1.0 INTRODUCTION

These calculations are based on the highest EIRP possible from the EUT considering maximum power and antenna gain. The highest output power of the EUT is 2.56 mW and the gain of the antenna is 0 dBi.

The duty cycle of the EUT is 0.2 %, therefore, the average power is 0.005 mW. The calculations are based on 1 % duty cycle to show a worst case.

1.0 SAR EXCLUSION RESULT

In accordance with FCC KDB Publication 447498 D01 V05R06 Clause 4.3.1 a),

The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power, mW)/(min. separation distance, mm)] $x [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g extremity SAR, where $\cdot f_{(GHz)}$ is the RF channel transmit frequency in GHz

	Max	Tune up					SAR Exc		
	Power	tolerance	Max Ant	Duty		Min Sep	Threshold		
MHz	dBm	dB	Gain dBi	Cycle %	EIRP mW	mm	4.3.1 a)	Limit 1-g	Result
2402	3.9	1.0	0	1.0	0.031	5	0.0095	3.0	Exempt
2426	4.1	1.0	0	1.0	0.032	5	0.0100	3.0	Exempt
2480	3.7	1.0	0	1.0	0.030	5	0.0094	3.0	Exempt

Judgement: The product is exempt from SAR testing

2.0 MPE CALCULATION FROM OET 65 & FCC 1.1310

	Max Power	Tune up Tolerance	Max Ant	Duty	EIRP	(S) GP Limit	Declared Minimum seperation	EUT power Density	
MHz	dBm	dB	Gain dBi	Cycle %	mWatts	mW/cm^2	Distance (cm)	mW/cm2	Result
2402	3.9	1.0	0	1.0	0.0306	1.000	0.500	0.0097	Pass
2426	4.1	1.0	0	1.0	0.0322	1.000	0.500	0.0103	Pass
2480	3.7	1.0	0	1.0	0.0297	1.000	0.500	0.0095	Pass

Notes on the above table:

In accordance with OET 65, 97-01, Power Density is calculated by

 $\mathsf{S}=\mathsf{P}^*\mathsf{G}/(4^*\pi^*\mathsf{R}^*\!2)$

Where

- S = power density (mW/cm2)
- P = power input to the antenna (mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (cm)

S is the power density General Population Limit from FCC 1.1310 Table 1

EIRP Power is the Peak Effective Radiated Power.

EIRP = (Average Conducted Power + Antenna gain) * Duty Cycle.

Since the calculated power density is less than the limit, this product fully meets the OET 65 requirements for the general population.