

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866) 311-3268 fax: (480) 926-3598

http://www.ComplianceTesting.com info@ComplianceTesting.com

Test Report

Prepared for: Time Keeping Systems Inc.

Model: DD-005

Description: Battery Powered, wireless positioning and duress alarm for prison guards

Serial Number: N/A

FCC ID: MTD-0005 IC: 12375A-0005

To

FCC Part 15.247 IC RSS-247 Issue 2

Date of Issue: March 30, 2018

On the behalf of the applicant: Time Keeping Systems Inc.

30700 Bainbridge Road

Suite H

Cleveland, OH 44139

Attention of: Barry Markwitz, President

Ph: (216) 595-0890

Email: bmarkwitz@guard1.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax

www.compliancetesting.com
Project No: p1830001

Poona Saber

Project Test Engineer

Peure la

This report may not be reproduced, except in full, without written permission from Compliance Testing.

All results contained herein relate only to the sample tested.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	March 9, 2018	Poona Saber	Original Document
2.0	March 26, 2018	Kenneth Lee	Updated 15.203 section to reflect a permanently attached antenna, Updated Duty Cycle of Device, Added PSD plots into report, Removed Conducted Spurious Measurements 15.209 section from report, Added new Restricted Band Edge Plots to Annex B and Updated Test Equipment Utilized Table.
3.0	March 30, 2018	Kenneth Lee	Updated Additional Information Section

Table of Contents

<u>De</u>	<u>escription</u>	Page
S	Standard Test Conditions Engineering Practices	6
С	Conducted Output Power	10
R	Radiated Spurious Emissions	11
С	Conducted Spurious Emissions 15.247 (d)	12
D	DTS Bandwidth	13
Т	ransmitter Power Spectral Density (PSD)	16
Т	est Equipment Utilized	20

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

The applicant has been cautioned as to the following

15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) - Special Accessories

Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.10-2013 and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

Environmental Conditions				
Temperature (°C)	Humidity (%)	Pressure (mbar)		
23.3	28.9	967		

EUT Description Model: DD-005

Description: Battery Powered, wireless positioning and duress alarm for prison guards

Firmware: N/A
Software: N/A
Serial Number: N/A
Additional Information:

Unit is incorporating a proprietary protocol, based off Bluetooth Low Energy technology, with frequency range of 2402-

2480 MHz.

For Conducted testing an unassembled device with RF connector was utilized and it was powered up with DC power supply of 6.0 V. The regular radiated emissions test device work with batteries

EUT Operation during Tests

The unit begins transmitting by power up at 400 uSec bursts of random data on Channel 37(2402), 38(2426) and 39(2480) at approximately 2.5m Sec intervals for 0 dBm and 4 dBm.

The +25 dBm timing is slightly different from +0 and +4 dBm. At +25 dBm, the transmissions are 400 uSec long, but they occur every 6.5 mSec.

Duty Cycle for both 25 dBm and 0 dBm modes are as below:

Duty Cycle Calculation

The production sample of Model DD-005 transmits once every second on 3 channels, with each transmission taking 184µsec, or 0.000184 seconds. Total transmission time, on each channel, per second is 184µsec or 0.000184 seconds.

This results in a duty cycle of 0.0184%.

Duty Cycle Correction = 10Log(1/DC) Where DC is the Duty Cycle

Duty Cycle Correction = 10Log(1/0.000184)

Duty Cycle Correction = 37.35 dB

Accessories:

Qty	Description	Manufacturer	Model	S/N
1	DC Power Supply	GW	GPS-3030D	N/A

Cables:

Qty	Description	Length (M)	Shielding Y/N	Shielded Hood Y/N	Ferrite Y/N
1	UFL to SMA Connector	<3	N	N	N

Modifications: None

15.203: Antenna Requirement:

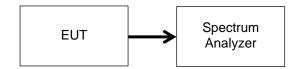
X	The antenna is permanently attached to the EL		
	The antenna uses a unique coupling		
	The EUT must be professionally installed		
The antenna requirement does not apply			

Test Results Summary

FCC 15.247 Specification	RSS-247 Specification	Test Name	Pass, Fail, N/A	Comments
15.247(b)	Section 5.4(d)	Peak Output Power	Pass	
15.247(d)	Section 5.5	Conducted Spurious Emissions	Pass	
15.247(d), 15.209(a), 15.205	Section 5.5	Radiated Spurious Emissions	Pass	
15.247(d), 15.209(a), 15.205	Section 5.5	Emissions At Band Edges	Pass	
15.247(a)(2)	Sections 5.2(a)	Occupied Bandwidth	Pass	
15.247(e)	Section 5.2(b)	Transmitter Power Spectral Density	Pass	
15.207	RSS-GEN Section 8.8	A/C Powerline Conducted Emissions	N/A	Device is battery operated

References	Description
CFR47, Part 15, Subpart B	Unintentional Radiators
CFR47, Part 15, Subpart C	Intentional Radiators
ANSI C63.10-2013	American National standard for testing Unlicensed Wireless Devices
ANSI C63.4-2014	Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz.
ISO/IEC 17025:2005	General requirements for the Competence of Testing and Calibrations Laboratories
KDB 558074 D01 v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

Conducted Output Power Engineer: Poona Saber Test Date: 3/8/2018


Test Procedure

The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

RBW ≥ DTS bandwidth VBW ≥ 3 x RBW Set span ≥ 3 × RBW Sweep time = auto couple. Detector = peak. Trace mode = max hold

The EUT was set to transmit on the lowest, middle and highest frequencies at the Lowest and maximum power level. The RF output power was measured using the spectrum analyzer's marker peak function

Test Setup

Output Power for 0 dBm

Tuned Frequency (MHz)	Measured Value (dBm)	Duty Cycle Correction (dB)	Corrected Reading (dBm)	Specification Limit	Result
2402	-1.85	37.35	-39.2	1 W (30 dBm)	Pass
2426	-1.92	37.35	-39.27	1 W (30 dBm)	Pass
2480	-2.57	37.35	-39.92	1 W (30 dBm)	Pass

Output Power for 25 dBm

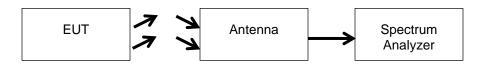
Tuned Frequency (MHz)	Measured Value (dBm)	Duty Cycle Correction (dB)	Corrected Reading (dBm)	Specification Limit	Result
2402	24.11	37.35	-13.24	1 W (30 dBm)	Pass
2426	24.05	37.35	-13.3	1 W (30 dBm)	Pass
2480	23.96	37.35	-13.39	1 W (30 dBm)	Pass

Radiated Spurious Emissions

Engineer: Poona Saber Test Date: 3/9/2018

Test Procedure Radiated Spurious Emissions: 30 – 1000 MHz

The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized.

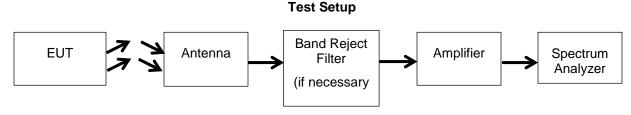

All emissions from 30 MHz to 1 GHz were examined.

Measured Level includes antenna and receiver cable correction factors.

Correction factors were input into the spectrum analyzer before recording "Measured Level".

RBW = 100 KHz VBW = 300 KHz Detector – Quasi Peak

Test Setup



Test Procedure for Radiated Spurious Emissions above 1 GHz

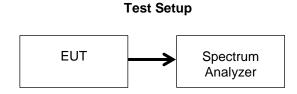
The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Emissions. The EUT was tested by rotating it 360° with the antennas in both the vertical and horizontal orientation and was raised from 1 to 4 meters to ensure the TX signal levels were maximized.

RBW = 1 MHzVBW = 3 MHz

Detector = Peak/Average (as needed)

See Annex A for Test Data

Conducted Spurious Emissions 15.247 (d)


Engineer: Poona Saber Test Date: 3/9/2018

Test Procedure

The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

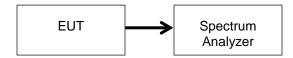
RBW = 100 kHz VBW \geq 3 x RBW Peak Detector Trace mode = max hold Sweep = auto couple Frequency Range = 30MHz - 10th Harmonic of the fundamental

The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. The trace was allowed to stabilize. All emission were investigated to insure they were attenuated from the peak fundamental by at least 20dB. If the average power levels were measured then the out-of-band emissions needed to be attenuated by 30dB. In addition emissions were investigated at the band edges to insure all out-of-band emissions were attenuated 20 or 30dB as necessary.

See Annex B for Test Data

DTS Bandwidth

Engineer: Poona Saber Test Date: 3/8/2018

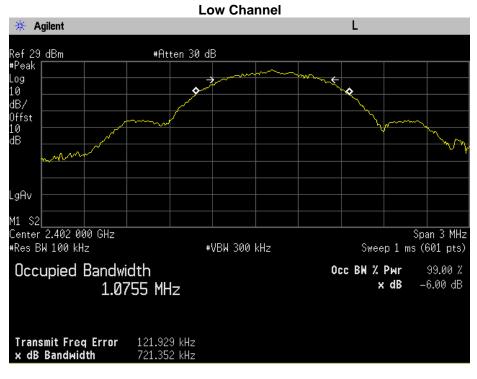

Test Procedure

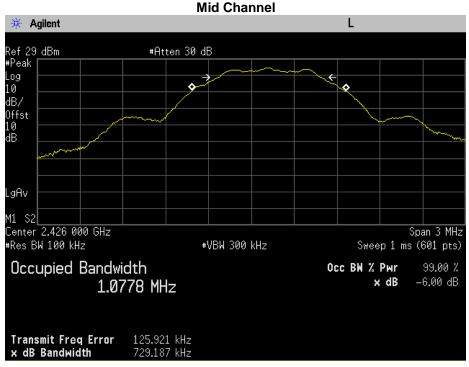
The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

RBW = 100 kHz VBW ≥ 3 x RBW Peak Detector Trace mode = max hold Sweep = auto couple Span = 1.5 x EBW

The EUT was set to transmit at the lowest, middle and highest channels of the band at the maximum power levels. The maximum width of the emission that was determined by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that were attenuated by 6db and this value was used to determine the width of the carrier. Alternatively the spectrum analyzer's automatic bandwidth capability was used.

Test Setup




6 dB Occupied Bandwidth Summary

Frequency (MHz)	Measured Bandwidth (MHz)	Specification Limit (kHz)	Result
2402	0.721	≥ 500	Pass
2426	0.729	≥ 500	Pass
2480	0.717	≥ 500	Pass

99% Bandwidth Summary

Frequency (MHz)	Measured Bandwidth (MHz)	Result
2402	1.07	Pass
2426	1.07	Pass
2480	1.06	Pass

Transmitter Power Spectral Density (PSD)

Engineer: Kenneth Lee Test Date: 3/26/2018

Test Procedure

The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

Set analyzer center Frequency to DTS channel center frequency

Set RBW to: 3 kHz ≤ RBW ≤ 100 KHz

VBW ≥ 3 x RBW

Sweep time = auto couple.

Detector = peak.

Trace mode = max hold

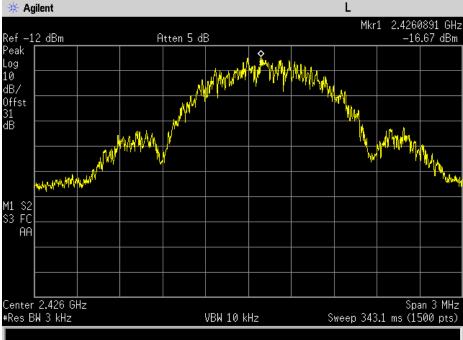
The EUT was set to transmit at the lowest, middle and highest channels of the band at the maximum power levels. Once the trace has stabilize the peak marker was used to determine the peak power spectral density.

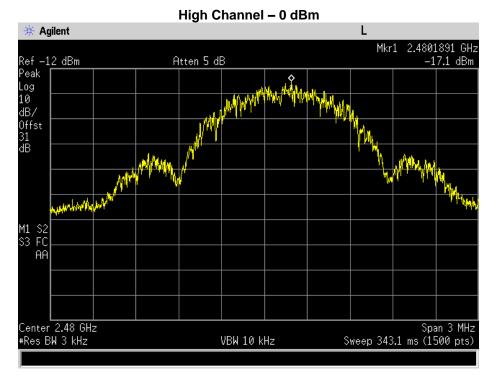
Test Setup

Power Spectral Density - 0 dBm

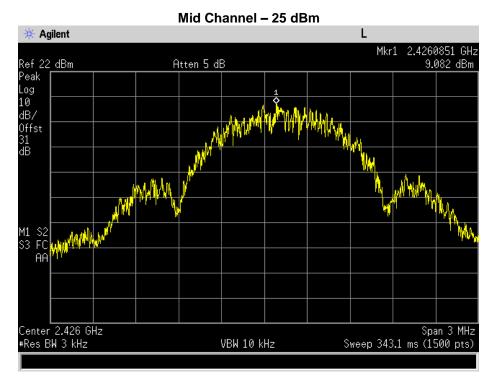
Tuned Frequency (MHz)	Measured Value (dBm)	Duty Cycle Correction (dB)	Corrected Reading (dBm)	Specification Limit dBm	Result
2402	-16.63	37.35	-53.98	8	Pass
2426	-16.67	37.35	-54.02	8	Pass
2480	-17.1	37.35	-54.45	8	Pass

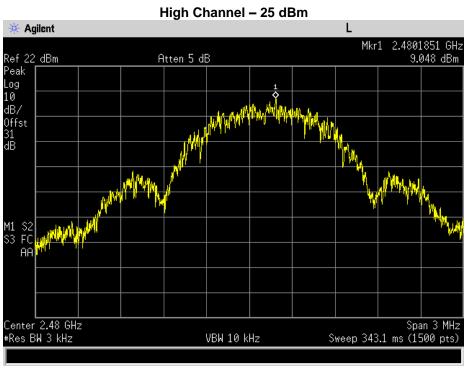
Power Spectral Density - 25 dBm


Tuned Frequency (MHz)	Measured Value (dBm)	Duty Cycle Correction (dB)	Corrected Reading (dBm)	Specification Limit dBm	Result
2402	8.942	37.35	-28.408	8	Pass
2426	9.082	37.35	-28.268	8	Pass
2480	9.048	37.35	-28.302	8	Pass


PSD Plots






Mid Channel - 0 dBm

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	6/16/16	6/16/18
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	6/9/17	6/9/18
Bi-Log Antenna	Schaffner	CBL 6111D	i00349	8/3/16	8/3/18
EMI Analyzer	Agilent	E7405A	i00379	2/13/18	2/13/19
Preamplifier	HP	8447D	i00055	NCR	NCR
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	8/15/16	8/15/19
Preamplifier for 1-18GHz horn antenna	Miteq	AFS44 00101 400 23- 10P-44	i00509	N/A	N/A

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT