Venstar, Inc.

TEST REPORT FOR

WiFi Thermostat
Model: OnePlus

Tested to The Following Standards:
 FCC Part 15 Subpart C Section(s)

15.207 \& 15.247
(DTS 902-928MHz)

Report No.: 106906-7

Date of issue: June 15, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 13
15.247(a)(2) 6dB Bandwidth 13
15.247(b)(3) Output Power 15
15.247(d) RF Conducted Emissions \& Band Edge 18
15.247(d) Radiated Emissions \& Band Edge 24
15.247(e) Power Spectral Density 40
15.207 AC Conducted Emissions 42
Supplemental Information 49
Measurement Uncertainty 49
Emissions Test Details 49

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Venstar, Inc.
9250 Owensmouth Avenue
Chatsworth, CA 91311

Representative: Alex Garashin

DATE OF EQUIPMENT RECEIPT: DATES) OF TESTING:

REPORT PREPARED BY:

Viviana Prado
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 106906

May 13, 2022
May 13 and 18, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 North Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .20

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082 B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(2)$	6dB Bandwidth	NA	Pass
$15.247(\mathrm{~b})(3)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
$15.247(\mathrm{e})$	Power Spectral Density	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing
This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

LABORATORIES, INC.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
WiFi Thermostat	Venstar, Inc.	OnePlus	2111034700

Support Equipment:

Device	Manufacturer	Model \#	S/N
Power Supply	Generic	MKA-412400200	NA

Configuration 2
Equipment Tested:

Device	Manufacturer	Model \#	S/N
WiFi Thermostat	Venstar, Inc.	OnePlus	2111034701
Support Equipment:			
Device	Manufacturer	Model \#	S/N
Power Supply	Generic	MKA-412400200	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	DTS
Operating Frequency Range:	Single channel 915MHz
Modulation Type(s):	2GFSK-DSSS *
Maximum Duty Cycle:	98%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Integral IFA -1.58dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	24Vac
Firmware / Software used for Test:	Conducted measurement Firmware: Factory Mode, Ver 2.9.1 Radiated measurement Firmware: Factory Mode, Ver 2.9.2
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.	

* In the test sample configuration menu GFSK was selected, however in the firmware Ver 2.9.1, Ver 2.9.2 GFSK was coded as 2GFSK-DSSS

EUT and Accessory Photo(s)

Conducted Unit

Radiated Unit

Support Equipment Photo(s)

Block Diagram of Test Setup(s)

Test Site

Canducted tert retiop

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	E. Wong	
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	$5 / 18 / 2022$	
Configuration:	1	The EUT is placed on test bench; all data and Aux port are connected to section of unterminated cable. Test Setup: Frequency Range: 902-928MHz TX Frequency: 915 MHz 2GFSK-DSSS (setup menu: GFSK selected, however coded as 2GSK-DSSS) , Power setting =8		

Environmental Conditions				
Temperature (으)	22	Relative Humidity (\%):	25	

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	$8 / 16 / 2021$	$8 / 16 / 2022$	
03430	Attenuator	Aeroflex/Weinschel	$75 A-10-12$	$1 / 14 / 2022$	$1 / 14 / 2024$	
07658	Cable	Astrolab, Inc.	$32022-29094 K-$ $29094 K-24 T C$	$7 / 30 / 2020$	$7 / 30 / 2022$	

Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured $\mathbf{(k H z)}$	Limit $(\mathbf{k H z})$	Results	
915.0	1	2GFSK-DSSS	554.9	≥ 500	Pass	

Plot(s)

Test Setup Photo(s)

LABORATORIES, INE.

15.247(b)(3) Output Power

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	E. Wong, S. Yamamoto
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	$5 / 18 / 2022$
Configuration:	1	The EUT is placed on test bench; all data and Aux port are connected to section of unterminated cable. Test Setup: Frequency Range: $902-928 \mathrm{MHz}$ TX Frequency: 915.0 MHz	
	2GFSK-DSSS (setup menu: GFSK selected, however coded as 2GSK-DSSS) , Power setting =8		

Environmental Conditions				
Temperature (으)	22	Relative Humidity (\%):	25	

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	$8 / 16 / 2021$	$8 / 16 / 2022$	
03430	Attenuator	Aeroflex/Weinschel	$75 A-10-12$	$1 / 14 / 2022$	$1 / 14 / 2024$	
07658	Cable	Astrolab, Inc.	$32022-29094 K-$ $29094 K-24 T C$	$7 / 30 / 2020$	$7 / 30 / 2022$	
07164	Multimeter	Fluke	$8845 A / G$	$8 / 13 / 2021$	$8 / 13 / 2023$	
03759	AC Power Supply	GoHz	HZ-60-1005	$8 / 5 / 2021$	$8 / 5 / 2022$	

Test Data Summary - Voltage Variations						
Frequency (MHz)	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ (dBm)	$\mathbf{V}_{\text {Nominal }}$ (dBm)	$\mathbf{V}_{\text {Maximum }}$ (dBm)	Max Deviation from Vominal (dB)	
915.0	2GFSK-DSSS / 1	7.8	7.8	7.8	0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:
Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V $_{\text {Nominal }}:$	24.0
V $_{\text {Minimum }}:$	20.4
$\mathrm{~V}_{\text {Maximum: }}:$	27.6

Test Data Summary - RF Conducted Measurement						
Measurement Option: RBW > DTS Bandwidth						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)		
915.0	2GFSK-DSSS	Integral IFA/-1.58	7.8	Results		

Plot(s)

Test Setup Photo(s)

RF Conducted Measurement

Voltage Variation

15.247(d) RF Conducted Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc.
15.247(d) Conducted Spurious Emissions 106906
Conducted Emissions
E. Wong

EMITest 5.03.20

Date: 5/18/2022
Time: 11:28:18
Sequence\#: 4
24Vac

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
The EUT is placed on test bench.

Frequency Range: 902-928MHz
TX Frequency: 915.0 MHz
2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS)
Power Setting $=8 \mathrm{dBm}$
Frequency Range of Measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
RBW $=100 \mathrm{kHz}, \mathrm{VBW}=3000 \mathrm{kHz}$.

Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity:25\%
Pressure: 99 kPa

Method: ANSI C63.10-2013
Site A
Note: v2.9.1.

Venstar, Inc. WO\#: 106906 Sequence\#: 4 Date: 5/18/2022 15.247(d) Conducted Spurious Emissions Test Lead: 24Vac Antenna port

	Sweep Data	- Readings
0	Peak Readings	QP Readings
*	Average Readings	
	Software Version: 5.03 .20	Ambient
		$1-15.247$ (d) Conducted Spurious Emissions

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	$8 / 16 / 2021$	$8 / 16 / 2022$
T1	ANP07658	Cable	$32022-29094 K-$ $29094 K-24 T C ~$	$7 / 30 / 2020$	$7 / 30 / 2022$
			$75 A-10-12$	$1 / 14 / 2022$	$1 / 14 / 2024$
T2	AN03430	Attenuator			

Measurement Data:	Reading listed by margin.					Test Lead: Antenna port				
\# $\quad \begin{aligned} & \text { Freq } \\ & \text { MHz }\end{aligned}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
12745.400 M	56.1	+0.4	+10.1			+0.0	66.6	93.8	-27.2	Anten
23658.800 M	52.5	+0.5	+10.1			+0.0	63.1	93.9	-30.8	Anten
$3 \quad 457.400 \mathrm{M}$	45.5	+0.2	+10.0			+0.0	55.7	93.8	-38.1	Anten
4 1830.400M	43.5	+0.4	+10.1			+0.0	54.0	93.8	-39.8	Anten
54573.800 M	37.5	+0.6	+10.2			+0.0	48.3	93.9	-45.6	Anten

Band Edge

Band Edge Summary					
Limit applied: Max Power/100kHz-20dB.					
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results	
902	2GFSK-DSSS	-70.3	<-13.2	Pass	
928	2GFSK-DSSS	-70.3	<-13.2	Pass	

Band Edge Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Venstar, Inc.
15.247(d) Conducted Spurious Emissions

106906
Conducted Emissions
E. Wong

EMITest 5.03.20

Date: 5/18/2022
Time: 11:28:18
Sequence\#: 4
24 Vac

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
The EUT is placed on test bench.
Frequency Range: 902-928MHz
TX Frequency: 915.0 MHz
2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS)
Power Setting $=8 \mathrm{dBm}$
Frequency Range of Measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
RBW $=100 \mathrm{kHz}, \mathrm{VBW}=3000 \mathrm{kHz}$.
Test Environment Conditions:
Temperature: $22^{\circ} \mathrm{C}$
Humidity: 25\%
Pressure: 99 kPa
Method: ANSI C63.10-2013
Site A

Note: v2.9.1.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$8 / 16 / 2021$	$8 / 16 / 2022$
T2	ANP07658	Cable	$32022-29094 K-$ $29094 K-24 T C ~$	$7 / 30 / 2020$	$7 / 30 / 2022$
			75A-10-12	$1 / 14 / 2022$	$1 / 14 / 2024$
T3	AN03430	Attenuator			

Measurement Data: \quad Reading listed by margin. Test Lead: Antenna port

| $\#$ | Freq
 MHz | Rdng
 $\mathrm{dB} \mu \mathrm{V}$ | T 1
 dB | T 2
 dB | T 3
 dB | dB | Dist
 Table | Corr
 $\mathrm{dB} \mu \mathrm{V}$ | Spec
 $\mathrm{dB} \mu \mathrm{V}$ | Margin
 dB | Polar
 Ant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 914.817 M | 103.5 | +0.0 | +0.2 | +10.1 | | +0.0 | 113.8 | 113.8
 Fundamental | +0.0 | Anten |
| 2 | 902.000 M | 26.4 | +0.0 | +0.2 | +10.1 | | +0.0 | 36.7 | 93.8
 bandedge_H | -57.1 | Anten |
| 3 | 928.000 M | 26.4 | +0.0 | +0.2 | +10.1 | | +0.0 | 36.7 | 93.8
 bandedge_L | -57.1 | Anten |

Test Setup Photo(s)

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions
106906 Date: 5/18/2022

Radiated Scan
E. Wong

EMITest 5.03.20

Time: 09:03:54
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is placed on Styrofoam block, orientated per intended installation; all data and Aux port are connected to section of unterminated cable.

Frequency Range: 902-928MHz
TX Frequency: 915.0 MHz
2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS)
Power Setting $=8 \mathrm{dBm}$
Frequency Range of Measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 25\%
Pressure: 99 kPa

Method: ANSI C63.10-2013
Site A

Note: v2.9.2.

Venstar, Inc. WO\#: 106906 Sequence\#: 3 Date: 5/18/2022
 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$8 / 16 / 2021$	$8 / 16 / 2022$
T2	AN01646	Horn Antenna	3115	$3 / 21 / 2022$	$3 / 21 / 2024$
T3	ANP07656	Cable	$32022-29094 K-$ $29094 K-24 T C ~$	$7 / 30 / 2020$	$7 / 30 / 2022$
			$83017 A$	$6 / 23 / 2021$	$6 / 23 / 2023$
T4	AN00787	Preamp	L1-PNMNM-48	$9 / 30 / 2021$	$9 / 30 / 2023$
T5	ANP06360	Cable	High Pass Filter	9SH10- 1000/T10000- O/O	$7 / 12 / 2021$
T6	AN02749				$7 / 12 / 2023$
		Biconilog Antenna	CBL6111C	$4 / 21 / 2022$	$4 / 21 / 2024$
T7	AN00851	Preamp	$8447 D$	$12 / 13 / 2021$	$12 / 13 / 2023$
T8	AN00309	Cable	RG223/U	$12 / 24 / 2020$	$12 / 24 / 2022$
T9	ANP05050	Cable-Amplitude	8268	$12 / 21 / 2020$	$12 / 21 / 2022$
T10	ANP05198	+15C to +45C (dB)			
	AN00314	Loop Antenna	6502	$3 / 29 / 2022$	$3 / 29 / 2024$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\#Freq MHz	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
		T9	T10				$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mu \mathrm{V} / \mathrm{m}$	dB	Ant
1841.495 M	37.3		+0.0			+0.0	45.7	46.0	-0.3	Horiz
1 841.495M		+0.0	+0.0	+0.0	+0.0					
QP		+0.0	+0.0	+29.6	-27.2					
		+0.4	+5.6							
$\wedge 841.495 \mathrm{M}$	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	46.8	46.0	+0.8	Horiz
		+0.0	+0.0	+29.6	-27.2					
		+0.4	+5.6							
$\begin{aligned} & 3 \text { 2745.550M } \\ & \text { Ave } \end{aligned}$	58.6	+0.0	+29.3	+0.5	-39.3	$+0.0$	53.1	54.0	-0.9	Horiz
		+3.4	+0.6	+0.0	+0.0					
		+0.0	+0.0							
$\wedge 2745.550 \mathrm{M}$	65.1	+0.0	+29.3	+0.5	-39.3	+0.0	59.6	54.0	+5.6	Horiz
		+3.4	+0.6	+0.0	+0.0					
		+0.0	+0.0							
$\begin{aligned} & 5 \mathrm{EP} \\ & \mathrm{QP} \end{aligned}$	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	46.0	-1.7	Horiz
		+0.0	+0.0	+27.1	-27.3					
		+0.3	+4.7							
\wedge ^647.989M	40.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	46.0	-1.0	Horiz
		+0.0	+0.0	+27.1	-27.3					
		+0.3	+4.7							
$7 \quad 841.500 \mathrm{M}$	34.4	+0.0	+0.0	+0.0	+0.0	$+0.0$	42.9	46.0	-3.1	Vert
QP		+0.0	+0.0	+29.7	-27.2					
		+0.4	+5.6							
$\wedge 841.500 \mathrm{M}$	35.2	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	46.0	-2.3	Vert
		+0.0	+0.0	+29.7	-27.2					
		+0.4	+5.6							
$\begin{aligned} & 9839.978 \mathrm{M} \\ & \mathrm{QP} \end{aligned}$	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.7	46.0	-3.3	Horiz
		+0.0	+0.0	+29.7	-27.2					
		+0.4	+5.6							
$\wedge 839.978 \mathrm{M}$	35.3	+0.0	+0.0	+0.0	+0.0	+0.0	43.8	46.0	-2.2	Horiz
		+0.0	+0.0	+29.7	-27.2					
		+0.4	+5.6							
11 695.985M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	46.0	-3.4	Horiz
QP		+0.0	+0.0	+27.0	-27.2					
		+0.3	+4.9							
$\wedge 695.985 \mathrm{M}$	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	46.0	-2.6	Horiz
		+0.0	+0.0	+27.0	-27.2					
		+0.3	+4.9							
$13 \quad 743.985 \mathrm{M}$	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	46.0	-3.6	Horiz
QP		+0.0	+0.0	+28.6	-27.2					
		+0.4	+5.1							
$\wedge 743.985 \mathrm{M}$	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	43.0	46.0	-3.0	Horiz
		+0.0	+0.0	+28.6	-27.2					
		+0.4	+5.1							
15 791.985M	35.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	46.0	-3.8	Horiz
QP		+0.0	+0.0	+28.5	-27.2					
		+0.4	+5.4							

	$\begin{aligned} & \text { 3659.250M } \\ & \text { Ave } \end{aligned}$	53.0	$\begin{aligned} & +0.0 \\ & +4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.5 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-39.4 \\ +0.0 \end{array}$	$+0.0$	50.0	54.0	-4.0	Horiz
\wedge	3659.250M	60.3	$\begin{aligned} & +0.0 \\ & +4.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +31.5 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-39.4 \\ +0.0 \end{array}$	$+0.0$	57.3	54.0	+3.3	Horiz
	$2744.533 \mathrm{M}$ Ave	54.6	$\begin{aligned} & +0.0 \\ & +3.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+29.3 \\ +0.6 \\ +0.0 \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -39.3 \\ +0.0 \end{array}$	+0.0	49.1	54.0	-4.9	Vert
\wedge	2744.533M	61.5	$\begin{aligned} & \hline+0.0 \\ & +3.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +29.3 \\ +0.6 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-39.3 \\ +0.0 \end{array}$	$+0.0$	56.0	54.0	+2.0	Vert
20	544.487M	38.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.0 \end{array}$	$\begin{gathered} +0.0 \\ -27.7 \end{gathered}$	+0.0	40.9	46.0	-5.1	Horiz
	$\begin{aligned} & \text { 396.000M } \\ & \text { QP } \end{aligned}$	42.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +21.8 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	40.5	46.0	-5.5	Vert
\wedge	396.000M	44.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.8 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	41.8	46.0	-4.2	Vert
23	839.978 M	31.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{array}{r} +0.0 \\ -27.2 \end{array}$	+0.0	40.1	46.0	-5.9	Vert
24	839.978M	31.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.7 \end{array}$	$\begin{gathered} +0.0 \\ -27.2 \end{gathered}$	+0.0	40.1	46.0	-5.9	Vert
25	791.980M	32.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.2 \end{gathered}$	+0.0	40.0	46.0	-6.0	Vert
26	455.985M	40.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +23.2 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	39.6	46.0	-6.4	Horiz
	$\begin{aligned} & \text { 791.975M } \\ & \text { QP } \end{aligned}$	32.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.2 \end{gathered}$	$+0.0$	39.4	46.0	-6.6	Horiz
\wedge	791.985M	38.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.5 \end{array}$	$\begin{array}{r} +0.0 \\ -27.2 \end{array}$	$+0.0$	45.9	46.0	-0.1	Horiz
\wedge	791.975 M	34.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +5.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +28.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.2 \end{gathered}$	$+0.0$	41.4	46.0	-4.6	Horiz
30	503.985 M	38.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.2 \end{array}$	$\begin{gathered} +0.0 \\ -27.8 \end{gathered}$	+0.0	39.3	46.0	-6.7	Horiz
31	396.005M	41.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +21.8 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	39.1	46.0	-6.9	Horiz
32	445.505M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +23.0 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	38.8	46.0	-7.2	Horiz

Page 27 of 50

Page 28 of 50

50	167.980 M	41.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.9 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	+0.0	31.8	43.5	-11.7	Vert
	$\begin{aligned} & \text { 3660.900M } \\ & \text { Ave } \end{aligned}$	45.1	$\begin{aligned} & \hline+0.0 \\ & +4.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.5 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-39.4 \\ +0.0 \end{array}$	$+0.0$	42.1	54.0	-11.9	Vert
\wedge	3660.900M	53.7	$\begin{aligned} & \hline+0.0 \\ & +4.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.5 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -39.4 \\ +0.0 \end{array}$	$+0.0$	50.7	54.0	-3.3	Vert
53	512.020 M	33.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.2 \end{array}$	$\begin{gathered} +0.0 \\ -27.8 \end{gathered}$	+0.0	33.9	46.0	-12.1	Horiz
54	445.425M	34.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +23.0 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	33.6	46.0	-12.4	Vert
55	960.020M	30.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	$\begin{gathered} +0.0 \\ -27.3 \end{gathered}$	$+0.0$	41.4	54.0	-12.6	Horiz
56	239.956M	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +17.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	33.2	46.0	-12.8	Horiz
57	263.988 M	37.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +2.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +20.0 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	33.0	46.0	-13.0	Horiz
58	611.400M	29.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +26.2 \end{array}$	$\begin{gathered} +0.0 \\ -27.5 \end{gathered}$	+0.0	32.9	46.0	-13.1	Horiz
59	247.501 M	39.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +18.4 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	32.6	46.0	-13.4	Horiz
60	503.988 M	31.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.2 \end{array}$	$\begin{gathered} +0.0 \\ -27.8 \end{gathered}$	$+0.0$	32.4	46.0	-13.6	Vert
61	1829.850M	48.8	$\begin{aligned} & +0.0 \\ & +2.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+27.1 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-39.1 \\ +0.0 \end{array}$	+0.0	40.3	54.0	-13.7	Horiz
62	80.550M	39.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +13.7 \end{array}$	$\begin{gathered} +0.0 \\ -28.1 \end{gathered}$	$+0.0$	26.2	40.0	-13.8	Vert
63	311.980M	37.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +19.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	32.1	46.0	-13.9	Horiz
64	239.984M	39.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +17.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	31.7	46.0	-14.3	Vert
65	360.020M	35.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +20.9 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	31.6	46.0	-14.4	Horiz
66	320.013 M	36.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +19.7 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	31.5	46.0	-14.5	Horiz

67	408.000M	32.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ +22.4 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	31.2	46.0	-14.8	Vert
68	544.490M	28.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.0 \end{array}$	$\begin{gathered} +0.0 \\ -27.7 \end{gathered}$	+0.0	30.9	46.0	-15.1	Vert
69	297.020M	35.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ +19.3 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	30.2	46.0	-15.8	Vert
70	383.970M	32.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +21.3 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	29.4	46.0	-16.6	Horiz
71	407.972M	30.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ +22.4 \end{array}$	$\begin{array}{r} +0.0 \\ -27.9 \end{array}$	+0.0	29.1	46.0	-16.9	Horiz
72	2257.300M	44.6	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-39.3 \\ +0.0 \end{array}$	$+0.0$	36.6	$\begin{gathered} 54.0 \\ \text { n inten } \end{gathered}$	-17.4	Horiz
73	2077.300M	44.4	$\begin{aligned} & +0.0 \\ & +2.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+27.8 \\ +0.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -39.2 \\ +0.0 \end{array}$	$+0.0$	36.5	54.0	-17.5	Horiz
74	346.463M	32.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +20.5 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	28.4	46.0	-17.6	Horiz
75	288.003 M	33.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	28.2	46.0	-17.8	Horiz
76	320.000 M	32.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +19.7 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	28.1	46.0	-17.9	Vert
77	115.683 M	32.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +17.6 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	+0.0	24.5	43.5	-19.0	Horiz
78	270.363 M	32.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +18.9 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	26.7	46.0	-19.3	Horiz
79	336.013 M	30.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +20.1 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	$+0.0$	26.6	46.0	-19.4	Horiz
80	163.798M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.2 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	$+0.0$	24.0	43.5	-19.5	Horiz
81	172.471M	34.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.5 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	$+0.0$	24.0	43.5	-19.5	Horiz
82	260.746M	30.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +20.3 \end{array}$	$\begin{gathered} +0.0 \\ -27.9 \end{gathered}$	+0.0	26.3	46.0	-19.7	Horiz

Page 30 of 50

	$\begin{aligned} & 1663.433 \mathrm{M} \\ & \text { Ave } \end{aligned}$	44.6	$\begin{aligned} & +0.0 \\ & +2.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+25.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -39.2 \\ +0.0 \end{array}$	+0.0	non intetntional			
\wedge	1663.433M	62.8	$\begin{aligned} & +0.0 \\ & +2.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +25.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -39.2 \\ +0.0 \end{array}$	+0.0	52.4	$\begin{gathered} 54.0 \\ \text { on intet } \end{gathered}$	$\begin{gathered} -1.6 \\ \text { nal } \end{gathered}$	Vert
85	183.621M	32.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.0 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	+0.0	22.3	43.5	-21.2	Horiz
86	233.696M	33.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +16.7 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	+0.0	24.7	46.0	-21.3	Horiz
87	226.050M	30.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ +15.9 \end{array}$	$\begin{gathered} +0.0 \\ -28.0 \end{gathered}$	$+0.0$	21.5	46.0	-24.5	Vert

Band Edge

Band Edge Summary						
Frequency (MHz)	Modulation	Ant. Type	Field Strength $(\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m})$	Limit $(\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m})$	Results	
614	2GFSK-DSSS	Integral IFA / - 1.58	35.2	<46	Pass	
902	2GFSK-DSSS	Integral IFA $/-$ 1.58	59.1	<88	Pass	
928	2GFSK-DSSS	Integral IFA $/-$ 1.58	36.1	<88	Pass	
960	2GFSK-DSSS	Integral IFA $/-$ 1.58	41.7	<54	Pass	

Band Edge Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc • 110 N. Olinda Place • Bra, CA 92823 • (714) 993-6112

Customer:
Specification:
Work Order \#:
Test Type:
Tested By: Software:

Venstar, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions

106906 Date: 5/18/2022
Radiated Scan
E. Wong

EMIT est 5.03.20

Time: 09:03:54
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is placed on Styrofoam block, orientated per intended installation; all data and Aux port are connected to section of unterminated cable.

Frequency Range: 902-928MHz
TX Frequency: 915.0 MHz
2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS)
Power Setting $=8 \mathrm{dBm}$
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kH}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 30 \mathrm{MHz}-1000 \mathrm{MHz} ;$ RAW $=120 \mathrm{kHz}, V B W=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, V B W=1 \mathrm{MHz}$

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 25%
Pressure: 99 kPa .
Method: ANSI C63.10-2013
Site A

Note: v2.9.2.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
	AN01646	Horn Antenna	3115	3/21/2022	3/21/2024
	ANP07656	Cable	$\begin{aligned} & 32022-29094 \mathrm{~K}- \\ & 29094 \mathrm{~K}-24 \mathrm{TC} \end{aligned}$	7/30/2020	7/30/2022
	AN00787	Preamp	83017A	6/23/2021	6/23/2023
	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
	AN02749	High Pass Filter	$\begin{aligned} & \hline \text { 9SH10- } \\ & \text { 1000/T10000- } \\ & \text { O/O } \\ & \hline \end{aligned}$	7/12/2021	7/12/2023
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
T3	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T4	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
T5	ANP05198	Cable-Amplitude $+15 \mathrm{C} \text { to }+45 \mathrm{C}(\mathrm{~dB})$	8268	12/21/2020	12/21/2022
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024

Measurement Data:		Reading listed by margin.				Test Distance: 3 Meters					
\#	Freq	Rdng	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \end{aligned}$	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1	614.000 M	31.4	+0.0	+26.3	-27.4	+0.3	+0.0	35.2	46.0	-10.8	Horiz
			+4.6						bandedge_L		
2	960.000M	31.1	+0.0	+31.4	-27.3	+0.5	+0.0	41.7	54.0	-12.3	Horiz
			+6.0						bandedge_H		
3	902.000M	30.6	+0.0	+29.5	-27.3	+0.5	+0.0	39.1	88.0	-48.9	Horiz
			+5.8						bandedge_L		
4	928.000M	26.5	+0.0	+30.5	-27.3	+0.5	+0.0	36.1	88.0	-51.9	Horiz
			+5.9						bandedge_H		

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

Above 1GHz' View 3

Above 1GHz; View 4

LABORATORIES, INC.

15.247(e) Power Spectral Density

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	E. Wong
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	$5 / 13 / 2022$
Configuration:	1	The EUT is placed on test bench; all data and Aux port are connected to section of unterminated cable. Test Setup: Frequency range: $902-928 \mathrm{MHz}$ TX Frequency: 915.0 MHz 2GFSK-DSSS (setup menu: GFSK selected, however coded as 2GSK-DSSS) , Power setting =8	

Environmental Conditions				
Temperature (으)	22	Relative Humidity (\%):	25	

Test Equipment

Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due
02869	Spectrum Analyzer	Agilent	E4440A	$8 / 16 / 2021$	$8 / 16 / 2022$
03430	Attenuator	Aeroflex/Weinschel	$75 \mathrm{~A}-10-12$	$1 / 14 / 2022$	$1 / 14 / 2024$
07658	Cable	Astrolab, Inc.	$32022-29094 K-$ $29094 K-24 T C$	$7 / 30 / 2020$	$7 / 30 / 2022$

Test Data Summary - RF Conducted Measurement

Measurement Method: PKPSD					
Frequency (MHz)	Modulation	Measured $(\mathbf{d B m} / 3 \mathbf{k H z})$	Limit $(\mathbf{d B m} / \mathbf{3 k H z})$	Results	
915.0	$2 G F S K-D S S S$	-1.9	≤ 8	Pass	

Plot(s)

Test Setup Photo(s)

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer:
Specification: Work Order \#: Test Type: Tested By: Software:

Venstar, Inc
15.207 AC Mains - Average

106906
Conducted Emissions
E. Wong

EMITest 5.03.20

Date: 5/18/2022
Time: 2:09:40 PM
Sequence\#: 4
$120 / 60 \mathrm{~Hz}$

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:

The EUT is placed on test bench, orientated per intended installation; all data and Aux port are connected to section of unterminated cable.

Frequency Range: 902-928MHz
TX Frequency: 915.0 MHz
2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS)
Power Setting $=8 \mathrm{dBm}$

Frequency Range of Measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$.
$150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=30 \mathrm{kHz}$
Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 25\%
Pressure: 99 kPa .

Method: ANSI C63.10-2013
Site A

Note: v2.9.2.

Venstar. Inc. WO\#: 106906 Sequence\#: 4 Date: $5 / 18 / 2022$ 15.207 AC Mains - Average Test Lead: $120 / 60 \mathrm{~Hz}$ L1-Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T1	ANP07545	Attenuator	SA18N10W-06	1/4/2021	1/4/2023
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
T3	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	9/8/2021	9/8/2023
T4	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/18/2022	3/18/2023
	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/18/2022	3/18/2023

Measu	nent Data	Reading listed by margin.				Test Lead: L1-Line					
\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	2.910 M	28.5	+5.7	+0.1	+0.1	+0.0	+0.0	34.4	46.0	-11.6	L1-Li
2	2.948M	28.4	+5.7	+0.1	+0.1	+0.0	+0.0	34.3	46.0	-11.7	L1-Li
3	3.118 M	27.0	+5.7	+0.1	+0.1	+0.0	+0.0	32.9	46.0	-13.1	L1-Li
4	2.702M	25.7	+5.7	+0.1	+0.1	+0.0	+0.0	31.6	46.0	-14.4	L1-Li
5	3.327M	23.0	+5.7	+0.1	+0.1	+0.0	+0.0	28.9	46.0	-17.1	L1-Li
6	2.493 M	21.7	+5.7	+0.1	+0.1	+0.0	+0.0	27.6	46.0	-18.4	L1-Li
7	2.081 M	21.3	+5.7	+0.1	+0.1	+0.0	+0.0	27.2	46.0	-18.8	L1-Li
8	2.995 M	19.8	+5.7	+0.1	+0.1	+0.0	+0.0	25.7	46.0	-20.3	L1-Li
9	1.247M	19.7	+5.7	+0.1	+0.2	+0.0	+0.0	25.7	46.0	-20.3	L1-Li
10	3.101 M	19.6	+5.7	+0.1	+0.1	+0.0	+0.0	25.5	46.0	-20.5	L1-Li
11	2.927 M	18.6	+5.7	+0.1	+0.1	+0.0	+0.0	24.5	46.0	-21.5	L1-Li
12	3.535M	18.3	+5.7	+0.1	+0.1	+0.0	+0.0	24.2	46.0	-21.8	L1-Li
13	1.664M	18.1	+5.7	+0.1	+0.2	+0.0	+0.0	24.1	46.0	-21.9	L1-Li
14	1.868 M	17.9	+5.7	+0.1	+0.1	+0.0	+0.0	23.8	46.0	-22.2	L1-Li
15	1.460 M	17.5	+5.7	+0.1	+0.2	+0.0	+0.0	23.5	46.0	-22.5	L1-Li

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112
Customer:
Venstar, Inc.
Specification:
Work Order \#:
Test Type:
Tested By:

106906
Conducted Emissions
E. Wong

EMITest 5.03.20

Date: 5/18/2022
Time: 2:14:27 PM
Sequence\#: 5
$120 / 60 \mathrm{~Hz}$

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 2		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 2		S/N

Test Conditions / Notes:
The EUT is placed on test bench, orientated per intended installation; all data and Aux port are connected to section of unterminated cable.

Frequency Range: 902-928MHz
TX Frequency: 915.0 MHz

2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS)
Power Setting $=8 \mathrm{dBm}$
Frequency Range of Measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$.
$150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=30 \mathrm{kHz}$

Test Environment Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 25%
Pressure: 99 kPa .
Method: ANSI C63.10-2013
Site A

Note: v2.9.2.

```
Venstar, Inc. WO#: 106906 Sequence#f: 5 Date: 5/18/2022
15.207 AC Mains - Average Test Lead: 120/60Hz L2-Neutral
```


Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T1	ANP07545	Attenuator	SA18N10W-06	1/4/2021	1/4/2023
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
T3	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & \text { 50-720B } \end{aligned}$	9/8/2021	9/8/2023
	AN00847.1	50uH LISN-(L) Line 1	3816/2NM	3/18/2022	3/18/2023
T4	AN00847.1	50uH LISN-(N) Line 2	3816/2NM	3/18/2022	3/18/2023

Measurement Data:
Reading listed by margin.
Test Lead: L2-Neutral

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	2.910M	28.8	+5.7	+0.1	+0.1	+0.0	+0.0	34.7	46.0	-11.3	L2-Ne
2	3.118 M	28.1	+5.7	+0.1	+0.1	+0.0	+0.0	34.0	46.0	-12.0	L2-Ne
3	2.953 M	26.5	+5.7	+0.1	+0.1	+0.0	+0.0	32.4	46.0	-13.6	L2-Ne
4	2.702M	25.3	+5.7	+0.1	+0.1	+0.0	+0.0	31.2	46.0	-14.8	L2-Ne
5	28.691 M	24.5	+5.8	+0.4	+0.2	+0.2	+0.0	31.1	50.0	-18.9	L2-Ne
6	29.733 M	24.0	+5.8	+0.4	+0.2	+0.2	+0.0	30.6	50.0	-19.4	L2-Ne
7	3.323 M	20.6	+5.7	+0.1	+0.1	+0.0	+0.0	26.5	46.0	-19.5	L2-Ne
8	28.266M	23.8	+5.8	+0.4	+0.2	+0.2	+0.0	30.4	50.0	-19.6	L2-Ne
9	2.493 M	19.9	+5.7	+0.1	+0.1	+0.0	+0.0	25.8	46.0	-20.2	L2-Ne
10	29.315M	23.2	+5.8	+0.4	+0.2	+0.2	+0.0	29.8	50.0	-20.2	L2-Ne
11	28.883M	23.0	+5.8	+0.4	+0.2	+0.2	+0.0	29.6	50.0	-20.4	L2-Ne
12	29.931M	22.9	+5.8	+0.4	+0.2	+0.2	+0.0	29.5	50.0	-20.5	L2-Ne
13	27.842M	22.1	+5.8	+0.4	+0.2	+0.2	+0.0	28.7	50.0	-21.3	L2-Ne
14	28.479M	21.9	+5.8	+0.4	+0.2	+0.2	+0.0	28.5	50.0	-21.5	L2-Ne
15	3.131 M	18.5	+5.7	+0.1	+0.1	+0.0	+0.0	24.4	46.0	-21.6	L2-Ne

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

