6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

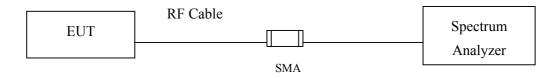
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

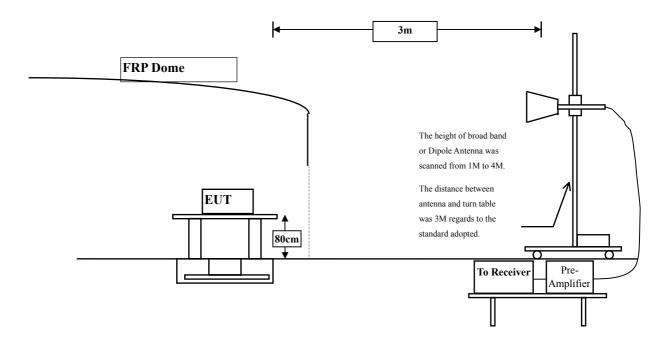
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.639	73.47	105.108	Peak
Horizontal	2412	31.639	55.29	86.928	Average
Vertical	2412	30.95	67.42	98.369	Peak
Vertical	2412	30.95	49.92	80.869	Average

Note: 1:Spectrum Analyzer setting:

```
Peak detector: RBW=1MHz, VBW=1MHz
```

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2389.9	105.108	48.23	56.878	74.000	Peak
Horizontal	2390	86.928	56.06	30.868	54.000	Average
Vertical	2389.9	98.369	48.23	50.139	74.000	Peak
Vertical	2390	80.869	56.06	24.809	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

gilent Spectrum Analyzer - Swept SA RL RF 50Ω AC		SENSE:INT	ALIGN AUTO	04:07:13 PM Mar 14, 2012	
Center Freq 2.3900000	DO GHZ PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.00 dBm			Mk	r3 2.389 9 GHz -42.40 dBm	Auto Tun
OB 00 000 000 000 000 000 000 000 000 00					Center Fre 2.390000000 G⊦
	المعادية المعادية	3		Lating terraine	Start Fre 2.340000000 GF
70.0					Stop Fre 2.440000000 GH
enter 2.39000 GHz Res BW 1.0 MHz KR MODELTRO SCL		1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) concition value	CF Ste 10.000000 MH Auto Ma
1 N 1 f 2 N 1 f	2.412 9 GHz 2.390 0 GHz 2.389 9 GHz	5.83 dBm -42.88 dBm -42.40 dBm			Freq Offs 0 H

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Sw					
RL RF 50 G	00000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	04:07:48 PM Mar TRACE 1 2 TYPE MW	3456 Frequency
0 dB/div Ref 20.00	PNO: Fast G	☐ Trig: Free Run Atten: 30 dB	М	kr2 2.390 0 -53.64	GHz Auto Tun
og 10.0 0.00					Center Fre 2.390000000 GH
0.0		2			2.340000000 Gł
0.0					Stop Fre 2.440000000 GF
enter 2.39000 GHz Res BW 1.0 MHz		/ 10 Hz		Span 100.0 p 7.80 s (100	1 pts) CF Ste 10.000000 Mi
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.412 7 GHz 2.390 0 GHz	2.43 dBm -53.64 dBm	NCTION FUNCTION WIDTH	FUNCTION VAL	Auto Ma
3 4 5 6 7					Freq Offs
8 9 0 1 2					
5G			STATU	JIS	

QuieTer

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.019	75.68	107.699	Peak
Horizontal	2462	32.019	56.82	88.839	Average
Vertical	2462	32.019	67.91	99.929	Peak
Vertical	2462	32.019	50.7	82.719	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2484.4	107.699	45.94	61.759	74.000	Peak
Horizontal	2484.8	88.839	49.58	39.259	54.000	Average
Vertical	2484.4	99.929	45.94	53.989	74.000	Peak
Vertical	2484.8	82.719	49.58	33.139	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

RL RF 50	Swept SA LΩ AC	SENSE:INT	ALIGNAUTO	04:24:36 PM Mar 14, 2012	
enter Freq 2.483			Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
dB/div Ref 20.00) dBm		Mk	r3 2.484 4 GHz -38.98 dBm	Auto Tur
00 0.0					Center Fr 2.483500000 G
1.0 1.0		3-	And the formation of the state	الم	Start Fr 2.433500000 G
.0 .0					Stop Fr 2.533500000 G
enter 2.48350 GHz tes BW 1.0 MHz	#VBN	V 1.0 MHz		Span 100.0 MHz 500 ms (1001 pts)	CF Sto 10.000000 M
R MODE TRC SCL N 1 f N 1 f N 1 f	× 2.462 1 GHz 2.483 5 GHz 2.484 4 GHz	40.39 dBm -40.39 dBm -38.98 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto M Freq Offs
* 5 7 3					0
			STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum Analyzer - Swe					
RL RF 50 Ω Center Freq 2.4835	00000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:25:09 PM Mar 14, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00 c	PNO: Fast G IFGain:Low	Atten: 30 dB	Mk	r3 2.484 8 GHz -46.45 dBm	Auto Tun
-og 10.0 0.00 10.0					Center Fre 2.483500000 G⊦
20.0		3			Start Fre 2.433500000 GF
50.0 50.0 70.0		- When	m	······	Stop Fre 2.533500000 GF
enter 2.48350 GHz Res BW 1.0 MHz	#VBV	V 10 Hz	Sweep	Span 100.0 MHz 7.80 s (1001 pts)	CF Ste 10.000000 MI
KR MODE TRC SCL 1 N 1 f	× 2.461 2 GHz	3.13 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
2 N 1 f 3 N 1 f 4 5 6 9	2.483 5 GHz 2.484 8 GHz	-50.23 dBm -46.45 dBm			Freq Offs 0 I
7 8 9 10 11 12					
SG			STATUS	;	

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.639	71.88	103.518	Peak
Horizontal	2412	31.639	53.55	85.188	Average
Vertical	2412	30.95	63.75	94.699	Peak
Vertical	2412	30.95	46.59	77.539	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2390	103.518	42.9	60.618	74.000	Peak
Horizontal	2390	85.188	44.53	40.658	54.000	Average
Vertical	2390	94.699	42.9	51.799	74.000	Peak
Vertical	2390	77.539	44.53	33.009	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

gilent Spectrum Analyzer - Sw		and the	ieteu Danu Eu	8	
RL RF 50 S Center Freq 2.3900	000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	04:32:23 PM Mar 14, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
0 dB/div Ref 20.00	PNO: Fast G	Atten: 30 dB	Mk	r2 2.390 0 GHz -33.32 dBm	Auto Tun
					Center Fre 2.39000000 GH
	مرار المرار الروي المرار الروي المرار ال	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Will Hand House Marker	Start Fre 2.340000000 GH
0.0					Stop Fre 2.44000000 GF
enter 2.39000 GHz Res BW 1.0 MHz		V 1.0 MHz		Span 100.0 MHz 500 ms (1001 pts)	CF Ste 10.000000 MI
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4	× 2.411 9 GHz 2.390 0 GHz	9.58 dBm -33.32 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mi Freg Offs
7 6 7 8					01
9 9 10 12					
SG			STATUS]	

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum Analyzer - Sw						
Center Freq 2.3900	2 AC 1000000 GHz PN0: Fast	SENSE:INT	Avg Type: Lo	yg-Pwr TRA TY	PM Mar 14, 2012 CE 1 2 3 4 5 6 PE M WWWWW	Frequency
10 dB/div Ref 20.00	IFGain:Low	Atten: 30 dB		Mkr2 2.39	0 0 GHz 00 dBm	Auto Tune
10.0 0.00 -10.0				21		Center Freq 2.390000000 GHz
-20.0 -30.0 -40.0		2				Start Fred 2.340000000 GHz
-50.0				V		Stop Fred 2.44000000 GH2
Center 2.39000 GHz #Res BW 1.0 MHz	#VBV	√ 10 Hz		Sweep 7.80 s	<u> </u>	CF Step 10.000000 MHz Auto Mar
I N I f 2 N 1 f 3 - - - 4 - - - 6 - - - 7 - - - 8 - - - 9 - - -	2.412 9 GHz 2.390 0 GHz	-8.47 dBm -53.00 dBm				Freq Offsel
10 11 12 MSG				STATUS		

QuieTer

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.019	72.1	104.119	Peak
Horizontal	2462	32.019	53.72	85.739	Average
Vertical	2462	32.019	64.95	96.969	Peak
Vertical	2462	32.019	47.47	79.489	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2487.3	104.119	39.74	64.379	74.000	Peak
Horizontal	2483.5	85.739	42.2	43.539	54.000	Average
Vertical	2487.3	96.969	39.74	57.229	74.000	Peak
Vertical	2483.5	79.489	42.2	37.289	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Agilent Spectrum Analyzer - Swept	SA			8	
XIRL RF 50Ω		SENSE:INT	ALIGN AUTO	05:08:57 PM Mar 14, 2012	Frequency
Center Freq 2.483500	DOOO GHZ PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N	
10 dB/div Ref 20.00 dE	3m		Mk	r3 2.487 3 GHz -30.20 dBm	Auto Tune
10.0 0.00					Center Fre 2.483500000 GH
20.0 30.0 40.0		hilling 203		and a second and a	Start Fre 2.433500000 GH
50.0 50.0 70.0					Stop Fre 2.533500000 G⊢
center 2.48350 GHz Res BW 1.0 MHz		1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	CF Ste 10.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f	× 2.461 8 GHz 2.483 5 GHz 2.487 3 GHz	9.54 dBm -32.76 dBm -30.20 dBm		FONCTION VALUE	
4 5 6 6 7 V	2.401 0 0112				FreqOffse 0⊦
8 9 10 11					
11 12 SG			STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

				8	
gilent Spectrum Analyzer - Sw	vept SA				
RL RF 50 S	2 AC	SENSE:INT	ALIGN AUTO	05:09:29 PM Mar 14, 2012	
enter Freq 2.4835	500000 GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast C	🖵 🛛 Trig: Free Run		TYPE M WWWWWW DET P N N N N N	
	IFGain:Low	Atten: 30 dB		DET PININININI	
			Mk	r2 2.483 5 GHz	Auto Tu
	9. <u>1</u>		IVIN	-50.47 dBm	
0 dB/div Ref 20.00	dBm			-30.47 UBIII	
10.0					Center Fr
0.00	∧1				2.483500000 G
	∇				2.4000000000
0.0	1				
0.0	4				
0.0					Start Fr
0.0					2.433500000 G
0.0		2			
0.0			_		
			1		
0.0					Stop Fr
0.0					2.533500000 G
0.0					
enter 2.48350 GHz	87 - 50			Span 100.0 MHz	
Res BW 1.0 MHz	-40.0B	W 10 Hz	0	Span 100.0 MH2	CF St
Res BW 1.0 MINZ	#VB	WIUHZ	Sweep	7.80 s (1001 pts)	10.000000 M
KR MODE TRC SCL	X	Y FL	INCTION FUNCTION WIDTH	FUNCTION VALUE	Auto N
1 N 1 f	2.461 1 GHz	-8.27 dBm			
2 N 1 f	2.483 5 GHz	-50.47 dBm			
3					Freq Off
4					
5					0
6					
8					
9					
0					
1					
2					
G			STATUS		

QuieTer

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.639	70.02	101.658	Peak
Horizontal	2412	31.639	52.59	84.228	Average
Vertical	2412	30.95	62.04	92.989	Peak
Vertical	2412	30.95	45.6	76.549	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2388.9	101.658	41.23	60.428	74.000	Peak
Horizontal	2390	84.228	42.79	41.438	54.000	Average
Vertical	2388.9	92.989	41.23	51.759	74.000	Peak
Vertical	2390	76.549	42.79	33.759	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

gilent Spectrum Analyzer - Swept SA					
enter Freq 2.39000000	PNO: East	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr		Frequency
0 dB/div Ref 20.00 dBm	II Gam.Low		М	kr3 2.388 9 GHz -33.61 dBm	Auto Tur
Pg 0.0 0.0 0.0				**	Center Fro 2.390000000 Gi
0.0 0.0	1. Jacobarta parally all the	32		Wethlickit y property under	Start Fr 2.340000000 G
1.0 1.0 1.0					Stop Fr 2.440000000 G
enter 2.39000 GHz Res BW 1.0 MHz	#VBW 1		#Sweep	Span 100.0 MHz 500 ms (1001 pts)	
1 N 1 f 2.4 2 N 1 f 2.3		7.62 dBm -35.84 dBm -33.61 dBm			Freq Offs
9 0 1 2					

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Sw					
RL RF 50 Ω Center Freq 2.3900	00000 GHz	SENSE:INT	ALIGN AU Avg Type: Log-P	Vr TRACE 1 2 3 4	5 6 Frequency
0 dB/div Ref 20.00	PNO: Fast 🕞 IFGain:Low	J Trig: Free Run Atten: 30 dB	7	TYPE MWWW DET P N N N /Ikr2 2.390 0 GI -53.09 dB	Auto Tun
			1		Center Fre 2.390000000 G⊦
20.0		2			Start Fre 2.340000000 GH
00.0 00.0 70.0		V		V	Stop Fre 2.440000000 GF
enter 2.39000 GHz Res BW 1.0 MHz		/ 10 Hz		Span 100.0 M ep 7.80 s (1001 p	ts) CF Ste 10.000000 Mi
IXR MODE TRC SCL 1 N 1 f 2 N 1 f 3	× 2.412 9 GHz 2.390 0 GHz	-10.30 dBm -53.09 dBm	NCTION FUNCTION WI	TH FUNCTION VALUE	Freq Offs
5 6 6 7 8 9 9 0 1					01
2 6G			ST/	ITUS	

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	÷	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.019	70.29	102.309	Peak
Horizontal	2462	32.019	52.5	84.519	Average
Vertical	2462	32.019	63.45	95.469	Peak
Vertical	2462	32.019	46.61	78.629	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2483.6	102.309	37.39	64.919	74.000	Peak
Horizontal	2483.5	84.519	40.46	44.059	54.000	Average
Vertical	2483.6	95.469	37.39	58.079	74.000	Peak
Vertical	2483.5	78.629	40.46	38.169	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

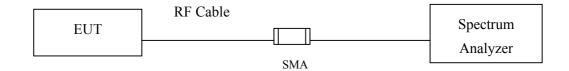
Agilent Spectrum Analyzer - Sw			ettu Bunu Eu	8	
X RL RF 50 Ω Center Freq 2.4835	AC 000000 GHz PNO: Fast IFGain:Low	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	05:34:54 PM Mar 14, 2012 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 (Mk	r3 2.483 6 GHz -29.84 dBm	Auto Tune
10.0 0.00 -10.0					Center Freq 2.483500000 GHz
20.0 30.0 40.0		A-11144 100 100 100 100 100 100 100 100 10	Address and a state of the second	month and a fail of a desired	Start Free 2.433500000 GH
50.0 60.0 70.0					Stop Free 2.533500000 GH
Center 2.48350 GHz Res BW 1.0 MHz	#VBW	1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) EUNCTION VALUE	CF Step 10.000000 MH Auto Mar
Model The State 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 6 - 7 - 8 - - - 9 - - - 10 - - - 12 - - -	2.462 9 GHz 2.483 5 GHz 2.483 6 GHz	7.55 dBm -33.10 dBm -29.84 dBm			Freq Offse 0 H:
sg		J	STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Swi RL RF 50 Ω		SENSE:INT	ALIGNAUTO	05:35:26 PM Mar 14, 2012	6
Center Freq 2.4835	00000 GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
0 dB/div Ref 20.00 (PNO: Fast G IFGain:Low	Atten: 30 dB	MI	kr2 2.483 5 GHz -50.16 dBm	Auto Tur
					Center Fre 2.483500000 GH
0.0		2-			Start Fre 2.433500000 GF
0.0					Stop Fr 2.533500000 G
enter 2.48350 GHz Res BW 1.0 MHz	#VB\	V 10 Hz		Span 100.0 MHz p 7.80 s (1001 pts)	CF Ste 10.000000 M
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.461 1 GHz 2.483 5 GHz	-9.70 dBm -50.16 dBm	FUNCTION FUNCTION WIDTH	H FUNCTION VALUE	<u>Auto</u> M
3 4 5 6	2.483 5 602	-30.10 dBm			Freq Offs 01
7 8 9 0 1 2					
g I I I I I I I I I I I I I I I I I I I			STATU	is	

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	7200	>500	Pass

Figure Channel 1:

RL RF 50	IΩ AC	SENSE:INT	ALIGN AUTO	08:56:00 PM Mar 15, 2012	
	PNO: Fast G	☐ Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Trace/Det
dB/div Ref 20.00			Mkr	2 2.408 40 GHz -2.05 dBm	Select Trac Trace
		An An	min		ClearWr
				- V-	Trace Avera
.0					Max Ho
enter 2.41200 GHz les BW 300 kHz		V 1.0 MHz	Sweep	Span 20.00 MHz 1.00 ms (1001 pts) FUNCTIONVALUE	Min He
N 1 f (Δ) N 1 f	2.412 50 GHZ 2.408 40 GHZ (Δ) 2.415 60 GHZ				View/Blan Vie
					M 0

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	7200	>500	Pass

Figure Channel 6:

	50 Ω AC		SENSE:INT	ALIGN AUTO	08:57:39 PM Mar 15, 2012	
		PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
IB/div Ref 2	0.00 dBm			Trac		
	~	2		hand my	-1.39 dBm	Clear W
					John John	Trace Aver
)))						MaxH
nter 2.43700 (es BW 300 kH	Iz	#VBW	1.0 MHz		Span 20.00 MHz 1.00 ms (1001 pts)	Min H
MODE TRC SCL		7 50 GHz 3 40 GHz (Δ)	4.61 dBm -1.60 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	
N 1 f N 1 f (2) 60 GHz	-1 54 dBm			
N 1 f N 1 f (2		0 60 GHz	-1.54 dBm			
N 1 f N 1 f (2		0 60 GHz	-1.54 dBm			View/Bla Vi

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	7200	>500	Pass

Figure Channel 11:

					8					
								Analyzer - Sv		
Trace/Det	58:53 PM Mar 15, 2012 TRACE 1 2 3 4 5 6		ALIG Avg Type: Lo	INSE:INT	SE		AC	RF 50 :	L	RI
	TYPE MWWWWW	.og-Pwr	Avg Type: Lo	e Run	Trig: Free	PNO: Fast				
Select Trac	DETPNNNNN			dB	Atten: 30	IFGain:Low				
Trace	58 40 GHz	Mkr2 2 A								
Trace	-1.38 dBm						10			
	-1.00 abiii						авт	tef 20.00	B/div) di
				Δ^1		<u> </u>				0.0
Clear Wr	-1.29 dBm		0ª	Xn	m	♦ ²				.00
	-1.20 000	\sim				A A A A A A A A A A A A A A A A A A A	N			
		12m						~		0.0
	21	5				_	1000	N		0.0
Trace Avera	horal and a second seco							M	6	0.0
THUCE AVEN	The second								~~	
	200	10					-		w ·	0.0
	_			-						0.0
						-		-		D.O
Max H										0.0
										J.U
	an 20.00 MHz	Sna						200 GHz	ter 2 4f	n
	ms (1001 pts)	weep 1.00 n	SV		1.0 MHz	#VBV			s BW 3	
Min H										_
	UNCTION VALUE	TION WIDTH FL	CTION FUNCTION	B	Y 474 di	50.011-	×	f	MODE TRC	
					4.71 d	50 GHz 40 GHz (Δ)		f (Δ)	N 1 N 1	1
View/Blan			1		-1.54 d	60 GHz		f (<u>L</u>)	N 1	3
			0							4
Vie										5
										7
										3
M		-								9
10								1		1
										2
		STATUS								G
										1

Product	•	ASUS Transformer Pad
		Occupied Bandwidth Data
Test Site		
rest wode	•	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	17360	>500	Pass

Figure Channel 1:

Agilent Spectrum Anal						
Center Freq 2	50 Ω AC 2.412000000 GHz PNO: Fast		Avg Typ	e: Log-Pwr	06:09:06 PM Mar 14, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
	IFGain:Lov 20.00 dBm	, Atten: 30 dB	8	Mkr2	Auto Tuno	
10.0 0.00 -10.0	الكرمون ماكر منابع مالك من يسر		And a start of the	and the second and the second s	3 2.77 dBm	Center Freq 2.412000000 GHz
-20.0 -20.0						Start Freq 2.402000000 GHz
-50.0						Stop Frec 2.422000000 GHz
Center 2.41200 #Res BW 300 k	Hz #V	BW 1.0 MHz		-	Span 20.00 MHz .00 ms (1001 pts)	2.000000 MHz
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 6 - - - 7 - - -	× 2.410 86 GHz 2.403 34 GHz 2.420 70 GHz	3.23 dBm -3.23 dBm -2.78 dBm	FUNCTION FU	JNCTION WIDTH	FUNCTION VALUE	Auto Man Freq Offset 0 Hz
8 9 9 10 11 1 12 MSG				STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	17300	>500	Pass

Figure Channel 6:

Agilent Spectrum Analyzer - Sw							
Center Freq 2.4370		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	06:10:58 PM Mar 14, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency		
	IFGain:Low Atten: 30 dB DET P NNNN Mkr2 2.428 34 GHz ef 20.00 dBm -2.49 dBm						
Log 10.0 0.00	- Andrew - Aller Aller - Aller -	1	harman white and and a stranger and	2.20 dBm	Center Freq 2.437000000 GHz		
-20.0 -30.0 -40.0				\	Start Freq 2.427000000 GHz		
-50.0					Stop Freq 2.447000000 GHz		
Center 2.43700 GHz #Res BW 300 kHz	#VBW	1.0 MHz		Span 20.00 MHz 1.00 ms (1001 pts) EUNCTIONVALUE	CF Step 2.000000 MHz Auto Man		
1 N 1 f 2 N 1 f 3 N 1 f 4 6 6 6 7 8 8 8	2.436 10 GHz 2.428 34 GHz 2.445 64 GHz	3.80 dBm -2.49 dBm -2.37 dBm			Freq Offset 0 Hz		
9 10 11 12 MSG			STATUS				

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	17320	>500	Pass

Figure Channel 11:

Agilent Spectrum Analyzer - Swe	pt SA				
κ s		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	06:12:44 PM Mar 14, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 c	PNO: Fast G	⊖ Trig: Free Run Atten: 30 dB	Mkr	2 2.453 32 GHz -1.95 dBm	Auto Tuno
Log 10.0 0.00 -10.0	and a stand and		1 maninal Proceeding and a special and a spe	3 1.95 dBn	Center Fred 2.462000000 GHz
-20.0					Start Fred 2.452000000 GH:
-50.0 -60.0 -70.0					Stop Fred 2.472000000 GH:
Center 2.46200 GHz #Res BW 300 kHz		V 1.0 MHz		Span 20.00 MHz 1.00 ms (1001 pts)	2.000000 MH
MKR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.462 80 GHz 2.453 32 GHz	4.06 dBm -1.95 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
3 N 1 f 4 5 6 9	2.470 64 GHz	-2.13 dBm			Freq Offset 0 Ha
7 8 9 10 11 12					
MSG			STATUS	;	

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	17300	>500	Pass

Figure Channel 1:

Agilent Spectrum An						
Center Freq	2.412000000 GH			ALIGNAUTO Type: Log-Pwr	06:14:27 PM Mar 14, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Re		in:Low Atten: 30		Mkr	DET P NNNNN 2 2.403 38 GHz -3.87 dBm	Auto Tune
Log 10.0 0.00 -10.0	and the subscription of the	and a start a start a start a start a start a start		~15 <u>~~~</u> 4, a **	3 3 3:50 dBm	Center Freq 2.412000000 GHz
-20.0						Start Freq 2.402000000 GHz
-50.0						Stop Freq 2.422000000 GHz
Center 2.4120 #Res BW 300	kHz	#VBW 1.0 MHz			Span 20.00 MHz 1.00 ms (1001 pts)	CF Step 2.000000 MHz
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - 6 - 7 - - -	× 2.412 84 2.403 38 2.420 68	GHz -3.87 dE	Bm		FUNCTION VALUE	Auto Man Freq Offset 0 Hz
8 9 10 11 12 MSG				STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	17360	>500	Pass

Figure Channel 6:

Agilent Spectrum Analyzer - Sw	rept SA	10		No. Second Second	
RL RF 50 գ Center Freg 2.4370		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	06:17:14 PM Mar 14, 2012 TRACE 1 2 3 4 5 6	Frequency
Center Freq 2.4370	PNO: Fast G IFGain:Low	☐ Trig: Free Run Atten: 30 dB	ing type. Log i m	TYPE MWWWWWW DET P N N N N N	
10 dB/div Ref 20.00	dBm		Mkr:	2 2.428 34 GHz -3.75 dBm	Auto Tun
10.0 0.00				3	Center Fre
10.0				3.55 dBm	2.437000000 GH
20.0				X	Start Fre
-40.0					2.427000000 GH
50.0 60.0					Stop Fre
-70.0					2.447000000 GH
Center 2.43700 GHz Res BW 300 kHz	#VBV	V 1.0 MHz	Sweep	Span 20.00 MHz 1.00 ms (1001 pts)	CF Ste 2.000000 MI
1 N 1 f	× 2.437 94 GHz	Y 2.45 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2 N 1 f 3 N 1 f	2.428 34 GHz 2.445 70 GHz	-3.75 dBm -3.75 dBm			Freq Offs
4 5 6					01
7 8					
9 10					
11 12					
SG			STATUS		

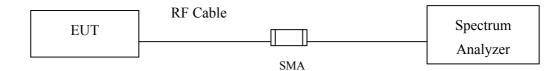
Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	17300	>500	Pass

Figure Channel 11:

	on word in the	8			
Agilent Spectrum Analyzer - Swi					
	AC	SENSE:IN		06:19:23 PM Mar 14, 2012	Frequency
Center Freq 2.4620		 Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWWWW	Trequency
	PNO: Fast IFGain:Low	Atten: 30 dB		DET P N N N N N	
	IFGalli.LOW	Theefile of the			Auto Tu
			Mkr	2 2.453 34 GHz	
10 dB/div Ref 20.00 d	dBm			-3.54 dBm	
og					
10.0					Center Fr
2 → ²		man hannes and		3.30 dDm	2.462000000 G
for all a start				101 mar 1/ 5.50 dbm	2.402000000 G
0.0					
0.0				× ×	
30.0				Y.	Start Fr
2000					2.452000000 G
10.0					
0.0					
50.0					Stop Fr
					2.472000000
70.0					2.472000000
enter 2.46200 GHz		anatana ni anatana		Span 20.00 MHz	
Res BW 300 kHz	#VE	3W 1.0 MHz	Sweep	1.00 ms (1001 pts)	2.000000 N
KR MODE TRC SCL	X	Y I	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto M
1 N 1 f	2.461 04 GHz	2.70 dBm			
2 N 1 f	2.453 34 GHz	-3.54 dBm			
3 N 1 f	2.470 64 GHz	-3.81 dBm			Freq Off
4	2				
5					
7					
8	6				
9					
10					
2					
G			STATUS	5	

8. **Power Density**


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, VBW \geq 300KHz, SPAN to 5-30 % greater than the EBW, Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel N	No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1		2412	-10.650	< 8dBm	Pass

Figure Channel 1:

g <mark>ilent Spectrum Analyzer - Sw</mark> ept L RF 50 Ω	AC	SENSE:INT	ALI	IGN AUTO	09:11:33 PM Mar 15, 2012	2
eference Level 5.00) dBm		Avg Type: L		TRACE 1 2 3 4 5 6	Amplitude
	PNO: Fast 🔾 IFGain:Low	Trig: Free Run Atten: 40 dB	Avg Hold:>10		TYPE MWWWWW DET P N N N N N	RefLev
Ref Offset -15.2 0 dB/div Ref 5.00 dBr				MKr1	2.412 50 GHz -10.650 dBm	
						Attenuation
5.00		11				[40 dB]
5.0	A.A.	fr M				
25.0	man	γ	han	m		Scale/D
M					M	
35.0 N	۳ 			10		Scale Typ
15.0					M.	Log L
North					N N	
5.0 vola						Presel Cent
5.0						
5.0						Presel Adju
						01
5.0						
						Mo
enter 2.41200 GHz Res BW 100 kHz	#VBI	V 300 kHz	S	weep 1	Span 20.00 MHz .93 ms (1001 pts)	
sg		at	1013(1)	STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-10.790	< 8dBm	Pass

Figure Channel 6:

L RF 50 Ω enter Freq 2.43700	PNO: Fast 😱	SENSE:INT Trig: Free Run	Avg Type: L Avg Hold:>1		TRACE	Mar 15, 2012 1 2 3 4 5 6 MWWWWW P N N N N N	Frequency
Ref Offset -15. dB/div Ref 5.00 dB		Atten: 40 dB		Mkr1	2.436 \$	2.000 100 100 100 100 100 100 100 100 100	Auto Tur
9		▲1					Center Fr 2.437000000 G
.0	paranta	m	hhm	M			Start Fr 2.427000000 G
.0	\bigvee			\v7	N.		Stop Fr 2.447000000 G
.0 www.						North Contraction of the second secon	CF St 2.000000 M <u>Auto</u> M
.0							Freq Offs 0
.0							
enter 2.43700 GHz es BW 100 kHz	#VBW	/ 300 kHz	S	weep 1	Span 20 .93 ms (1		

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-10.392	< 8dBm	Pass

Figure Channel 11:

enter Fre	RF 50 Ω eq 2.4620	00000 G P	Hz NO: Fast 😱 Gain:Low	7			ALIGN AUTO : Log-Pwr > 100/100	TRAC TYP	M Mar 15, 2012 E 1 2 3 4 5 6 E M M M M M M T P N N N N N	Frequency
	Ref Offset -15 Ref 5.00 de	5.2 dB	5am.2.0w				Mkr		50 GHz 92 dBm	Auto Tur
				¹	[Center Fr 2.462000000 GI
5.0		m	hand	in	Mr	white	m	4		Start Fr 2.452000000 G
5.0	A	V					W	M M		Stop Fr 2.472000000 G
5.0									W V	CF Sto 2.000000 M <u>Auto</u> M
5.0										Freq Offs 0
enter 2.46							17.6		0.00 MHz	
Res BW 1 。	00 kHz		#VBW	300 kHz			Sweep		1001 pts)	

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-14.514	< 8dBm	Pass

Figure Channel 1:

L RF 50 Ω AC eference Level 4.80 c	Bm	ree Run Avg	ALIGN AUTO Type: Log-Pwr Hold:>100/100	09:13:08 PM Mar 15, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Amplitude
Ref Offset -15.2 d dB/div Ref 4.80 dBm	ii ddiii.cow		Mkr1	2.413 26 GHz -14.514 dBm	Ref Leve 4.80 dBr
.20		<u> </u>			Attenuation [30 dB]
5.2 Mumbron	Annahannahan	Junnhamp	man and and and and and and and and and a	minhay	Scale/D 10 d
5.2					Scale Typ Log Li
5.2					Presel Cente
5.2					Presel Adju 0 F
5.2 enter 2.41200 GHz				Span 20.00 MHz	Mor 1 of

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-14.135	< 8dBm	Pass

Figure Channel 6:

enter	Freq 2.4370	00000 G	iHz NO: Fast 😱 Gain:Low]		Avg Type Avg Hold:	ALIGNAUTO :: Log-Pwr >100/100	TRAC TYP	M Mar 15, 2012 E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
0 dB/div og r	Ref Offset -1 Ref 4.80 d						Mkr		26 GHz 35 dBm	Auto Tur
.20					<u>1</u>					Center Fre 2.437000000 GF
5.2	nmhand	bar Am	www.www.	walkan	mon	www.	mmun	himm	1	Start Fr 2.427000000 G
5.2	part								Ny Vy	Stop Fr 2.447000000 G
5.2 5.2									۲۱ 	CF St 2.000000 M <u>Auto</u> M
5.2										Freq Offs 0
95.2									<u></u>	
	.43700 GHz V 100 kHz		#VBW	/ 300 kHz			Sweep		0.00 MHz 1001 pts)	
G							STATUS			

Product	•	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-14.184	< 8dBm	Pass

Figure Channel 11:

	RF 50 Ω AC 2.46200000	DO GHZ PNO: Fast G	SENS Trig: Free F #Atten: 30 c	lun	Avg Type Avg Hold:		TRACI TYP	Mar 15, 2012 1 2 3 4 5 6 MWWWWW T P N N N N N	Frequency
	ef Offset -15.2 dB ef 4.80 dBm	1				Mkr	1 2.463 -14.18	28 GHz 34 dBm	Auto Tun
5.20				.▲1					Center Fre 2.462000000 GH
5.2	moundmand	Impy Jum Mr.	watura	www.Anna	Marrad	ᡰᢍᢧᡢ᠋ᢆ᠕᠕᠕᠕	thomas	1	Start Fr 2.452000000 G
5.2 N 5.2 N									Stop Fr 2.472000000 G
5.2 5.2								×.	CF St 2.000000 M <u>Auto</u> M
5.2									Freq Offs 0
5.2									
enter 2.462 Res BW 10		#VBW	300 kHz			Sweep	Span 20 1.93 ms (*	0.00 MHz 1001 pts)	

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-15.642	< 8dBm	Pass

Figure Channel 1:

L RF 50 Ω enter Freq 2.4120	00000 GHz PNO: Fast	Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	09:14:17 PM Mar 15, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Frequency
Ref Offset -1: dB/div Ref 4.80 dl		#Atten: 30 dB	Mkr	1 2.413 26 GHz -15.642 dBm	Auto Tur
20					Center Fre 2.412000000 Gi
5.2 proven Amoral	- Amara Amara	moult ray would	manna	Muriam	Start Fr 2.402000000 G
5.2					Stop Fr 2.422000000 G
5.2 5.2					CF St 2.000000 M <u>Auto</u> N
5.2					Freq Offs 0
enter 2.41200 GHz Res BW 100 kHz	#\/B	W 300 kHz	Sween	Span 20.00 MHz 1.93 ms (1001 pts)	

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-15.508	< 8dBm	Pass

Figure Channel 6:

ente	r Freq	^F 50 Ω 2.4370		GHz PNO: Fast G	7			ALIGNAUTO : Log-Pwr >100/100	TRAC	M Mar 15, 2012 E 1 2 3 4 5 6 PE M WWWWW T P N N N N N	Frequency
Ref Offset -15.2 dB 10 dB/div Ref 4.80 dBm Log				in Gam.cow			Mkr1 2.4 -1			24 GHz 08 dBm	Auto Tun
5.20						*1					Center Fre 2.437000000 GF
15.2 — 25.2 —	m	Maria	mm	murrante	mlm	promin	undrugent	when	Martin	wm	Start Fre 2.427000000 GH
15.2	}										Stop Fr 2.447000000 GI
5.2 — 5.2 —											CF Sto 2.000000 M <u>Auto</u> M
5.2 —											Freq Offs
35.2 —											
	r 2.4370 3W 100		1	#VBW	300 kHz	1	1	Sweep 7		0.00 MHz 1001 pts)	
SG								STATUS			

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-15.280	< 8dBm	Pass

Figure Channel 11:

enter Freq	50 Ω AC 2.46200000	D GHz PNO: Fast 🖵 IEGain:Low	SENSE Trig: Free Ri #Atten: 30 dl	Av un Avg	ALIGNAU g Type: Log-Pi j Hold:>100/100	NY TRAC	M Mar 15, 2012 E 1 2 3 4 5 6 E MWWWWW T P N N N N N	Frequency
0 dB/div Re	⁷ Offset -15.2 dB f 4.80 dBm	IFGain:Low	-bain:Low #Atten. 30 db			kr1 2.463 -15.2	26 GHz 80 dBm	Auto Tun
5.20				¥1				Center Fre 2.462000000 GH
5.2 25.2	mahand	mann	mmy	mland	mm	whenha	m	Start Fr 2.452000000 Gi
5.2								Stop Fr 2.472000000 G
5.2							η	CF Sto 2.000000 M <u>Auto</u> M
5.2								Freq Offs
95.2							<u></u>	
enter 2.4620 Res BW 100		#VBW	300 kHz	1	Swee	Span 2 p 1.93 ms (0.00 MHz 1001 pts)	

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs