Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω+ 6.60jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.6Ω+ 6.11jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.8dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) 1.067 ns | | |---|--| |---|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.409 \text{ S/m}$; $\epsilon r = 39.36$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017; Date: 12.06.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z17-97262 Page 5 of 8 # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\varepsilon_r = 52.89$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017; Date: 12.06,2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.27 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.3 W/kg Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: Z17-97262 Page 7 of 8 # Impedance Measurement Plot for Body TSL In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z17-97263 # CALIBRATION CERTIFICATE Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Object D2450V2 - SN: 840 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 7, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | STATE TO SW | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 临礼 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | and_ | Issued: December 10, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97263 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | Temperature | Permittivity | Conductivity | |-----------------|----------------------------|--| | 22.0 °C | 39.2 | 1.80 mho/m | | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.83 mho/m ±6 % | | <1.0 °C | 5,500 | | | | 22.0 °C
(22.0 ± 0.2) °C | 22.0 °C 39.2
(22.0 ± 0.2) °C 39.8 ± 6 % | #### SAR result with Head TSL | Condition | | |--------------------|---| | 250 mW input power | 13.2 mW / g | | normalized to 1W | 52.6 mW /g ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 6.14 mW / g | | normalized to 1W | 24.5 mW /g ± 18.7 % (k=2) | | | 250 mW input power
normalized to 1W
Condition
250 mW input power | **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.93 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.9 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.9 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.99 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97263 Page 3 of 8 # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.0Ω+ 4.51jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.3dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.1Ω+ 5.09jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.8dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.025 ns | |----------------------------------|----------| | 63 72 2007 5003 | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z17-97263 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.826 \text{ S/m}$; $\epsilon r = 39.84$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017; Date: 12.06.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Certificate No: Z17-97263 Page 5 of 8 # Impedance Measurement Plot for Head TSL # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 840 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.926 \text{ S/m}$; $\epsilon_r = 52.48$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Date: 12.07.2017 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.77 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.99 W/kg Maximum value of SAR (measured) = 21.7 W/kg 0 dB = 21.7 W/kg = 13.36 dBW/kg Certificate No: Z17-97263 Page 7 of 8 # Impedance Measurement Plot for Body TSL Client Sporton Certificate No: Z17-97255 # CALIBRATION CERTIFICATE Object D2600V2 - SN: 1061 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 7, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 如包 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林北 | | Approved by: | Qi Dianyuan | SAR Project Leader | 50% | Issued: December 10, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97255 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | | | | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1,96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) *C | 39.4 ± 6 % | 1.99 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.6 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 58.2 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.50 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 26.0 mW /g ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.6 ± 6 % | 2.13 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 725 | 1944 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 56.4 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.23 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 25.0 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97255 Page 3 of 8 # Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.4Ω- 6.08jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.3dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.2Ω- 5.19jΩ | |--------------------------------------|---------------| | Return Loss | - 23.5dB | # General Antenna Parameters and Design | 3 ns | |------| | 13 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z17-97255 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1061 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.985 \text{ S/m}$; $\epsilon r = 39.42$; $\rho = 1000 \text{ kg/m}$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.3, 7.3, 7.3); Calibrated: 1/23/2017; Date: 12.07.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.7 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.5 W/kg Maximum value of SAR (measured) = 25.1 W/kg 0 dB = 25.1 W/kg = 14.00 dBW/kg Certificate No: Z17-97255 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1061 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.127$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.48, 7.48, 7.48); Calibrated: 1/23/2017; Date: 12.07.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm dy Jimi, dz Jimii Reference Value = 96.43 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.23 W/kg Maximum value of SAR (measured) = 23.8 W/kg 0 dB = 23.8 W/kg = 13.77 dBW/kg Certificate No: Z17-97255 Page 7 of 8 # Impedance Measurement Plot for Body TSL Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Auden Client: Certificate No: Z18-60107 # CALIBRATION CERTIFICATE Object DAE4 - SN: 1305 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: May 11, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|------------------------------------------|-----------------------| | Process Calibrator 753 | 1971018 | 27-Jun-17 (CTTL, No.J17X05859) | June-18 | | | | | | Calibrated by: Name **Function** Signature Yu Zongying **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader Issued: May 12, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # **Methods Applied and Interpretation of Parameters:** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z18-60107 #### **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | х | Υ | Z | | |---------------------|-----------------------|-----------------------|-----------------------|--| | High Range | 403.659 ± 0.15% (k=2) | 403.993 ± 0.15% (k=2) | 404.315 ± 0.15% (k=2) | | | Low Range | 3.98260 ± 0.7% (k=2) | 3.99157 ± 0.7% (k=2) | 3.99746 ± 0.7% (k=2) | | #### **Connector Angle** | Connector Angle to be used in DASY system | 97° ± 1 ° | |-------------------------------------------|-----------| |-------------------------------------------|-----------| Certificate No: Z18-60107 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client Sporton Certificate No: Z18-60364 # **CALIBRATION CERTIFICATE** Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Object EX3DV4 - SN:3843 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 27, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|--------|-------------|------------------------------------------|-----------------------| | Power Meter NF | RP2 | 101919 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Power sensor NF | RP-Z91 | 101547 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Power sensor NF | RP-Z91 | 101548 | 20-Jun-18 (CTTL, No.J18X05032) | Jun-19 | | Reference10dBAttenuator | | 18N50W-10dB | 09-Feb-18(CTTL, No.J18X01133) | Feb-20 | | Reference20dBAttenuator | | 18N50W-20dB | 09-Feb-18(CTTL, No.J18X01132) | Feb-20 | | Reference Probe EX3DV4 | | SN 3846 | 25-Jan-18(SPEAG,No.EX3-3846_Jan18) | Jan-19 | | DAE4 | | SN 777 | 15-Dec-17(SPEAG, No.DAE4-777_Dec17) | Dec -18 | | | | | | | | Secondary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | | 6201052605 | 21-Jun-18 (CTTL, No.J18X05033) | Jun-19 | | Network Analyzer E5071C | | MY46110673 | 14-Jan-18 (CTTL, No.J18X00561) | Jan -19 | | | I | Name | Function | Signature | | Calibrated by: | | Yu Zongying | SAR Test Engineer | | | Reviewed by: | | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | | Qi Dianyuan | SAR Project Leader | 200 | | | | | | | Issued: September 29, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60364 Glossary: TSL tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z18-60364 Page 2 of 11