Venstar, Inc.

TEST REPORT FOR

WiFi Thermostat Model: OnePlus

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 902-928MHz)

Report No.: 106906-7

Date of issue: June 15, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	
15.247(a)(2) 6dB Bandwidth	13
15.247(b)(3) Output Power	15
15.247(d) RF Conducted Emissions & Band Edge	
15.247(d) Radiated Emissions & Band Edge	24
15.247(e) Power Spectral Density	40
15.207 AC Conducted Emissions	42
Supplemental Information	
Measurement Uncertainty	49
Emissions Test Details	49

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Venstar, Inc. 9250 Owensmouth Avenue Chatsworth, CA 91311 **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Alex Garashin

Project Number: 106906

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

May 13, 2022 May 13 and 18, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Bel

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software Version	
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of	Conditions
------------	------------

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1			
Equipment Tested:			
Device	Manufacturer	Model #	S/N
WiFi Thermostat	Venstar, Inc.	OnePlus	2111034700
Support Equipment:			
Device	Manufacturer	Model #	S/N
Power Supply	Generic	MKA-412400200	NA

Configuration 2 Equipment Tested:

Lyuipineint resteu.				
Device	Manufacturer	Model #	S/N	
WiFi Thermostat	Venstar, Inc.	OnePlus	2111034701	
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Power Supply	Generic	MKA-412400200	NA	

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	DTS
Operating Frequency Range:	Single channel 915MHz
Modulation Type(s):	2GFSK-DSSS *
Maximum Duty Cycle:	98%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Integral IFA -1.58dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	24Vac
Firmware / Software used for Test:Conducted measurement Firmware: Factory Mode, Ver 2.9.2Radiated measurement Firmware: Factory Mode, Ver 2.9.2	

The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

* In the test sample configuration menu GFSK was selected, however in the firmware Ver 2.9.1, Ver 2.9.2 GFSK was coded as 2GFSK-DSSS

EUT and Accessory Photo(s)

Conducted Unit

Radiated Unit

Page 8 of 50 Report No.: 106906-7

Page 9 of 50 Report No.: 106906-7

Page 10 of 50 Report No.: 106906-7

Support Equipment Photo(s)

Block Diagram of Test Setup(s)

Canducted test setup

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	E. Wong	
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	5/18/2022	
Configuration:	1			
Test Setup:	1 The EUT is placed on test bench; all data and Aux port are connected to section of unterminated cable. Frequency Range: 902-928MHz TX Frequency: 915MHz			
2GFSK-DSSS (setup menu: GFSK selected, however coded as 2GSK-DSSS) , Power setting =8				

Environmental Conditions						
Temperature (^o C)	Temperature (°C) 22 Relative Humidity (%): 25					

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	8/16/2021	8/16/2022	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024	
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022	

Test Data Summary					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
915.0	1	2GFSK-DSSS	554.9	≥500	Pass

Plot(s)

Test Setup Photo(s)

15.247(b)(3) Output Power

Test Setup/Conditions								
Test Location:	Brea Lab A	Test Engineer:	E. Wong, S. Yamamoto					
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	5/18/2022					
Configuration:	1							
Test Setup:	The EUT is placed on test bench unterminated cable. Frequency Range: 902-928MHz TX Frequency: 915.0MHz	n; all data and Aux p	oort are connected to section of					
	2GFSK-DSSS (setup menu: GFSK s =8	elected, however coc	led as 2GSK-DSSS) , Power setting					

Environmental Conditions					
Temperature (^o C)	22	Relative Humidity (%):	25		

Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
02869	Spectrum Analyzer	Agilent	E4440A	8/16/2021	8/16/2022		
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024		
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022		
07164	Multimeter	Fluke	8845A/G	8/13/2021	8/13/2023		
03759	AC Power Supply	GoHz	HZ-60-1005	8/5/2021	8/5/2022		

Test Data Summary - Voltage Variations							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
915.0	2GFSK-DSSS / 1	7.8	7.8	7.8	0		

Test performed using operational mode with the highest output power, representing worst case.

	Parameter Definitions:							
Ν	Measurements performed at input voltage Vnominal ± 15%.							
	Parameter	Value						
	V _{Nominal} :	24.0						
	V _{Minimum} :	20.4						
	V _{Maximum} :	27.6						

Test Data Summary - RF Conducted Measurement							
Measurement Option: RBW > DTS Bandwidth							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results		
915.0	2GFSK-DSSS	Integral IFA / -1.58	7.8	≤ 30	Pass		

Plot(s)

Test Setup Photo(s)

RF Conducted Measurement

Voltage Variation

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Place	 Brea, CA 928 	823 • (714) 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	106906	Date:	5/18/2022
Test Type:	Conducted Emissions	Time:	11:28:18
Tested By:	E. Wong	Sequence#:	4
Software:	EMITest 5.03.20		24Vac

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions / Note	25:			
The EUT is placed on	test bench.			
Frequency Range: 902 TX Frequency: 915.0N	- 928MHz 1Hz			
2GFSK-DSSS (setup r Power Setting = 8dBn	nenu, GFSK selected, howev 1	er coded as 2GSK-DSS	S)	
Frequency Range of M RBW = 100kHz, VBW	easurement = 9 kHz - 10 GHz 7 = 3000kHz.	Ζ.		
Test Environment Con Temperature:22°C	ditions:			
Humidity:25%				
Pressure: 99kPa				
Method: ANSI C63.10	-2013			
Site A				

Note: v2.9.1.

Venstar, Inc. WO#: 106906 Sequence#: 4 Date: 5/18/2022 15.247(d) Conducted Spurious Emissions Test Lead: 24Vac Antenna port

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T1	ANP07658	Cable	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022
T2	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024

Measurement Data:		Re	Reading listed by margin.			. Test Lead: Antenna port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2745.400M	56.1	+0.4	+10.1			+0.0	66.6	93.8	-27.2	Anten
2	3658.800M	52.5	+0.5	+10.1			+0.0	63.1	93.9	-30.8	Anten
3	457.400M	45.5	+0.2	+10.0			+0.0	55.7	93.8	-38.1	Anten
4	1830.400M	43.5	+0.4	+10.1			+0.0	54.0	93.8	-39.8	Anten
5	4573.800M	37.5	+0.6	+10.2			+0.0	48.3	93.9	-45.6	Anten

Band Edge

Band Edge Summary							
Limit applied: Max Power/100kHz - 20dB.							
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results			
902	2GFSK-DSSS	-70.3	< -13.2	Pass			
928	2GFSK-DSSS	-70.3	< -13.2	Pass			

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N. Olind	la Place • Brea, CA 92	823 • (714) 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) Conducted Spurious Emis	ssions	
Work Order #:	106906	Date:	5/18/2022
Test Type:	Conducted Emissions	Time:	11:28:18
Tested By:	E. Wong	Sequence#:	4
Software:	EMITest 5.03.20	-	24Vac

Equipment Tested:

Equipment Testea:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				
Test Conditions / No	tes:			
The EUT is placed or	n test bench.			
Frequency Range: 90	2 - 928MHz			
TX Frequency: 915.0	MHz			
2GFSK-DSSS (setup	menu, GFSK selected, howev	er coded as 2GSK-DSSS	5)	
Power Setting = 8 dB	m			
Englishers Dance of	$M_{aaa} = 0 k H_{\pi} = 10 C H_{\pi}$			
PDW = 100kHz VP	W = 2000 k Hz			
$\mathbf{K}\mathbf{D}$ W = 100KHZ, V D	W = 3000 KHZ.			
Test Environment Co	onditions:			
Temperature: 22°C				
Humidity: 25%				
Pressure: 99kPa				
Method: ANSI C63.1	0-2013			
Site A				

Note: v2.9.1.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T2	ANP07658	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
Т3	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Test Lead: Antenna port				
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	914.817M	103.5	+0.0	+0.2	+10.1		+0.0	113.8	113.8	+0.0	Anten
									Fundamen	ıtal	
2	902.000M	26.4	+0.0	+0.2	+10.1		+0.0	36.7	93.8	-57.1	Anten
									bandedge_	H	
3	928.000M	26.4	+0.0	+0.2	+10.1		+0.0	36.7	93.8	-57.1	Anten
									bandedge_	L	

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 1	10 N. Olinda Place • Brea, CA 928	823 • (714) 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiate	ed Spurious Emissions	
Work Order #:	106906	Date:	5/18/2022
Test Type:	Radiated Scan	Time:	09:03:54
Tested By:	E. Wong	Sequence#:	3
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The EUT is placed on Styrofoam block, orientated per intended installation; all data and Aux port are connected to section of unterminated cable.

Frequency Range: 902 - 928MHz TX Frequency: 915.0MHz

2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS) Power Setting = 8dBm

Frequency Range of Measurement = 9kHz - 10GHz. 9kH -150kHz; RBW = 200Hz, VBW = 200Hz; 150kHz - 30MHz; RBW =9kHz, VBW = 9kHz; 30MHz - 1000MHz; RBW = 120kHz, VBW = 120kHz, 1000MHz - 10000 MHz; RBW = 1MHz, VBW = 1MHz

Test Environment Conditions: Temperature: 21°C Humidity: 25% Pressure: 99kPa

Method: ANSI C63.10-2013 Site A

Note: v2.9.2.

Venstar, Inc. WO#: 106906 Sequence#: 3 Date: 5/18/2022 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T2	AN01646	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
T4	AN00787	Preamp	83017A	6/23/2021	6/23/2023
T5	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
Т6	AN02749	High Pass Filter	9SH10-	7/12/2021	7/12/2023
			1000/T10000-		
			0/0		
T7	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
Т8	AN00309	Preamp	8447D	12/13/2021	12/13/2023
Т9	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
T10	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024

Measu	urement Data:	R	eading lis	ted by ma	by margin. Test Distance: 3 Meters				5		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	841.495M	37.3	+0.0	+0.0	+0.0	+0.0	+0.0	45.7	46.0	-0.3	Horiz
	QP		+0.0	+0.0	+29.6	-27.2					
			+0.4	+5.6							
^	841.495M	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	46.8	46.0	+0.8	Horiz
			+0.0	+0.0	+29.6	-27.2					
			+0.4	+5.6							
3	2745.550M	58.6	+0.0	+29.3	+0.5	-39.3	+0.0	53.1	54.0	-0.9	Horiz
	Ave		+3.4	+0.6	+0.0	+0.0					
			+0.0	+0.0							
^	2745.550M	65.1	+0.0	+29.3	+0.5	-39.3	+0.0	59.6	54.0	+5.6	Horiz
			+3.4	+0.6	+0.0	+0.0					
			+0.0	+0.0							
5	647.989M	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	44.3	46.0	-1.7	Horiz
	QP		+0.0	+0.0	+27.1	-27.3					
			+0.3	+4.7							
^	647.989M	40.2	+0.0	+0.0	+0.0	+0.0	+0.0	45.0	46.0	-1.0	Horiz
			+0.0	+0.0	+27.1	-27.3					
			+0.3	+4.7							
7	841.500M	34.4	+0.0	+0.0	+0.0	+0.0	+0.0	42.9	46.0	-3.1	Vert
	QP		+0.0	+0.0	+29.7	-27.2					
			+0.4	+5.6							
^	841.500M	35.2	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	46.0	-2.3	Vert
			+0.0	+0.0	+29.7	-27.2					
			+0.4	+5.6							
9	839.978M	34.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.7	46.0	-3.3	Horiz
	QP		+0.0	+0.0	+29.7	-27.2					
			+0.4	+5.6							
^	839.978M	35.3	+0.0	+0.0	+0.0	+0.0	+0.0	43.8	46.0	-2.2	Horiz
			+0.0	+0.0	+29.7	-27.2					
			+0.4	+5.6							
11	695.985M	37.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	46.0	-3.4	Horiz
	QP		+0.0	+0.0	+27.0	-27.2					
	<0.5.00.53 K	20.4	+0.3	+4.9					16.0		
^	695.985M	38.4	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	46.0	-2.6	Horiz
			+0.0	+0.0	+27.0	-27.2					
			+0.3	+4.9					16.0	2 4	
13	743.985M	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	46.0	-3.6	Horiz
	QP		+0.0	+0.0	+28.6	-27.2					
	742 00514	0.6.1	+0.4	+5.1	0.0	0.0	0.0	12.0	16.0	2.0	
	743.985M	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	43.0	46.0	-3.0	Horiz
			+0.0	+0.0	+28.6	-21.2					
1.7	701 0073 5	251	+0.4	+5.1				42.2	16.0	2.0	TT. '
15	/91.985M	35.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	46.0	-3.8	Horiz
	٧٢		+0.0	+0.0	+28.5	-21.2					
			+0.4	+5.4							

16	3659.250M	53.0	+0.0	+31.5	+0.5	-39.4	+0.0	50.0	54.0	-4.0	Horiz
	Ave		+4.0	+0.4	+0.0	+0.0					
			+0.0	+0.0							
^	3659.250M	60.3	+0.0	+31.5	+0.5	-39.4	+0.0	57.3	54.0	+3.3	Horiz
			+4.0	+0.4	+0.0	+0.0					
			+0.0	+0.0							
18	2744.533M	54.6	+0.0	+29.3	+0.5	-39.3	+0.0	49.1	54.0	-4.9	Vert
	Ave		+3.4	+0.6	+0.0	+0.0					
			+0.0	+0.0							
^	2744.533M	61.5	+0.0	+29.3	+0.5	-39.3	+0.0	56.0	54.0	+2.0	Vert
			+3.4	+0.6	+0.0	+0.0					
			+0.0	+0.0							
20	544.487M	38.9	+0.0	+0.0	+0.0	+0.0	+0.0	40.9	46.0	-5.1	Horiz
			+0.0	+0.0	+25.0	-27.7					
			+0.3	+4.4							
21	396.000M	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	46.0	-5.5	Vert
	QP		+0.0	+0.0	+21.8	-27.9					
			+0.2	+3.6							
^	396.000M	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	41.8	46.0	-4.2	Vert
			+0.0	+0.0	+21.8	-27.9					
			+0.2	+3.6							
23	839.978M	31.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.1	46.0	-5.9	Vert
			+0.0	+0.0	+29.7	-27.2					
			+0.4	+5.6							
24	839.978M	31.6	+0.0	+0.0	+0.0	+0.0	+0.0	40.1	46.0	-5.9	Vert
			+0.0	+0.0	+29.7	-27.2					
			+0.4	+5.6							
25	791.980M	32.9	+0.0	+0.0	+0.0	+0.0	+0.0	40.0	46.0	-6.0	Vert
			+0.0	+0.0	+28.5	-27.2					
			+0.4	+5.4							
26	455.985M	40.1	+0.0	+0.0	+0.0	+0.0	+0.0	39.6	46.0	-6.4	Horiz
			+0.0	+0.0	+23.2	-27.9					
			+0.3	+3.9							
27	791.975M	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	39.4	46.0	-6.6	Horiz
	QP		+0.0	+0.0	+28.5	-27.2					
			+0.4	+5.4							
^	791.985M	38.8	+0.0	+0.0	+0.0	+0.0	+0.0	45.9	46.0	-0.1	Horiz
			+0.0	+0.0	+28.5	-27.2					
			+0.4	+5.4							
^	791.975M	34.3	+0.0	+0.0	+0.0	+0.0	+0.0	41.4	46.0	-4.6	Horiz
			+0.0	+0.0	+28.5	-27.2					
			+0.4	+5.4							
30	503.985M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	39.3	46.0	-6.7	Horiz
			+0.0	+0.0	+24.2	-27.8					
			+0.3	+4.1							
31	396.005M	41.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.1	46.0	-6.9	Horiz
			+0.0	+0.0	+21.8	-27.9					
			+0.2	+3.6							
32	445.505M	39.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.8	46.0	-7.2	Horiz
			+0.0	+0.0	+23.0	-27.9					
			+0.3	+3.9							

33	791.978M	31.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	46.0	-7.4	Vert
			+0.0	+0.0	+28.5	-27.2					
			+0.4	+5.4							
34	647.989M	33.4	+0.0	+0.0	+0.0	+0.0	+0.0	38.2	46.0	-7.8	Vert
	QP		+0.0	+0.0	+27.1	-27.3					
			+0.3	+4.7							
^	647.989M	38.6	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	46.0	-2.6	Vert
			+0.0	+0.0	+27.1	-27.3					
			+0.3	+4.7							
36	297.013M	42.9	+0.0	+0.0	+0.0	+0.0	+0.0	37.6	46.0	-8.4	Horiz
			+0.0	+0.0	+19.3	-27.9					
			+0.2	+3.1							
37	4574.250M	47.3	+0.0	+32.3	+0.6	-39.3	+0.0	45.5	54.0	-8.5	Horiz
			+4.6	+0.0	+0.0	+0.0			non intentio	onal	
			+0.0	+0.0							
38	148.481M	42.9	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	43.5	-9.1	Horiz
	QP		+0.0	+0.0	+17.3	-28.0					
			+0.1	+2.1							
^	148.481M	46.5	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	43.5	-5.5	Horiz
			+0.0	+0.0	+17.3	-28.0					
			+0.1	+2.1							
40	695.980M	31.5	+0.0	+0.0	+0.0	+0.0	+0.0	36.5	46.0	-9.5	Vert
			+0.0	+0.0	+27.0	-27.2					
			+0.3	+4.9							
41	167.996M	43.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.8	43.5	-9.7	Horiz
			+0.0	+0.0	+15.9	-28.0					
			+0.2	+2.3							
42	743.980M	29.3	+0.0	+0.0	+0.0	+0.0	+0.0	36.2	46.0	-9.8	Vert
			+0.0	+0.0	+28.6	-27.2					
			+0.4	+5.1							
43	1829.533M	52.1	+0.0	+27.1	+0.4	-39.1	+0.0	43.6	54.0	-10.4	Vert
			+2.7	+0.4	+0.0	+0.0					
			+0.0	+0.0							
44	816.730M	28.2	+0.0	+0.0	+0.0	+0.0	+0.0	35.5	46.0	-10.5	Horiz
			+0.0	+0.0	+28.6	-27.2					
			+0.4	+5.5							
45	167.980M	42.4	+0.0	+0.0	+0.0	+0.0	+0.0	32.8	43.5	-10.7	Horiz
			+0.0	+0.0	+15.9	-28.0					
			+0.2	+2.3							
46	204.221M	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	43.5	-10.9	Horiz
			+0.0	+0.0	+15.1	-28.0					
			+0.2	+2.5							
47	79.000M	42.2	+0.0	+0.0	+0.0	+0.0	+0.0	29.1	40.0	-10.9	Horiz
			+0.0	+0.0	+13.4	-28.1					
			+0.1	+1.5							
48	77.470M	42.3	+0.0	+0.0	+0.0	+0.0	+0.0	29.0	40.0	-11.0	Horiz
			+0.0	+0.0	+13.2	-28.1					
			+0.1	+1.5							
49	660.000M	29.8	+0.0	+0.0	+0.0	+0.0	+0.0	34.4	46.0	-11.6	Vert
			+0.0	+0.0	+26.9	-27.3					
			+0.3	+4.7							

50	167.980M	41.4	+0.0	+0.0	+0.0	+0.0	+0.0	31.8	43.5	-11.7	Vert
			+0.0	+0.0	+15.9	-28.0					
			+0.2	+2.3							
51	3660.900M	45.1	+0.0	+31.5	+0.5	-39.4	+0.0	42.1	54.0	-11.9	Vert
	Ave		+4.0	+0.4	+0.0	+0.0					
			+0.0	+0.0							
^	3660.900M	53.7	+0.0	+31.5	+0.5	-39.4	+0.0	50.7	54.0	-3.3	Vert
			+4.0	+0.4	+0.0	+0.0					
			+0.0	+0.0							
53	512.020M	33.0	+0.0	+0.0	+0.0	+0.0	+0.0	33.9	46.0	-12.1	Horiz
			+0.0	+0.0	+24.2	-27.8					
			+0.3	+4.2							
54	445.425M	34.3	+0.0	+0.0	+0.0	+0.0	+0.0	33.6	46.0	-12.4	Vert
			+0.0	+0.0	+23.0	-27.9					
			+0.3	+3.9							
55	960.020M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.4	54.0	-12.6	Horiz
			+0.0	+0.0	+31.4	-27.3					
			+0.5	+6.0							
56	239.956M	40.7	+0.0	+0.0	+0.0	+0.0	+0.0	33.2	46.0	-12.8	Horiz
			+0.0	+0.0	+17.5	-27.9					
			+0.2	+2.7							
57	263.988M	37.8	+0.0	+0.0	+0.0	+0.0	+0.0	33.0	46.0	-13.0	Horiz
			+0.0	+0.0	+20.0	-27.9					
			+0.2	+2.9							
58	611.400M	29.4	+0.0	+0.0	+0.0	+0.0	+0.0	32.9	46.0	-13.1	Horiz
			+0.0	+0.0	+26.2	-27.5					
			+0.3	+4.5							
59	247.501M	39.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.6	46.0	-13.4	Horiz
			+0.0	+0.0	+18.4	-27.9					
			+0.2	+2.8							
60	503.988M	31.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.4	46.0	-13.6	Vert
			+0.0	+0.0	+24.2	-27.8					
			+0.3	+4.1							
61	1829.850M	48.8	+0.0	+27.1	+0.4	-39.1	+0.0	40.3	54.0	-13.7	Horiz
			+2.7	+0.4	+0.0	+0.0					
			+0.0	+0.0							
62	80.550M	39.0	+0.0	+0.0	+0.0	+0.0	+0.0	26.2	40.0	-13.8	Vert
			+0.0	+0.0	+13.7	-28.1					
(2)	211.00014	27.1	+0.1	+1.5	.0.0	.0.0	. 0. 0	20.1	16.0	12.0	TT '
63	311.980M	37.1	+0.0	+0.0	+0.0	+0.0	+0.0	32.1	46.0	-13.9	Horiz
			+0.0	+0.0	+19.5	-27.9					
C.4	220.09414	20.0	+0.2	+3.2	.0.0	.0.0	.0.0	21.7	16.0	14.2	Maria
64	239.984M	39.2	+0.0	+0.0	+0.0	+0.0	+0.0	31.7	46.0	-14.3	vert
			+0.0	+0.0	+17.3	-21.9					
65	260.0201	25.0	+0.2	+2.1				21.6	160	14.4	Uoria
65	300.020M	35.0	+0.0	+0.0	+0.0	+0.0	+0.0	31.0	40.0	-14.4	HOPIZ
			+0.0 ±0.2	+0.0	+20.9	-21.9					
66	220 012M	26.2	+0.2	+3.4				21.5	160	145	Uoria
00	320.013M	30.3	+0.0	+0.0	+0.0	+0.0	+0.0	51.5	40.0	-14.3	HOLIZ
			+0.0	+0.0	+19./	-27.9					
			+0.2	+3.2							

67	408.000M	32.8	+0.0	+0.0	+0.0	+0.0	+0.0	31.2	46.0	-14.8	Vert
			+0.0	+0.0	+22.4	-27.9					
			+0.2	+3.7							
68	544.490M	28.9	+0.0	+0.0	+0.0	+0.0	+0.0	30.9	46.0	-15.1	Vert
			+0.0	+0.0	+25.0	-27.7					
			+0.3	+4.4							
69	297.020M	35.5	+0.0	+0.0	+0.0	+0.0	+0.0	30.2	46.0	-15.8	Vert
			+0.0	+0.0	+19.3	-27.9					
			+0.2	+3.1							
70	383.970M	32.3	+0.0	+0.0	+0.0	+0.0	+0.0	29.4	46.0	-16.6	Horiz
			+0.0	+0.0	+21.3	-27.9					
			+0.2	+3.5							
71	407.972M	30.7	+0.0	+0.0	+0.0	+0.0	+0.0	29.1	46.0	-16.9	Horiz
			+0.0	+0.0	+22.4	-27.9					
72	2257 2001 (11.6	+0.2	+3.7	0.4	20.2	0.0	26.6	54.0	17.4	
72	2257.300M	44.6	+0.0	+27.8	+0.4	-39.3	+0.0	36.6	54.0	-17.4	Horiz
			+3.1	+0.0	+0.0	+0.0			non intentio	onal	
72	2077 20014	4.4.4	+0.0	+0.0	+0.4	20.2	.0.0	265	54.0	17.5	II.a.r.!-
75	2077.500101	44.4	+0.0	+27.8	+0.4	-39.2	+0.0	50.5	54.0	-17.3	HOLIZ
			+2.9	+0.2	+0.0	+0.0					
74	346 463M	32.2	+0.0	+0.0	+0.0	+0.0	+0.0	28.4	46.0	17.6	Horiz
/4	540.405101	32.2	+0.0	+0.0	+0.0 +20.5	-27 Q	+0.0	20.4	40.0	-17.0	TIOTIZ
			+0.2	+3.4	120.5	-21.9					
75	288.003M	33.8	+0.0	+0.0	+0.0	+0.0	+0.0	28.2	46.0	-17.8	Horiz
, 0	2001000000	0010	+0.0	+0.0	+19.1	-27.9		_0	1010	1710	110112
			+0.2	+3.0		,					
76	320.000M	32.9	+0.0	+0.0	+0.0	+0.0	+0.0	28.1	46.0	-17.9	Vert
			+0.0	+0.0	+19.7	-27.9					
			+0.2	+3.2							
77	115.683M	32.9	+0.0	+0.0	+0.0	+0.0	+0.0	24.5	43.5	-19.0	Horiz
			+0.0	+0.0	+17.6	-28.0					
			+0.1	+1.9							
78	270.363M	32.6	+0.0	+0.0	+0.0	+0.0	+0.0	26.7	46.0	-19.3	Horiz
			+0.0	+0.0	+18.9	-27.9					
			+0.2	+2.9							
79	336.013M	30.9	+0.0	+0.0	+0.0	+0.0	+0.0	26.6	46.0	-19.4	Horiz
			+0.0	+0.0	+20.1	-27.9					
	4 62 5003 6		+0.2	+3.3	0.0	0.0		210	10.7	10 7	
80	163.798M	33.4	+0.0	+0.0	+0.0	+0.0	+0.0	24.0	43.5	-19.5	Horiz
			+0.0	+0.0	+16.2	-28.0					
01	172 47114	24.0	+0.2	+2.2			.0.0	24.0	12.5	10.5	II.a.r.!-
01	1/2.4/11	54.0	+0.0	+0.0	+0.0	+0.0	+0.0	24.0	45.5	-19.5	HOLIZ
			+0.0 +0.2	+0.0	+13.3	-20.0					
82	260 746M	30.8	+0.0	+0.0	+0.0	+0.0	+0.0	26.3	46.0	-197	Horiz
02	200.740101	50.0	+0.0	+0.0	+20.3	-27.9	10.0	20.5	-0.0	-17.1	TIOUT
			+0.0	+2.9	120.5	-21.7					
L			10.4	14.7							

83	1663.433M	44.6	+0.0	+25.7	+0.4	-39.2	+0.0	34.2	54.0	-19.8	Vert
	Ave		+2.7	+0.0	+0.0	+0.0			non intetnt	ional	
			+0.0	+0.0							
^	1663.433M	62.8	+0.0	+25.7	+0.4	-39.2	+0.0	52.4	54.0	-1.6	Vert
			+2.7	+0.0	+0.0	+0.0			non intetnt	ional	
			+0.0	+0.0							
85	183.621M	32.8	+0.0	+0.0	+0.0	+0.0	+0.0	22.3	43.5	-21.2	Horiz
			+0.0	+0.0	+15.0	-28.0					
			+0.2	+2.3							
86	233.696M	33.1	+0.0	+0.0	+0.0	+0.0	+0.0	24.7	46.0	-21.3	Horiz
			+0.0	+0.0	+16.7	-28.0					
			+0.2	+2.7							
87	226.050M	30.7	+0.0	+0.0	+0.0	+0.0	+0.0	21.5	46.0	-24.5	Vert
			+0.0	+0.0	+15.9	-28.0					
			+0.2	+2.7							

Band Edge

	Band Edge Summary							
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results			
614	2GFSK-DSSS	Integral IFA / - 1.58	35.2	<46	Pass			
902	2GFSK-DSSS	Integral IFA / - 1.58	59.1	< 88	Pass			
928	2GFSK-DSSS	Integral IFA / - 1.58	36.1	< 88	Pass			
960	2GFSK-DSSS	Integral IFA / - 1.58	41.7	<54	Pass			

Band Edge Plots

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N.	Olinda Place • Brea, CA 9	2823 • (714) 993-6112
Customer:	Venstar, Inc.		
Specification:	15.247(d) / 15.209 Radiated Sp	urious Emissions	
Work Order #:	106906	Dat	e: 5/18/2022
Test Type:	Radiated Scan	Tim	e: 09:03:54
Tested By:	E. Wong	Sequence	#: 3
Software:	EMITest 5.03.20	-	
Equipment Teste	ed:		
Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipm	ent:		
Device	Manufacturer	Model #	S/N
Configuration 2			
Test Conditions	/ Notes.		
The EUT is place	ed on Styrofoam block orientated	per intended installation	all data and Aux port are connected to
section of unterm	inated cable	per intended instandion	, un duta and Max port are connected to
section of uncern			
Frequency Range	: 902 - 928MHz		
TX Frequency: 9	15.0MHz		
1 5			
2GFSK-DSSS (se	etup menu, GFSK selected, howev	ver coded as 2GSK-DSS	S)
Power Setting $= 8$	3dBm		
C			
Frequency range	of measurement = 9 kHz - 10 GHz.		
9kH - 150kHz; RI	BW = 200Hz, $VBW = 200Hz$; 150l	kHz - 30MHz; RBW = 91	Hz, $VBW = 9kHz$; $30MHz - 1000MHz$;
RBW = 120kHz,	VBW = 120kHz, 1000MHz - 1000	00MHz; RBW = 1MHz,	VBW =1MHz
Test Environmen	t Conditions:		
Temperature: 21°	С		
Humidity: 25%			
Pressure: 99kPa.			
Method: ANSI C	63 10-2013		
Site A	05.10-2015		
Note: v2.9.2.			

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
	AN01646	Horn Antenna	3115	3/21/2022	3/21/2024
	ANP07656	Cable	32022-29094K-	7/30/2020	7/30/2022
			29094K-24TC		
	AN00787	Preamp	83017A	6/23/2021	6/23/2023
	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
	AN02749	High Pass Filter	9SH10-	7/12/2021	7/12/2023
			1000/T10000-		
			0/0		
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
Т3	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T4	ANP05050	Cable	RG223/U	12/24/2020	12/24/2022
T5	ANP05198	Cable-Amplitude	8268	12/21/2020	12/21/2022
		+15C to +45C (dB)			
	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024

Measurement Data:			eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	31.4	+0.0	+26.3	-27.4	+0.3	+0.0	35.2	46.0	-10.8	Horiz
			+4.6						bandedge_	L	
2	960.000M	31.1	+0.0	+31.4	-27.3	+0.5	+0.0	41.7	54.0	-12.3	Horiz
			+6.0						bandedge_	Н	
3	902.000M	30.6	+0.0	+29.5	-27.3	+0.5	+0.0	39.1	88.0	-48.9	Horiz
			+5.8						bandedge_	L	
4	928.000M	26.5	+0.0	+30.5	-27.3	+0.5	+0.0	36.1	88.0	-51.9	Horiz
			+5.9						bandedge_	Н	

Test Setup Photo(s)

Below 1GHz; View 1

Below 1GHz; View 2

Above 1GHz; View 1

Above 1GHz; View 2

Above 1GHz' View 3

Above 1GHz; View 4

15.247(e) Power Spectral Density

Test Setup/Conditions								
Test Location:	Brea Lab A	Test Engineer:	E. Wong					
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	5/13/2022					
Configuration:	1							
Test Setup:	The EUT is placed on test bench unterminated cable. Frequency range: 902-928MHz TX Frequency: 915.0MHz	h; all data and Aux p	oort are connected to section of					
	2GFSK-DSSS (setup menu: GFSK se	lected, however code	d as 2GSK-DSSS) , Power setting =8					

Environmental Conditions						
Temperature (^o C)	22	Relative Humidity (%):	25			

Test Equipment								
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due			
02869	Spectrum Analyzer	Agilent	E4440A	8/16/2021	8/16/2022			
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024			
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	7/30/2020	7/30/2022			

	Test Data Summary - RF Conducted Measurement							
Measurement Method: PKPSD								
Frequency (MHz)	Frequency (MHz) Modulation Measured (dBm/3kHz) Limit (dBm/3kHz) Results							
915.0	2GFSK-DSSS	-1.9	≤8	Pass				

Plot(s)

Test Setup Photo(s)

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda	Place • Brea, CA 92823 • (714) 993-61	112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	106906	Date: 5/18/2022	
Test Type:	Conducted Emissions	Time: 2:09:40 PM	
Tested By:	E. Wong	Sequence#: 4	
Software:	EMITest 5.03.20	120/60Hz	

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:						
Device	Manufacturer	Model #	S/N			
Configuration 2						

Test Conditions / Notes:

The EUT is placed on test bench, orientated per intended installation; all data and Aux port are connected to section of unterminated cable.

Frequency Range: 902 - 928MHz TX Frequency: 915.0MHz

2GFSK-DSSS (setup menu, GFSK selected, however coded as 2GSK-DSSS) Power Setting = 8dBm

Frequency Range of Measurement = 150kHz - 30MHz. 150kHz - 30MHz; RBW = 9kHz, VBW = 30kHz

Test Environment Conditions: Temperature: 21°C Humidity: 25% Pressure: 99kPa.

Method: ANSI C63.10-2013 Site A

Note: v2.9.2.

Venstar, Inc. WO#: 106906 Sequence#: 4 Date: 5/18/2022 15.207 AC Mains - Average Test Lead: 120/60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T1	ANP07545	Attenuator	SA18N10W-06	1/4/2021	1/4/2023
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	AN02610	High Pass Filter	HE9615-150K-	9/8/2021	9/8/2023
			50-720B		
T4	AN00847.1	50uH LISN-(L) Line	3816/2NM	3/18/2022	3/18/2023
		1			
	AN00847.1	50uH LISN-(N) Line	3816/2NM	3/18/2022	3/18/2023
		2			

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	1: L1-Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2.910M	28.5	+5.7	+0.1	+0.1	+0.0	+0.0	34.4	46.0	-11.6	L1-Li
2	2.948M	28.4	+5.7	+0.1	+0.1	+0.0	+0.0	34.3	46.0	-11.7	L1-Li
3	3.118M	27.0	+5.7	+0.1	+0.1	+0.0	+0.0	32.9	46.0	-13.1	L1-Li
4	2.702M	25.7	+5.7	+0.1	+0.1	+0.0	+0.0	31.6	46.0	-14.4	L1-Li
5	3.327M	23.0	+5.7	+0.1	+0.1	+0.0	+0.0	28.9	46.0	-17.1	L1-Li
6	2.493M	21.7	+5.7	+0.1	+0.1	+0.0	+0.0	27.6	46.0	-18.4	L1-Li
7	2.081M	21.3	+5.7	+0.1	+0.1	+0.0	+0.0	27.2	46.0	-18.8	L1-Li
8	2.995M	19.8	+5.7	+0.1	+0.1	+0.0	+0.0	25.7	46.0	-20.3	L1-Li
9	1.247M	19.7	+5.7	+0.1	+0.2	+0.0	+0.0	25.7	46.0	-20.3	L1-Li
10	3.101M	19.6	+5.7	+0.1	+0.1	+0.0	+0.0	25.5	46.0	-20.5	L1-Li
11	2.927M	18.6	+5.7	+0.1	+0.1	+0.0	+0.0	24.5	46.0	-21.5	L1-Li
12	3.535M	18.3	+5.7	+0.1	+0.1	+0.0	+0.0	24.2	46.0	-21.8	L1-Li
13	1.664M	18.1	+5.7	+0.1	+0.2	+0.0	+0.0	24.1	46.0	-21.9	L1-Li
14	1.868M	17.9	+5.7	+0.1	+0.1	+0.0	+0.0	23.8	46.0	-22.2	L1-Li
15	1.460M	17.5	+5.7	+0.1	+0.2	+0.0	+0.0	23.5	46.0	-22.5	L1-Li

Test Location:	CKC Laboratories, Inc. • 110 N. Olinda Place	• Brea, CA 928	23 • (714) 993-6112
Customer:	Venstar, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order #:	106906	Date:	5/18/2022
Test Type:	Conducted Emissions	Time:	2:14:27 PM
Tested By:	E. Wong	Sequence#:	5
Software:	EMITest 5.03.20		120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N						
Configuration 2									
Support Equipment:	Support Equipment:								
Device	Manufacturer	Model #	S/N						
Configuration 2									
Test Conditions / Notes:									
The EUT is placed on test b of unterminated cable.	ench, orientated per intende	ed installation; all d	ata and Aux port are connected to section						
Frequency Range: 902 - 928 TX Frequency: 915.0MHz	BMHz								
2GFSK-DSSS (setup menu, Power Setting = 8dBm	GFSK selected, however c	oded as 2GSK-DSS	SS)						
Frequency Range of Measur 150kHz - 30MHz; RBW = 9	rement = 150kHz - 30MHz. 9kHz, VBW = 30kHz								
Test Environment Conditions: Temperature: 21°C Humidity: 25% Pressure: 99kPa.									
Method: ANSI C63.10-2013 Site A	3								
Note: v2.9.2.									

Venstar, Inc. WO#: 106906 Sequence#: 5 Date: 5/18/2022 15.207 AC Mains - Average Test Lead: 120/60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	8/16/2021	8/16/2022
T1	ANP07545	Attenuator	SA18N10W-06	1/4/2021	1/4/2023
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	AN02610	High Pass Filter	HE9615-150K-	9/8/2021	9/8/2023
			50-720B		
	AN00847.1	50uH LISN-(L) Line	3816/2NM	3/18/2022	3/18/2023
		1			
T4	AN00847.1	50uH LISN-(N) Line	3816/2NM	3/18/2022	3/18/2023
		2			

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: L2-Neut	tral	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµ V	dB	Ant
1	2.910M	28.8	+5.7	+0.1	+0.1	+0.0	+0.0	34.7	46.0	-11.3	L2-Ne
2	3.118M	28.1	+5.7	+0.1	+0.1	+0.0	+0.0	34.0	46.0	-12.0	L2-Ne
3	2.953M	26.5	+5.7	+0.1	+0.1	+0.0	+0.0	32.4	46.0	-13.6	L2-Ne
4	2.702M	25.3	+5.7	+0.1	+0.1	+0.0	+0.0	31.2	46.0	-14.8	L2-Ne
5	28.691M	24.5	+5.8	+0.4	+0.2	+0.2	+0.0	31.1	50.0	-18.9	L2-Ne
6	29.733M	24.0	+5.8	+0.4	+0.2	+0.2	+0.0	30.6	50.0	-19.4	L2-Ne
7	3.323M	20.6	+5.7	+0.1	+0.1	+0.0	+0.0	26.5	46.0	-19.5	L2-Ne
8	28.266M	23.8	+5.8	+0.4	+0.2	+0.2	+0.0	30.4	50.0	-19.6	L2-Ne
9	2.493M	19.9	+5.7	+0.1	+0.1	+0.0	+0.0	25.8	46.0	-20.2	L2-Ne
10	29.315M	23.2	+5.8	+0.4	+0.2	+0.2	+0.0	29.8	50.0	-20.2	L2-Ne
11	28.883M	23.0	+5.8	+0.4	+0.2	+0.2	+0.0	29.6	50.0	-20.4	L2-Ne
12	29.931M	22.9	+5.8	+0.4	+0.2	+0.2	+0.0	29.5	50.0	-20.5	L2-Ne
13	27.842M	22.1	+5.8	+0.4	+0.2	+0.2	+0.0	28.7	50.0	-21.3	L2-Ne
14	28.479M	21.9	+5.8	+0.4	+0.2	+0.2	+0.0	28.5	50.0	-21.5	L2-Ne
15	3.131M	18.5	+5.7	+0.1	+0.1	+0.0	+0.0	24.4	46.0	-21.6	L2-Ne

Test Setup Photo(s)

Page 48 of 50 Report No.: 106906-7

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.