Measurement of Maximum Permissible Exposure

1. Foreword

In adopt with the Human Exposure IEEE C95.1, and according to the FCC 1.1310. The *Maximum Permissible Exposure (MPE)* is obligated to measure in order to prove the safety of radiation harmfulness to the human body.

The *Gain* of the antenna used is measured in an *Anechoic chamber*. The *maximum total power to the antenna* is to be recorded. By adopting the *Friis Transmission Formula* and the *power gain of the antenna*, we can find the distance right away from the product, where the limit of the MPE is.

2. Description of EUT

FCC ID : MSQWLHDD25

Product name: Wireless Hard Drive Box

Model name : WL-HDD2.5

Classification : Mobile Device

(i) Under normal use condition, the antenna is at least 20cm

away from the user;

(ii) Warning statement for keeping 20cm separation distance and the prohibition of operating next to the person has been

printed in the user's manual

Frequency Range : $2.412 \text{ GHz} \sim 2.462 \text{GHz}$

Supported Channel: 11 Channels

Modulation Skill: DBPSK, DQPSK, CCK, OFDM

Power Type : Powered by the adapter,

Model: ADP-15GH B Mfg.: DELTA Electronics, Inc. I/P: 100-240VAC, 50-60Hz, 0.5A; O/P: 5VDC, 3A

188cm length, non-shielded, no ferrite core

3. Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Filed Strength (H) (A/m)	Power Density (S) (mW/cm2)	Averaging Time $ \mathbf{E} ^2, \mathbf{H} ^2$ or S (minutes)
(A) Limits for Occu	pational/Controlled	Exposure		
0.3-3.0	614	1.63	100	6
3.0-30	1842/f	4.89/f	$900/f^{2}$	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B) Limits for Gene	ral Population/Unco	ontrolled Exposure		
0.3-1.34	614	1.63	100	30
1.34-30	824/f	2.19/f	$180/f^2$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

[The EUT is tested in transmit and receive modes and in the first, middle and the last channel separately. The following shows only our observation have the greatest emissions.]

According to OET BULLETIN 56 Fourth Edition/August 1999, Equation for Predicting RF Fields:

Friis Transmission Formula:
$$S = \frac{PG}{4\pi R^2} = \frac{67.45 \times 1.452}{4\pi (20)^2} = 0.01949 mW/cm^2$$

Estimated safe separation: $R = \sqrt{\frac{PG}{4\pi}} = \sqrt{\frac{67.45 \times 1.452}{4\pi}} = 2.792 cm$

Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 4.512 cm."

Where: S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

The *Numeric gain G* of antenna with a gain specified in dB is determined by:

G = Log⁻¹ (
$$dB$$
 antenna gain / 10)
G = Log⁻¹ (1.62 / 10) = 1.452

Maggarage aut of Manimum Dannissible Eurogram	2 (2
Measurement of Maximum Permissible Exposure ————————	3/3
4 70	
Appendix	
Antenna Specification	
Timeeniu Specificution	

WHA YU INDUSTRIAL CO., LTD. (HEAD OFFICE)
TAI HWA ELECTRONIC CO., LTD.(CHINA)
SHANGHAI HUA YU ELECTRONIC CO., LTD.(CHINA
AEON TECH CO., LTD. (CHINA)

SPECIFICATION FOR APPROVAL

CUSTOMER:	華碩科技股份有限公	(司
PART NAME:	RF Antenna Assembly	
PART NO.:		REVISION:
W. Y. P/NO.:	C660-510012-A	REV.: X1

	MANUFACTURER	CUSTOMER
	SIGNATURE	SIGNATURE
APPROVED	1.15	
BY :	Winston	
DATE :	2004/6/15	

WHA YU GROUP

WHA YU INDUSTRIAL CO., LTD.(HEAD OFFICE)

譁 裕 實 業 股 份 有 限 公 司

Address: #70 Shui Li Road, Hsin Chu City, Taiwan, R.O.C.

Tel:+886-3-5714225(REP.)

Fax: $+886-3-5713853 \cdot +886-3-5723600$

TAI HWA ELECTRONC CO., LTD. (CHINA)

台 樺 電 業 制 品 廠

Address: Pak Ho District, Hiu Street Town, Dong Guan City, Guangdong, China

Tel: + 86-769-5599375 · + 86-769-5912375

Fax: + 86-769-5599376

HUA HONG INTERNATIONAL LTD.

華弘國際有限公司

Rm.1103A, President Commercial Centre, 608 Nathan Road, Mong Kok, Kowloon, Hong Kong

Tel: + 86-852-27712210 Fax: + 86-852-23843747

SHANGHAI HUA YU ELECTRONIC CO., LTD. (CHINA)

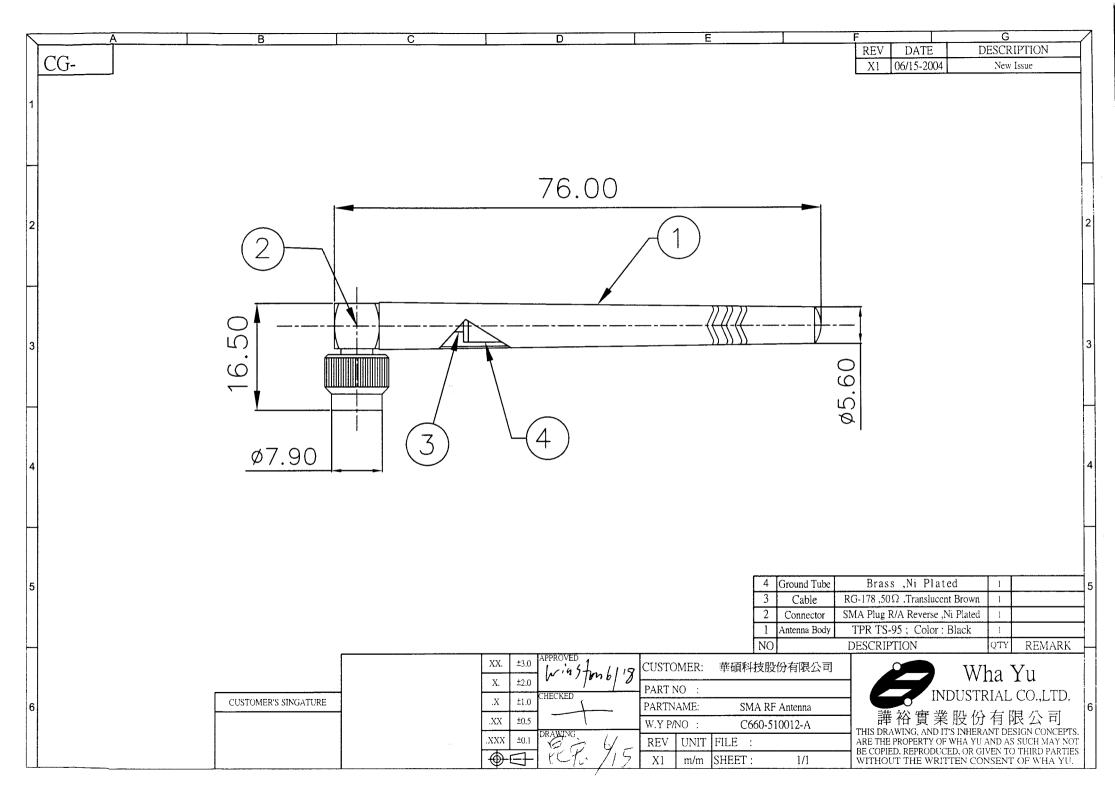
上海譁裕電子有限公司

Address: 3586, Wai Oing Song Road, Oing Pu County, Shanghai China

Tel: + 86-21-59741348 · + 86-21-59744101~4

Fax: + 86-21-59741347

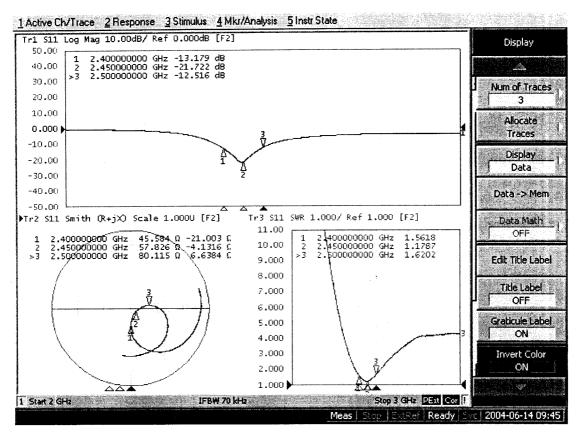
SU ZHOU AEON TECH CO., LTD. (CHINA)


蘇州華廣電通有限公司

Address:Limin North Road, LiLi Town,LiLi Industrial Park,LinHu Economic Zone Wujiang City,Jiangsu Province,China

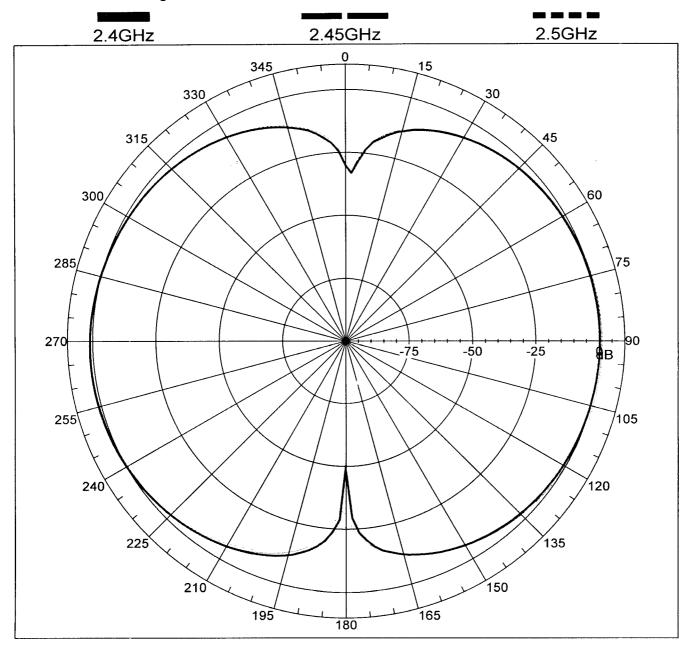
Tel: + 86-512-63627980 Fax: + 86-512-63627981

INDEX


ltem	1	Content	Page
1.		成品圖	1
2.		測試報告	2~4
3.	•••••	Cable 規格	5~9
4		膠水特性及黏著力	19~23

RF Antenna Assembly

P/NO: C660-510012-A SPEC: 2.4 GHz

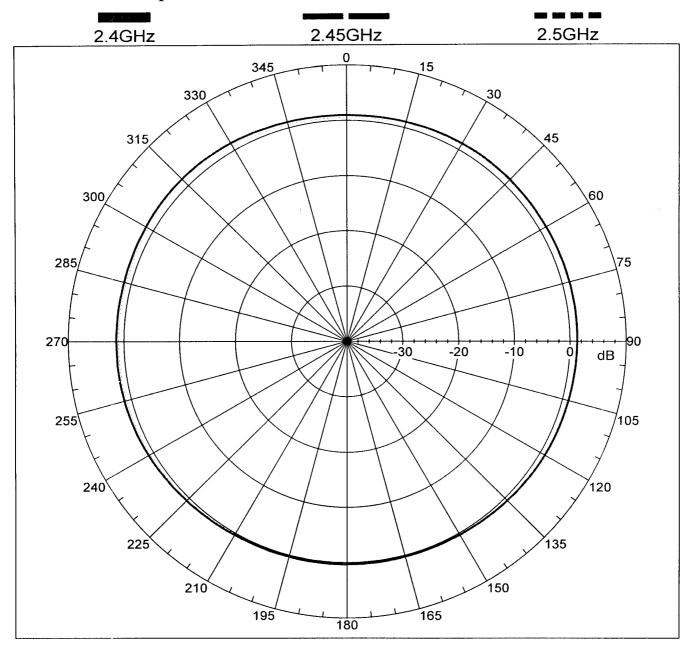



譁裕實業股份有限公司

WHA YU INDUSTRIAL CO., LTD

C660-510012-A

Far-field amplitude of 2.4GHz small dipole antenna-E-plane.nsi

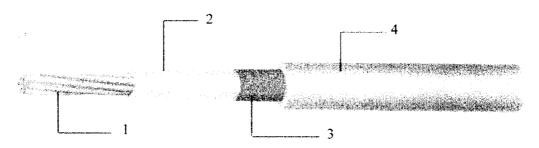


譁裕實業股份有限公司

WHA YU INDUSTRIAL CO., LTD

C660-510012-A

Far-field amplitude of 2.4GHz small dipole antenna-H-plane.nsi


Nizing Electric Co., Ltd. 11-15 Santai Rd., Hsinchuang, Taipei Hsien, 242, Taiwan, R.O.C Tel: 02-29016164 Fax: 29050644 E-mail: shenbinnizing@yahoo.com.tw

RG 178 B/U	FEP INSULATED	PAGE	1/2
PRODUCT	HIGH-FREQUENCY COAXIAL	ISSUED	21. Oct. 2003
STANDARD	CABLE	REVISED	

I - Scope

This specification presents a FEP insulated high-frequency coaxial cable AWG 30, 1.8 mm O.D. for internal wiring of electronic equipment, such as Computer / Notebook with wireless communication systems.

II - Construction

Item		Unit	Details
1. Inner Conductor	Material		CP-AG
	Composition	No./mm	AWG 30 or 7 × 0.1
	Dia. (approx.)	mm	0.305
2. Dielectric	Material	And the contract of	Extruded FEP
	Nom. O.D.	mm	0.84 ± 0.05
	Color		Natural
3. Outer Conductor	Material	s de de Construit.	Silver coated copper
	Composition	Valendare.	Braided (16 / 3 / 0.1)
	Dia. (approx)	mm	1.29 ± 0.07
4. Jacket	Material	pro pro d'amago po	Extruded FEP
	Dia.	mm	1.80 ± 0.08
	Color	*\$96146017	Standard color is Light Orange

	(RESED		
Note:		MADE BY	Probe Lie
14010 .		APPROVALS	Shen Bu Chat

Nizing Electric Co., Ltd. 11-15 Santai Rd, Hsinchuang, Taipei Hsien, 242, Taiwan, RO.C. Tel: 02-29016164 Fax. 29050644 E-mail: shenbinnizing@yahoo.com.tw

RG 178 B/U	FEP INSULATED	PAGE	2/2
PRODUCT	HIGH-FREQUENCY COAXIAL	ISSUED	21. Oct. 2003
STANDARD	CABLE	REVISED	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

III - Characteristics

Item	Unit	Specified Value	Note
Temperature Rating	°C	-55 ~ +200	
Voltage Lasting	V	1000	
. :		Dielectric core: No breakdown at AC 3 ky for 0.2 sec.	Spark test
Dielectric strength		Jacket: No breakdown at AC 3 kv for 0.2 sec.	Spark test
Characteristic Impedance	Ω	50 ± 2	TDR method
Capacitance	pF / ft	29.4	
h. M. h. Mark is a superior of the superior of		16.0	100.0 MHz
	dB/100ft	33.0	400.0 MHz
Attenuation. (Max.)		52.0	1.0 GHz
		94.0	3.0 GHz
Approx. Weight	g/m	7.68	and the second section of the second section secti

	1		
N		MADE BY	Rocke Con
Note:		APPROVALS	Shon Bin chad
Security and the second security of the second seco			

Cable Specification

Cable: Mil-C-17 Coaxial Cable RG-178

1. Construction:

- 1 Conductor...... 30AWG 7/38 SCCS
- 3 Shielded.......38AWG SPC OD: 0.051" Nominal
- 4 Jacket.....FEP OD: 0.071"±0.004"

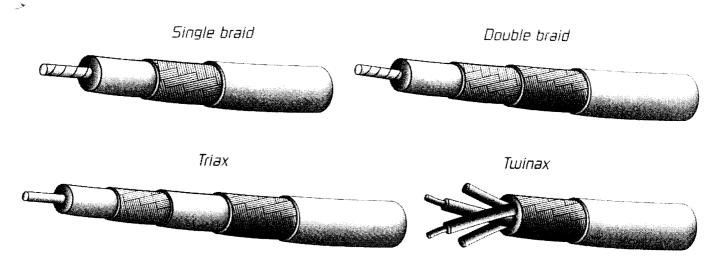
2. Physical Properities:

- 1 Weight per 1000ft...... 6.3 lbs Maximum
- 2 Bend Radius................0.35" Mininum
- 3 Operating Temperature Range -55°C ~ 200°C

3. Electrical Properities:

- 2 Capacitance...... 32 pF/ft Maximum
- 3 Cut off Frequency...... 116 GHz
- 4 Attenuation.......45.0 dB/100ft @ 1GHz

64.4 dB/100ft @ 2GHz


79.7 dB/100ft @ 3GHz

92.7 dB/100ft @ 4GHz

104.3 dB/100ft @ 5GHz

115.0 dB/100ft @ 6GHz

Mil-C-17 Coaxial Cable QPL Approved

Harbour supplies a complete line of high temperature, high performance QPL approved MIL-C-17 coax cables for the military, commercial and industrial applications. The specific M17 constructions referenced are manufactured in accordance with the most recent revision of the MIL-C-17 specification. The MIL-C-17 specification defines complete physical and electrical characteristics for each M17 part number, including dimensional parameters, dielectric materials, shield construction, maximum attenuation, and VSWR levels.

VSWR Sweep Testing

When selecting a 50 ohm coaxial cable, constructions with VSWR requirements are recommended. Manufacturing and sweep testing cables with concern for VSWR ensures a quality cable free of spikes over the referenced frequency range. (Note the test frequencies specified in the electrical characteristics section.)

Precision PTFE Dielectrics

All of the high temperature, high performance coax cables listed have PTFE dielectrics with high dielectric strength and low capacitance in proportion to the dielectric constant. All PTFE dielectrics are manufactured with tolerances tighter than the MIL-C-17 specification to ensure uniformity of electrical characteristics, especially impedance, attenuation and VSWR.

Tape wrapped PTFE Constructions

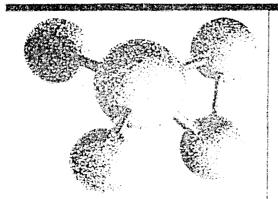
Harbour also manufactures PTFE tape wrapped cables to a previous revision of the MIL-C-17 specification. These constructions can withstand operating temperatures up to 250° C. versus 200° C. for FEP jacketed cables. Also, PTFE tape wrapped cables are generally more flexible than their FEP jacketed counterparts.

UL Approvals

All of Harbour's M17 part numbers manufactured to the MIL-C-17 specification may be ordered with UL and FT4 approvals.

Mil-C-17 Coaxial Cables

Physical Characteristics:


	Center	PTFE	1.45 / 1. 1.1		Overall	Minimum	Operating	Weight	
M17 Number	Conductor	Dielectric	Shield	Jacket	Diameter	Recommended	Temp. (%C)	(lbs./MFT)	Comments
		Diameter				Bend Radius			
M17/60-RG142	.037" SCCS	.116"	SPC(2)	FEP	.195"	1.0"	-55 +200	43.0	
M17/93-RG178	.0120"(7/.004")SCCS	.033"	SPC	FEP	.071"	0.4"	-55 +200	6.3	
M17/93-00001	.0120*(7/.004**)SCCS	.033"	SPC	PFA	.071"	0.4"	-55 +230	6.3	M17/93-RG178
									wi/extended temp. range
M17/94-RG179	.0120"(7/.004")SCCS	.063"	SPC	FEP	.100"	0.4"	-55 +200	10.8	
M17/95-RG180	.0120′(7/.004′)SCCS	.102"	SPC	FEP	.141"	0.7"	-55 +200	19,8	
M17/110-RG302	.0253"5CCS	.146"	SPC	FEP	.202''	1.0"	-55 ±200	40.0	
M17/111-RG303	.037"SCCS	116"	SPC	FEP	.170°	0.9"	-55 +200	31.0	
M17/112-RG304	.059" SCC5	.185"	SPC(2)	FEP	.280′′	1.4"	-55 ±200	94.0	
	.02017(7/.0067°')SCCS	.060"	SPC	FEP	.098°	0.5"	-55 +200	12.2	
M17/127-RG393	.094"(7/.0312")SC	.285″	SPC(2)	FEP	.390′′	2.0"	-55 ±200	165.0	
M17/128-RG400	.0384"(197.008")SC	.116"	SPC(2)	FEP	.195″	1.0"	-55 +200	50.0	
	.0120*(7/.004*')SCCS	.033"	•	FEP(2)	.116"	0.6"	-55 ±200	15.0	Triaxial M17/93-RG178
M17/152-00001	.0201*(7/.0067**)SCCS	.060″	SPC(2)	FEP	.114"	0.6"	-55 +200	18.5	Double shielded
and Allen		agaran. Manananan							M17/113-RG316
M17/158-00001	.037"SCCS	.116″	SPC(2)	FEP	.195″	1.0"	-55 +200	56.0	Unswept M17/60-RG142
M17/169-00001	.0120*(7/.004**)5CCS	.033"	SPC	FEP	.071"	0.4"	-55 +200	6.3	Unswept M17/93-RG178
M17/170-00001	.037"(SCCS	.116"	SPC	FEP	.170″	0.9"	-55 + 200		Unswept M17/111-RC303
M17/172-00001	.0201′(7/.0067′′)SCCS	.060"	SPC	FEP	.098"	0.5"	-55 - 200		Unswept M17/113-RG316
M17/174-00001	.094"(7/.0312")SCCS	.285″ ः	SPC(2)	FEP	.390"	2.0"	-55 +200		Unswept M17/127-RG393
M17/175-00001	.0384"(19/.008")SC	.116"	SPC(2)	FEP	.390"	1.0"	-55 +200		Unswept M17/128-RG400
M17/176-00002	.0235'(19/.005'')SPA(2	.042"	SPA	PFA	.129"	0.6"	-55 +230	18.0	Controlled impedance
			·						twinas
	Jacketed RG Cables								
RG 187 A/U	.0120*(7/.004)SCCS	.063	SPC	PTFE	.100"	0.5"	-55 ÷250	10.0	Flexible, 250 C. rated
	.0201"(7/.0067)SCCS	.060	SPC	PTFE	.1(h)"	0.5"	-55 ±250	11.0	Flexible, 250° C. rate
RG 195 A/U	.0120"(7/.004)SCCS	.102	SPC	PTFE	.141"	0.7"	-55 +250	18.0	Flexible, 250° C. rate€
RG 196 A/U	.0120"(7/.004)SCCS	.034	SPC	PTFE	.067"	0.4"	-55 +250	6.0	Flexible, 250° C. rated

Electrical Characteristics:

	Impedence	Capacitance	Max. Operating		Maxii	num attenu	ation (dB	(100A) @		Max Erequency
M17 Number	(ohms)	(pF/ft)	Voltage (RMS)	100 MHz	400 MH2	1 GHz			10 GHz	(GHz)
M17/60-RG142	50 +/- 2	29.4	1900	5.5	11.7	19,0	35.0	48.0	•	17.4
M17/93-RG178	50 +/- 2	29.4	1000	16.0	33.0	52.0	94.0			3,()
M17/93-00001	50 +/- 2	29.4	1000	16.0	33.0	52.0	94.0		***************************************	3.0
M17/94-RG179	75 +/- 3	19.4	1200	-	21.0				M	**
M17/95-RG180	95 +/- 5	16.4	1500	*	17.0	~	-			
M17/110-RG302	75 +/- 3	19.4	2300	~	8.0	~	26.0		e.	**
M17/111-RG303	50 +/- 2	29.4	1900	3.9	8.0	15.0	28.0		***************************************	
M17/112-RG304	50 +/- 3	29.4	3000	2.7	6.4	II.l	22.0	30,0	~	8.0
M17/113-RG316	50 +/- 2	29.4	1200	11.0	21.0	38.0	58.0	-	~.	3.0
M17/127-RG393	50 +/- 2	29.4	2500	2.4	5.0	8.8	18.0	24.6	37.0	0.11
M17/128-RG400	50 +/- 2	29.4	1900	4.5	10.5	17.0	38.0	50.0	78.0	12.4
M17/131-RG403	50 +/- 2	29.4	1000	-	37.0	-		-	-	10.0
M17/152-00001	50 +/- 2	29.4	1200	11.5	24.0	40,0	75.0	110.0	170.0	12.4
M17/158-00001	50.+/-2	29.4	1900		9.5	-			-	
M17/169-00001	.50 ±/- 2	29.4	1000		29.0	~	-	*	~	
M17/170-00001	50 +/+ 2	29.4	1900		8.6	-	-	*	~	11
M17/172-00001	50 +/- 2	29.4	1200		21.0	-	-		-	***
M17/174-00001	50 +/- 2	29.4	2500		5.0	**	-		*	
M17/175-00001	50 +/- 2	29.4	1900		10.5		*		~	The second secon
M17/176-00001	77 +/-7	19.0	1000	, des	-	~	*		*	
PTFE Tape Wrap	Jacketed RO	G Cables								
RG 187 A/U	75 ±/-3	19.4	1200	-	21.0	149			-	>
RG 188 A / U	50 +/- 2	29.4	1200	11.0	21.0	38.0	58.0		~	3
RG 195 A / U	95 +/- 5	15.4	1500	,	17.0	-			~	3
RG 196 A "U	50 +/-2	29.4	1000	as .	29.0	,		-	~	1

[&]quot;Maximum frequencies" are those as referenced on individual slant sheets of the MIL-C-L7 specification. No values are given for unswept constructions as the specification recommends these cables should not be used above 400 MHz. (All figures referenced above are nominal unless otherwise specified.)

Two-part	adhesive	1590	High Super 5	EP-330 (HighSuper30)	EP-331	1500	Super
Feature		curing for 5 min type		curing for 30 min type	curing for 30min type Low- viscosity	Standard type	
Appearance Base		Clear, blue	Translucent, blue	Translucent, pink	Clear, light yellow	Clear, light yellow	Translucent
	Hardener	Clear ight yellow	Translucent, light yellow	Translucent, milk white	Clear, light yellow	Clear, light brown	Light yellow
Viscosity	Base	8	120	80	7	25	100
(Pa • S/20°C)	Hardener	12	70	170	7	60	50
Specific gravity	Base	1.17	1.17	1.17	1.16	1.16	1.14
(g/cm²)	Hardener	1.11	1.15	1.14	1.16	0.97	0.99
Mixing ratio(Ba	ase : Hardener)	1:1	1:1	1:1	1:1	1:1	1:1
Pot	t life	Within 5 min	Within 5 min	Within 30 min	Within 30 min	Within 1 hr	Within 1 hr
Tensile shear s	stength(N/mm²)	19.0	18.0	17.5	17.6	15.7	15.1
T-Formed peeling	adhesion (N/mm)	2.71	0.31	0.47		0.40	
	s(shore D)	77	77	82	71	82	
Coefficient of li	near expansion 10⁻⁵)	8.6	10.7	6.7	4.1	7.1	
Tg((°C)		47	43		53.7	
Volume resist	tivity(Ω • cm)		4.9 × 10 ¹⁵	3.8 × 10 ¹¹	3.6 × 10 ¹¹	1.1 × 10 ¹⁶	
Coefficient of wat	ter absorption(%)		2.5	2.3		0.8	
Capacity standards		Base 1 kg	6 g set 15 g set	320 ml set Base 3 kg	Base 1 kg	Base 500 g, 1 kg, 3 kg, 15 kg	15 g set
		Hardener 1 kg	25 g set 80 g set	Hardener 3 kg 6 g set, 15 g set, 80 g set	Hardener 1 kg	Hardener 500 g, 1 kg, 3 kg, 15 kg	40 g set 110 g set

施敏打硬 CEMEDINE 1500

[一般性質]

			./	
	ĝή	Đ.	化	新
調料(Epoxy 的中間翻譯者(海龍	1 39 94	Amid	o) 撤	ly¬ 脂標
99.6			99.4	
350			600	
1,16			0.97	
	\$	ŧ		
	60~	110		
参照混合谈	化劑後	的粘度	變化	挑
	3//5	ŧ.		
6 4	动;10	分詞		
	2年	:		
	環氧 (Epoxy)的中間體淺黃色 液體 99.6 350 1.16	環氧 (Epoxy) 樹脂的中間體淺黃色透明液體 99.6 350 1.16 60~ 參照混合硬化劑後 3 小時 6 小時10	選氧 (Epoxy) 樹脂 漿醯酚的中間體證黃色透明 Amid 色透明 99.6 350 1,16 無	環氧 (Epoxy) 樹脂 聚醯胺 (Pob 中間體淺黃色透明 Amido) 核色透明液體 99.6 99.4 350 600 1.16 0.97 無 60~110 參照混合硬化劑後的粘度變化 3 小時 6 小時10分鐘

(特性)

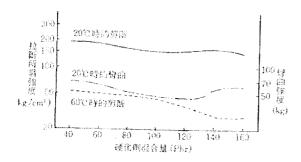
由兩種沒體混合而成的環領 (Epoxy) 樹脂平特着制 ,能在常溫下硬化,應用範胞至轉廣汎,可穩定結營愈密, 變膠以及其他各種物質。而由於此結營劑,通常以聚酸核) Poly-Amido) 樹脂與其硬化劑,具有下列各優點:

- 1. 能在常温下硬化·
- 2. 縦使所使用的硬化劑份量不同,也不影響其特性。
- 3. 由於能產生比一般黏출劑富有彎曲性的黏着屬,每代科 着不同材質的物品,他能以黏養醫緩和熱膨脹的差別新 引起的兩物品彎曲,對機械學的衝擊也能顯示輕馬與計 的健能。
- 由於能形成透明的結署層,可以私資透明的的資,如明 職築管。

[用 途]

由於能量力黏着各種物質,緒如金屬,轉硬化塑膠,玻璃,機模基配以及一般求底器具等等,應用範圍至腐廣訊。 縱然是複聚乙烯(Polythylene),聚醛(Polyester),天然以及人造樣膠等,以一般的黏着根本無法黏着的均 質,如果如以適當的表面處理,即可强力熱着。

〔實 例〕

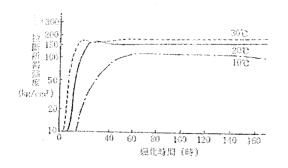

汽車、火車、船隻、發接……· (將金屬把手薪着於玻璃器/可以黏葡鉛製品·三聚原胺 (Melamine) 鞍飾板等 ,於內部以增加强度/不同金屬間為棄的止電傷且加黏之/ 當作訪實塗料亦可)。

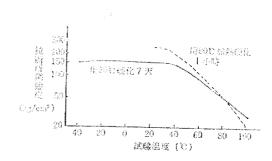
電器製品……。(由於是一種優秀的黏着劑,使用較高 根據聲器、普響線圈的黏著/電磁器或外殼的黏著/網屬框 的黏着/維粉密的黏著/馬達線圈的黏着等等)。

建卷……(晚時、壓点力門或特文字板結於浮風钻注把 手三所明設備以及货量型限装飾品的加站以及租立乙不透線 製品、銀製建材、陶器或大页石等需要强力黏着物品的加盐

高級裝飾品,玻璃以及豐陽製工藝品,精密機械…… (碳像機,捣整距鏈僅/分光機等等的資度)。 其他鱔如罐頭,運動器行,公路標誌等等的明點。 除土這各種類點界,它可以使用作填充劑,鑄模用,數資用 以及速度用。

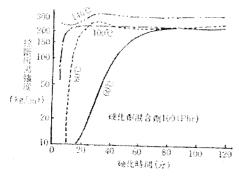
*****	and the same of th	The second secon	
	三字曲 二字形 二字形 一块 一		
	60		
	840 1	60 (44.7)	
	1985 - 0	16 - 60 J	
	. Like Eller	그 사고 그 장에 봤고요	

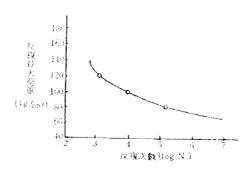



300 70 57 雙 (kg/cm²) (kg) 100 120 140 线化制混合量 (Phr)

图Ⅱ 2.1 硬化賴混合量和粘力强度 (在20°C 比天的现在)

图Ⅱ 2.2 種化劑組合量和結方程度 (音80°C·引持的硬化) 試験片: 以及其他問題 1 2.1


試験片: 取錄板 (25×100×1.6mm) (Over-lap)12.5mm



劉Ⅱ 2.3 常温转的硬化特性。硬化剂混合率 100phr

剛川 2.5 母熱特性 硬化剂混合率器 100phr

®Ⅱ 2.4 加熱硬化特性 硬化網提合報碼 100phr

図Ⅱ 2.6 毫化特性

表[[2.1 物理特性

Property of the second		 	~~~~
抗 税 力 (kg/mm²)	5.04	10000min M	63
拢 拼 力 (kg/mm²)	7.40	硬変{ロックサポルM パーコル ジョアーD	67 82
授的流性率(kg/mm²)	214	表面图定范别(9)	5.6×10 ¹²
例 \$8 58 (kg/mm*)	11.6	營積國有章組(O-Cm)	10.5×10 ¹³
展程程度 (kg/mm*)	15.10(6.41)(4)	透視等 (10%cycle)	2.94
的變形器度(°C)	47	電器破壞(kv/mm)	19

表[[2.2 拉斯所灣强度

	拉斯斯特爾皮	被	3,5	13	拉路所需强度 (20°C)
(4	83	<i>3</i> -	元 集	J.	22
墨水西哥杉村	106 ∹	*	乙 路 間	Sit.	19
新 羅 糊 特 秘	99<ः 66	Nã :	克 力 樹	31	30
が ** 報	138	Æ S	[[]	j ši	36
/G	61	三 湾	- 親 接 製 : (裏 面)	5 N	55
	80	e x			45
路 滋 綾	71	F	(W M) R	P	. 125
H K K	50	,			

[註] 1. 結着條件: 20°C, 硬化7天, 硬化劑混合比 100phr(接合部over-lap)12.5mm。

2.本記號者表示材料拉斷。

表 [[2.3 促進劣化特性

100 112
······································

[註] (1) 20±1°C, 65±5%RH 各保持 1 個月的試験片;②50°C100%RH;③-5°C8小時~50°C16小時。

表 11 2.4 耐候注

拉舞所發程度 (kg/cm*)

Anna Arabanda ar Valanda da d	1,	(10年)	火	111	Ý	F)01	4	130
	7	(3年)	*	123	У	3 年	17	137
	d	(2年)		130	i į	2 平	<i>if</i>	133
	η	(1年)	×	138		1年		153
	线输片的特力。	3歲 (6個月)	*	156	6月48		等情力程度	147
***************************************	State - State State -		73 B	7 的 特	力量度			147

(計) 於20±1°C, 65±5%RH 保持各期間的試驗片。

表 1 2.5 耐水性 (20°C,7 天硬化)

拉斷所需強度 (kg/cm²)

· 特問	0	3 (3 //)	6個月	1 9
おりおねし	120	106	123	120
日本成績		109	117	109

(註) 创化产股合比高 100phr 战级片:广德领 (100×25×1.5mm) (设合器Over-lap)12.5mm。

表 II 2.6 耐水性 (60°C,2 小污诞化)

拉點所開程度 (kg/cm²)

	0	3 (44)	6 993	1 4
TERN	157	150	169	163
引出基础		133	108	116

(注) 周表 [[2.5

ORDINE ROOM STATE OF THE STATE

表[[2.7 耐 油 性

拉斯斯喬强度 (kg/cm²)

1 %	3 天	5,5	10天	20天	1 部月
		6.94	80,0	especially.	79.0
		77,5	87.5		80,0
1 1 1 1		82.5	77.6		89,5
77.6	75.3	. 80.0	74.3		71.0
1 : :		79.0	78.0	89,0	76.0
40天	2 照月	3 扫月	6 (4)	1 👯	[10 h
ALT .		73.0	65.9	76.3	45.4
.en.unione	86.5	71.5	30,5	80.2	
man nite	70.5	79,5	78,7	79,7	ng ng Per Garan (ha
·	75.5		75.4	68.3	April 1
71.5		purposes.		No.	
	77.6	77.6 75.3 40天 2 周月 - 86.5 - 70.5 - 75.5	77.5 - 77.5 - 82.5 77.6 75.3 80.0 - 79.0 - 79.0 - 73.0 - 86.5 71.5 - 70.5 79.5 - 75.5		

[註] 1. 額化劑混合比為80phr,試驗片電水片(100×25×3mm)接合鄉(Over-lap)12.5mm 2. 結論優惠結論。

3. 試驗片全部破裂。

表II 2.8 耐溶剂、耐藥品性

	AN AN			没满7天没的乱	力保持率(65)	浸渍 1 個月後的	(新力保持單(第3)
			類	別20°C領化 7 美 的試験片	D180°C前化1/1。 時的試象性	以20°C硬化7天 的試験/i	以80°C領化1小 時的法統計
	EL.		妈	107.0	80.6	94.1	78.8
育				85.5	63.8	51.7	6ଟି. 8
				88.8	69.5	93.4	70.8
				89.5	71.3	** 97.4	68.7
M				90.2	64.7	101.3	69.1
		翘 化	舖	91.5	72.7	65.0	69,5
	Мi	Ö	3 11	102.7	90.8	107.3	90.3
411	Ø	约	100 mm	96,2	87.8	98.1	81.2
wasting on	Æ		水	93.4	72,3	96.3	69.3
S)	10%	10 ta a	7 at	93.4	72.8	79.8	69,8
	10%	wa na h		74.7	67.8	70.8	57.2
	10%	显性常有	虚虚	97.3	74.3	83.8	71.3
55	10%	在母长	游戏	89.6	71.8	91.0	69,8
	10%	Ak la d) XS 4	91.2	77.8	78.1	61.2

[由] 结爵混合率=1:1、該職店: 軟雞片(25×100×1.6mm) 但是問壁試驗時使用了SUS-27,接合部(Over-lap) 3 12.5mm ·

容量規格=(主)、硬 110g、1kg、

15kg (組)

