


# ENGINEERING TEST REPORT



## Dual Channel RF/ID Reader

**Model No.: WN900RFID-A**

**FCC ID: MTHWN900RFID-A**

*Applicant:*

**WaveNet International Inc.**

*5825 Kennedy Road*

*Mississauga, Ontario*

*Canada, L4Z 2G3*

*Tested in Accordance With*

**Federal Communications Commission (FCC)**

**47 CFR, PARTS 2 and 90 (Subpart I)**

**UltraTech's File No.: WTI-024FCC90**

This Test report is Issued under the Authority of  
Tri M. Luu, Professional Engineer,  
Vice President of Engineering  
UltraTech Group of Labs

Date: July 22, 2004



Report Prepared by: Dharmajit Solanki, RFI Engineer

Tested by: Mr. Hung Trinh, EMI/RFI Technician

Issued Date: July 22, 2004

Test Dates: July 16-20, 2004

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.*
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.*

## UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: [www.ultratech-labs.com](http://www.ultratech-labs.com), Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Email: [tri@ultratech-labs.com](mailto:tri@ultratech-labs.com)



31040/SIT



C-1376



46390-2049



200093-0



00-034



entela

## TABLE OF CONTENTS

|                                                                                     |           |
|-------------------------------------------------------------------------------------|-----------|
| <b>EXHIBIT 1. SUBMITTAL CHECK LIST.....</b>                                         | <b>1</b>  |
| <b>EXHIBIT 2. INTRODUCTION .....</b>                                                | <b>2</b>  |
| 2.1. SCOPE.....                                                                     | 2         |
| 2.2. RELATED SUBMITTAL(S)/GRANT(S).....                                             | 2         |
| 2.3. NORMATIVE REFERENCES .....                                                     | 2         |
| <b>EXHIBIT 3. PERFORMANCE ASSESSMENT .....</b>                                      | <b>3</b>  |
| 3.1. CLIENT INFORMATION .....                                                       | 3         |
| 3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION.....                                    | 3         |
| 3.3. EUT'S TECHNICAL SPECIFICATIONS.....                                            | 4         |
| 3.4. LIST OF EUT'S PORTS .....                                                      | 4         |
| 3.5. ANCILLARY EQUIPMENT .....                                                      | 5         |
| <b>EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS .....</b>    | <b>6</b>  |
| 4.1. CLIMATE TEST CONDITIONS.....                                                   | 6         |
| 4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS.....                | 6         |
| <b>EXHIBIT 5. SUMMARY OF TEST RESULTS.....</b>                                      | <b>7</b>  |
| 5.1. LOCATION OF TESTS .....                                                        | 7         |
| 5.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS .....                         | 7         |
| 5.3. DEVIATION OF STANDARD TEST PROCEDURES .....                                    | 7         |
| 5.4. MODIFICATIONS INCORPORATED IN THE EUT .....                                    | 8         |
| <b>EXHIBIT 6. MEASUREMENTS, EXAMINATIONS &amp; TEST DATA FOR EMC EMISSIONS.....</b> | <b>9</b>  |
| 6.1. TEST PROCEDURES.....                                                           | 9         |
| 6.2. MEASUREMENT UNCERTAINTIES .....                                                | 9         |
| 6.3. MEASUREMENT EQUIPMENT USED .....                                               | 9         |
| 6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER.....               | 9         |
| 6.5. RF POWER OUTPUT @ FCC 2.1046 & 90.205 .....                                    | 10        |
| 6.6. RF EXPOSURE REQUIRMENTS @ 1.1310 & 2.1091.....                                 | 11        |
| 6.7. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210.....             | 13        |
| <b>EXHIBIT 7. MEASUREMENT UNCERTAINTY.....</b>                                      | <b>17</b> |
| 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY .....                                | 17        |
| <b>EXHIBIT 8. MEASUREMENT METHODS.....</b>                                          | <b>18</b> |
| 8.1. CONDUCTED POWER MEASUREMENTS .....                                             | 18        |
| 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD.....        | 19        |

## EXHIBIT 1. SUBMITTAL CHECK LIST

| Annex No. | Exhibit Type           | Description of Contents                                                                                                                                                                                                                                                                                                                                                                                     | Quality Check (OK) |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| --        | Test Report            | <ul style="list-style-type: none"><li>▪ Exhibit 1: Submittal check lists</li><li>▪ Exhibit 2: Introduction</li><li>▪ Exhibit 3: Performance Assessment</li><li>▪ Exhibit 4: EUT Operation and Configuration during Tests</li><li>▪ Exhibit 5: Summary of test Results</li><li>▪ Exhibit 6: Measurement Data</li><li>▪ Exhibit 7: Measurement Uncertainty</li><li>▪ Exhibit 8: Measurement Methods</li></ul> | OK                 |
| 1         | Test Setup Photos      | Radiated Emission Test Setup Photos                                                                                                                                                                                                                                                                                                                                                                         | OK                 |
| 2         | External Photos of EUT | External EUT Photos                                                                                                                                                                                                                                                                                                                                                                                         | OK                 |
| 3         | Internal Photos of EUT | Internal EUT Photos                                                                                                                                                                                                                                                                                                                                                                                         | OK                 |
| 4         | Cover Letters          | <ul style="list-style-type: none"><li>▪ Letter from Ultratech for Certification Request</li><li>▪ Letter from the Applicant to appoint Ultratech to act as an agent</li><li>▪ Letter from the Applicant to request for Confidentiality Filing</li></ul>                                                                                                                                                     | OK<br>OK<br>OK     |
| 5         | Block Diagrams         | Dual Channel RF/ID Reader Block Diagram                                                                                                                                                                                                                                                                                                                                                                     | OK                 |
| 6         | Schematic Diagrams     | <ul style="list-style-type: none"><li>▪ Model 1200 Dual Channel Reader R.F. Exciter</li><li>▪ Model 1200 Dual Channel Reader PIC Controller</li><li>▪ Model 1200 Dual Channel Reader R.F. Detector</li></ul>                                                                                                                                                                                                | OK                 |
| 7         | RF Exposure Info       | See section 6.6 of this Test Report for MPE Evaluation.                                                                                                                                                                                                                                                                                                                                                     | OK                 |

## EXHIBIT 2. INTRODUCTION

### 2.1. SCOPE

|                          |                                                                                                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference:</b>        | FCC Parts 2 and 90                                                                                                                                                                                                                                                                                           |
| <b>Title:</b>            | Telecommunication – 47 Code of Federal Regulations (CFR), Parts 2 & 90                                                                                                                                                                                                                                       |
| <b>Purpose of Test:</b>  | To gain FCC Certification Authorization for Radio operating in the frequency bands 902-904 MHz and 909.75-921.75 MHz.                                                                                                                                                                                        |
| <b>Test Procedures:</b>  | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |
| <b>Modular Approval:</b> | This application is for Modular Approval for mobile/base and fixed station application with the antenna gain limit of 11.65 dBi and the minimum antenna separation distance of 50 cm required.                                                                                                               |

### 2.2. RELATED SUBMITTAL(S)/GRANT(S)

None

### 2.3. NORMATIVE REFERENCES

| Publication                | Year         | Title                                                                                                                                                               |
|----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC CFR Parts 0-19, 80-End | 2003         | Code of Federal Regulations – Telecommunication                                                                                                                     |
| ANSI C63.4                 | 2003         | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| CISPR 22 & EN 55022        | 2003<br>2003 | Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment                                                         |
| CISPR 16-1                 | 1999         | Specification for Radio Disturbance and Immunity measuring apparatus and methods                                                                                    |

## EXHIBIT 3. PERFORMANCE ASSESSMENT

### 3.1. CLIENT INFORMATION

| APPLICANT              |                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------|
| <b>Name:</b>           | WaveNet International Inc.                                                                                             |
| <b>Address:</b>        | 5825 Kennedy Road<br>Mississauga, Ontario<br>Canada, L4Z 2G3                                                           |
| <b>Contact Person:</b> | Mr. Vikram Sondhi<br>Phone #: (905) 712-4700 ext 108<br>Fax #: (905) 712-4703<br>Email Address: vsondhi@wavenet-rf.com |

| MANUFACTURER           |                                                                                                                         |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <b>Name:</b>           | WaveNet International Inc.                                                                                              |
| <b>Address:</b>        | 5825 Kennedy Road<br>Mississauga, Ontario<br>Canada, L4Z 2G3                                                            |
| <b>Contact Person:</b> | Mr. Vickram Sondhi<br>Phone #: (905) 712-4700 ext 108<br>Fax #: (905) 712-4703<br>Email Address: vsondhi@wavenet-rf.com |

### 3.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

|                                             |                                                                                     |
|---------------------------------------------|-------------------------------------------------------------------------------------|
| <b>Brand Name:</b>                          | WaveNet                                                                             |
| <b>Product Name:</b>                        | Dual Channel RF/ID Reader                                                           |
| <b>Model Name or Number:</b>                | WN900RFID-A                                                                         |
| <b>Serial Number:</b>                       | ENG 001                                                                             |
| <b>Type of Equipment:</b>                   | High Speed RF/ID Fixed Reader                                                       |
| <b>External Power Supply:</b>               | N/A                                                                                 |
| <b>Transmitting/Receiving Antenna Type:</b> | Non-integral                                                                        |
| <b>Primary User Functions of EUT:</b>       | Reads RF Identification Transponder Tags on Trains traveling at speed up to 80 MPH. |

### 3.3. EUT'S TECHNICAL SPECIFICATIONS

| TRANSMITTER                            |                                                                                                                                                 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Equipment Type:</b>                 | <input type="checkbox"/> Portable<br><input checked="" type="checkbox"/> Mobile<br><input checked="" type="checkbox"/> Base station (fixed use) |
| <b>Intended Operating Environment:</b> | <input checked="" type="checkbox"/> Commercial<br><input checked="" type="checkbox"/> Light Industry & Heavy Industry                           |
| <b>Power Supply Requirement:</b>       | 15 Vdc                                                                                                                                          |
| <b>RF Output Power Rating:</b>         | 1 Watt                                                                                                                                          |
| <b>Operating Frequency Range:</b>      | 902-904 MHz, 909.75-921.75 MHz                                                                                                                  |
| <b>RF Output Impedance:</b>            | 50 Ohms                                                                                                                                         |
| <b>Channel Spacing:</b>                | N/A                                                                                                                                             |
| <b>Occupied Bandwidth (99%):</b>       | 3.07 kHz                                                                                                                                        |
| <b>Emission Designation*:</b>          | 3K07N0N                                                                                                                                         |
| <b>Oscillator Frequencies:</b>         | 16 MHz and 20 MHz                                                                                                                               |
| <b>CPU Clock Speed</b>                 | 25 MHz                                                                                                                                          |
| <b>Antenna Connector Type:</b>         | SMA                                                                                                                                             |

\* The Necessary Bandwidth is measured using 99% occupied bandwidth method.

### 3.4. LIST OF EUT'S PORTS

| Port Number | EUT's Port Description   | Number of Identical Ports | Connector Type | Cable Type (Shielded/Non-shielded) |
|-------------|--------------------------|---------------------------|----------------|------------------------------------|
| 1           | RF                       | 1                         | SMA            | Shielded                           |
| 2           | Power & Serial I/O       | 1                         | Header         | Non-Shielded                       |
| 3           | Wheel Detector Interface | 1                         | Socket         | Non-Shielded                       |
| 4           | Wheel Switch Cable       | 1                         | Header         | Non-Shielded                       |
| 5           | Track Switch Interface   | 1                         | Socket         | Non-Shielded                       |
| 6           | Track Switch Cable       | 1                         | Header         | Non-Shielded                       |

#### NOTES:

- (1) **Ports of the EUT which in normal operation** were connected to ancillary equipment through interconnecting cables via a representative interconnecting cable to simulate the input/output characteristics. RF input/output was correctly terminated to the 50 Ohms RF Load.
- (2) **Ports, which are not connected to cables during normal intended operation** (for factory/technical services uses only): Eight

### 3.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| <b>Ancillary Equipment # 1</b> |                                  |
|--------------------------------|----------------------------------|
| Description:                   | Network AEI Reader/Remote Reader |
| Brand name:                    | WaveNet International Inc.       |
| Model Name or Number:          | TRA / TRC                        |

| <b>Ancillary Equipment # 2</b> |          |
|--------------------------------|----------|
| Description:                   | Laptop   |
| Brand name:                    | Toshiba  |
| Model Name or Number:          | PA1224U  |
| Serial Number:                 | 08616386 |

## EXHIBIT 4. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

### 4.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

|                     |         |
|---------------------|---------|
| Temperature:        | 22°C    |
| Humidity:           | 51%     |
| Pressure:           | 102 kPa |
| Power Input Source: | 15 Vdc  |

### 4.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

|                                  |                                                                                                                          |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| <b>Operating Modes:</b>          | The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data. |
| <b>Special Test Software:</b>    | Test software provided by the manufacturer was used to configure the EUT for testing purposes.                           |
| <b>Special Hardware Used:</b>    | Network AEI reader/remote reader                                                                                         |
| <b>Transmitter Test Antenna:</b> | The EUT is tested with the transmitter antenna port terminated to a 50 Ohms RF Load.                                     |

| <b>Transmitter Test Signals</b>                                                                                                                                   |                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Band(s):                                                                                                                                                | 902-904 MHz, 909.75-921.75 MHz                                                                                                                                           |
| Test Frequencies:                                                                                                                                                 | Near lowest, near middle & near highest frequencies in each frequency band(s) that the transmitter covers:<br><br>Lowest: 903 MHz<br>Middle: 915 MHz<br>Highest: 921 MHz |
| Transmitter Wanted Output Test Signals:                                                                                                                           |                                                                                                                                                                          |
| <ul style="list-style-type: none"><li>RF Power Output (measured maximum output power): 30.00 dBm, 1.00 Watts</li><li>Modulating Signal Source: Internal</li></ul> |                                                                                                                                                                          |

## EXHIBIT 5. SUMMARY OF TEST RESULTS

### 5.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Feb. 17, 2004.

### 5.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

| FCC Section(s)                  | Test Requirements                                        | Applicability (Yes/No)                         |
|---------------------------------|----------------------------------------------------------|------------------------------------------------|
| 90.205 & 2.1046                 | RF Power Output                                          | Yes                                            |
| 1.1307, 1.1310, 2.1091 & 2.1093 | RF Exposure Limit                                        | Yes                                            |
| 90.213 & 2.1055                 | Frequency Stability                                      | N/A – Not affected due to modifications in EUT |
| 90.242(b)(8) & 2.1047(a)        | Audio Frequency Response                                 | N/A                                            |
| 90.210 & 2.1047(b)              | Modulation Limiting                                      | N/A                                            |
| 90.210 & 2.1049                 | Emission Limitation & Emission Mask                      | N/A – Not affected due to modifications in EUT |
| 90.210, 2.1057 & 2.1051         | Emission Limits - Spurious Emissions at Antenna Terminal | N/A – Not affected due to modifications in EUT |
| 90.210, 2.1057 & 2.1053         | Emission Limits - Field Strength of Spurious Emissions   | Yes                                            |

**Dual Channel RF/ID Reader, Model No.: WN900RFID-A, by WaveNet International Inc.** has also been tested and found to comply with **FCC Part 15, Subpart B - Class A Digital Devices**. The engineering test report has been documented and kept in file and it is available upon FCC request.

### 5.3. DEVIATION OF STANDARD TEST PROCEDURES

None.

## 5.4. MODIFICATIONS INCORPORATED IN THE EUT

The following modifications were made in order to upgrade the EUT:

1. Board Size is increased to accommodate additional connectors J17, J19, J21 and J22 for peripheral devices.
2. Location of tuning capacitor C88 moved to the end of the transmission line as C92 and C89 & C103 are removed
3. Value of tuning inductor L9 increased from 2.2nH to 10nH and moved to the end of transmission line as L16 and L10 & L11 removed.
4. Capacitors C112, C113, C114, C115 (1pF) are removed.
5. Added through holes on ground plane near transmission line.
6. Changed Value of Inductor L2 to 82nH.
7. Added Capacitors C123 for Value 3.3uF.

## EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

### 6.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report

### 6.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

### 6.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4:2003 and CISPR 16-1.

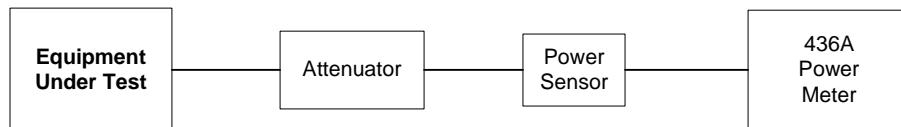
### 6.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

## 6.5. RF POWER OUTPUT @ FCC 2.1046 & 90.205

### 6.5.1. Limits @ FCC 90.205

Refer to FCC 47 CFR, Part 90, Subpart I, Section 90.205 for specification details.


### 6.5.2. Method of Measurements

Refer to Exhibit 8, section 8.1 of this report for measurement details

### 6.5.3. Test Equipment List

| Test Instruments | Manufacturer    | Model No. | Serial No. | Frequency Range                   |
|------------------|-----------------|-----------|------------|-----------------------------------|
| Attenuator       | Weinschel Corp  | 24-10-34  | BJ0039     | DC – 8.5 GHz                      |
| Power Meter      | Hewlett Packard | 436A      | 1725A02249 | 10 kHz – 50 GHz, sensor dependent |
| Power Sensor     | Hewlett Packard | 8481A     | 2702A68983 | 10 MHz – 18 GHz                   |

### 6.5.4. Test Arrangement



### 6.5.5. Test Data

| Transmitter Channel Output | Fundamental Frequency (MHz) | Measured (Average) Power (dBm) | Power Rating (dBm) |
|----------------------------|-----------------------------|--------------------------------|--------------------|
| Lowest                     | 903                         | 30.00                          | 30.00              |
| Middle                     | 915                         | 29.78                          | 30.00              |
| Highest                    | 921                         | 29.42                          | 30.00              |

## 6.6. RF EXPOSURE REQUIREMENTS @ 1.1310 & 2.1091

### MPE EVALUATION

**FCC 1.1310:-** The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range (MHz)                                          | Electric field strength (V/m) | Magnetic field strength (A/m) | Power density (mW/cm <sup>2</sup> ) | Averaging time (minutes) |
|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|--------------------------|
| <b>(A) Limits for Occupational/Controlled Exposures</b>        |                               |                               |                                     |                          |
| 0.3–3.0 .....                                                  | 614                           | 1.63                          | *(100)                              | 6                        |
| 3.0–30 .....                                                   | 1842/f                        | 4.89/f                        | *(900/f <sup>2</sup> )              | 6                        |
| 30–300 .....                                                   | 61.4                          | 0.163                         | 1.0                                 | 6                        |
| 300–1500 .....                                                 | .....                         | .....                         | f/300                               | 6                        |
| 1500–100,000 .....                                             | .....                         | .....                         | 5                                   | 6                        |
| <b>(B) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                          |
| 0.3–1.34 .....                                                 | 614                           | 1.63                          | *(100)                              | 30                       |
| 1.34–30 .....                                                  | 824/f                         | 2.19/f                        | *(180/f <sup>2</sup> )              | 30                       |
| 30–300 .....                                                   | 27.5                          | 0.073                         | 0.2                                 | 30                       |
| 300–1500 .....                                                 | .....                         | .....                         | f/1500                              | 30                       |
| 1500–100,000 .....                                             | .....                         | .....                         | 1.0                                 | 30                       |

f = frequency in MHz

\* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

### Calculation Method of RF Safety Distance:

$$S = PG/4\pi r^2 = EIRP/4\pi r^2 \implies r = (PG/4\pi S)^{1/2} = (EIRP/4\pi S)^{1/2}$$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

S: power density mW/cm<sup>2</sup>

G: numeric gain of antenna relative to isotropic radiator

r: distance to center of radiation in cm

### 6.6.1. Test Data

#### Antenna Gain Limit specified by Manufactuer: 9.5 dBd or 11.65 dBi

| Measured Maximum RF Conducted Power (watts) | Calculated EIRP (watts) | Laboratory's Recommended Minimum RF Safety Distance $r$ (cm) | Manufacturer's specified antenna separation distance (cm) |
|---------------------------------------------|-------------------------|--------------------------------------------------------------|-----------------------------------------------------------|
| 1.00                                        | 14.62                   | 44.0                                                         | 50.0                                                      |

Note 1: RF EXPOSURE DISTANCE LIMITS:  $r = (PG/4\pi S)^{1/2} = (EIRP/4\pi S)^{1/2}$   
 $S = 0.6 \text{ mW/cm}^2$

$$r = (PG/4\pi S)^{1/2} = (EIRP/4\pi S)^{1/2} = (14621/4\pi \times 0.6)^{1/2} = 44.0 \text{ cm}$$

| Evaluation of RF Exposure Compliance Requirements                                                                                                                                          |                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| RF Exposure Requirements                                                                                                                                                                   | Compliance with FCC Rules                                                                              |
| Minimum calculated separation distance between antenna and persons required: <b>44.0 cm</b>                                                                                                | Manufacturer' instruction for separation distance between antenna and persons required: <b>50 cm</b> . |
| Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement | Please refer to User Manual submitted earlier for details.                                             |
| Caution statements and/or warning labels that are necessary in order to comply with the exposure limits                                                                                    | Please refer to User Manual submitted earlier for details.                                             |
| Any other RF exposure related issues that may affect MPE compliance                                                                                                                        | None.                                                                                                  |

## 6.7. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.210

### 6.7.1. Limits @ FCC 90.210

Emissions shall be attenuated below the mean output power of the transmitter as follows:

| FCC Rules      | Frequency Range                                                                                                                                                 | Attenuation Limit (dBc)                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| FCC 90.210 (k) | <ul style="list-style-type: none"><li>On any frequency within the authorized bandwidth</li><li>On any frequency outside the licensee's sub-band edges</li></ul> | Zero dB<br>55 + 10 log(P) dB, where (P) is the highest emission watts |

### 6.7.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Exhibit 8, § 8.2 of this report and its value in dBc is calculated as follows:

- (1) If the transmitter's antenna is an integral part of the EUT, the ERP is measured using substitution method.
- (2) If the transmitter's antenna is non-integral and diverse, the lowest ERP of the carrier with 0 dBi antenna gain is used for calculation of the spurious/harmonic emissions in dBc:

Lowest ERP of the carrier = EIRP – 2.15 dB =  $P_c + G - 2.15 \text{ dB} = \text{xxx dBm}$  (conducted) + 0 dBi – 2.15 dB

- (3) Spurious /harmonic emissions levels expressed in dBc (dB below carrier) are as follows:

**ERP of spurious/harmonic (dBc) = ERP of carrier (dBm) – ERP of spurious/harmonic emission (dBm)**

### 6.7.3. Test Equipment List

| Test Instruments               | Manufacturer    | Model No. | Serial No. | Frequency Range                                                                       |
|--------------------------------|-----------------|-----------|------------|---------------------------------------------------------------------------------------|
| Spectrum Analyzer/EMI Receiver | Hewlett Packard | HP 8546A  | ...        | 9 kHz to 5.6 GHz with built-in 30 dB Gain Pre-selector, QP, Average & Peak Detectors. |
| RF Amplifier                   | Com-Power       | PA-102    |            | 1 MHz to 1 GHz, 30 dB gain nominal                                                    |
| Microwave Amplifier            | Hewlett Packard | HP 83017A |            | 1 GHz to 26.5 GHz, 30 dB nominal                                                      |
| Biconilog Antenna              | EMCO            | 3142      | 10005      | 30 MHz to 2 GHz                                                                       |
| Dipole Antenna                 | EMCO            | 3121C     | 8907-434   | 30 GHz – 1 GHz                                                                        |
| Dipole Antenna                 | EMCO            | 3121C     | 8907-440   | 30 GHz – 1 GHz                                                                        |
| Horn Antenna                   | EMCO            | 3155      | 9701-5061  | 1 GHz – 18 GHz                                                                        |
| Horn Antenna                   | EMCO            | 3155      | 9911-5955  | 1 GHz – 18 GHz                                                                        |
| RF Signal Generator            | Hewlett Packard | HP 83752B | 3610A00457 | 0.01 – 20 GHz                                                                         |

## 6.7.4. Test Data

### 6.7.4.1. Near Lowest Frequency (903 MHz)

Fundamental Frequency: 903 MHz  
 RF Output Power: 30.00 dBm  
 Modulation: None  
 Attenuation Limit:  $-55 + 10 \log(1.00) = -55.00$  dBc

| Frequency (MHz) | E-Field (dB $\mu$ V/m) | EMI Detector (Peak/QP) | Antenna Polarization (H/V) | ERP measured by Substitution Method |        | Limit (dBc) | Margin (dB) |
|-----------------|------------------------|------------------------|----------------------------|-------------------------------------|--------|-------------|-------------|
|                 |                        |                        |                            | (dBm)                               | (dBc)  |             |             |
| 1806            | 71.73                  | Peak                   | V                          | -36.03                              | -66.70 | -55.00      | -11.70      |
| 1806            | 71.44                  | Peak                   | H                          | -31.74                              | -62.41 | -55.00      | -7.41       |
| 2709            | 72.35                  | Peak                   | V                          | -33.94                              | -64.61 | -55.00      | -9.61       |
| 2709            | 71.87                  | Peak                   | H                          | -30.66                              | -61.33 | -55.00      | -6.33       |
| 3612            | 64.38                  | Peak                   | V                          | -40.16                              | -70.83 | -55.00      | -15.83      |
| 3612            | 68.34                  | Peak                   | H                          | -34.81                              | -65.48 | -55.00      | -10.48      |
| 4515            | 62.06                  | Peak                   | V                          | -41.62                              | -72.29 | -55.00      | -17.29      |
| 4515            | 60.92                  | Peak                   | H                          | -42.36                              | -73.03 | -55.00      | -18.03      |
| 5418            | 74.02                  | Peak                   | V                          | -29.34                              | -60.01 | -55.00      | -5.01       |
| 5418            | 75.32                  | Peak                   | H                          | -26.66                              | -57.33 | -55.00      | -2.33       |
| 6321            | 70.44                  | Peak                   | V                          | -32.17                              | -62.84 | -55.00      | -7.84       |
| 6321            | 66.34                  | Peak                   | H                          | -35.18                              | -65.85 | -55.00      | -10.85      |
| 7224            | 64.73                  | Peak                   | V                          | -38.15                              | -68.82 | -55.00      | -13.82      |
| 7224            | 66.60                  | Peak                   | H                          | -41.22                              | -71.89 | -55.00      | -16.89      |
| 8127            | 67.78                  | Peak                   | V                          | -42.27                              | -72.94 | -55.00      | -17.94      |
| 8127            | 69.29                  | Peak                   | H                          | -42.12                              | -72.79 | -55.00      | -17.79      |

The emissions were scanned from 10 MHz to 10 GHz and all emissions within 20 dB below the limits were recorded.

#### 6.7.4.2. Near Middle Frequency (915 MHz)

Fundamental Frequency: 915 MHz  
 RF Output Power: 29.78 dBm  
 Modulation: None  
 Attenuation Limit:  $-55 + 10 \log(0.95) = -54.78 \text{ dBc}$

| Frequency (MHz) | E-Field (dB $\mu$ V/m) | EMI Detector (Peak/QP) | Antenna Polarization (H/V) | ERP measured by Substitution Method |        | Limit (dBc) | Margin (dB) |
|-----------------|------------------------|------------------------|----------------------------|-------------------------------------|--------|-------------|-------------|
|                 |                        |                        |                            | (dBm)                               | (dBc)  |             |             |
| 1830            | 77.14                  | Peak                   | V                          | -25.85                              | -55.85 | -54.78      | -1.07       |
| 1830            | 71.19                  | Peak                   | H                          | -32.62                              | -62.62 | -54.78      | -7.84       |
| 2745            | 70.66                  | Peak                   | V                          | -32.37                              | -62.37 | -54.78      | -7.59       |
| 2745            | 65.92                  | Peak                   | H                          | -35.51                              | -67.51 | -54.78      | -12.73      |
| 3660            | 67.20                  | Peak                   | V                          | -36.05                              | -66.05 | -54.78      | -11.27      |
| 3660            | 61.65                  | Peak                   | H                          | -42.02                              | -72.02 | -54.78      | -17.24      |
| 4575            | 69.41                  | Peak                   | V                          | -34.35                              | -64.35 | -54.78      | -9.57       |
| 4575            | 59.19                  | Peak                   | H                          | -44.54                              | -74.54 | -54.78      | -19.76      |
| 5490            | 68.56                  | Peak                   | V                          | -34.66                              | -64.66 | -54.78      | -9.88       |
| 5490            | 61.80                  | Peak                   | H                          | -40.15                              | -70.15 | -54.78      | -15.37      |
| 6405            | 67.29                  | Peak                   | V                          | -35.59                              | -65.59 | -54.78      | -10.81      |
| 6405            | 64.66                  | Peak                   | H                          | -43.16                              | -73.16 | -54.78      | -18.38      |
| 7320            | 65.61                  | Peak                   | V                          | -44.44                              | -74.44 | -54.78      | -19.66      |
| 7320            | 65.66                  | Peak                   | H                          | -45.75                              | -75.75 | -54.78      | -20.97      |
| 8235            | 65.83                  | Peak                   | V                          | -44.12                              | -74.12 | -54.78      | -19.34      |
| 8235            | 65.69                  | Peak                   | H                          | -44.06                              | -74.06 | -54.78      | -19.28      |

The emissions were scanned from 10 MHz to 10 GHz and all emissions within 20 dB below the limits were recorded.

**6.7.4.3. Near Highest Frequency (921 MHz)**

Fundamental Frequency: 921 MHz

RF Output Power: 29.42 dBm (ERP)

Modulation: None

Attenuation Limit:  $-55 + 10 \log(0.875) = -54.42 \text{ dBc}$

| Frequency<br>(MHz) | E-Field<br>(dB $\mu$ V/m) | EMI Detector<br>(Peak/QP) | Antenna<br>Polarization<br>(H/V) | ERP measured by<br>Substitution Method |        | Limit<br>(dBc) | Margin<br>(dB) |
|--------------------|---------------------------|---------------------------|----------------------------------|----------------------------------------|--------|----------------|----------------|
|                    |                           |                           |                                  | (dBm)                                  | (dBc)  |                |                |
| 1842               | 76.77                     | Peak                      | V                                | -25.72                                 | -55.14 | -54.42         | -0.72          |
| 1842               | 70.37                     | Peak                      | H                                | -32.77                                 | -62.19 | -54.42         | -7.77          |
| 2763               | 70.37                     | Peak                      | V                                | -33.04                                 | -62.46 | -54.42         | -8.04          |
| 2763               | 65.53                     | Peak                      | H                                | -38.36                                 | -67.78 | -54.42         | -13.36         |
| 3684               | 67.19                     | Peak                      | V                                | -35.31                                 | -64.73 | -54.42         | -10.31         |
| 3684               | 62.69                     | Peak                      | H                                | -40.34                                 | -69.76 | -54.42         | -15.34         |
| 4605               | 71.78                     | Peak                      | V                                | -32.61                                 | -62.03 | -54.42         | -7.61          |
| 4605               | 61.55                     | Peak                      | H                                | -40.93                                 | -70.35 | -54.42         | -15.93         |
| 5526               | 68.24                     | Peak                      | V                                | -34.87                                 | -64.29 | -54.42         | -9.87          |
| 5526               | 62.46                     | Peak                      | H                                | -39.93                                 | -69.35 | -54.42         | -14.93         |
| 6447               | 68.04                     | Peak                      | V                                | -35.82                                 | -65.24 | -54.42         | -10.82         |
| 6447               | 64.45                     | Peak                      | H                                | -38.53                                 | -67.95 | -54.42         | -13.53         |
| 7368               | 65.24                     | Peak                      | V                                | -40.12                                 | -69.54 | -54.42         | -15.12         |
| 7368               | 64.01                     | Peak                      | H                                | -41.27                                 | -70.69 | -54.42         | -16.27         |
| 8289               | 63.90                     | Peak                      | V                                | -38.28                                 | -67.70 | -54.42         | -13.28         |
| 8289               | 63.05                     | Peak                      | H                                | -35.13                                 | -64.55 | -54.42         | -10.13         |

The emissions were scanned from 10 MHz to 10 GHz and all emissions within 20 dB below the limits were recorded.

## EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

### 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

| Contribution<br>(Radiated Emissions)                                                                                                     | Probability<br>Distribution | Uncertainty (+ dB) |               |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|---------------|
|                                                                                                                                          |                             | 3 m                | 10 m          |
| Antenna Factor Calibration                                                                                                               | Normal (k=2)                | $\pm 1.0$          | $\pm 1.0$     |
| Cable Loss Calibration                                                                                                                   | Normal (k=2)                | $\pm 0.3$          | $\pm 0.5$     |
| EMI Receiver specification                                                                                                               | Rectangular                 | $\pm 1.5$          | $\pm 1.5$     |
| Antenna Directivity                                                                                                                      | Rectangular                 | +0.5               | +0.5          |
| Antenna factor variation with height                                                                                                     | Rectangular                 | $\pm 2.0$          | $\pm 0.5$     |
| Antenna phase center variation                                                                                                           | Rectangular                 | 0.0                | $\pm 0.2$     |
| Antenna factor frequency interpolation                                                                                                   | Rectangular                 | $\pm 0.25$         | $\pm 0.25$    |
| Measurement distance variation                                                                                                           | Rectangular                 | $\pm 0.6$          | $\pm 0.4$     |
| Site imperfections                                                                                                                       | Rectangular                 | $\pm 2.0$          | $\pm 2.0$     |
| Mismatch: Receiver VRC $\Gamma_1 = 0.2$<br>Antenna VRC $\Gamma_R = 0.67(Bi)$ 0.3 (Lp)<br>Uncertainty limits $20\log(1+\Gamma_1\Gamma_R)$ | U-Shaped                    | +1.1<br>-1.25      | $\pm 0.5$     |
| System repeatability                                                                                                                     | Std. Deviation              | $\pm 0.5$          | $\pm 0.5$     |
| Repeatability of EUT                                                                                                                     |                             | -                  | -             |
| Combined standard uncertainty                                                                                                            | Normal                      | +2.19 / -2.21      | +1.74 / -1.72 |
| Expanded uncertainty U                                                                                                                   | Normal (k=2)                | +4.38 / -4.42      | +3.48 / -3.44 |

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$

## EXHIBIT 8. MEASUREMENT METHODS

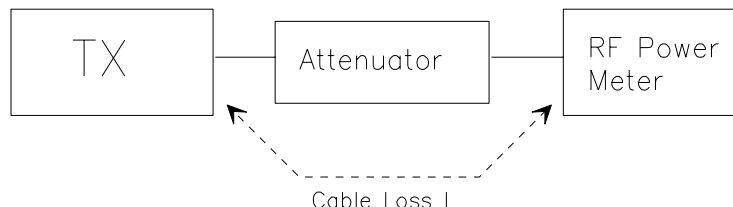
### 8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

**Step 1:** Duty Cycle measurements if the transmitter's transmission is transient

- Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter,  $x = \text{Tx on} / (\text{Tx on} + \text{Tx off})$  with  $0 < x < 1$ , is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.


**Step 2:** Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

$$\text{EIRP} = A + G + 10\log(1/x)$$

{  $X = 1$  for continuous transmission  $\Rightarrow 10\log(1/x) = 0 \text{ dB}$  }

**Figure 1.**



## 8.2. RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD

### 8.2.1. Maximizing RF Emission Level (E-Field)

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height).
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor  
 $E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

- (f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency  
Resolution BW: 100 kHz  
Video BW: same  
Detector Mode: positive  
Average: off  
Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

### 8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency: equal to the signal source  
Resolution BW: 10 kHz  
Video BW: same  
Detector Mode: positive  
Average: off  
Span: 3 x the signal bandwidth

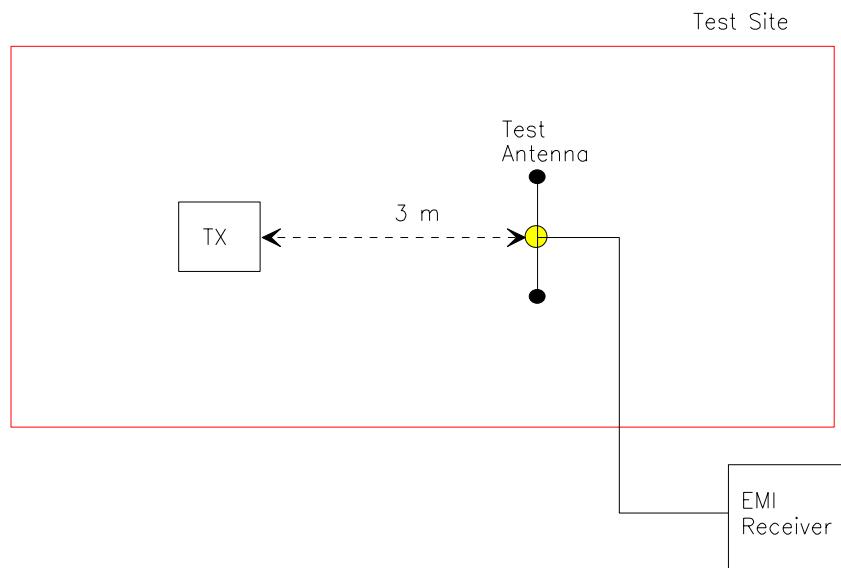
(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor  
 $E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

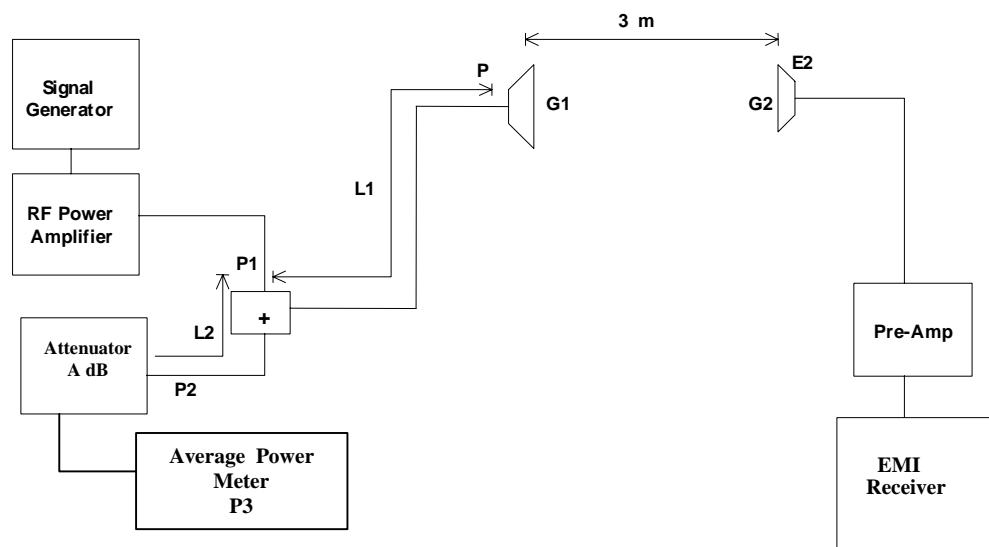
(c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.  
(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):  
◆ DIPOLE antenna for frequency from 30-1000 MHz or  
◆ HORN antenna for frequency above 1 GHz }.  
(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.  
(f) Use one of the following antenna as a receiving antenna:  
◆ DIPOLE antenna for frequency from 30-1000 MHz or  
◆ HORN antenna for frequency above 1 GHz }.  
(g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.  
(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.  
(i) Tune the EMI Receivers to the test frequency.  
(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.  
(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.  
(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.  
(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.  
(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$$P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1$$

$$\text{EIRP} = P + G1 = P3 + L2 - L1 + A + G1$$


$$\text{ERP} = \text{EIRP} - 2.15 \text{ dB}$$

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1


Where: P: Actual RF Power fed into the substitution antenna port after corrected.  
P1: Power output from the signal generator  
P2: Power measured at attenuator A input  
P3: Power reading on the Average Power Meter  
EIRP: EIRP after correction  
ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)  
(p) Repeat step (d) to (o) for different test frequency  
(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.  
(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.:

**Figure 2**



**Figure 3**

