

FCC RF Test Report

APPLICANT	: ASUSTeK COMPUTER INC.
EQUIPMENT	: ASUS Phone (Mobile Phone)
BRAND NAME	: ASUS
MODEL NAME	: ASUS_X00HD
MARKETING NAME	: ZC520KL
FCC ID	: MSQX00HD
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System

The product was received on May 24, 2017 and testing was completed on Aug. 23, 2017. We, Sporton International (Shenzhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Shenzhen) Inc., the test report shall not be reproduced except in full.

File Shih

Approved by: Eric Shih / Manager

(R) TESTING

NVLAP LAB CODE 600156-0

Sporton International (Shenzhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan Shenzhen City Guangdong Province 518055 China

TABLE OF CONTENTS

SUI	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Peak Output Power Measurement	17
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	23
	3.5	Radiated Band Edges and Spurious Emission Measurement	28
	3.6	AC Conducted Emission Measurement	32
	3.7	Antenna Requirements	36
4	LIST	OF MEASURING EQUIPMENT	37
5	UNCE	ERTAINTY OF EVALUATION	38
API	PEND	X A. CONDUCTED TEST RESULTS	
API	PEND	X B. RADIATED SPURIOUS EMISSION	

APPENDIX C. DUTY CYCLE PLOTS

APPENDIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR752406B	Rev. 01	Initial issue of report	Aug. 28, 2017

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	RSS-247 5.2(a)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	RSS-Gen 6.6	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	RSS-247 5.4(d)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	RSS-247 5.2(b)	Power Spectral Density	Power Spectral Density ≤ 8dBm/3kHz		-
3.4	15.247(d)	RSS-247 5.5	Conducted Band Edges and Spurious Emission	≤ 20dBc		-
3.5	15.247(d)	RSS-247 5.5	Radiated Band Edges15.209(a) ∧ Spurious Emission15.247(d)		Pass	Under limit 8.93 dB at 42.61 MHz
3.6	15.207	RSS-GEN 8.8	AC Conducted Emission 15.207(a)		Pass	Under limit 5.98 dB at 0.15 MHz
3.7	15.203 & 15.247(b)	N/A	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

ASUSTeK COMPUTER INC.

4F, No.150, Li-Te Rd., Peitou, Taipei 112, Taiwan

1.2 Manufacturer

ASUSTeK COMPUTER INC.

4F, No.150, Li-Te Rd., Peitou, Taipei 112, Taiwan

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	ASUS Phone (Mobile Phone)
Brand Name	ASUS
Model Name	ASUS_X00HD
Marketing Name	ZC520KL
FCC ID	MSQX00HD
	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/HSPA+/
	LTE/
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40/
	Bluetooth v3.0 + EDR/Bluetooth v4.0 LE/
	/Bluetooth v4.1 LE//Bluetooth v4.2 LE
	Conducted: N/A
IMEI Code	Radiation: 358410080035602/358410080035610
	Conduction: 990010370000227/99001037000022
HW Version	QL1526_MB_PCB_v2.0
SW Version	NMF26F.WW_Phone-14.2016.1705.135
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	1.12 dBm (0.0013 W)			
99% Occupied Bandwidth	1.05MHz			
Antenna Type / Gain	PIFA Antenna with gain 1.38 dBi			
Type of Modulation	Bluetooth LE : GFSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600156-0) and the FCC designation No are CN5018 and CN5019.

Test Site	Sporton International (Shenzhen) Inc.				
Test Site Location	TEL: +86-755-8637-9589				
Test Site No.	FAX: +86-755-863 Sporto	n Site No.	FCC Test Firm Registration No.		
Test one No.	TH01-SZ	CO01-SZ	251365		
Test Site	Sporton International (Shenzhen) Inc.				
Test Site Location	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse, Nanshan District Shenzhen City Guangdong Province 518055 China TEL: +86-755-3320-2398				
Test Site No.	Sporton Site No.		FCC Test Firm Registration No.		
Test one No.	03C	H03-SZ	577730		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- ANSI C63.10-2013
- IC RSS-247 Issue 2
- IC RSS-Gen Issue 4

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

		Bluetooth – LE RF Output Power
Channel	Fraguanay	Data Rate / Modulation
Channel	Frequency	GFSK
		1Mbps
Ch00	2402MHz	0.22 dBm
Ch19	2440MHz	<mark>1.12</mark> dBm
Ch39	2480MHz	0.58 dBm

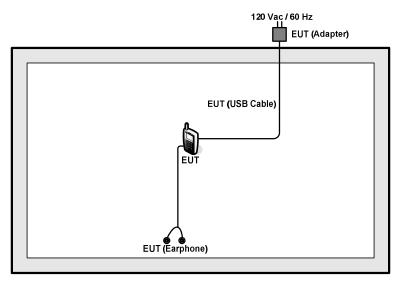
The RF output power was recorded in the following table:

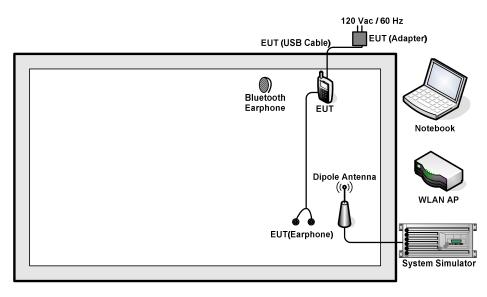
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
rest item	Bluetooth – LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
105	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
105	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
	Mode 1 :GSM850 Idle + Bluetooth Link + WLAN Link(2.4GHz) + Earphone1 + USB					
AC	Cable1 (Charging from Adapter1)					
Conducted	Mode 2 : GSM850 Idle + Bluetooth Link + WLAN Link(2.4GHz) + Earphone2 + USB					
Emission	Cable2 (Charging from Adapter2)					
Emission	Mode 3 : GSM850 Idle + Bluetooth Link + WLAN Link(2.4GHz) + Earphone1 + USB					
	Cable1 (Charging from Adapter3)					
Remark:						
1. The wors	1. The worst case of conducted emission is mode 3; only the test data of it was reported.					
2. For Radia	ated TCs, The tests were performance with Adapter 1, Earphone 1, and USB Cable 1.					



2.3 Connection Diagram of Test System

<Bluetooth – LE Tx Mode>

<AC Conducted Emission Mode>

2.4	Support Unit used	in test configuration and sy	stem

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-865L	KA2IR865LA1	N/A	Unshielded, 1.8 m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	Shielded cable DC O/P 1.8 m Unshielded AC I/P cable1.2 m
4.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A
5.	SD Card	N/A	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5.0 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

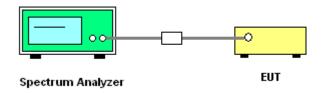
= 5.0 + 10 = 15.0 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

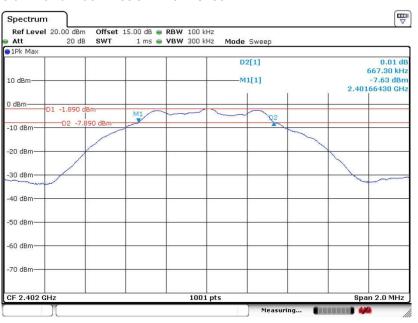
The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

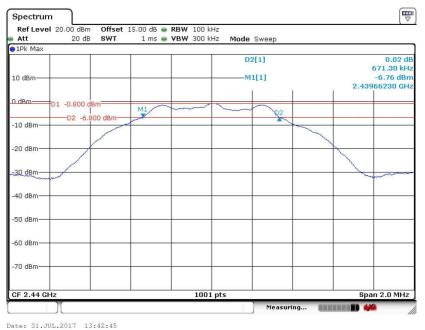
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

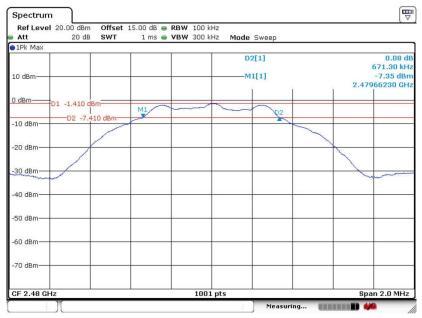
- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.


3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

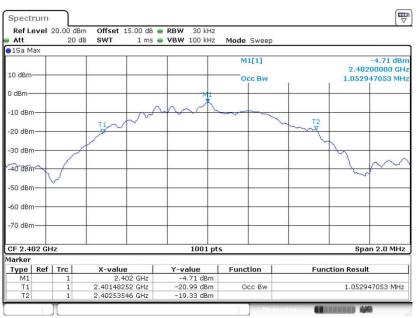

Test data refer to Appendix A.

6 dB Bandwidth Plot on Channel 00


Date: 31.JUL.2017 13:40:44

6 dB Bandwidth Plot on Channel 19

6 dB Bandwidth Plot on Channel 39



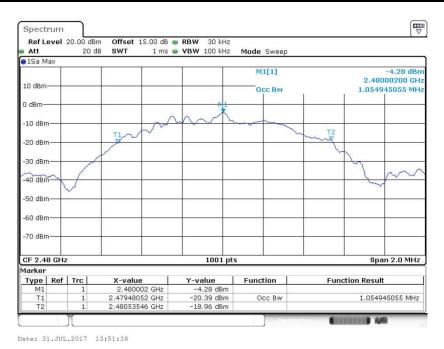
Date: 31.JUL.2017 13:47:36

3.1.6 Test Result of 99% Occupied Bandwidth

Test data refer to Appendix A.

99% Bandwidth Plot on Channel 00

Date: 31.JUL.2017 13:41:50


Spectrum Ref Level 20.00 dBm Att 20 dB Offset 15.00 dB ● RBW 30 kHz SWT 1 ms ● VBW 100 kHz Mode Sweep Att 😑 1Sa Ma -3.63 dBr 2.43999800 GH 1.052947053 MH 10 dBn Occ Bw 0 dBm -10 dBm T2 T1 -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm--70 dBm CF 2.44 GHz 1001 pts Span 2.0 MHz Marker Type | Ref | Trc Y-value Function X-value **Function Result** 2.439998 GHz 2.43948252 GHz 2.44053546 GHz -3.63 dBm -19.87 dBm -18.30 dBm 1.052947053 MHz Occ Bw T1 T2 10 449

99% Occupied Bandwidth Plot on Channel 19

Date: 31.JUL.2017 13:43:38

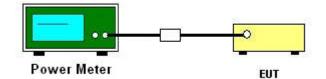
99% Occupied Bandwidth Plot on Channel 39

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

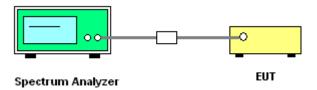
3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

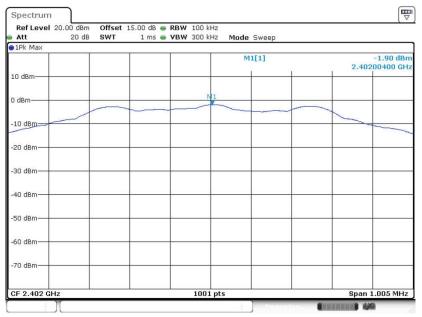

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

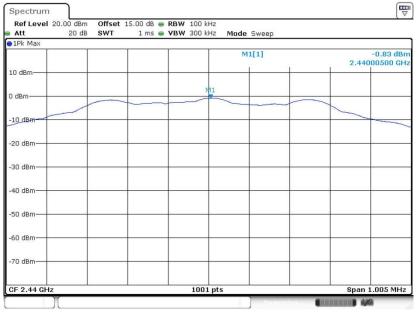
3.3.4 Test Setup



3.3.5 Test Result of Power Spectral Density

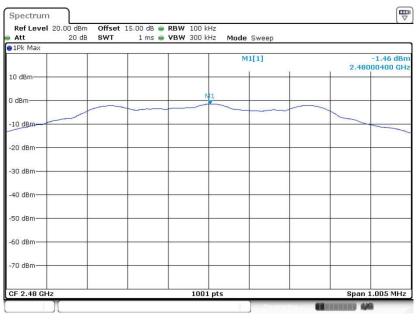
Test data refers to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)



PSD 100kHz Plot on Channel 00

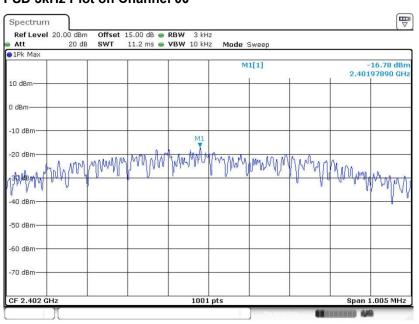
Date: 31.JUL.2017 13:41:03



PSD 100kHz Plot on Channel 19

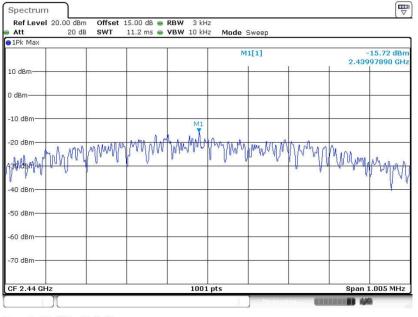
Date: 31.JUL.2017 13:43:08

PSD 100kHz Plot on Channel 39



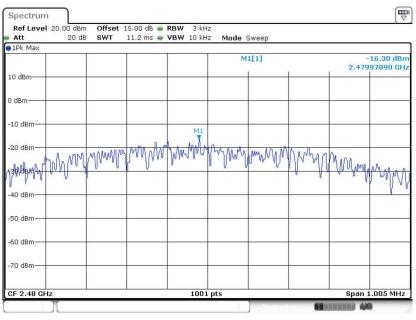
Date: 31.JUL.2017 13:50:12

3.3.7 Test Result of Power Spectral Density Plots (3kHz)



PSD 3kHz Plot on Channel 00

Date: 31.JUL.2017 13:40:53



PSD 3kHz Plot on Channel 19

Date: 31.JUL.2017 13:42:58

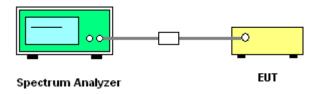
PSD 3kHz Plot on Channel 39

Date: 31.JUL.2017 13:50:01

3.4 Conducted Band Edges and Spurious Emission Measurement

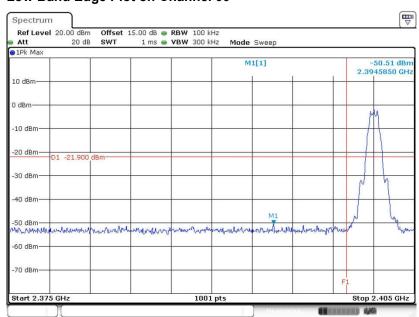
3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

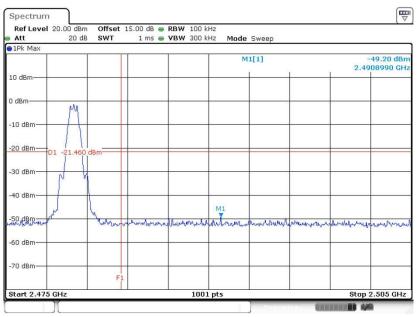

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure


- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

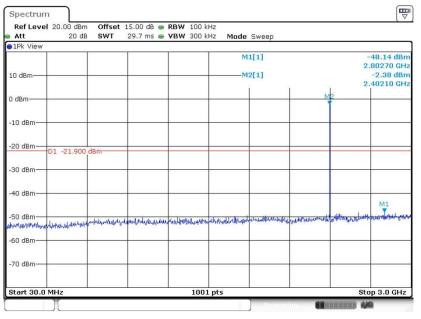
3.4.4 Test Setup


3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00

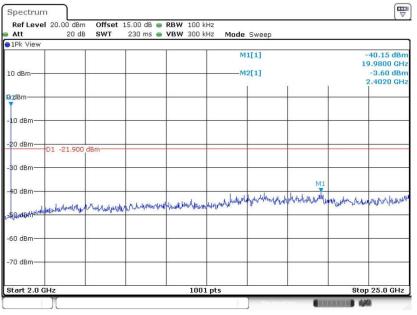
Date: 31.JUL.2017 13:41:21

High Band Edge Plot on Channel 39


Date: 31.JUL.2017 13:50:44

3.4.6 Test Result of Conducted Spurious Emission Plots

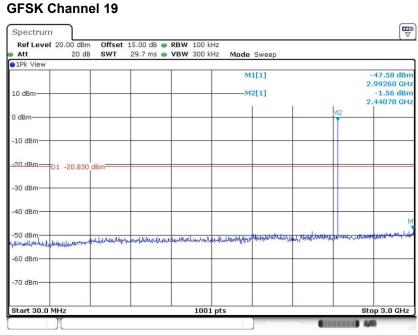
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


GFSK Channel 00

Date: 31.JUL.2017 13:41:32

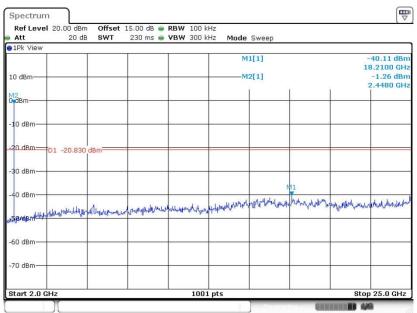
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 00



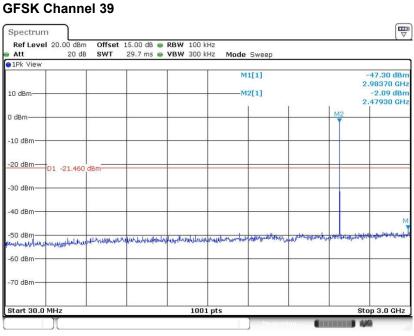
Date: 31.JUL.2017 13:41:40

Sporton International (Shenzhen) Inc. TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID : MSQX00HD

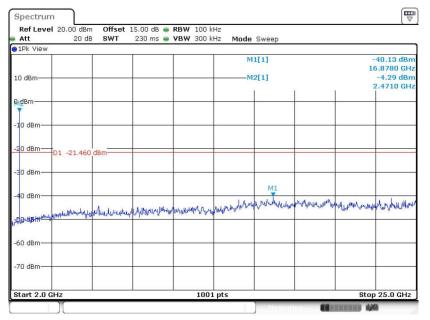


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 31.JUL.2017 13:43:19


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 31.JUL.2017 13:43:27



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 31.JUL.2017 13:51:02

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 31.JUL.2017 13:51:10

3.5 Radiated Band Edges and Spurious Emission Measurement

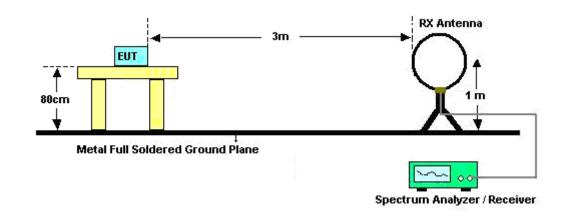
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

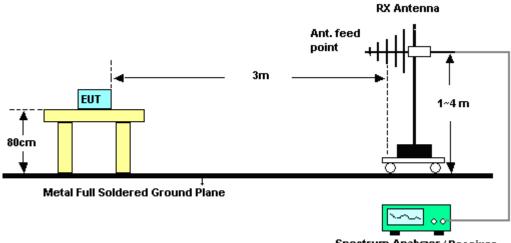
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥ 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Duty Cycle

Please refer to Appendix C.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.6 AC Conducted Emission Measurement

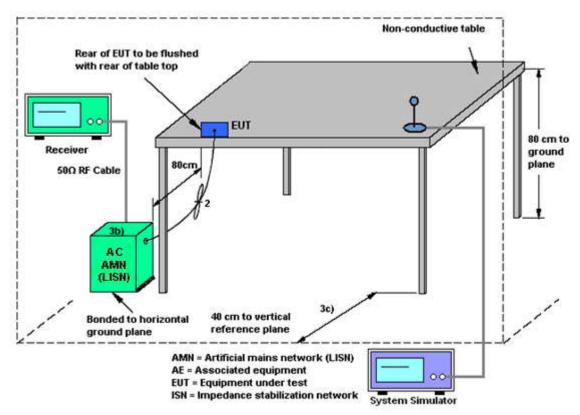
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

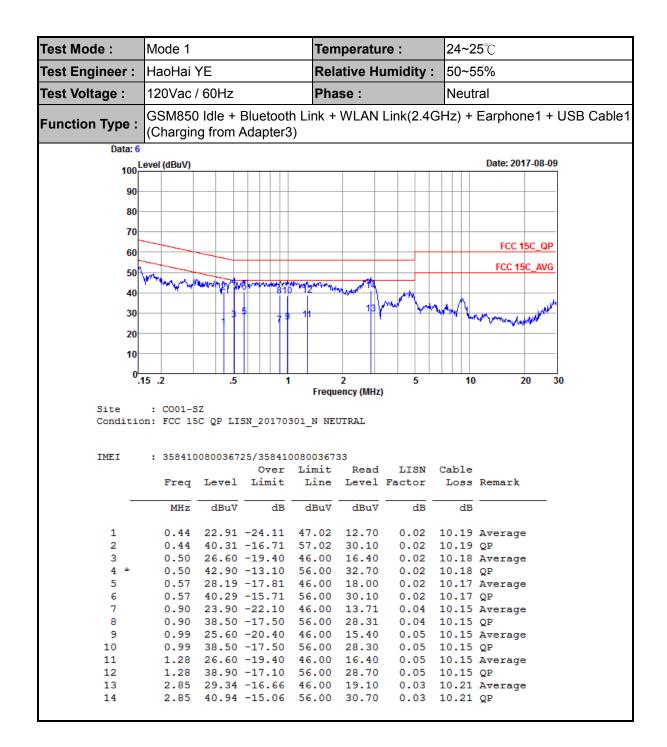
3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup



3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Ten	nperatu	re :	24~2	25°C	
Test Engineer :	HaoHai `	YE		Rela	ative H	umidity	: 50~5	55%	
Test Voltage :	120Vac /	/ 60Hz		Pha	se :		Line		
Function Type :	GSM850 (Chargin				WLAN	Link(2.4	IGHz) +	Earphone1 + USB Ca	able1
Data: 5								D-to: 2017 00 00	
100	Level (dBuV)							Date: 2017-08-09	
90					_				
80									
70									
								FCC 15C_QP	
60	Ward -							FCC 15C_AVG	
50	Church and	San Anna	6	a transmitted a	20				
40	3 1			<u>18 ייידואיריאיז</u> 	10	m M	mann		
30		13'		17	, 19	- W 1		mont an month what	
20									
10									
0	15.2	.5	1		2	5	10) 20 30	
Site	: CO01-S		SN 20170		ency (MHz)	,			
	on: FCC 15	C_QP LIS	_ 25/35841(301_L LI	NE 33		Cable		
Conditi	on: FCC 15 : 358410	C_QP LIS	- 25/358410 Over	301_L LI 00800367: Limit	NE 33 Read		Cable Loss	Remark	
Conditi	on: FCC 15 : 358410	C_QP LI:	- 25/358410 Over	301_L LI 00800367: Limit	NE 33 Read	LISN Factor	Loss	Remark	
Conditi	on: FCC 15 : 358410 Freq MHz	5C_QP LIS 008003672 Level 	_ 25/358410 Over Limit	301_L LI 00800367: Limit Line dBuV	NE 33 Read Level	LISN Factor dB	Loss dB	Remark	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15	5C_QP LIS 008003672 Level dBuV 49.93 53.13	- 25/358410 Over Limit -5.98 -12.78	301_L LI 00800367: Limit Line dBuV 55.91 65.91	NE 33 Read Level dBuV 39.50 42.70	LISN Factor dB 0.03 0.03	Loss dB 10.40 10.40	Remark Average QP	
Conditi IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18	008003672 Level dBuV 49.93 53.13 34.01	- 25/358410 Over Limit -5.98 -12.78 -20.41	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42	NE 33 Read Level dBuV 39.50 42.70 23.70	LISN Factor dB 0.03 0.03 0.03	Loss dB 10.40 10.28	Remark Average QP Average	
Conditio IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18	008003672 Level dBuV 49.93 53.13 34.01 49.71	- 25/35841(Over Limit 	301_L LI 00800367 Limit Line dBuV 55.91 65.91 54.42 64.42	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40	LISN Factor dB 0.03 0.03 0.03 0.03 0.03	Loss dB 10.40 10.28 10.28	Remark Average QP Average QP	
Conditi IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18 0.20	008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03	Loss dB 10.40 10.28 10.28 10.22	Remark Average QP Average QP Average	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18 0.20	C_QP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03	Loss dB 10.40 10.28 10.28 10.22 10.22	Remark Average QP Average QP Average	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18 0.20 0.20 0.29	C_QP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.28 10.22 10.22	Remark Average QP Average QP Average QP Average	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18 0.20 0.20 0.29 0.29 0.31	C_QP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95	- 25/358410 Over Limit dB -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98	301_L LI D0800367 Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.40 10.28 10.22 10.22 10.22 10.22 10.22	Remark Average QP Average QP Average QP Average QP Average	
Condition IMEI 1 * 2 3 4 5 6 7 8 9 10	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18 0.20 0.20 0.20 0.29 0.29 0.31 0.31	C_QP LIS 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95	- 25/358410 Over Limit dB -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98	301_L LI 00800367 Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22	Remark Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 1 * 2 3 4 5 6 7 8 9 10 11	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.18 0.20 0.20 0.20 0.29 0.29 0.29 0.31 0.31 0.36	C_QP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53	- 25/358410 Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -24.21	301_L LI 00800367 Limit Line dBuV 55.91 65.91 54.42 63.49 63.49 50.59 60.59 49.93 59.93 48.74	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22	Remark Average QP Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.15 0.18 0.20 0.20 0.20 0.29 0.29 0.29 0.31 0.31 0.36 0.36	C_QP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.73	- 25/358410 Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -24.21 -19.01	301_L LI 00800367 Limit Line dBuV 55.91 65.91 54.42 63.49 63.49 50.59 60.59 49.93 59.93 48.74 58.74	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22	Remark Average QP Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.29 0.29 0.31 0.31 0.36 0.36 0.48	CQP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 24.95 38.35 24.95 39.95 24.53 39.73 29.10	- 25/358410 Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -24.21 -19.01 -17.31	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93 48.74 58.74 46.41	NE 33 Read Level 39.50 42.70 39.40 23.70 39.40 35.50 13.30 28.10 14.70 29.70 14.30 29.50 18.90	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.18	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 1 * 2 3 4 5 6 7 8 9 10 11 12 13 14	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.20 0.29 0.29 0.31 0.31 0.36 0.36 0.48 0.48	CQP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.73 29.10 40.70	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -9.98 -19.98 -19.98 -24.21 -19.01 -17.31 -15.71	301_L LI 00800367: Limit Line dBuV 55.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93 48.74 58.74 46.41 56.41	NE 33 Read Level 39.50 42.70 39.40 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50 18.90 30.50	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.20 10.18 10.18	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.20 0.29 0.29 0.31 0.31 0.36 0.36 0.48 0.48 0.48 0.55	CQP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.95 24.53 39.73 29.10 40.70 32.00	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -9.98 -24.21 -19.98 -19.98 -24.21 -19.98 -19.98 -24.21 -19.98 -19.98 -24.21 -19.98 -19.901 -19.98 -19.	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 48.74 58.74 46.41 56.41 46.00	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50 14.30 29.50 18.90 30.50 21.80	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.20 10.18 10.18	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 1 * 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.29 0.29 0.31 0.31 0.36 0.36 0.48 0.48 0.48 0.55 0.55	CQP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.95 24.53 39.73 29.10 40.70 32.00 43.50	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -9.98 -19.98 -19.98 -19.98 -12.78 -20.41 -17.74 -27.04 -22.24 -19.98 -19.571 -14.00 -12.50	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93 48.74 58.74 46.41 56.41 46.00 56.00	NE 33 Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50 14.30 29.50 18.90 30.50 21.80 33.30	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.20 10.18 10.18 10.18	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP	
Condition IMEI 	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.29 0.29 0.29 0.31 0.31 0.36 0.36 0.48 0.48 0.48 0.55 0.55 1.78	CQP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.73 29.10 40.70 32.00 43.50 28.06	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -9.98 -19.98 -19.98 -19.91 -17.31 -15.71 -14.00 -12.50 -17.94	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93 48.74 46.41 56.41 46.00 56.00 46.00	NE Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50 14.30 29.50 14.30 29.50 13.30 14.70 29.50 14.30 29.50 14.30 17.80	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.20 10.18 10.18 10.18 10.18 10.18	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average	
Condition IMEI 1 * 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.29 0.29 0.29 0.31 0.31 0.36 0.36 0.36 0.48 0.48 0.48 0.48 0.55 1.78 1.78	CQP LIS 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.73 29.10 40.70 32.00 43.50 28.06 39.46	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -9.98 -19.98 -19.98 -19.98 -12.78 -20.41 -17.74 -27.04 -22.24 -19.98 -19.571 -14.00 -12.50	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93 48.74 46.41 56.41 46.00 56.00 46.00 56.00	NE Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50 18.90 30.50 21.80 33.30 17.80 29.20	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.18 10.18 10.18 10.18 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average	
Condition IMEI 1 * 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	on: FCC 15 : 358410 Freq MHz 0.15 0.15 0.18 0.20 0.20 0.29 0.29 0.29 0.31 0.31 0.36 0.48 0.48 0.48 0.55 0.55 1.78 1.78 3.01	C_QP LI: 008003672 Level dBuV 49.93 53.13 34.01 49.71 37.45 45.75 23.55 38.35 24.95 39.95 24.53 39.73 29.10 40.70 32.00 43.50 28.06 39.46 31.57	- 25/35841(Over Limit -5.98 -12.78 -20.41 -14.71 -16.04 -17.74 -27.04 -22.24 -24.98 -19.98 -9.98 -19.94 -19.94 -19.50 -17.94 -16.54	301_L LI 00800367: Limit Line dBuV 55.91 65.91 54.42 64.42 53.49 63.49 50.59 60.59 49.93 59.93 48.74 46.41 56.41 46.00 56.00 46.00 56.00 46.00	NE Read Level dBuV 39.50 42.70 23.70 39.40 27.20 35.50 13.30 28.10 14.70 29.70 14.30 29.50 18.90 30.50 21.80 33.30 17.80 29.20 21.20	LISN Factor dB 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	Loss dB 10.40 10.28 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.22 10.20 10.20 10.18 10.18 10.18 10.18 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP	

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	9kHz~40GHz	Apr. 20, 2017	Jul. 31, 2017	Apr. 19, 2018	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 06, 2017	Jul. 31, 2017	Jan. 05, 2018	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 06, 2017	Jul. 31, 2017	Jan. 05, 2018	Conducted (TH01-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY544500 83	20Hz~8.4GHz	Apr. 20, 2017	Aug. 21, 2017~ Aug. 23, 2017	Apr. 19, 2018	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz;	Apr. 20, 2017	Aug. 21, 2017~ Aug. 23, 2017	Apr. 19, 2018	Radiation (03CH03-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 14, 2017	Aug. 21, 2017~ Aug. 23, 2017	May 13, 2018	Radiation (03CH03-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	May 14, 2017	Aug. 21, 2017~ Aug. 23, 2017	May 13, 2018	Radiation (03CH03-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-128 5	1GHz~18GHz	Jan. 12, 2017	Aug. 21, 2017~ Aug. 23, 2017	Jan. 11, 2018	Radiation (03CH03-SZ
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Jun.16, 2017	Aug. 21, 2017~ Aug. 23, 2017	Jun.15, 2018	Radiation (03CH03-SZ)
Amplifier	Burgeon	BPA-530	102210	0.01Hz ~3000MHz	Oct. 11, 2016	Aug. 21, 2017~ Aug. 23, 2017	Oct. 10, 2017	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 11, 2016	Aug. 21, 2017~ Aug. 23, 2017	Oct. 10, 2017	Radiation (03CH03-SZ)
Amplifier	Agilent Technologies	83017A	MY395013 02	500MHz~26.5G Hz	Jan. 06, 2017	Aug. 21, 2017~ Aug. 23, 2017	Jan. 05, 2018	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1988315	18GHz~40GHz	Jul. 27, 2017	Aug. 21, 2017~ Aug. 23, 2017	Jul. 26, 2018	Radiation (03CH03-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	NCR	Aug. 21, 2017~ Aug. 23, 2017	NCR	Radiation (03CH03-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Aug. 21, 2017~ Aug. 23, 2017	NCR	Radiation (03CH03-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Aug. 21, 2017~ Aug. 23, 2017	NCR	Radiation (03CH03-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jan. 06, 2017	Aug. 09, 2017	Jan. 05, 2018	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Jan. 05, 2017	Aug. 09, 2017	Jan. 04, 2018	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	MessTec	3816/2SH	00103892	9kHz~30MHz	Jan. 05, 2017	Aug. 09, 2017	Jan. 04, 2018	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 19, 2017	Aug. 09, 2017	Jul. 18, 2018	Conduction (CO01-SZ)
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct.11, 2016	Aug. 09, 2017	Oct.10, 2017	Conduction (CO01-SZ)
RF Cable	Woken	B0720#0001	CO01SZ00 07	150kHz~30MHz	Oct. 08, 2016	Aug. 09, 2017	Oct. 09, 2017	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

|--|

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5 1 d D
Confidence of 95% (U = 2Uc(y))	5.1dB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	E OdB
Confidence of 95% (U = 2Uc(y))	5.0dB

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	5.0dB
Confidence of 95% (U = 2Uc(y))	5.00B

Appendix A. Conducted Test Results

Report Number : FR752406B

Bluetooth Low Energy

Test Engineer:	Sam Zheng	Temperature:	24~26	°C
Test Date:	2017/7/31	Relative Humidity:	50~53	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
					00%					
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.05	0.67	0.50	Pass		
BLE	1Mbps	1	19	2440	1.05	0.67	0.50	Pass		
BLE	1Mbps	1	39	2480	1.05	0.67	0.50	Pass		

						-	RESULTS Power T			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	0.22	30.00	1.38	1.60	36.00	Pass
BLE	1Mbps	1	19	2440	1.12	30.00	1.38	2.50	36.00	Pass
BLE	1Mbps	1	39	2480	0.58	30.00	1.38	1.96	36.00	Pass

						Avera	RESULTS DATA ge Power Table porting Only)
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
BLE	1Mbps	1	0	2402	2.04	-0.54	
BLE	1Mbps	1	19	2440	2.04	0.41	
BLE	1Mbps	1	39	2480	2.04	-0.14	

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	-1.90	-16.78	1.38	8.00	Pass		
BLE	1Mbps	1	19	2440	-0.83	-15.72	1.38	8.00	Pass		
BLE	1Mbps	1	39	2480	-1.46	-16.30	1.38	8.00	Pass		

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2372.58	49.31	-24.69	74	51.07	27.44	5.02	34.22	199	314	Ρ	Н
		2353.68	39.85	-14.15	54	41.69	27.38	5.02	34.24	199	314	А	Н
D 1 E	*	2402	87.95	-	-	89.58	27.51	5.06	34.2	199	314	Ρ	Н
BLE CH 00	*	2402	87.3	-	-	88.93	27.51	5.06	34.2	199	314	А	Н
2402MHz		2388.96	49.62	-24.38	74	51.27	27.51	5.06	34.22	130	319	Ρ	V
240211112		2358.195	39.89	-14.11	54	41.73	27.38	5.02	34.24	130	319	А	V
	*	2402	90.29	-	-	91.92	27.51	5.06	34.2	130	319	Ρ	V
	*	2402	89.64	-	-	91.27	27.51	5.06	34.2	130	319	А	V
		2363.34	48.57	-25.43	74	50.41	27.38	5.02	34.24	199	314	Ρ	Н
		2376.36	40.08	-13.92	54	41.84	27.44	5.02	34.22	199	314	А	Н
	*	2440	89.39	-	-	90.75	27.7	5.12	34.18	199	314	Ρ	Н
	*	2440	88.73	-	-	90.09	27.7	5.12	34.18	199	314	А	Н
		2499.02	50.06	-23.94	74	51.08	27.9	5.19	34.11	199	314	Ρ	Н
BLE		2499.09	41.04	-12.96	54	42.06	27.9	5.19	34.11	199	314	А	Н
CH 19 2440MHz		2389.8	49.17	-24.83	74	50.8	27.51	5.06	34.2	130	319	Ρ	V
2440MHZ		2385.04	40.05	-13.95	54	41.77	27.44	5.06	34.22	130	319	А	V
	*	2440	90.81	-	-	92.17	27.7	5.12	34.18	130	319	Ρ	V
	*	2440	90.26	-	-	91.62	27.7	5.12	34.18	130	319	А	V
		2489.78	49.9	-24.1	74	50.94	27.9	5.19	34.13	130	319	Р	V
		2493.14	40.81	-13.19	54	41.83	27.9	5.19	34.11	130	319	А	V

	*	2480	89.99			91.1	27.83	5.19	34.13	199	314	Р	Н
		2400	09.99	-	-	91.1	27.03	5.19	34.13	199	314	Г	
	*	2480	89.35	-	-	90.46	27.83	5.19	34.13	199	314	А	Н
BLE CH 39 2480MHz		2499.92	49.94	-24.06	74	50.96	27.9	5.19	34.11	199	314	Р	Н
		2490.44	40.78	-13.22	54	41.82	27.9	5.19	34.13	199	314	А	Н
	*	2480	89.43	-	-	90.54	27.83	5.19	34.13	130	319	Р	V
240011112	*	2480	88.76	-	-	89.87	27.83	5.19	34.13	130	319	Α	V
		2490.64	50.32	-23.68	74	51.36	27.9	5.19	34.13	130	319	Р	V
		2497.08	40.75	-13.25	54	41.77	27.9	5.19	34.11	130	319	А	V
Remark		o other spurio I results are P		st Peak	and Avera	ge limit lin	e.						

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	i i
BLE CH 00		4804	40.52	-33.48	74	58.73	31.54	8.59	58.34	161	360	Р	н
2402MHz		4804	41.68	-32.32	74	59.89	31.54	8.59	58.34	161	360	Р	V
		4880	39.64	-34.36	74	57.66	31.71	8.6	58.33	159	360	Р	Н
BLE		7320	46.1	-27.9	74	58.98	36.29	10.24	59.41	159	360	Р	Н
CH 19 2440MHz		4880	39.33	-34.67	74	57.35	31.71	8.6	58.33	159	360	Р	V
244010162		7320	45.81	-28.19	74	58.69	36.29	10.24	59.41	159	360	Р	V
		4960	40.9	-33.1	74	58.65	31.92	8.65	58.32	159	360	Р	Н
BLE		7440	46.23	-27.77	74	59.01	36.44	10.25	59.47	159	360	Р	Н
CH 39 2480MHz		4960	40.87	-33.13	74	58.62	31.92	8.65	58.32	159	360	Р	V
2400101712		7440	46.93	-27.07	74	59.71	36.44	10.25	59.47	159	360	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	е.						

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	25.89	-14.11	40	30.63	26.7	0.56	32	140	100	Р	Н
		89.17	28.32	-15.18	43.5	41.56	17.56	0.98	31.78	-	-	Р	н
		96.93	27.83	-15.67	43.5	40.07	18.5	1.01	31.75	-	-	Р	Н
		159.01	29.18	-14.32	43.5	41.94	17.41	1.32	31.49	-	-	Р	Н
0.4011-		399.57	27.81	-18.19	46	30.94	26	2.12	31.25	-	-	Р	Н
2.4GHz BLE		797.27	31.75	-14.25	46	32.46	27.39	3.09	31.19	-	-	Р	Н
LF		42.61	31.07	-8.93	40	41.57	20.82	0.67	31.99	180	40	Р	V
		88.2	24.5	-19	43.5	37.99	17.32	0.97	31.78	-	-	Р	V
		145.43	26.6	-16.9	43.5	38.97	17.9	1.26	31.53	-	-	Р	V
		195.87	28.76	-14.74	43.5	42.88	15.77	1.45	31.34	-	-	Р	V
		404.42	28.11	-17.89	46	31.33	25.89	2.13	31.24	-	-	Р	V
		982.54	32.99	-21.01	54	30.72	30.05	3.45	31.23	-	-	Р	V
Remark		o other spurio I results are F		st limit li	ne								
	<u> 2</u> . Ai			51 1111111									

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any							
	unwanted emissions shall not exceed the level of the fundamental frequency.							
!	Test result is over limit line.							
P/A	Peak or Average							
H/V	Horizontal or Vertical							

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth v4.0 LE	62.50	0.391	2.556	3kHz

Bluetooth v4.0 LE

Ref Le Att SGL	evel	35.00 dBn 30 dB	o Offset 3 8 e SWT	.5.00 dB (2 ms	RBW 10 VBW 10				
1Pk Ma	ax								
30 dBm-						0	03[1]		0.06 d
Jo abin									626.09 µ
20 dBm-						N	41[1]		0.21 dB
							T T	1	713.04 µ
10 dBm·	-								
				M1		D2	D3		
) dBm—						4	1		
-10 dBm									
10 000	1								
-20 dBm					_				
ſ				h . 1			1. mul		1 and 1
30 dBm	+-י		Vicinterting	yraw .	-	- Mari	MUMMUM		Wy march with
40 dBm	די								
-50 dBm									
-JU UBII									
-60 dBm					_				
CF 2.44	4 CH7				69	1 pts			200.0 µs/
larker	T GI IZ				09	1 pt3			200.0 µ37
Type	Ref	Trc	X-value	1	Y-value	1 Eun	ction	Functi	ion Result
M1	1.01	1		04 µs	0.21 (7 41100	on Rogan
D2	M1	1		L.3 µs	0.00				
D3	M1	1		09 µs	0.06	dB			