6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

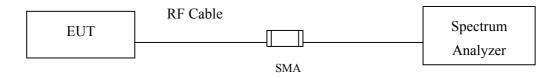
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

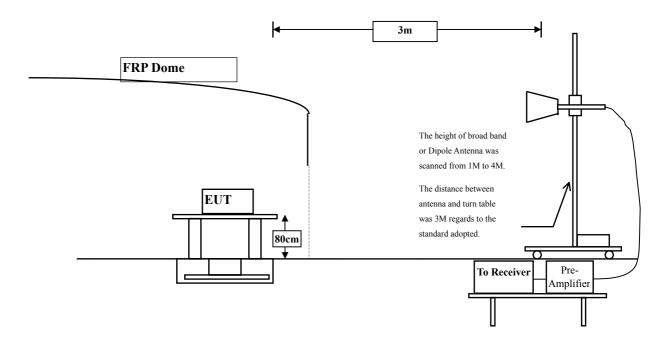
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
\square Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2011
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna Frequency		Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.639	72.06	103.698	Peak
Horizontal	2412	31.639	66.81	98.448	Average
Vertical	2412	30.95	69.18	100.129	Peak
Vertical	2412	30.95	64.03	94.979	Average

Note: 1:Spectrum Analyzer setting:

```
Peak detector: RBW=1MHz, VBW=1MHz
```

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2390	103.698	47.9	55.798	74.000	Peak
Horizontal	2387.2	98.448	55.77	42.678	54.000	Average
Vertical	2390	100.129	47.9	52.229	74.000	Peak
Vertical	2387.2	94.979	55.77	39.209	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

gilent Spectrum Analyzer - Swep					
enter Freq 2.39000	0000 GHz	rig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	11:31:10 AM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.00 dE			Mk	r2 2.390 0 GHz -38.12 dBm	Auto Tun
og 10.0 0.00					Center Fre 2.390000000 G⊦
20.0	معربهمين و	2		Lange	Start Fre 2.340000000 GF
0.0					Stop Fre 2.440000000 GF
enter 2.39000 GHz Res BW 1.0 MHz	#VBW 1.		#Sweep	Span 100.0 MHz 500 ms (1001 pts) cunction value	CF Ste 10.000000 Mi Auto Mi
N 1 f 2 N 1 f 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 9 - - -	2.413 0 GHz	9.78 dBm 38.12 dBm			Freq Offs 0 H
50 10 11 12 50			STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum Analyzer - Sv					
RL RF 50 Center Freq 2.3900	000000 GHz	SENSE:INT Av: g: Free Run	ALIGNAUTO 1: g Type: Log-Pwr	1:31:45 AM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00	IFGain:Low At	en: 30 dB	Mkr3 :	2.387 2 GHz -49.75 dBm	Auto Tun
10.0 0.00 -10.0					Center Free 2.390000000 GH
-20.0		32-0		<u> </u>	Start Fre 2.340000000 GH
50.0 60.0 					Stop Fre 2.440000000 G⊢
Center 2.39000 GHz Res BW 1.0 MHz	#VBW 10	Hz Y Function	Sweep 7.	pan 100.0 MHz 80 s (1001 pts) FUNCTION VALUE	CF Ste 10.000000 M⊢ Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4	2.411 2 GHz 0 2.390 0 GHz -50	0.02 dBm 0.43 dBm 0.75 dBm			Freq Offse
8 9 10					

QuieTer

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna Frequency		Correction Factor Reading Level		Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.019	72.55	104.569	Peak
Horizontal	2462	32.019	67.6	99.619	Average
Vertical	2462	31.29	70.05	101.34	Peak
Vertical	2462	31.29	65.1	96.39	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2483.8	104.569	51.34	53.229	74.000	Peak
Horizontal	2483.5	99.619	60.83	38.789	54.000	Average
Vertical	2483.8	101.34	51.34	50	74.000	Peak
Vertical	2483.5	96.39	60.83	35.56	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

	AC	SENSE:INT	ALIGNAUTO	11:44:55 AM Jan 05, 2012	Frequency
enter Freq 2.483500	000 GHz PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
dB/div Ref 20.00 dB	200.020		Mł	r3 2.483 8 GHz -42.64 dBm	Auto Tur
0.0	1				Center Fre
00					2.483500000 G
.0					Start Fr
0.0		3 anno	and the property of the second second	-	2.433500000 G
.0			and and a second and	internet and the second of the second s	Stop Fr
.0					2.533500000 G
enter 2.48350 GHz les BW 1.0 MHz	#VBV	/ 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF St 10.000000 M
	X	Y 8.70 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> N
N 1 f	2.461 0 GHz	0.70 ubiii			
N 1 f N 1 f N 1 f	2.461 0 GHz 2.483 5 GHz 2.483 8 GHz	-43.27 dBm -42.64 dBm			Fred Offs
N 1 f N 1 f N 1 f	2.483 5 GHz	-43.27 dBm			
N 1 f N 1 f N 1 f	2.483 5 GHz	-43.27 dBm			
2 N 1 f	2.483 5 GHz	-43.27 dBm			Freq Offs 0

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Sw RL RF 50 ຜ Center Freq 2.4835	AC 00000 GHz	SENSE:INT	ALIGN Avg Type: Log	-Pwr TRA	AM Jan 05, 2012 CE 1 2 3 4 5 6 PE MWWWWW	Frequency
0 dB/div Ref 20.00	PNO: Fast G IFGain:Low dBm	Atten: 30 dB		Mkr2 2.48	PNNNNN	Auto Tur
0 g 10.0						Center Fre 2.483500000 GF
20.0		2				Start Fre 2.433500000 GF
0.0						Stop Fr 2.533500000 G
enter 2.48350 GHz Res BW 1.0 MHz	#VBV	V 10 Hz	s	Span 1 weep 7.80 s	<u> </u>	CF Sto 10.000000 M
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.461 2 GHz 2.483 5 GHz	5.20 dBm -55.63 dBm	UNCTION FUNCTION	I WIDTH FUNCTI	ON VALUE	<u>Auto</u> M
3 4 5 6 7						Freq Offs 0
8 9 0 1						
2				STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.639	75.6	107.238	Peak
Horizontal	2412	31.639	57.63	89.268	Average
Vertical	2412	30.95	72.33	103.279	Peak
Vertical	2412	30.95	54.95	85.899	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2390	107.238	36.13	71.108	74.000	Peak
Horizontal	2390	89.268	36.819	52.449	54.000	Average
Vertical	2390	103.279	36.13	67.149	74.000	Peak
Vertical	2390	85.899	36.819	49.08	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Agilent Spectrum Analyzer - Swept SA			cicu Dullu Eu	8	
Center Freq 2.3900000	DO GHZ PNO: Fast 😱 T	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	04:32:44 PM Jan 10, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN	Frequency
10 dB/div Ref 20.00 dBm	IFGain:Low A	tten: 30 dB	Mk	r1 2.412 0 GHz 13.684 dBm	Auto Tune
10.0 0.00 -10.0		2	1	and when the state	Center Freq 2.390000000 GHz
-20.0	Harrow Harle Added by Harrow	2 Record in a contraction of the second seco		all	Start Freq 2.340000000 GHz
-50.0					Stop Freq 2.440000000 GHz
Center 2.39000 GHz #Res BW 1.0 MHz MKR MODE TRO SOL	#VBW 1.0		#Sweep	Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	CF Step 10.000000 MHz Auto Man
1 N 1 f 2 2 N 1 f 2 3 - - - - 4 - - - - 5 - - - - - 6 - - - - - -	2.412 0 GHz 13	3.684 dBm 2.446 dBm			Freq Offset
7 8 9 - 10 - 11 - 12 -					
MSG			STATUS	· · · · · · · · · · · · · · · · · · ·	1

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum Analyzer - Swi					
L RF 50 Ω Center Freq 2.3900	AC 00000 GHz PN0: Fast	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr		Frequency
10 dB/div Ref 20.00 d	IFGain:Low	Atten: 30 dB	М	kr1 2.413 2 GHz -4.859 dBm	Auto Tun
-og 10.0 .0.0 10.0					Center Fre 2.390000000 GH
20.0		2			Start Fre 2.340000000 GF
50.0 60.0 70.0					Stop Fre 2.440000000 GH
enter 2.39000 GHz Res BW 1.0 MHz		N 10 Hz		Span 100.0 MHz p 7.80 s (1001 pts)	CF Ste 10.000000 Mi
MODE TRC SCL 1 N 1 f 2 N 1 f 3 - - 4 - - 5 - - 6 - -	× 2.413 2 GHz 2.390 0 GHz	Y F -4.859 dBm -41.678 dBm	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	Auto Ma Freq Offs 0 F
7 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11					
ISG			STAT	US	

QuieTer

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.019	76.44	108.459	Peak
Horizontal	2462	32.019	58.48	90.499	Average
Vertical	2462	31.29	73.81	105.1	Peak
Vertical	2462	31.29	56.15	87.44	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2483.5	108.459	38.17	70.289	74.000	Peak
Horizontal	2483.5	90.499	41.72	48.779	54.000	Average
Vertical	2483.5	105.1	38.17	66.93	74.000	Peak
Vertical	2483.5	87.44	41.72	45.72	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

ilent Spectrum Analyzer - Sw RL RF 50 Ω		SENSE:INT	ALIGNAUTO	01:03:34 PM Jan 05, 2012	
enter Freq 2.4835	00000 GHz PN0: Fast C	Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
) dB/div Ref 20.00 (IFGain:Low	Atten: 30 dB	Mk	r2 2.483 5 GHz -25.49 dBm	Auto Tun
0.0 .00 0.0		X			Center Fre 2.483500000 G⊦
0.0 0.0 0.0 0.0		2	Werst well to with a further and	hashertomethomore	Start Fre 2.433500000 GF
0.0					Stop Fre 2.533500000 GH
enter 2.48350 GHz Res BW 1.0 MHz R MODE TRC SCL	#VB	W 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	CF Ste 10.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3	2.461 8 GHz 2.483 5 GHz	12.68 dBm -25.49 dBm			
4 5 6 7					Freq Offs 01
8 9 0 1					
2			STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

				0	
Agilent Spectrum Analyzer - Sw		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			
	AC	SENSE:INT	ALIGN AUTO	01:04:06 PM Jan 05, 2012	Frequency
Center Freq 2.4835			Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	riequency
	PNO: Fast G	Trig: Free Run Atten: 30 dB		DET P N N N N N	
	IFGain:Low	Atten: 30 db		Ser Landard and Andrews	A
			Mk	r2 2.483 5 GHz	Auto Tune
10 dB/div Ref 20.00	dDm			-47.13 dBm	
	ивш				
10.0					
10.0	1				Center Fre
0.00	<u> </u>				2.483500000 GH
-10.0	- V				
-10.0					
-20.0					
-30.0					Start Fre
-30.0					2.433500000 GH
-40.0		22			
-50.0					
-30.0					
-60.0					Stop Fre
-70.0					2.533500000 GH
-70.0					
Center 2.48350 GHz			12 02 0	Snon 100 0 MHz	
	20 (1)		-	Span 100.0 MHz	CF Ste
#Res BW 1.0 MHz	#VBI	V 10 Hz	Sweep	7.80 s (1001 pts)	10.000000 MH
MKR MODE TRC SCL	×	Y I F	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N 1 f	2.460 9 GHz	-5.41 dBm			<u>/ (aco</u> into
2 N 1 f	2.483 5 GHz	-47.13 dBm			
3					Eren Offer
4					Freq Offs
5					01
6					
7					
8 9					
10					
11					
12					
MSG			STATUS		

QuieTer

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.639	72.32	103.958	Peak
Horizontal	2412	31.639	55.17	86.808	Average
Vertical	2412	31.639	69.4	101.038	Peak
Vertical	2412	31.639	52.57	84.208	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2389.2	103.958	33.59	70.368	74.000	Peak
Horizontal	2390	86.808	36.45	50.358	54.000	Average
Vertical	2389.2	101.038	33.59	67.448	74.000	Peak
Vertical	2390	84.208	36.45	47.758	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Agilent Spectrum Analyzer - Swi	ept SA		acteu Dunu Eu	8	
X RL RF 50 Ω Center Freq 2.3900	PNO: Fast 🕞	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:10:57 PM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 (IFGain:Low	Atten: 30 dB	Mk	r3 2.389 2 GHz -23.88 dBm	Auto Tune
-09 10.0 .000 10.0					Center Fre 2.390000000 GH
20.0	Annal and	Ale Mall Harrison		Marit Mariana	Start Fre 2.340000000 G⊦
50.0 50.0 70.0					Stop Fre 2.440000000 G⊦
enter 2.39000 GHz Res BW 1.0 MHz	#VBV	/ 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) cunction value	CF Ste 10.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6 6	2.412 1 GHz 2.390 0 GHz 2.389 2 GHz	9.71 dBm -24.73 dBm -23.88 dBm			FreqOffse 0⊦
7 8 9 9 10 11 12 12					
ISG			STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Sw RL RF 50 Ω					
RL RF 50 Ω Center Freq 2.3900		SENSE:INT	ALIGNAU Avg Type: Log-P	Wr TRACE 1 2 3 4 5 f	Frequency
0 dB/div Ref 20.00	PNO: Fast 🕞 IFGain:Low	⊖ ⊤rig: Free Run Atten: 30 dB	in s	TYPE MUNUM DET P NNNN Vkr2 2.390 0 GHz -44.58 dBm	Auto Tur
					Center Fre 2.390000000 GH
80.0		2			Start Fre 2.340000000 GF
50.0 50.0 70.0					Stop Fre 2.440000000 GF
enter 2.39000 GHz Res BW 1.0 MHz		V 10 Hz		Span 100.0 MHz eep 7.80 s (1001 pts)	CF Ste 10.000000 Mi
KR MODE TRC SCL 1 N 1 f 2 N 1 f 3	× 2.413 3 GHz 2.390 0 GHz	-8.13 dBm -44.58 dBm	UNCTION FUNCTION W	DTH FUNCTION VALUE	Auto M
4 5 6 7 7					01
8 9 0 1 2					
G			ST	ATUS	

Product	:	ASUS Transformer Pad
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.019	73.23	105.249	Peak
Horizontal	2462	32.019	55.9	87.919	Average
Vertical	2462	31.29	70.46	101.75	Peak
Vertical	2462	31.29	53.57	84.86	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2483.5	105.249	41.31	63.939	74.000	Peak
Horizontal	2483.5	87.919	41.72	46.199	54.000	Average
Vertical	2483.5	101.75	41.31	60.44	74.000	Peak
Vertical	2483.5	84.86	41.72	43.14	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

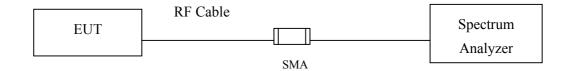
RL RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	01:26:27 PM Jan 05, 2012	-
enter Freq 2.4835	000000 GHz PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 20.00			Mk	r2 2.483 5 GHz -32.19 dBm	Auto Tun
		(Center Fre 2.483500000 GH
0.0 0.0 0.0		2 2 Martine	and for a first first the strategy and t		Start Fre 2.433500000 GF
D.0 D.0 D.0					Stop Fre 2.533500000 GF
enter 2.48350 GHz Res BW 1.0 MHz		W 1.0 MHz	-	Span 100.0 MHz 500 ms (1001 pts)	CF Ste 10.000000 MI
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.461 9 GHz 2.483 5 GHz	9.12 dBm -32.19 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
3 4 5 5 6					Freq Offs 0
7 8 9 0 1					
2					

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Swe					
RL RF 50 Ω Center Freq 2.48350		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:26:59 PM Jan 05, 2012 TRACE 1 2 3 4 5 6	Frequency
0 dB/div Ref 20.00 d	PNO: Fast G IFGain:Low	Atten: 30 dB	Mł	TYPE MWWWW DET P N N N N r2 2.483 5 GHz -50.40 dBm	Auto Tun
	1				Center Fre 2.483500000 GH
20.0		2			Start Fre 2.433500000 GF
50.0					Stop Fre 2.533500000 GH
enter 2.48350 GHz Res BW 1.0 MHz	#VBV	V 10 Hz		Span 100.0 MHz 7.80 s (1001 pts)	CF Ste 10.000000 Mi
IKR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.460 9 GHz 2.483 5 GHz	-8.68 dBm -50.40 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
3 4 5 6	2.400 0 0112				Freq Offs 0 H
7 8 9 9 10 11 10 10 10 10 10 10 10 10 10 10 10					
5G			STATUS	ـــــــــــــــــــــــــــــــــــــ	

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	8650	>500	Pass

Figure Channel 1:

RL RF 50 Ω	AC	SENSE:INT	ALIGNAUTO	11:36:41 AM Jan 05, 2012	Frequency
enter Freq 2.41200	IOOOO GHZ PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWWW DET PNNNNN	
) dB/div Ref 20.00 d	Bm		Mkr	2 2.407 90 GHz -0.74 dBm	Auto Tur
)g 0.0			∧3		Center Fr
.00	М	pure runn	M.	0.91 dBm	2.412000000 G
).0	and the second s		V ang		Otort Fr
0.0	ray pro		the a section	NUL M	Start Fr 2.387000000 G
1.0 month Martin	W		A Jac	V Www.www.	
).0					Stop Fr 2.437000000 G
enter 2.41200 GHz				Span 50.00 MHz	
Res BW 100 kHz	#VBV	/ 100 kHz	#Sweep	500 ms (1001 pts)	CF St 5.000000 M
R MODE TRC SCL 1 N 1 f	× 2.412 95 GHz	6.91 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> N
2 N 1 f 3 N 1 f 4	2.407 90 GHz 2.416 55 GHz	-0.74 dBm -2.07 dBm			Freq Offs
5					0
7					
0					
2					

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	8600	>500	Pass

Figure Channel 6:

lent Spectrum Analyzer - Sw RL RF 50 Ω		SENSE:INT	ALIGNAUTO	11:43:15 AM Jan 05, 2012	
enter Freq 2.4370	00000 GHz PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 20.00	dBm		Mkr	2 2.432 90 GHz -2.51 dBm	Auto Tur
9).0		A LUNIN MANA	3	-0.38 dBm	Center Fr
00	July 1	put and	K.		2.437000000 G
.0	pr -		1		Start Fr
1.0	haley fry		Mural when	un par.	2.412000000 G
1.0 Municipality	1 CW			or Martiner Martanesk	Stop Fr
.0					2.462000000 G
enter 2.43700 GHz Res BW 100 kHz	#VBV	V 100 kHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF St 5.000000 M
R MODE TRC SCL N 1 f	× 2.436 45 GHz	5.62 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
N 1 f N 1 f	2.432 90 GHz 2.441 50 GHz	-2.51 dBm -0.62 dBm			Freq Offs
					0
3					
	W		STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	8150	>500	Pass

Figure Channel 11:

		8			
Agilent Spectrum Analyzer - Swe	ept SA				
	AC	SENSE:INT	ALIGNAUTO	11:50:20 AM Jan 05, 2012	Frequency
Center Freq 2.4620			Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 🔾	☐ Trig: Free Run Atten: 30 dB		TYPE MWWWWWW DET P N N N N N	
	IFGain:Low	Atten: 30 dB		berly	A
			Mkr	2 2.457 90 GHz	Auto Tur
10 dB/div Ref 20.00 d	18m			-1.74 dBm	
-og					
10.0		-0			Contor En
1000		Aurily mura	∆3	0.14 dBm	Center Fr
0.00		filment and a stand	No.	0.11 0.2.1	2.462000000 G
10.0	- M	1 1	1 ho		
20.0	July 1	•	V Jug		
20.0	~				Start Fr
30.0			1		2.437000000 G
40.0	where a		k l		2.437000000 G
un 1	MAN		Wy m 1		
50.0 Noupron V	V X		the low open	Who when we want you was	
50.0				and share the	Stop Fr
70.0					2.487000000 G
70.0					2.4070000000
	3			0	
enter 2.46200 GHz				Span 50.00 MHz	CF St
Res BW 100 kHz	#VBV	V 100 kHz	#Sweep	500 ms (1001 pts)	5.000000 M
KR MODE TRC SCL	X	Y III	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto M
1 N 1 f	2.460 95 GHz	6.15 dBm			
2 N 1 f	2.457 90 GHz	-1.74 dBm			
3 N 1 f	2.466 05 GHz	-1.98 dBm			Freq Offs
4	2				
5					0
7					
8					
9					
10					
12					
G			STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	15250	>500	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swe	pt SA				
RL RF 50 Ω Center Freq 2.41200	AC DOOOO GHz PNO: Fast	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	11:58:05 AM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 c	IFGain:Low	Atten: 30 dB	Mkr	2 2.404 35 GHz -2.95 dBm	Auto Tune
10.0 0.00 -10.0	2	1	And the Real of the Internet o	-1.04 dBm	Center Freq 2.412000000 GHz
-20.0 -30.0 -40.0	Accourter the second			where the way way was a second of the second	Start Fred 2.387000000 GH2
-50.0					Stop Free 2.437000000 GH:
Center 2.41200 GHz #Res BW 100 kHz		V 100 kHz		Span 50.00 MHz 500 ms (1001 pts)	CF Step 5.000000 MH
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - 5 - - 6 - -	× 2.413 25 GHz 2.404 35 GHz 2.419 60 GHz	4.96 dBm -2.95 dBm -2.56 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mar Freq Offse 0 H;
7 8 9 10 11 12					
MSG			STATU	s	

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	15200	>500	Pass

Figure Channel 6:

Agilent Spectrum Analyzer - Sw					
₩ RL RF 50 Ω Center Freq 2.4370		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	12:03:58 PM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00	IFGain:Low	Atten: 30 dB	Mkr	2 2.429 40 GHz -2.17 dBm	Auto Tune
10.0 0.00 -10.0	2 parlaco	1	3	-1.97 dBm	Center Fre 2.437000000 GH
-20.0 -30.0 -40.0	Willinger Million and South			And Marin an and the second	Start Fre 2.412000000 G⊦
50.0 60.0 70.0					Stop Fre 2.462000000 GH
Center 2.43700 GHz Res BW 100 kHz	#VBW	/ 100 kHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts) FUNCTION VALUE	CF Ste 5.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2.438 25 GHz 2.429 40 GHz 2.444 60 GHz	4.03 dBm -2.17 dBm -3.34 dBm			Freq Offs
7 8 9 9 10 11 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10					
ISG			STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	15550	>500	Pass

Figure Channel 11:

		8			
Agilent Spectrum Analyzer - Sw	ept SA				
	AC	SENSE:INT	ALIGN AUTO	01:09:00 PM Jan 05, 2012	Fraguanau
Center Freq 2.4620]	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M MANAGEM	Frequency
	PNO: Fast 🖵	d Trig: Free Run Atten: 30 dB		DET P N N N N N	
	IFGain:Low	Atten: 30 dB		A CARL BARRIER CONTRACTOR	Auto Tu
			Mkr:	2 2.454 05 GHz	Auto Tu
0 dB/div Ref 20.00	dBm			-2.65 dBm	
og					
10.0		$ \rightarrow $			Center Fr
	▲ ²	D. Andrewsky A.	A3	-1.43 dBm	2,462000000 G
200	and and and	() () () () () () () () () ()	and a wollow the		2.46200000 G
0.0	1				
0.0			×		
0.0	1 m. lahannan		The work of the		Start Fr
the offering the	M ANY		- A A A A A A A A A A A A A A A A A A A	herrywould	2.437000000 G
D.O				and when have a whole when the start	
0.0				multing	
0.0					Stop Fr
0.0					2.487000000 G
enter 2.46200 GHz			222	Span 50.00 MHz	CF St
Res BW 100 kHz	#VBW	100 kHz	#Sweep	500 ms (1001 pts)	5.000000 N
KR MODE TRC SCL	X	Y I FI	INCTION FUNCTION WIDTH	FUNCTION VALUE	Auto N
1 N 1 f	2.460 70 GHz	4.57 dBm			
2 N 1 f	2.454 05 GHz	-2.65 dBm			
3 N 1 f	2.469 60 GHz	-3.94 dBm			Freq Off
5					0
6					0
7					
8					
9					
1					
2					
G			STATUS		
9			STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	15200	>500	Pass

Figure Channel 1:

gilent Spectrum Analyzer - Sw RL RF 50 ହ Center Freq 2.4120	AC 00000 GHz PN0: Fast C	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:16:26 PM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	Frequency
0 dB/div Ref 20.00	IFGain:Low	Atten: 30 dB	Mkr	2 2.404 40 GHz -6.00 dBm	Auto Tune
000	2 powerdine		3	-4.1U dbin	Center Fre 2.412000000 GH
20.0 30.0 40.0	Www.ashandor		Jal warmed while	Hergelalighterester	Start Fre 2.387000000 G⊦
50.0					Stop Fre 2.437000000 GH
enter 2.41200 GHz Res BW 100 kHz KR MODE TRO SCL	×		#Sweep	Span 50.00 MHz 500 ms (1001 pts) FUNCTION VALUE	CF Ste 5.000000 Mi <u>Auto</u> Mi
1 N 1 f 2 N 1 f 3 N 1 f 4	2.413 25 GHz 2.404 40 GHz 2.419 60 GHz	1.90 dBm -6.00 dBm -6.26 dBm			Freq Offs 0 ł
7 8 8 9 10 11 12 12					
SG			STATUS	3	

Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	15200	>500	Pass

Figure Channel 6:

Agilent Spectrum Analyzer - Swept S	SA				
X/RL RF 50Ω A	AC	SENSE:INT	ALIGNAUTO	01:23:09 PM Jan 05, 2012	Frequency
Center Freq 2.437000		Trig: Free Run	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW	Frequency
	PNO: Fast 😱 IFGain:Low	Atten: 30 dB		DET P N N N N N	
			Mkr	2 2.429 40 GHz	Auto Tun
10 dB/div Ref 20.00 dB	m			-5.56 dBm	
Log					
10.0	▲2		∆3		Center Fre
0.00		- Inderstry perturbuch	A C	-4.84 dBm	2.437000000 GH
10.0	present her well forget		and an early		
20.0	P		- <u>\</u>		Otort Fra
30.0	and the second s		Mason		Start Fre
40.0 50.0 Unifrative production labor	Moren		manth thread	the power of monoral providence of the second s	2.412000000 GH
50.0 Unifortimeter				1 THE PHYNON THE WENTLA	
60.0					Stop Fre
					2.462000000 GI
70.0					2.40200000 61
Center 2.43700 GHz		e		Span 50.00 MHz	
Res BW 100 kHz	#VBW	100 kHz	#Sweep	500 ms (1001 pts)	CF Ste
MKR MODE TRC SCL	X		INCTION FUNCTION WIDTH		5.000000 Mi Auto Mi
	2.438 25 GHz	1.16 dBm		FUNCTION VALUE	
2 N 1 f	2.429 40 GHz	-5.56 dBm			
3 N 1 f	2.444 60 GHz	-6.46 dBm			Freq Offs
5					01
6 7					
8		7			
9					
11					
12]	
sg 🤹 Alignment Completed			STATUS		

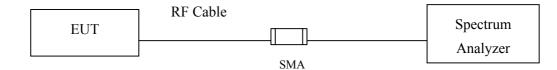
Product	:	ASUS Transformer Pad
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	15250	>500	Pass

Figure Channel 11:

		8			
gilent Spectrum Analyzer - Swo	ept SA				
<mark>X/RL</mark> RF 50Ω	AC	SENSE:INT	ALIGNAUTC		E
Center Freq 2.4620	00000 GHz PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PNNNNN	Frequency
0 dB/div Ref 20.00 d	JBm		Mk	r2 2.454 35 GHz -5.96 dBm	Auto Tu
og 10.0 5.00	2	1	3	-4.63 dBm	Center Fr 2.462000000 G
0.0 0.0 0.0 0.0	All house and and a second		A wanter	Harri Harrian	Start Fr 2.437000000 G
0.0					Stop Fi 2.487000000 0
enter 2.46200 GHz Res BW 100 kHz		100 kHz		Span 50.00 MHz 500 ms (1001 pts)	CF S1 5.000000 N
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.460 70 GHz 2.454 35 GHz	1.37 dBm -5.96 dBm	JNCTION FUNCTION WIDT	H FUNCTION VALUE	<u>Auto</u> N
3 N 1 f 4 5 6 8	2.469 60 GHz	-7.68 dBm			Freq Off 0
7 8 8 9 0 1					
g			STATU	Js	

8. **Power Density**


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 3 kHz, VBW=10KHz, Sweep time=(SPAN/3KHz), detector=Peak detector

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel	No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1		2412	-4.85	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Ana									
XI RL RF	50 Ω AC		SE	NSE:INT		ALIGN AUTO		M Jan 05, 2012	Frequency
Center Freq	2.412980000		Trig: Free	Dun	Avg Type	e: Log-Pwr	TRAC TYP	E 1 2 3 4 5 6	Trequency
		PNO: Far 😱 IFGain:Low	Atten: 30				DE	E MWWWWW T P N N N N N	
		I Gam.cow				Malurd O	440 07-		Auto Tun
						Mkr1 2.4			
	20.00 dBm						-4.8	85 dBm	
-og									
									Center Fre
10.0	1	-							2.412980000 GH
0.00				í					
				1					Start Fre
-10.0 Marrie	with the market have	the Balling Ballowing	Annald	ale a shite	a liter the	to the life of a	the set of the set	~ ~ ~ ~	2.412830000 GH
-10.0	Lo. Mall Male Meaks Dave	A CHILD HAT HAT AND AN ADDRESS	- Marces about	L'ALL CALL	a. A. I.Pitaki and	and a strategy of		-addition appendiate	2.412830000 GP
-20.0		_		-					
									Stop Fre
-30.0									2.413130000 GH
-30.0									
40.0									CF Ste
									30.000 kH
50.0				-					<u>Auto</u> Ma
0.6740.0									
									Freq Offs
-60.0									
									01
70.0	24								
Center 2.41298	800 GHz						Span 3	00.0 kHz	
#Res BW 3.0 k	Hz	#VBW	10 kHz			#Sweep		1001 pts)	
MSG						STATUS	•		1
						514103			

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-7.88	< 8dBm	Pass

Figure Channel 6:

20.00 dBm	IFGain:Low	Atten: 30	dB				E MWWWWWW T P N N N N N		
					Mkr1 2.4	436 350		Aut	o Tur
								Cent 2.4364800	
jeter & hipplication	nandali ang kang ng	reftsfortering for	and and a state	ga ^t rima <mark>t</mark> eragi	MAN MAN MAN WARK WITH	-awayamawa	HIMMAN WARDER		ort Fr
									op Fr 000 G
									F St 000 k N
								Frec	Offs 0
00 GHz						Span 3	00.0 kHz		
		00 GHz	00 GHz	00 GHz	00 GHz	00 GHz	00 GHz Span 3	00 GHz Span 300.0 kHz	00 GHz Span 300.0 kHz

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-6.00	< 8dBm	Pass

Figure Channel 11:

enter 2. Res BW	4609850 GHz 3.0 kHz	#VBW	10 kHz		#Sweep		00.0 kHz 1001 pts)	
70.0								
60.0								Freq Offs 0
50.0								30.000 k <u>Auto</u> M
40.0					_			CF St
30.0			×					Stop Fr 2.461135000 G
0.0	an a wa diffia dhi falla a na a							
0.0	anonal and stores and south	al male and the second	-	والمراجع والمراجع والمراجع	وك مالمحيالي مع مع	ally may any any any	allous allowable	Start Fr 2.460835000 G
).00			1					
10.0								Center Fr 2.460985000 G
) dB/div og	Ref 20.00 dBm				Mkr1 2.		6 GHz 00 dBm	Auto Tu
enter F	req 2.46098500	JO GHZ PNO: Far 🖵 IFGain:Low	Trig: Free Run Atten: 30 dB		ype: Log-Pwr	TYP	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	
RL	RF 50 Ω AC		SENSE:I		ALIGN AUTO		M Jan 05, 2012	Frequency

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-9.37	< 8dBm	Pass

Figure Channel 1:

RL RF 50 Ω Center Freq 2.413260		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	11:57:22 AM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
0 dB/div Ref 20.00 dE	PNO: Far 🌩 IFGain:Low	Atten: 30 dB	Mkr1 2	.413 208 4 GHz -9.37 dBm	Auto Tum
10.0					Center Fre 2.413260000 GH
0.00	1 Northenders Martin	augran Manadona Manadon	Monaration	Amaran	Start Fre 2.413110000 GF
0.0					Stop Fre 2.413410000 GF
0.0					CF Ste 30.000 k <u>Auto</u> M
2.0					Freq Offs
0.0					
enter 2.4132600 GHz Res BW 3.0 kHz	#VBW	10 kHz	#Swee	Span 300.0 kHz p 100 s (1001 pts)	

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-9.99	< 8dBm	Pass

Figure Channel 6:

Avg Type: Log-Pwr TRACE [12:3456 Frequency TYPE MWWWWW
Mkr1 2.438 208 0 GHz Auto Tur -9.99 dBm
2.438250000 G
Start Fr 2.438100000 G
2.438400000 G
CF St 30.000 k Auto M
Freq Offs 0
Span 300.0 kHz #Sweep 100 s (1001 pts)
Run dB

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-9.40	< 8dBm	Pass

Figure Channel 11:

enter Freq 2.46325	AC 0000 GHz PNO: Far IFGain:Low	SENSE:INT Trig: Free Run Atten: 30 dB	Avg Type: L	IGN AUTO .og-Pwr	01:08:18 PM Jan 05, 201 TRACE 1 2 3 4 5 TYPE MWWWWM DET P N N N N	6 Frequency
0 dB/div Ref 20.00 dE			Ν	1kr1 2.4	63 208 6 GH: -9.40 dBn	
						Center Fre 2.463250000 GH
10.0 home have	an and the second	where the second s	Wershranny	Mary Mr. Mary	Margarena	Start Fre 2.463100000 GF
0.0						Stop Fre 2.463400000 GF
0.0						CF Ste 30.000 ki <u>Auto</u> M
0.0						Freq Offs
0.0						
enter 2.4632500 GHz Res BW 3.0 kHz	#VBW	10 kHz		#Sweep	Span 300.0 kH: 100 s (1001 pts	

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-12.03	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Analyze	r - Swept SA 50 Ω AC	SENSE:INT	ALIGNAUTO	01:15:42 PM Jan 05, 2012	
Center Freq 2.4		Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20	.00 dBm		Mkr1 2.	413 212 4 GHz -12.03 dBm	Auto Tuno
10.0					Center Free 2.413255000 GH
0.00		1			Start Fre 2.413105000 GH
20.0	-JAA-10-20-10-1430-11-00	[wzatowilikimaliyamah	nder and and a start and a	www.ney-ray-millefilerium	Stop Fre 2.413405000 G⊦
50.0					CF Ste 30.000 kł Auto Ma
50.0					Freq Offs 0 H
70.0					
Center 2.4132550 #Res BW 3.0 kHz		/BW 10 kHz	#Swee	Span 300.0 kHz 5 100 s (1001 pts)	
ISG			STATUS		

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-13.11	< 8dBm	Pass

Figure Channel 6:

O dB/div Ref 20.00 dBm 00 10.0 0.00 1		438 212 1 GHz -13.11 dBm	Auto Tun Center Free 2.438240000 GH Start Free 2.438090000 GH
10.0 0.00 10.0 20.0 30.0 40.0 10.0	monter	m-dri langersenstra	2.438240000 GH Start Fre 2.438090000 GH
10.0 20.0 20.0 20.0 40.0 20.0	May a way way	madrallangeneration	2.438090000 GH
30.0 40.0	Josef Bar and a construction of the second	mandon Henrymania	Stop Fre
	3		2.438390000 GH
			CF Ste 30.000 kł <u>Auto</u> Mi
50.0			Freq Offs
Center 2.4382400 GHz Res BW 3.0 kHz #VBW 10 kHz	#Swoor	Span 300.0 kHz p 100 s (1001 pts)	

Product	:	ASUS Transformer Pad
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-12.77	< 8dBm	Pass

Figure Channel 11:

enter Freq 2.46	50 Ω AC 3245000 GHz PN0: Far G IFGain:Low	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	01:31:11 PM Jan 05, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
dB/div Ref 20.0			Mkr1 2.	463 240 5 GHz -12.77 dBm	Auto Tun
0.0					Center Fre 2.463245000 GH
0.0		1 homen and will and home man	li mili sen in a		Start Fr 2.463095000 G
0.0	an in the second s			on line and on the other states	Stop Fr 2.463395000 G
0.0					CF St 30.000 k <u>Auto</u> M
0.0					Freq Offs 0
enter 2.4632450 C		× 40 kH=		Span 300.0 kHz	
Res BW 3.0 kHz	#VBI	N 10 kHz	#Sweep) 100 s (1001 pts)	

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs