

FCC RF Test Report

APPLICANT	:	ASUSTeK COMPUTER INC.
EQUIPMENT	:	ASUS Phone
BRAND NAME	:	ASUS
MODEL NAME	:	ASUS_Z016D
FCC ID	:	MSQZ016D
STANDARD	:	FCC Part 15 Subpart E §15.407
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure

The product was received on Apr. 19, 2016 and testing was completed on Aug. 02, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

hhr

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : MSQZ016D Page Number : 1 of 35 Report Issued Date : Aug. 16, 2016 Report Version : Rev. 01 Report Template No.: BU5-FR15EWL MA Version 1.4

TABLE OF CONTENTS

RE	VISION H	IISTORY	3
SU	MMARY	OF TEST RESULT	4
1	GENER	AL DESCRIPTION	5
	1.2 Ma 1.3 Fe 1.4 Pr 1.5 Ma 1.6 Te	oplicant anufacturer eature of Equipment Under Test roduct Specification of Equipment Under Test odification of EUT esting Location oplicable Standards	5 5 6 8 8
2	TEST CO	ONFIGURATION OF EQUIPMENT UNDER TEST1	0
	2.2 Te 2.3 Co 2.4 Su 2.5 EU	arrier Frequency and Channel	1 3 4 4
3	TEST RE	ESULT1	5
	 3.2 Ma 3.3 Pc 3.4 Ur 3.5 AC 3.6 Fra 3.7 Au 	SdB & 99% Bandwidth Measurement 1 aximum Conducted Output Power Measurement 1 ower Spectral Density Measurement 2 nwanted Emissions Measurement 2 C Conducted Emission Measurement 2 requency Stability Measurement 3 utomatically Discontinue Transmission 3 ntenna Requirements 3	7 0 3 7 1 2
4	LIST OF	MEASURING EQUIPMENT	4
		TAINTY OF EVALUATION	5

- APPENDIX C. RADIATED SPURIOUS EMISSION PLOTS
- APPENDIX D. DUTY CYCLE PLOTS
- **APPENDIX E. SETUP PHOTOGRAPHS**

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR641901E	Rev. 01	Initial issue of report	Aug. 16, 2016

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	2.1049 15.403(i)	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm (depend on band)	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm (depend on band)	Pass	-
3.4	15.407(b)	Unwanted Emissions	≤ -17, -27 dBm (depend on band)&15.209(a)	Pass	Under limit 2.05 dB at 5350.320 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.20 dB at 0.150 MHz
3.6	15.407(g)	Frequency Stability	Within Operation Band	Pass	-
3.7	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.8	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

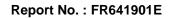
1 General Description

1.1 Applicant

ASUSTeK COMPUTER INC.

4F, No. 150, LI-TE RD., PEITOU, TAIPEI, TAIWAN

1.2 Manufacturer


COTEK ELECTRONICS (SUZHOU) CO., LTD.

No.288, Mayun Road, Suzhou New District, Jiangsu, PRC

1.3 Feature of Equipment Under Test

Product Feature			
Equipment	ASUS Phone		
Brand Name	ASUS		
Model Name	ASUS_Z016D		
FCC ID	MSQZ016D		
	CDMA/EV-DO /GSM/EGPRS/WCDMA/HSPA/LTE/NFC		
EUT supports Radios application	WLAN 11a/b/g/n HT20/HT40		
EOT Supports Radios application	WLAN 11ac VHT20/VHT40/VHT80		
	Bluetoothv4.2 BR/EDR/LE		
HW Version	REV2.0		
SW Version	4.0.20.270		
EUT Stage	Production Unit		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
5180 MHz ~ 5240 MHz					
Tx/Rx Channel Frequency Range	5260 MHz ~ 5320 MHz				
	5500 MHz ~ 5580 MHz and 5660 MHz ~ 5720 MHz				
	<5180 MHz ~ 5240 MHz>				
	<ant. 1=""></ant.>				
	802.11a : 15.58 dBm / 0.0361 W				
	SISO <ant. 1=""></ant.>				
	802.11n HT20 : 15.48 dBm / 0.0353 W				
	802.11n HT40 : 15.41 dBm / 0.0348 W				
	802.11ac VHT20: 15.39 dBm / 0.0346 W				
	802.11ac VHT40: 15.74 dBm / 0.0375 W				
	802.11ac VHT80: 14.31 dBm / 0.0270 W				
	<ant. 2=""></ant.>				
	802.11a : 15.28 dBm / 0.0337 W				
	SISO <ant. 2=""> 802.11n HT20 : 15.25 dBm / 0.0335 W</ant.>				
	802.11n HT40 : 15.39 dBm / 0.0346 W 802.11ac VHT20: 15.24 dBm / 0.0334 W				
	802.11ac VHT20. 15.24 dBm / 0.0334 W				
	802.11ac VHT40: 15.55 dBm / 0.0359 W				
	MIMO <ant. +="" 1="" 2=""></ant.>				
	802.11n HT20 : 15.29 dBm / 0.0338 W				
	802.11n HT40 : 15.02 dBm / 0.0318 W				
	802.11ac VHT20: 15.24 dBm / 0.0334 W				
	802.11ac VHT40: 15.04 dBm / 0.0319 W				
Maximum Output Power	802.11ac VHT80: 14.13 dBm / 0.0259 W				
	<5260 MHz ~ 5320 MHz>				
	<ant. 1=""></ant.>				
	802.11a : 15.65 dBm / 0.0367 W				
	SISO <ant. 1=""></ant.>				
	802.11n HT20 : 15.50 dBm / 0.0355 W				
	802.11n HT40 : 15.47 dBm / 0.0352 W				
	802.11ac VHT20: 15.15 dBm / 0.0327 W				
	802.11ac VHT40: 15.44 dBm / 0.0350 W				
	802.11ac VHT80: 13.08 dBm / 0.0203 W				
	<ant. 2=""> 802.11a : 15.55 dBm / 0.0359 W</ant.>				
	SISO <ant. 2=""></ant.>				
	802.11n HT20 : 15.55 dBm / 0.0359 W				
	802.11n HT40 : 15.00 dBm / 0.0316 W				
	802.11ac VHT20: 15.06 dBm / 0.0321 W				
	802.11ac VHT40: 15.26 dBm / 0.0336 W				
	802.11ac VHT80: 15.67 dBm / 0.0369 W				
	MIMO <ant. +="" 1="" 2=""></ant.>				
	802.11n HT20 : 14.92 dBm / 0.0310 W				
	802.11n HT40 : 15.22 dBm / 0.0333 W				
	802.11ac VHT20: 15.15 dBm / 0.0327 W				
	802.11ac VHT40: 15.04 dBm / 0.0319 W				
	802.11ac VHT80: 14.07 dBm / 0.0255 W				

Standards-related Product Specification						
	<5500 MHz ~ 5580 MHz and 5660 MHz ~ 5720 MHz>					
	<ant. 1=""></ant.>					
	802.11a : 15.58 dBm / 0.0361 W					
	SISO <ant. 1=""></ant.>					
	802.11n HT20 : 15.65 dBm / 0.0367 W					
	802.11n HT40 : 15.40 dBm / 0.0347 W					
	802.11ac VHT20: 15.62 dBm / 0.0365 W					
	802.11ac VHT40: 15.41 dBm / 0.0348 W					
	802.11ac VHT80: 15.57 dBm / 0.0361 W					
	<ant. 2=""></ant.>					
	802.11a : 15.29 dBm / 0.0338 W					
Maximum Output Power	SISO <ant. 2=""></ant.>					
	802.11n HT20 : 15.27 dBm / 0.0337 W					
	802.11n HT40 : 15.43 dBm / 0.0349 W					
	802.11ac VHT20: 15.55 dBm / 0.0359 W					
	802.11ac VHT40: 15.46 dBm / 0.0352 W					
	802.11ac VHT80: 15.88 dBm / 0.0387 W					
	MIMO <ant. +="" 1="" 2=""></ant.>					
	802.11n HT20 : 15.12 dBm / 0.0325 W					
	802.11n HT40 : 15.02 dBm / 0.0318 W					
	802.11ac VHT20: 15.09 dBm / 0.0323 W					
	802.11ac VHT40: 14.99 dBm / 0.0316 W					
	802.11ac VHT80: 14.20 dBm / 0.0263 W					
	802.11a : 19.25 MHz					
	802.11n HT20 : 20.85 MHz					
99% Occupied Bandwidth	802.11n HT40 : 38.70 MHz					
	802.11ac VHT20 : 20.80 MHz					
	802.11ac VHT40 : 38.30 MHz					
	802.11ac VHT80 : 76.56 MHz <5180 MHz ~ 5240 MHz>					
	Ant. 1: PIFA Antenna with gain -2.20 dBi					
	Ant. 2 : PIFA Antenna with gain -4.40 dBi					
Antenna Type	<5260 MHz ~ 5320 MHz>					
Antenna Type	Ant. 1 : PIFA Antenna with gain -1.20 dBi					
	Ant. 2 : PIFA Antenna with gain -5.50 dBi <5500 MHz ~ 5580 MHz and 5660 MHz ~ 5720 MHz>					
	Ant. 1 : PIFA Antenna with gain -0.10 dBi					
	Ant. 2 : PIFA Antenna with gain -5.70 dBi					
	802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)					
Type of Modulation	802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)					
	Ant. 1 Ant. 2 802.11 a V V					
	802.11 n/ac					
Antenna Function Description	SISO V V					
	802 11 n/ac					
	MIMO V V					

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Toot Site No	Sporton Site No.		
Test Site No.	TH02-HY	CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
	Taoyuan City, Taiwan (R.O.C.)		
	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
	03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02
- FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane for Ant. 1; Y plane for Ant. 2 and Ant. 1+2) were recorded in this report.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5150-5250 MHz	36	5180	44	5220
Band 1	38	5190	46	5230
(U-NII-1)	40	5200	48	5240

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5250-5350 MHz	52	5260	60	5300
Band 2	54	5270	62	5310
(U-NII-2A)	56	5280	64	5320

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
5470-5600 MHz and 5650-5725 MHz	102	5510	116	5580
	104	5520	132	5660
Band 3	106	5530	134	5670
(U-NII-2C)	108	5540	136	5680
· · · ·	110	5550	140	5700

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Straddla Channal	138	5690	142	5710
Straddle Channel	144	5720		

Note: The above Frequency and Channel in boldface were 802.11n HT40.

2.2 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates as below table.

Single Antenna

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

MIMO Antenna

Modulation	Data Rate
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

AC Conducted	Mode 1 : LTE Band 30 Idle + Bluetooth Link + WLAN (5GHz) Link + Camera (Back) +
Emission	MP3 + Earphone + USB Cable 5 (Charging from Adapter 2)

Ch. #		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5600 MHz and 5650-5725MHz
		802.11a	802.11a	802.11a
L	Low	36	52	100
М	Middle	44	60	116
н	High	48	64	140
Straddle		-	-	144

		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5600 MHz
Ch. #		Banu 1 · 5150-5250 Will2	Danu II · 5250-5550 Will2	and 5650-5725MHz
		802.11n HT20	802.11n HT20	802.11n HT20
L	Low	36	52	100
М	Middle	44	60	116
н	High	48	64	140
S	Straddle	-	-	144

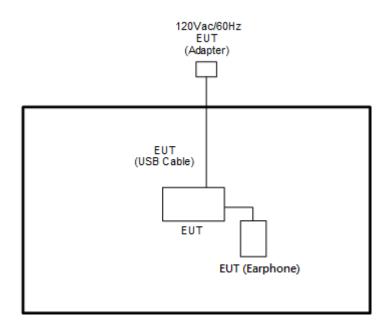
Ch. #		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5600 MHz	
		Banu 1 + 5150-5250 MIRZ	Band II + 5250-5550 MIRZ	and 5650-5725MHz	
		802.11n HT40	802.11n HT40	802.11n HT40	
L	Low	38	54	102	
М	Middle	-	-	110	
н	High	46	62	134	
Straddle		-	-	142	

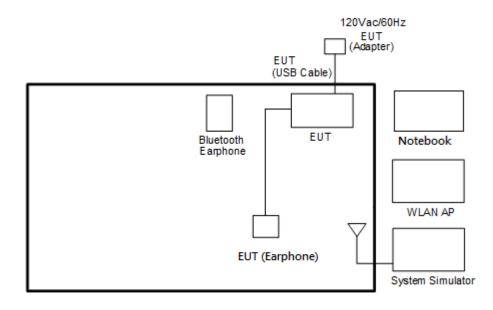
		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5600 MHz
	Ch. #	Danu 1 · 5150-5250 Winz		and 5650-5725MHz
		802.11ac VHT20	802.11ac VHT20	802.11ac VHT20
L	Low	36	52	100
М	Middle	44	60	116
н	High	48	64	140
5	Straddle	-	-	144

Ch. #		Dond L : 5450 5250 MUL		Band III:5470-5600 MHz	
		Band I:5150-5250 MHz	Band II:5250-5350 MHz	and 5650-5725MHz	
		802.11ac VHT40	802.11ac VHT40	802.11ac VHT40	
L	Low	38	54	102	
М	Middle	-	-	110	
н	High	46	62	134	
S	Straddle	-	-	142	

Ch. #		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5600 MHz and 5650-5725MHz
		802.11ac VHT80 802.11ac VHT80		802.11ac VHT80
L	L Low -		-	-
М	Middle	42	58	106
н	High	-	-	138

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : MSQZ016D Page Number: 12 of 35Report Issued Date: Aug. 16, 2016Report Version: Rev. 01


Report Template No.: BU5-FR15EWL MA Version 1.4



2.3 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

2.4	Support Unit used in test configuration and syste	em
_	Support offit used in test configuration and syste	

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUS	RT-AC66U	MSQ-ETAC66U	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

For WLAN function, programmed RF utility, "WiFi test tool" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

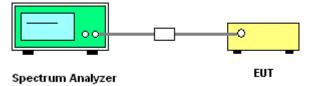
3.1 26dB & 99% Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

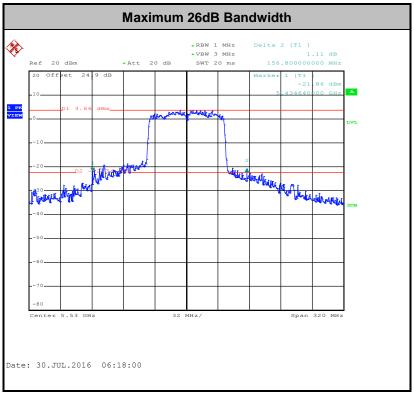
For Straddle Channel, U-NII procedures and limits were applied for operations in the frequency band in accordance with FCC KDB 644545 D03.

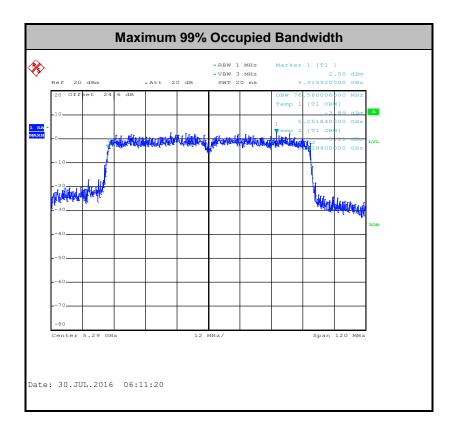

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02. Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.


3.1.4 Test Setup



3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

For Straddle Channel, U-NII procedures and limits were applied for operations in the frequency band in accordance with FCC KDB 644545 D03.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

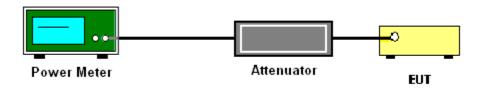
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

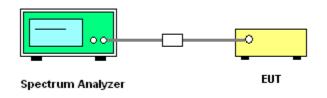
The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02 for CDD modes.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

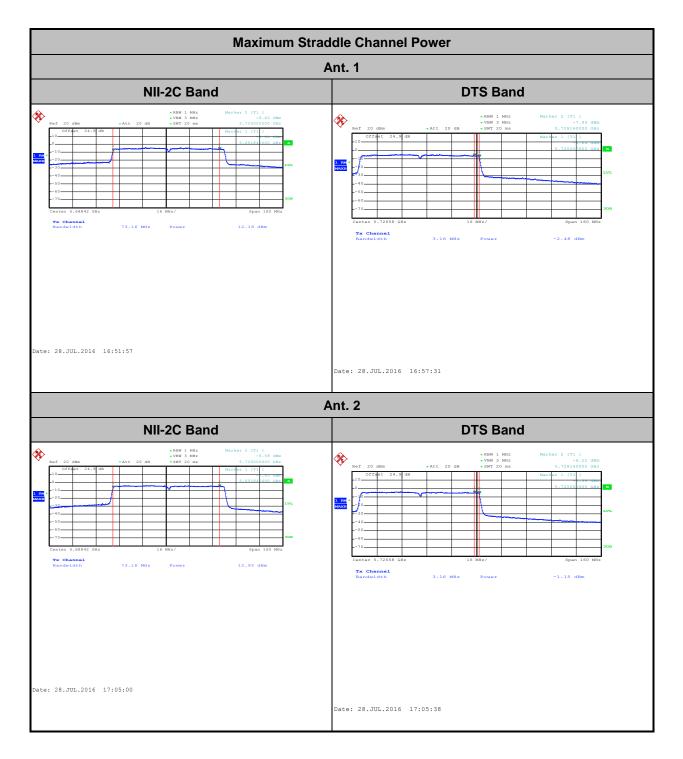

For straddle channel, the testing follows Method SA-3 (RMS detection with max hold) of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.

Compute power by integrating the spectrum across the 99% occupied bandwidth of the signal using the instrument's band power measurement function.



3.2.4 Test Setup

For normal channel:


For straddle channel:

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

For Straddle Channel, U-NII procedures and limits were applied for operations in the frequency band in accordance with FCC KDB 644545 D03.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

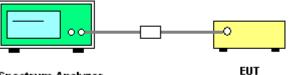
3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02. Section F) Maximum power spectral density.

Method SA-2

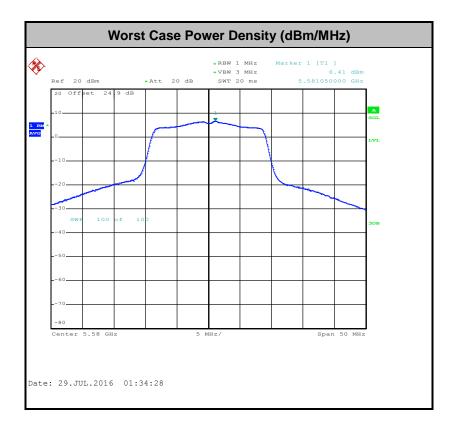

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- 1. The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02.
 - Measure the duty cycle.
 - Set span to encompass the entire emission bandwidth (EBW) of the signal.
 - Set RBW = 1 MHz.
 - Set VBW ≥ 3 MHz.
 - Number of points in sweep \geq 2 Span / RBW.
 - Sweep time = auto.
 - Detector = RMS
 - Trace average at least 100 traces in power averaging mode.
 - Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 4. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

 For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band. For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$

μV/m, where P is the eirp (Watts)

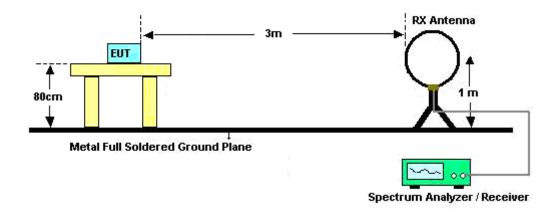
EIRP (dBm)	Field Strength at 3m (dBµV/m)
-17	78.3
- 27	68.3

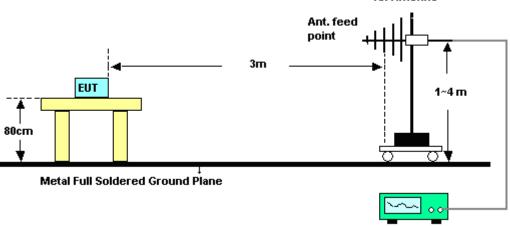
(3) KDB789033 D02 v01r02 G)2)c) As specified in 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in 15.407(b)(4)). However, an out-of-band emission that complies with both the average and peak limits of 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz peak emission limit.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures


- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r02. Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.

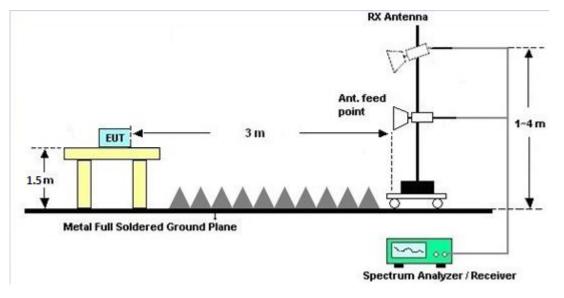

- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver


RX Antenna

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : MSQZ016D

Page Number : 25 of 35 Report Issued Date : Aug. 16, 2016 Report Version : Rev. 01 Report Template No.: BU5-FR15EWL MA Version 1.4

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix B and C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.5 AC Conducted Emission Measurement

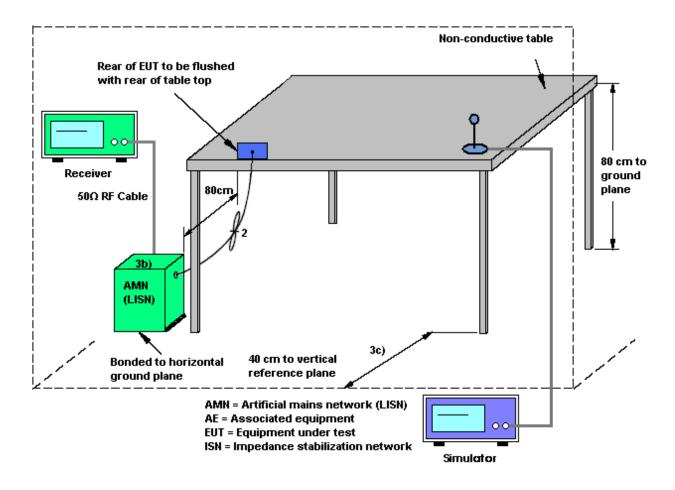
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Tem	Temperature :		24~25 ℃	
Test Engineer :	ingineer : Kai-Chun Chu			Rela	Relative Humidity :		49~50%	
Test Voltage :	120Vac / 60Hz			Pha	Phase :		Line	
					n Link + WLAN (5GHz) Link + Camera (Back) + MP3 +			
Function Type :					charging from Adapter 2)			
Level in dBµV	00 90 80 70 60 50 40 40 50 40 50 40 40 50 40 50 40 50 40 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5	00 500	B00 1M			CISPR CISPR	22-CP Limit at Main Ports 22-Ave Limit at Main Ports 4 10M 20M 30M	

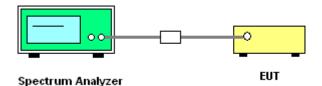
SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : MSQZ016D

Test Mode :	Mode	e 1			Tem	peratur	e :	24~25 ℃	
Test Engineer	: Kai-C	Kai-Chun Chu 120Vac / 60Hz		Rela	Relative Humidity : Phase :		49~50%		
Fest Voltage :	120V			Pha			Neutral		
Function Type							N (5GHz Adapter	2) Link + Camera (Back) + MP3 2)	
	100 90 80 70 60 50 40 30 20 10							22-QP Limit at Main Ports 22-Ave Limit at Main Ports	
	150k	300 4	400 500	800 1M		2M 3M	4M 5M 6	8 10M 20M 30M	
					Frequ	uency in Hz	2		
Final Re	sult : Q	uasiPea	k						
Final Re Frequer (MHz	ncy Qu	asiPeak	k Filter	Line	Corr. (dB)	Jency in Hz Margin (dB)	Limit		
Freque	ncy Qu) ((Line	Corr.	Margin			
Frequer (MHz	ncy Qu) (1 00	asiPeak dBµV)	Filter		Corr. (dB)	Margin (dB)	Limit (dBµV)		
Frequer (MHz 0.1500	ncy Qu) (4 00 00	asiPeak dBµV) 54.8	Filter Off	N	Corr. (dB) 19.6	Margin (dB) 11.2	Limit (dBµV) 66.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340	ncy Qu) (1 00 00 00 00	asiPeak dBµV) 54.8 42.7 34.0 32.1	Filter Off Off Off	N N	Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 11.2 21.0 23.6 23.9	Limit (dBµV) 66.0 63.7 57.6 56.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940	ncy Qu) (1 00 (1 00 0 00 0 00 0 00 0	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5	Filter Off Off Off Off Off	N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.7	Margin (dB) 11.2 21.0 23.6 23.9 24.5	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900	ncy Qu) (1 00 (1 00 2 00 2 00 2 00 2 00 2 00 2	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7	Filter Off Off Off Off Off Off	N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.7 19.6	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900	ncy Qu) (1 00 (1 00 0 00 0 00 0 00 0 00 0	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8	Filter Off Off Off Off Off	N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.7	Margin (dB) 11.2 21.0 23.6 23.9 24.5	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res	ncy Qu) (1 00 (1 00 (1 00 (1 00 (1 00 (1 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00 (1) 00	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage	Filter Off Off Off Off Off Off	N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.7 19.6 19.7	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer	Norm Qu 00 (1000) 000) (1000)	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage	Filter Off Off Off Off Off Off	N N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.7 19.6 19.8	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 Limit		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer (MHz	ncy Qu) (1 00 (1 00 (1 00 (1 00 (1 00 (1 00 (1 00 (1) 00 (1) 00 (1) 00 (1) 00 (1)	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage dBµV)	Filter Off Off Off Off Off Off Filter	N N N N N Line	Corr. (dB) 19.6 19.6 19.6 19.6 19.7 19.6 19.7 19.6 19.8 Corr. (dB)	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin (dB)	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 56.0 Limit (dBµV)		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer (MHz 0.1500	ncy Qu) ((00 00 00 00 00 00 00 sult : Av ncy Av) ((00	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage dBµV) 42.0	Filter Off Off Off Off Off Off Off Filter	N N N N N Line	Corr. (dB) 19.6 19.6 19.6 19.6 19.7 19.6 19.8 Corr. (dB) 19.6	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin (dB) 14.0	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 56.0 Limit (dBµV) 56.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer (MHz 0.1500 0.1980	Network Qu 00 (n 000 (n	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage dBµV) 42.0 32.9	Filter Off Off Off Off Off Off Off Filter	N N N N N Line N	Corr. (dB) 19.6 19.6 19.6 19.7 19.6 19.7 19.6 19.8 Corr. (dB) 19.6 19.6	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin (dB) 14.0 20.8	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer (MHz 0.1500 0.1980 0.4140	ncy Qu) (1 00 (1 00 0 00 0 00 0 00 0 00 0 00 0	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage dBµV) 42.0 32.9 27.5	Filter Off Off Off Off Off Off Filter	N N N N N N Line N N N	Corr. (dB) 19.6 19.6 19.6 19.7 19.6 19.7 19.6 19.8 Corr. (dB) 19.6 19.6 19.6	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin (dB) 14.0 20.8 20.1	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 Limit (dBµV) 56.0 53.7 47.6		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer (MHz 0.1500 0.1980 0.4140 0.9340	ncy Qu) (1 00 (1)))))))))))))))))))))))))))))))))))	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage dBµV) 42.0 32.9 27.5 26.7	Filter Off Off Off Off Off Off Filter Off Off Off	N N N N N N Line N N N N	Corr. (dB) 19.6 19.6 19.6 19.6 19.7 19.6 19.8 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin (dB) 14.0 20.8 20.1 19.3	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 56.0 Limit (dBµV) 56.0 53.7 47.6 46.0		
Frequer (MHz 0.1500 0.1980 0.4140 0.9340 1.4940 2.3900 4.5900 Final Res Frequer (MHz 0.1500 0.1980 0.4140	ncy Qu) (1 00 (1)))))))))))))))))))))))))))))))))))	asiPeak dBµV) 54.8 42.7 34.0 32.1 31.5 31.7 35.8 verage verage dBµV) 42.0 32.9 27.5	Filter Off Off Off Off Off Off Filter	N N N N N N Line N N N	Corr. (dB) 19.6 19.6 19.6 19.7 19.6 19.7 19.6 19.8 Corr. (dB) 19.6 19.6 19.6	Margin (dB) 11.2 21.0 23.6 23.9 24.5 24.3 20.2 Margin (dB) 14.0 20.8 20.1	Limit (dBµV) 66.0 63.7 57.6 56.0 56.0 56.0 56.0 Limit (dBµV) 56.0 53.7 47.6		

3.6 Frequency Stability Measurement

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.


3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Please refer to Appendix A.

3.7 Automatically Discontinue Transmission

3.7.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.8 Antenna Requirements

3.8.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2), if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.8.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.8.3 Antenna Gain

CDD Modes

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band I	-2.20	-4.40	-2.20	-0.22	0.00	0.00
Band II	-1.20	-5.00	-1.20	0.12	0.00	0.00
Band III	-0.10	-5.70	-0.10	0.55	0.00	0.00

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
DC Power Supply	TOPWARD	3303D	740889	N/A	May 20, 2016	Jul. 28, 2016 ~ Aug. 02, 2016	May 19, 2017	Conducted (TH02-HY)
Power Meter	Anritsu	ML2495A	1132003	300MHz~40GHz	Aug. 12, 2015	Jul. 28, 2016 ~ Aug. 02, 2016	Aug. 11, 2016	Conducted (TH02-HY)
Power Sensor	Anritsu	MA2411B	1126017	300MHz~40GHz	Aug. 12, 2015	Jul. 28, 2016 ~ Aug. 02, 2016	Aug. 11, 2016	Conducted (TH02-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Jul. 28, 2016 ~ Aug. 02, 2016	Nov. 22, 2016	Conducted (TH02-HY)
Temperature Chamber	ESPEC	SH-641	92013720	-40° ℃ ~90°℃	Sep. 08, 2015	Jul. 28, 2016 ~ Aug. 02, 2016	Sep. 07, 2016	Conducted (TH02-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jun. 12, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 26, 2015	Jun. 12, 2016	Aug. 25, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Jun. 12, 2016	Dec. 01, 2016	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Jul. 18, 2016 ~ Jul. 23, 2016	Sep. 01, 2016	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	10MHz~1GHz	Dec. 31, 2015	Jul. 18, 2016 ~ Jul. 23, 2016	Dec. 30, 2016	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D	40103	30MHz to 1GHz	Jan. 13, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Jan. 12, 2017	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY55420170	N/A	Mar. 10, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Mar. 09, 2017	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Apr. 25, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Apr. 24, 2017	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	Jun. 27, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Jun. 26, 2017	Radiation (03CH13-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Jun. 13, 2017	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Jan. 30, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Jan. 29, 2017	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	N/A	Mar. 14, 2016	Jul. 18, 2016 ~ Jul. 23, 2016	Mar. 13, 2017	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Jul. 18, 2016 ~ Jul. 23, 2016	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jul. 18, 2016 ~ Jul. 23, 2016	N/A	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 02, 2015	Jul. 18, 2016 ~ Jul. 23, 2016	Nov. 01, 2016	Radiation (03CH13-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.26
of 95% (U = 2Uc(y))	2:20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	4.70
Confidence of 95% (U = 2Uc(y))	4.70

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.30
--	------

Appendix A. Conducted Test Results