μ		+0.0	+29.4							
									802.11n20	MCS7	
23	12185.830	39.6	+8.2	+0.0	-36.4	+1.3	+0.0	41.3	54.0	-12.7	Vert
	М		+0.0	+28.6							
									802.11n20	MCS0	
24	12314.900	39.6	+8.3	+0.0	-36.4	+1.3	+0.0	41.2	54.0	-12.8	Horiz
	М		+0.0	+28.4							
		a a -				~ -			802.11n20	MCS7	
25	4823.067M	39.7	+4.8	+33.0	-37.4	+0.7	+0.0	41.1	54.0	-12.9	Horiz
	Ave	52.4	+0.3	+0.0	07.4	0.7	0.0	54.0	802.11n20	MCS0	
~	4823.06/M	53.4	+4.8	+33.0	-37.4	+0.7	+0.0	54.8	54.0	+0.8	Horiz
27	10200 270	20.2	+0.3	+0.0	26.4	+1.2		40.9	802.11h20	MCS0 12.2	Vert
27	12308.370 M	39.3	+8.2	+0.0	-30.4	+1.3	+0.0	40.8	54.0	-13.2	vert
	IVI		+0.0	+28.4					802 11p20	MCSO	
28	12186 200	30.1	<u>+8 2</u>	+0.0	36.4	⊥1 3	+0.0	40.8	54.0	13.2	Vort
20	12180.200 M	39.1	+0.2	+28.6	-50.4	± 1.5	± 0.0	40.8	54.0	-13.2	ven
	101		10.0	120.0					802 11n20	MCS7	
29	12187 260	38.7	+8.2	+0.0	-36.4	+1.3	+0.0	40.4	54.0	-13.6	Horiz
	M	50.7	+0.0	+28.6	50.1	11.5	10.0	10.1	5 110	10.0	HOLE
									802.11n20	MCS7	
30	4923.567M	38.8	+4.8	+33.2	-37.4	+0.7	+0.0	40.4	54.0	-13.6	Vert
	Ave		+0.3	+0.0					802.11n20	MCS7	
^	4923.567M	52.9	+4.8	+33.2	-37.4	+0.7	+0.0	54.5	54.0	+0.5	Vert
			+0.3	+0.0					802.11n20	MCS7	
32	12184.800	38.5	+8.1	+0.0	-36.4	+1.3	+0.0	40.1	54.0	-13.9	Horiz
	Μ		+0.0	+28.6							
									802.11n20	MCS0	
33	12310.270	38.4	+8.3	+0.0	-36.4	+1.3	+0.0	40.0	54.0	-14.0	Horiz
	М		+0.0	+28.4							
									802.11n20	MCS0	
34	4923.700M	38.2	+4.8	+33.2	-37.4	+0.7	+0.0	39.8	54.0	-14.2	Horiz
	Ave		+0.3	+0.0		~ -			802.11n20	MCS7	
^	4923.700M	51.6	+4.8	+33.2	-37.4	+0.7	+0.0	53.2	54.0	-0.8	Horiz
			+0.3	+0.0					802.11n20	MCS7	
36	12060.260	38.5	+8.0	+0.0	-36.4	+1.3	+0.0	39.7	54.0	-14.3	Horiz
	M		+0.0	+28.3					902 11-20	MCGO	
27	10211 100	20.1	10.2	10.0	26.4	+1.2		20.7	54.0	MCS0 14.2	Vert
37	12311.100 M	38.1	+8.3	+0.0	-30.4	+1.3	+0.0	39.7	54.0	-14.3	vert
	101		± 0.0	+20.4					802 11p20	MCS7	
38	7312 318M	33.1	+6.1	+36.3	-36.9	+0.8	+0.0	39.6	54.0	-14.4	Horiz
50	Ave	55.1	+0.1	+0.0	50.7	10.0	10.0	57.0	802.11n20	MCS0	HOHL
^	7312 318M	47.1	+6.1	+36.3	-36.9	+0.8	+0.0	53.6	54.0	-0.4	Horiz
		.,	+0.2	+0.0	2 3.7	. 0.0		22.0	802.11n20	MCS0	
40	9849.750M	40.8	+7.0	+37.9	-36.1	+0.9	+0.0	50.8	65.3	-14.5	Vert
			+0.3	+0.0		***			802.11n20	MCS0	
41	12060.930	38.2	+8.0	+0.0	-36.4	+1.3	+0.0	39.4	54.0	-14.6	Vert
	Μ		+0.0	+28.3				-			
									802.11n20	MCS0	

42 12062.79) 38.1	+8.1	+0.0	-36.4	+1.3	+0.0	39.4	54.0	-14.6	Horiz
М		+0.0	+28.3							
								802.11n20	MCS7	
43 4825.5001	М 37.7	+4.8	+33.0	-37.4	+0.7	+0.0	39.1	54.0	-14.9	Vert
Ave		+0.3	+0.0					802.11n20 MCS0		
^ 4825.5001	M 49.3	+4.8	+33.0	-37.4	+0.7	+0.0	50.7	54.0	-3.3	Vert
		+0.3	+0.0					802.11n20	MCS0	
45 12060.89) 37.2	+8.0	+0.0	-36.4	+1.3	+0.0	38.4	54.0	-15.6	Vert
М		+0.0	+28.3							
								802.11n20	MCS7	
46 9845.9301	A 39.0	+7.0	+37.8	-36.1	+0.9	+0.0	48.9	65.3	-16.4	Horiz
		+0.3	+0.0					802.11n20	MCS0	

Band Edge

Band Edge Summary											
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
2390.0	802.11g 6M	Integral	51.3	<54	Pass						
2400.0	802.11g 6M	Integral	59.8	<65.3	Pass						
2483.5	802.11g 6M	Integral	52.8	<54	Pass						
2390.0	802.11g 54M	Integral	41.2	<54	Pass						
2400.0	802.11g 54M	Integral	58.1	<65.3	Pass						
2483.5	802.11g 54M	Integral	52.8	<54	Pass						
2390.0	802.11n20 MCS0	Integral	52.4	<54	Pass						
2400.0	802.11n20 MCS0	Integral	61.8	<65.3	Pass						
2483.5	802.11n20 MCS0	Integral	53.2	<54	Pass						
2390.0	802.11n20 MCS7	Integral	39.9	<54	Pass						
2400.0	802.11n20 MCS7	Integral	52.1	<65.3	Pass						
2483.5	802.11n20 MCS7	Integral	44.2	<54	Pass						

Band Edge Plots

Page 85 of 118 Report No.: 107533-7

Test Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 110 Venstar, Inc. 15.247(d) / 15.209 Radiated 107533 Radiated Scan S. Yamamoto EMITest 5.03.20	North Olinda Place • Brea, CA Band Edge Date: Time: Sequence#:	92823 • 714-993-6112 10/11/2022 12:11:53 12	
Equipment Teste	d:			
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipme	ent:			
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions /	Notes:			
connected to a sup which is used to s The EUT is transp Testing Frequency Low channel 2412 High channel 246	port laptop computer via Wi-Fi et frequency, rate, and channel nitting continuously at >=98% y: 2MHz 2MHz	programming adapter board.	The laptop is running Es	pRFTestTool
802.11g: 6Mbps (OFDM), 54Mbps (OFDM)			
Mode: Continuou TX Power Level S	s Modulated Setting: 0			
Frequency of mea RBW=100kHz, V RBW=1MHz, VF				
102 11 111112, 12	surement: 2412MHz to 2462M BW=300kHz W=3MHz	IHz		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	AN00786	Preamp	83017A	5/23/2022	5/23/2024
T4	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		

Measu	irement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2483.500M	59.1	+3.3	+28.4	-38.5	+0.5	+0.0	52.8	54.0	-1.2	Vert
	Ave										
2	2390.000M	57.6	+3.2	+28.5	-38.5	+0.5	+0.0	51.3	54.0	-2.7	Vert
	Ave										
3	2400.000M	66.1	+3.2	+28.5	-38.5	+0.5	+0.0	59.8	65.3	-5.5	Vert
4	2400.000M	64.4	+3.2	+28.5	-38.5	+0.5	+0.0	58.1	65.3	-7.2	Vert
5	2483.500M	51.5	+3.3	+28.4	-38.5	+0.5	+0.0	45.2	54.0	-8.8	Vert
	Ave										
^	2483.500M	74.5	+3.3	+28.4	-38.5	+0.5	+0.0	68.2	54.0	+14.2	Vert
^	2483.500M	68.6	+3.3	+28.4	-38.5	+0.5	+0.0	62.3	54.0	+8.3	Vert
8	2500.000M	47.7	+3.3	+28.5	-38.5	+0.5	+0.0	41.5	54.0	-12.5	Vert
9	2390.000M	47.5	+3.2	+28.5	-38.5	+0.5	+0.0	41.2	54.0	-12.8	Vert
	Ave										
^	2390.000M	78.1	+3.2	+28.5	-38.5	+0.5	+0.0	71.8	54.0	+17.8	Vert
^	2390.000M	66.8	+3.2	+28.5	-38.5	+0.5	+0.0	60.5	54.0	+6.5	Vert
12	2500.000M	44.6	+3.3	+28.5	-38.5	+0.5	+0.0	38.4	54.0	-15.6	Vert

Test Location:	CKC Laboratories, Inc. • 110 North Olinda Pla	ce • Brea, CA	92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Band Edge		
Work Order #:	107533	Date:	10/11/2022
Test Type:	Radiated Scan	Time:	12:36:12
Tested By:	S. Yamamoto	Sequence#:	13
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Device	Manufacturer	Model #	S/N

Configuration 1

Test Conditions / Notes: The equipment under test (EUT) is placed on a Styrofoam block. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel. The EUT is transmitting continuously at >=98%. Testing Frequency: Low channel 2412MHz High channel 2462MHz Rates: 802.11n20: MCS0 (BPSK), MCS7 (64-QAM) Mode: Continuous Modulated TX Power Level Setting: 0 Frequency of measurement: 2412MHz to 2462MHz RBW=100kHz, VBW=300kHz RBW=1MHz, VBW=3MHz Test Environment Conditions: Temperature: 23°C Humidity: 59% Pressure: 99kPa ANSI C63.10 (2013), KDB 558074

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	AN00786	Preamp	83017A	5/23/2022	5/23/2024
T4	ANP07655	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		

Meası	irement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2483.500M	59.5	+3.3	+28.4	-38.5	+0.5	+0.0	53.2	54.0	-0.8	Vert
	Ave										
2	2390.000M	58.7	+3.2	+28.5	-38.5	+0.5	+0.0	52.4	54.0	-1.6	Vert
	Ave										
3	2400.000M	68.1	+3.2	+28.5	-38.5	+0.5	+0.0	61.8	65.3	-3.5	Vert
4	2483.500M	50.5	+3.3	+28.4	-38.5	+0.5	+0.0	44.2	54.0	-9.8	Vert
	Ave										
^	2483.500M	77.3	+3.3	+28.4	-38.5	+0.5	+0.0	71.0	54.0	+17.0	Vert
^	2483.500M	67.2	+3.3	+28.4	-38.5	+0.5	+0.0	60.9	54.0	+6.9	Vert
7	2500.000M	47.7	+3.3	+28.5	-38.5	+0.5	+0.0	41.5	54.0	-12.5	Vert
8	2400.000M	58.4	+3.2	+28.5	-38.5	+0.5	+0.0	52.1	65.3	-13.2	Vert
9	2390.000M	46.2	+3.2	+28.5	-38.5	+0.5	+0.0	39.9	54.0	-14.1	Vert
	Ave										
^	2390.000M	77.4	+3.2	+28.5	-38.5	+0.5	+0.0	71.1	54.0	+17.1	Vert
^	2390.000M	60.3	+3.2	+28.5	-38.5	+0.5	+0.0	54.0	54.0	+0.0	Vert
12	2500.000M	43.9	+3.3	+28.5	-38.5	+0.5	+0.0	37.7	54.0	-16.3	Vert

Test Setup Photo(s)

Front View

Back View

Above 1GHz

Page 94 of 118 Report No.: 107533-7

15.247(e) Power Spectral Density

Test Setup/Conditions									
Test Location:	Brea Lab A	Test Engineer:	S. Yamamoto						
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	9/30/2022						
Configuration:	1								
Test Setup:	The antenna port connector of the	The antenna port connector of the EUT is connected to the input of the spectrum							
	analyzer using a coaxial cable and a	attenuator.							

Environmental Conditions						
Temperature (ºC)	23	Relative Humidity (%):	49			

Test Equipment									
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due				
02672	Spectrum Analyzer	Agilent	E4446A	5/9/2022	5/9/2024				
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/28/2021	10/28/2023				
P07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024				

Test Data Summary - RF Conducted Measurement									
Measurement Method: PKPSD									
Frequency (MHz)	Modulation	Measured (dBm/10kHz)	Limit (dBm/3kHz)	Results					
2412	802.11g 6M	-11.056	≤8	Pass					
2437	802.11g 6M	-11.218	≤8	Pass					
2462	802.11g 6M	-11.958	≤8	Pass					
2412	802.11g 54M	-12.700	≤8	Pass					
2437	802.11g 54M	-13.676	≤8	Pass					
2462	802.11g 54M	-13.577	≤8	Pass					
2412	802.11n20 MCS0	-10.791	≤8	Pass					
2437	802.11n20 MCS0	-11.460	≤8	Pass					
2462	802.11n20 MCS0	-11.292	≤8	Pass					
2412	802.11n20 MCS7	-14.216	≤8	Pass					
2437	802.11n20 MCS7	-15.094	≤8	Pass					
2462	802.11n20 MCS7	-15.346	≤8	Pass					

Plots

<u>802.11g 6M</u>

Low Channel

Middle Channel

High Channel

802.11g 54M

Low Channel

Middle Channel

High Channel

802.11n20 MCS0

Low Channel

Middle Channel

High Channel

802.11n20 MCS7

Low Channel

Middle Channel

High Channel

Test Data

Test Location:	CKC Laboratories, Inc. •	110 North Olinda Place • Brea,	, CA 92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(e) Peak Power Sj	pectral Density (2400-2483.5	MHz DTS)
Work Order #:	107533	Da	ate: 9/30/2022
Test Type:	Conducted Emissions	Tin	me: 17:32:30
Tested By:	S. Yamamoto	Sequence	ce#: 2
Software:	EMITest 5.03.20		24Vac

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			
Support Equipment:			
Derrice	Monufacturor	Model #	S/N

Configuration 1 Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequencies: Low channel 2412MHz Middle channel 2437MHz High channel 2462MHz

Rates: 802.11g: 6Mbps (OFDM), 54Mbps (OFDM) 802.11n20: MCS0 (BPSK), MCS7 (64-QAM)

Modulation: OFDM, BPSK, 64-QAM Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 2412MHz to 2462MHz RBW=10kHz, VBW=100kHz

ANSI C63.10-2013 558074 D01 15.247 Meas Guidance v05r02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T2	ANP07658	Cable	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024
Т3	AN03432	Attenuator	90-30-34	10/28/2021	10/28/2023

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lea	d: Antenna	l Port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2417.355M	66.1	+0.0	+0.5	+29.6		+0.0	96.2	115.0	-18.8	Anten
2	2418.384M	65.8	+0.0	+0.5	+29.6		+0.0	95.9	115.0	-19.1	Anten
3	2443.384M	65.7	+0.0	+0.5	+29.6		+0.0	95.8	115.0	-19.2	Anten
4	2467.360M	65.6	+0.0	+0.4	+29.6		+0.0	95.6	115.0	-19.4	Anten
~	0426 15424	CE 4		.0.5	. 20 (.0.0	05.5	1150	10.7	
5	2436.154M	65.4	+0.0	+0.5	+29.6		+0.0	95.5	115.0	-19.5	Anten
6	2457 124M	64.0		0.5	120.6			05.0	115.0	20.0	Anton
0	2437.124I v I	04.9	± 0.0	± 0.5	+29.0		± 0.0	95.0	115.0	-20.0	Anten
7	2419 592M	64.2	+0.0	+0.5	+29.6		+0.0	94 3	115.0	-20.7	Anten
	2119.092101	01.2	10.0	10.5	127.0		10.0	2110	110.0	20.7	1 miton
8	2444.592M	63.2	+0.0	+0.5	+29.6		+0.0	93.3	115.0	-21.7	Anten
9	2467.373M	63.3	+0.0	+0.4	+29.6		+0.0	93.3	115.0	-21.7	Anten
10	2411.163M	62.7	+0.0	+0.5	+29.6		+0.0	92.8	115.0	-22.2	Anten
11	2436.163M	61.8	+0.0	+0.5	+29.6		+0.0	91.9	115.0	-23.1	Anten
12	2461.163M	61.6	+0.0	+0.4	+29.6		+0.0	91.6	115.0	-23.4	Anten

Test Setup Photo(s)

15.207 AC Conducted Emissions

Test Setup/ Conditions/ Data

Test Location:	CKC Laboratories, Inc. • 110	North Olinda Place • Brea, CA	92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	107533	Date:	10/10/2022
Test Type:	Conducted Emissions	Time:	12:15:59
Tested By:	S. Yamamoto	Sequence#:	9
Software:	EMITest 5.03.20		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Fauinment				

Support Equipment:						
Device	Manufacturer	Model #	S/N			
Configuration 1						

Test Conditions / Notes:

The equipment under test (EUT) is placed on a Styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via Wi-Fi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequency: Low channel 2412MHz

Rates: 802.11n20 MCS0

Modulation: BPSK Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 150kHz to 30MHz RBW=9kHz, VBW=30kHz

Test Environment Conditions: Temperature: 23C Humidity: 54% Pressure: 99kPa

ANSI C63.10 (2013)

Venstar, Inc. WO#: 107533 Sequence#: 9 Date: 10/10/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	AN02610	High Pass Filter	HE9615-150K-	9/8/2021	9/8/2023
			50-720B		
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	ANP07545	Attenuator	SA18N10W-06	1/4/2021	1/4/2023
T4	AN00847.1	50uH LISN-(L) Line	3816/2NM	3/18/2022	3/18/2023
		1			
	AN00847.1	50uH LISN-(N) Line	3816/2NM	3/18/2022	3/18/2023
		2			
T5	ANP07738	Cable-Line L1(dB)	90cm-extcord	12/9/2020	12/9/2022
	ANP07738	Cable-Neutral	90cm-extcord	12/9/2020	12/9/2022
		L2(dB)			

Measu	rement Data:	r Re	eading lis	ted by ma	argin.			Test Lead	1: Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	3.310M	28.1	+0.1 +0.2	+0.1	+5.7	+0.0	+0.0	34.2	46.0	-11.8	Line
2	1.889M	27.8	+0.1	+0.1	+5.7	+0.0	+0.0	33.8	46.0	-12.2	Line
3	2.829M	26.7	+0.1 +0.2	+0.1	+5.7	+0.0	+0.0	32.8	46.0	-13.2	Line
4	3.782M	26.4	+0.1 +0.2	+0.1	+5.7	+0.0	+0.0	32.5	46.0	-13.5	Line
5	2.366M	25.9	+0.1 +0.1	+0.1	+5.7	+0.0	+0.0	31.9	46.0	-14.1	Line
6	4.254M	24.3	+0.1 +0.2	+0.2	+5.7	+0.0	+0.0	30.5	46.0	-15.5	Line
7	491.059k	24.4	+0.3 +0.1	+0.0	+5.7	+0.0	+0.0	30.5	46.1	-15.6	Line
8	514.330k	24.1	+0.3 +0.1	+0.0	+5.7	+0.0	+0.0	30.2	46.0	-15.8	Line
9	2.353M	23.7	+0.1 +0.1	+0.1	+5.7	+0.0	+0.0	29.7	46.0	-16.3	Line
10	4.726M	23.2	+0.1 +0.2	+0.2	+5.7	+0.0	+0.0	29.4	46.0	-16.6	Line
11	464.152k	23.4	+0.3 +0.1	+0.0	+5.7	+0.0	+0.0	29.5	46.6	-17.1	Line
12	13.688M	25.5	+0.2 +0.6	+0.3	+5.8	+0.0	+0.0	32.4	50.0	-17.6	Line
13	13.013M	24.5	+0.2 +0.6	+0.3	+5.8	+0.0	+0.0	31.4	50.0	-18.6	Line
14	14.184M	24.1	+0.2 +0.6	+0.3	+5.8	+0.0	+0.0	31.0	50.0	-19.0	Line
15	15.743M	23.9	+0.2 +0.7	+0.3	+5.8	+0.0	+0.0	30.9	50.0	-19.1	Line
16	15.607M	23.8	+0.2 +0.7	+0.3	+5.8	+0.0	+0.0	30.8	50.0	-19.2	Line
17	16.427M	22.0	+0.2 +0.7	+0.3	+5.8	+0.0	+0.0	29.0	50.0	-21.0	Line
18	14.896M	21.9	+0.2 +0.6	+0.3	+5.8	+0.0	+0.0	28.8	50.0	-21.2	Line
19	555.780k	18.4	+0.3 +0.1	+0.0	+5.8	+0.0	+0.0	24.6	46.0	-21.4	Line
20	12.770M	21.8	+0.2 +0.5	+0.3	+5.8	+0.0	+0.0	28.6	50.0	-21.4	Line
21	15.247M	21.6	+0.2 +0.7	+0.3	+5.8	+0.0	+0.0	28.6	50.0	-21.4	Line
22	429.247k	19.8	+0.2 +0.1	+0.0	+5.7	+0.0	+0.0	25.8	47.3	-21.5	Line
23	421.975k	19.6	+0.2 +0.1	+0.0	+5.7	+0.0	+0.0	25.6	47.4	-21.8	Line

-											
24	1.417M	17.9	+0.2	+0.1	+5.7	+0.0	+0.0	24.0	46.0	-22.0	Line
			+0.1								
25	15.067M	20.7	+0.2	+0.3	+5.8	+0.0	+0.0	27.7	50.0	-22.3	Line
			+0.7								
26	639.409k	16.6	+0.3	+0.0	+5.8	+0.0	+0.0	22.8	46.0	-23.2	Line
			+0.1								
27	407.430k	18.4	+0.2	+0.0	+5.7	+0.0	+0.0	24.4	47.7	-23.3	Line
			+0.1								
28	656.135k	16.6	+0.3	+0.0	+5.7	+0.0	+0.0	22.7	46.0	-23.3	Line
			+0.1								
29	14.806M	19.7	+0.2	+0.3	+5.8	+0.0	+0.0	26.6	50.0	-23.4	Line
			+0.6								
30	154.952k	10.6	+0.7	+0.0	+5.7	+0.0	+0.0	17.0	55.7	-38.7	Line
1	Ave		+0.0								
^	154.952k	46.0	+0.7	+0.0	+5.7	+0.0	+0.0	52.4	55.7	-3.3	Line
			+0.0								

Test Location:	CKC Laboratories, Inc. • 110 North Olin	da Place • Brea, CA	92823 • 714-993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	107533	Date:	10/10/2022
Test Type:	Conducted Emissions	Time:	12:27:06
Tested By:	S. Yamamoto	Sequence#:	10
Software:	EMITest 5.03.20		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The equipment under test (EUT) is placed on a styrofoam block. The EUT antenna port is connected to the spectrum analyzer via coaxial cable and attenuator. Voltage to the EUT is 24Vac. The EUT is also connected to a support laptop computer via WiFi programming adapter board. The laptop is running EspRFTestTool which is used to set frequency, rate, and channel.

Testing Frequency: Low channel 2412MHz

Rates: 802.11n20 MCS0

Modulation: BPSK Mode: Continuous Modulated TX Power Level Setting: 0

Frequency of measurement: 150kHz to 30MHz RBW=9kHz, VBW=30kHz

Test Environment Conditions: Temperature: 23°C Humidity: 54% Pressure: 99kPa

ANSI C63.10 (2013)

Venstar, Inc. WO#: 107533 Sequence#: 10 Date: 10/10/2022 15.207 AC Mains - Average Test Lead: 120V 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	5/9/2022	5/9/2024
T1	AN02610	High Pass Filter	HE9615-150K-	9/8/2021	9/8/2023
			50-720B		
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	ANP07545	Attenuator	SA18N10W-06	1/4/2021	1/4/2023
	AN00847.1	50uH LISN-(L) Line	3816/2NM	3/18/2022	3/18/2023
		1			
T4	AN00847.1	50uH LISN-(N) Line	3816/2NM	3/18/2022	3/18/2023
		2			
	ANP07738	Cable-Line L1(dB)	90cm-extcord	12/9/2020	12/9/2022
T5	ANP07738	Cable-Neutral	90cm-extcord	12/9/2020	12/9/2022
		L2(dB)			

Measu	rement Data:	: Re	eading lis	ted by ma	argin.	Test Lead: Neutral					
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	1.889M	33.1	+0.1 +0.1	+0.1	+5.7	+0.0	+0.0	39.1	46.0	-6.9	Neutr
2	3.310M	33.0	+0.1 +0.2	+0.1	+5.7	+0.0	+0.0	39.1	46.0	-6.9	Neutr
3	2.838M	31.5	+0.1 +0.1	+0.1	+5.7	+0.0	+0.0	37.5	46.0	-8.5	Neutr
4	3.778M	31.0	+0.1 +0.2	+0.1	+5.7	+0.0	+0.0	37.1	46.0	-8.9	Neutr
5	2.357M	30.3	+0.1 +0.1	+0.1	+5.7	+0.0	+0.0	36.3	46.0	-9.7	Neutr
6	4.250M	27.4	+0.1 +0.2	+0.2	+5.7	+0.0	+0.0	33.6	46.0	-12.4	Neutr
7	520.875k	27.4	+0.3 +0.1	+0.0	+5.7	+0.0	+0.0	33.5	46.0	-12.5	Neutr
8	4.726M	24.3	$^{+0.1}_{+0.2}$	+0.2	+5.7	+0.0	+0.0	30.5	46.0	-15.5	Neutr
9	650.317k	23.8	+0.3 +0.1	+0.0	+5.7	+0.0	+0.0	29.9	46.0	-16.1	Neutr
10	9.382M	27.4	+0.1 +0.4	+0.2	+5.7	+0.1	+0.0	33.9	50.0	-16.1	Neutr
11	8.959M	26.8	$^{+0.1}_{+0.4}$	+0.2	+5.7	+0.1	+0.0	33.3	50.0	-16.7	Neutr
12	14.481M	25.0	$^{+0.2}_{+0.5}$	+0.3	+5.8	+0.1	+0.0	31.9	50.0	-18.1	Neutr
13	16.562M	24.6	+0.2 +0.6	+0.3	+5.8	+0.1	+0.0	31.6	50.0	-18.4	Neutr
14	16.175M	24.2	+0.2 +0.6	+0.3	+5.8	+0.1	+0.0	31.2	50.0	-18.8	Neutr
15	9.589M	24.6	$^{+0.1}_{+0.4}$	+0.2	+5.7	+0.1	+0.0	31.1	50.0	-18.9	Neutr
16	3.340M	20.7	$^{+0.1}_{+0.2}$	+0.1	+5.7	+0.0	+0.0	26.8	46.0	-19.2	Neutr
17	2.336M	19.9	$^{+0.1}_{+0.1}$	+0.1	+5.7	+0.0	+0.0	25.9	46.0	-20.1	Neutr
18	1.417M	19.4	+0.2 +0.1	+0.1	+5.7	+0.0	+0.0	25.5	46.0	-20.5	Neutr
19	949.501k	19.2	+0.2 +0.1	+0.1	+5.7	+0.0	+0.0	25.3	46.0	-20.7	Neutr
20	1.834M	18.8	+0.2 +0.1	+0.1	+5.7	+0.0	+0.0	24.9	46.0	-21.1	Neutr
21	14.139M	22.0	+0.2 +0.5	+0.3	+5.8	+0.1	+0.0	28.9	50.0	-21.1	Neutr
22	379.797k	21.1	+0.2 +0.1	+0.0	+5.7	+0.0	+0.0	27.1	48.3	-21.2	Neutr
23	2.017M	18.5	+0.1 +0.1	+0.1	+5.7	+0.0	+0.0	24.5	46.0	-21.5	Neutr

24	2 872M	18.5	+0.1	+0.1	157	+0.0	10.0	24.5	46.0	21.5	Noutr
24	2.0/2101	10.5	± 0.1	± 0.1	± 3.7	± 0.0	± 0.0	24.3	40.0	-21.3	Neuu
			+0.1								
25	784.850k	18.2	+0.3	+0.0	+5.7	+0.0	+0.0	24.3	46.0	-21.7	Neutr
			+0.1								
26	2.791M	18.2	+0.1	+0.1	+5.7	+0.0	+0.0	24.2	46.0	-21.8	Neutr
			+0.1								
27	18.932M	21.1	+0.2	+0.3	+5.8	+0.1	+0.0	28.1	50.0	-21.9	Neutr
			+0.6								
28	1.766M	17.9	+0.2	+0.1	+5.7	+0.0	+0.0	24.0	46.0	-22.0	Neutr
			+0.1								
29	8.319M	21.6	+0.1	+0.2	+5.7	+0.1	+0.0	28.0	50.0	-22.0	Neutr
			+0.3								
30	155.553k	11.5	+0.7	+0.0	+5.7	+0.0	+0.0	17.9	55.7	-37.8	Neutr
	Ave		+0.0								
^	155.553k	48.3	+0.7	+0.0	+5.7	+0.0	+0.0	54.7	55.7	-1.0	Neutr
			+0.0								

Test Setup Photo(s)

Front View

Back View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS						
	Meter reading	(dBµV)					
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBµV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret (" n ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.