

Compliance Testing, LLC

Previously Flom Test Lab EMI, EMC, RF Testing Experts Since 1963 toll-free: (866) 311-3268 fax: (480) 926-3598

http://www.ComplianceTesting.com info@ComplianceTesting.com

Test Report

Prepared for: Time Keeping Systems Inc.

Model: MTD-0003

Description: Wearable Positioning Device

Serial Number: N/A

FCC ID: MTD-0003 IC: 12375A-0003

То

FCC Part 15.247 And IC RSS-247

Date of Issue: October 18, 2017

On the behalf of the applicant:

Time Keeping Systems Inc. 30700 Bainbridge Rd Cleveland, OH 44139

Attention of:

Dean Chriss Ph: (216)595-1026 E-Mail: dchriss@guard1.com

Prepared By Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> Project No: p1790014

Emelt

Kenneth Lee Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	September 30, 2017	Kenneth Lee	Original Document
2.0	October 18, 2017	Kenneth Lee	Updated Additional Information

Table of Contents

Description	<u>Page</u>
Standard Test Conditions Engineering Practices	6
Conducted Output Power	8
Radiated Spurious Emissions	9
Conducted Spurious Emissions	10
DTS Bandwidth	14
Transmitter Power Spectral Density (PSD)	17
Test Equipment Utilized	20

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

The applicant has been cautioned as to the following

15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) - Special Accessories

Equipment marked to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.10-2014 and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

Environmental Conditions				
TemperatureHumidityPressure(°C)(%)(mbar)				
18-24	31-38	962-974		

EUT Description

Model: MTD-0003 Description: Wearable positioning device Firmware: N/A Software: N/A Serial Number: N/A Additional Information: The EUT implement

Additional Information: The EUT implements a proprietary protocol. Six total devices were provided, three were conducted samples set to the low, middle and high channels and three were radiated samples set to the low middle and high channels. The radiated samples were used to perform the radiated spurious emissions testing per 15.209.

EUT Operation during Tests

The EUT set to transmit at the lowest, middle and highest channel of operation at the maximum available output power.

Accessories: None

Cables: None

Modifications: None

15.203: Antenna Requirement:

 X
 The antenna is permanently attached to the EUT

 The antenna uses a unique coupling

 The EUT must be professionally installed

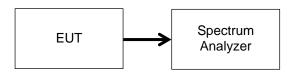
 The antenna requirement does not apply

Test Results Summary

FCC 15.247 Specification	RSS-247 Specification	Test Name	Pass, Fail, N/A	Comments
15.247(b)	Section 5.4(d)	Peak Output Power	Pass	
15.247(b)	Section 5.5	Conducted Spurious Emissions	Pass	
15.247(d), 15.209(a), 15.205	Section 5.5	Radiated Spurious Emissions	Pass	
15.247(d), 15.209(a), 15.205	Section 5.5	Emissions At Band Edges	Pass	
15.247(a)(2)	Section 5.2(a)	Occupied Bandwidth	Pass	
15.247(e)	Section 5.2(b)	Transmitter Power Spectral Density	Pass	
15.207	RSS-GEN Section 8.8	A/C Powerline Conducted Emissions	N/A	EUT is battery powered

References	Description
CFR47, Part 15, Subpart B	Unintentional Radiators
CFR47, Part 15, Subpart C	Intentional Radiators
ANSI C63.10-2013	American National standard for testing Unlicensed Wireless Devices
ANSI C63.4-2014	Method and Measurements of Radio-Noise Emissions from low-Voltage Electrical and Electronic Equipment in the range 9kHz to 40GHz.
ISO/IEC 17025:2005	General requirements for the Competence of Testing and Calibrations Laboratories
KDB 558074 D01 v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

Conducted Output Power Engineer: Kenneth Lee Test Date: 9/30/2017


Test Procedure

The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

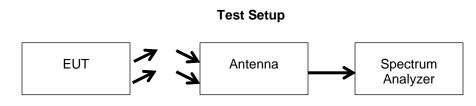
 $RBW \ge DTS$ Bandwidth $VBW \ge 3 \times RBW$ Span $\ge 3 \times RBW$ Sweep time = auto couple Detector = peak Trace Mode = max hold

The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. The RF output power was measured using the spectrum analyzer's Marker Peak function

Test Setup

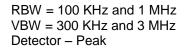
Transmitter Output Power

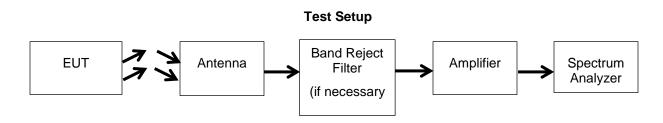
Tuned Frequency (MHz)	Measured Value (dBm)	Specification Limit	Result	
2402	-0.466	1 W (30 dBm)	Pass	
2426	-0.947	1 W (30 dBm)	Pass	
2480	-1.151	1 W (30 dBm)	Pass	


Radiated Spurious Emissions Engineer: Kenneth Lee Test Date: 9/30/2017

Test Procedure Radiated Spurious Emissions: 30 – 1000 MHz

The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequency of operation at the maximum power level. The EUT was tested, in 3 orthogonal axis, by rotating it 360° with the receive antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure the TX signal levels were maximized. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Spurious Emissions.

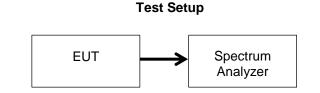

All emissions from 30 MHz to 1 GHz were examined. Measured Level includes antenna and receiver cable correction factors. Correction factors were input into the spectrum analyzer before recording "Measured Level".

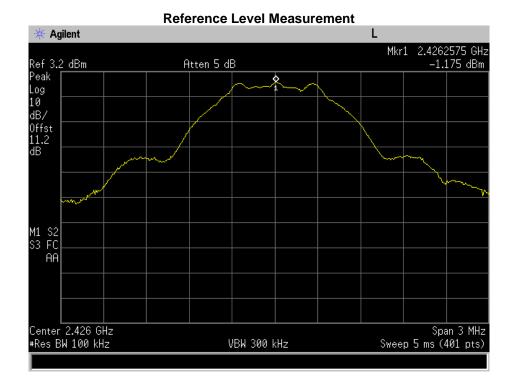

RBW = 100 KHz VBW = 300 KHz Detector – Quasi Peak

Test Procedure for Radiated Spurious Emissions above 1 GHz

The EUT was setup in a semi-anechoic test chamber set 3m from the receiving antenna. The EUT was set to transmit on the lowest, middle and highest frequency of operation at the maximum power level. The EUT was tested, in 3 orthogonal axis, by rotating it 360° with the receive antenna in both the vertical and horizontal orientation while raised from 1 to 4 meters to ensure the TX signal levels were maximized. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Spurious Emissions.

See Annex A for test data

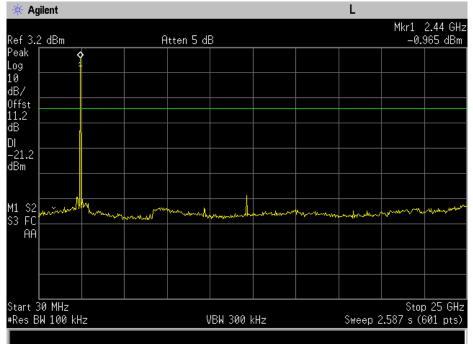

Conducted Spurious Emissions Engineer: Kenneth Lee Test Date: 9/30/2017

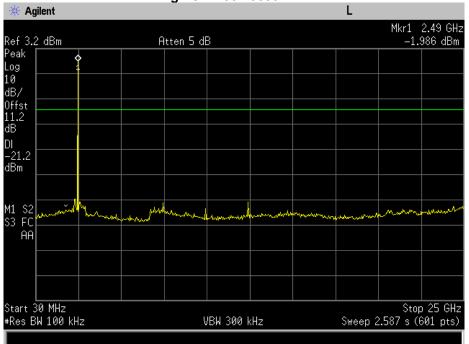

Test Procedure

The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

 $\begin{array}{l} \mathsf{RBW} = 100 \; \mathsf{kHz} \\ \mathsf{VBW} \geq 3 \; \mathsf{x} \; \mathsf{RBW} \\ \mathsf{Peak} \; \mathsf{Detector} \\ \mathsf{Trace} \; \mathsf{mode} = \mathsf{max} \; \mathsf{hold} \\ \mathsf{Sweep} = \mathsf{auto} \; \mathsf{couple} \\ \mathsf{Frequency} \; \mathsf{Range} = 30\mathsf{MHz} - 10^{\mathsf{th}} \; \mathsf{Harmonic} \; \mathsf{of} \; \mathsf{the} \; \mathsf{fundamental} \end{array}$

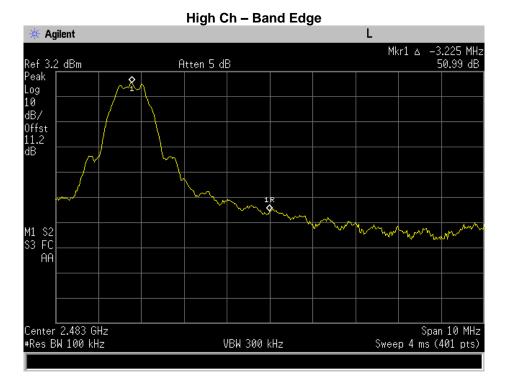
The EUT was set to transmit on the lowest, middle and highest frequencies at the maximum power level. The trace was allowed to stabilize. All emissions were investigated to insure they were attenuated from the Reference Level Measurement by at least 20dB. In addition emissions were investigated at the band edges to insure all out-of-band emissions were attenuated 20dB.




🔆 Agilent г Mkr1 2.40 GHz -1.5 dBm Ref 3.2 dBm Peak Atten 5 dB Ŷ Log 10 dB/ Öffst 11.2 dB DI -21.2 dBm M1 S2 S3 FC AA Aur Stop 25 GHz Sweep 2.587 s (601 pts) Start 30 MHz #Res BW 100 kHz VBW 300 kHz

Low Ch - 30-25000 MHz

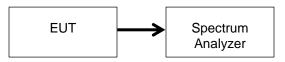
Mid Ch - 30-25000 MHz



High Ch – 30-25000 MHz

Low Ch – Band Edge

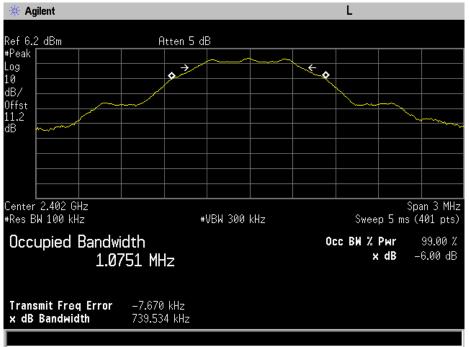
DTS Bandwidth Engineer: Kenneth Lee Test Date: 9/30/2017


Test Procedure

The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

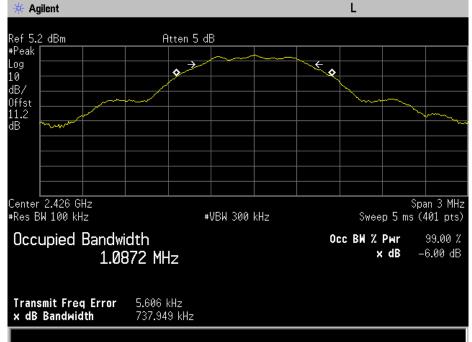
 $\begin{array}{l} \mathsf{RBW} = 100 \; \mathsf{kHz} \\ \mathsf{VBW} \geq 3 \; x \; \mathsf{RBW} \\ \mathsf{Peak} \; \mathsf{Detector} \\ \mathsf{Trace} \; \mathsf{mode} = \mathsf{max} \; \mathsf{hold} \\ \mathsf{Sweep} = \mathsf{auto} \; \mathsf{couple} \\ \mathsf{Span} = 1.5 \; \mathsf{x} \; \mathsf{EBW} \end{array}$

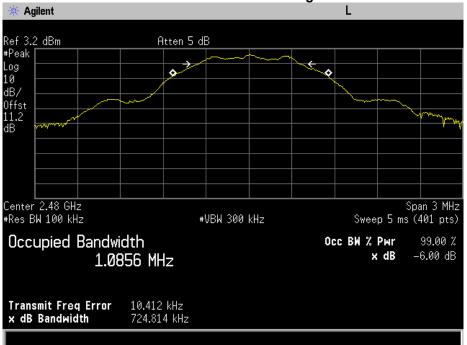
The EUT was set to transmit at the lowest, middle and highest channels of the band at the maximum power levels. The maximum width of the emission that was determined by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that were attenuated by 6db and this value was used to determine the width of the carrier. Alternatively the spectrum analyzer's automatic bandwidth capability was used.


6 dB Occupied Bandwidth Summary

Frequency (MHz)	Measured Bandwidth (kHz)	Specification Limit (kHz)	Result
2402	739.543	≥ 500	Pass
2426	737.949	≥ 500	Pass
2480	724.814	≥ 500	Pass

99% Bandwidth Summary

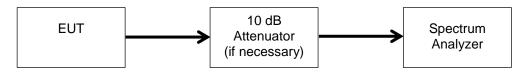

Frequency (MHz)		
2402	1.0751	Pass
2426	1.0872	Pass
2480	1.0856	Pass



6dB and 99% Bandwidth – Low Ch

6dB and 99% Bandwidth – High Ch

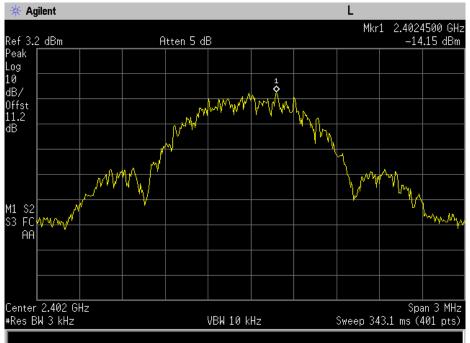
Transmitter Power Spectral Density (PSD) Engineer: Kenneth Lee Test Date: 9/30/2017


Test Procedure

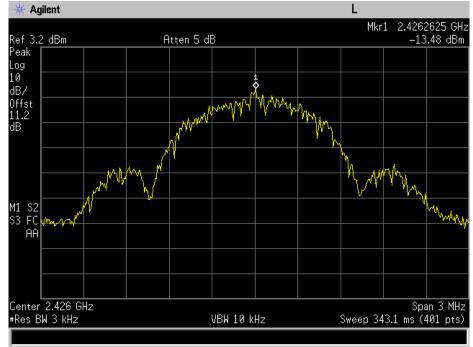
The EUT was connected directly to a spectrum analyzer. The Spectrum Analyzer was set to the following:

DTS channel center frequency Span 1.5 x DTS bandwidth RBW =3 kHz \leq RBW \leq 100 kHz VBW \geq 3 x RBW Peak Detector Sweep time = auto couple Trace mode = max hold

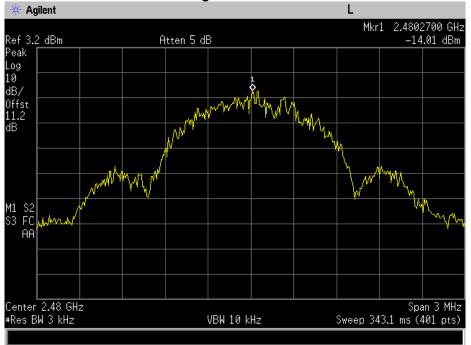
The EUT was set to transmit at the lowest, middle and highest channels of the band at the maximum power levels. Once the trace has stabilize the peak marker was used to determine the peak power spectral density.



PSD Summary


Frequency (MHz)			Result
2402	-14.15	8	Pass
2426	-13.48	8	Pass
2480	-14.01	8	Pass

Low Ch – PSD



Mid Ch – PSD

High Ch – PSD

Compliance Testing, LLC Testing since 1963

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	6/16/16	6/16/18
Humidity / Temp Meter	Newport	IBTHX-W-5	i00282	6/9/17	6/9/18
Bi-Log Antenna	Schaffner	CBL 6111D	i00349	8/3/16	8/3/18
EMI Analyzer	Agilent	E7405A	i00379	2/22/17	2/22/18
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	8/15/16	8/15/19
Spectrum Analyzer	Agilent	E4407B	i00331	10/19/16	10/19/17
Preamplifier for 1-18GHz horn antenna	Miteq	AFS44 00101 400 23- 10P-44	i00509	N/A	N/A

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT