

SAR Test Report

Product Name : Ultra Mobile PC (UMPC)

Model No. : R2H

Applicant: ASUSTeK COMPUTER INC.

Address : 4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan,

R.O.C.

Date of Receipt : 2006/05/15

Issued Date : 2006/06/20

Report No. : 065L103-HP-US-P09V01

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. SAR test report is for production unit.

Page: 1 of 24 Version:1.0

Report No: 065L103-HP-US-P09V01

Test Report Certification

Issued Date: 2006/06/20

Report No.:065L103-HP-US-P09V01

QuieTek

Product Name : Ultra Mobile PC (UMPC)

Applicant : ASUSTeK COMPUTER INC.

Address : 4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.

Manufacturer : ASUSTeK COMPUTER INC.

Model No. : R2H

Applicable Standard : FCC Oet65 Supplement C June 2001

IEEE Std. 1528-2003

47CFR § 2.1093

RSS-102 Issue 2

Test Result : Max. SAR Measurement (1g)

Body 802.11b: 0.173 W/kg

Body 802.11g: 0.218 W/kg

Application Type Certification

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Documented By : **Ta

(Rita Huang)

Tested By : Shine Hsu

(Shine Hsu)

Approved By

(Gene Chang)

TABLE OF CONTENTS

Desc	cription	Page	
1.	General Information		4
	1.1 EUT Description		4
_	1.2 Test Environment		4
2.	SAR Measurement System		
	2.1 ALSAS-10U System Description		
	2.1.1 Applications		
	2.1.2 Area Scans.		5
	2.1.3 Zoom Scan (Cube Scan Averaging)		6
	2.1.4 ALSAS-10Ù Interpolation and Extrapolation Uncertainty		6
	2.2 Isotronic E-Field Probe		6
	2.2.1 Isotropic E-Field Probe Specification		8
	2.3 Boundary Detection Unit and Probe Mounting Device		8
	2.4 Daq-Paq (Analog to Digital Electronics)		9
	2.5 Axis Articulated Robot		9
	2.6 ALSAS Universal Workstation		
	2.7 Universal Device Positioner		
	2.8 Phantom Types		
	2.8.1 APREL ŠĀM Phantoms		11
	2.8.2 APREL Laboratories Universal Phantom		11
3.	Tissue Simulating Liquid		12
	3.1 The composition of the tissue simulating liquid		12
	3.2 Tissue Calibration Result		12
_	3.3 Tissue Dielectric Parameters for Head and Body Phantoms		13
4.	SAR Measurement Procedure		14
	4.1 SAR System Validation		
	4.1.1 Validation Dipoles		
	4.1.2 Validation Result		
	4.2 Arrangement Assessment Setup		14
	4.2.1 Test Positions of Device Relative to Head		14
	4.2.1.1 Definition of the "Cheek" Position		
	4.2.1.2 Definition of the "Tilted" Position		
	4.2.2 Test Positions for body-worn		
_	4.3 SAR Measurement Procedure		17
5 .	SAR Exposure Limits		19
6.	SAR Exposure Limits Test Equipment List Measurement Uncertainty		19
7.	Measurement Uncertainty		21
8.	Test Results		
	8.1 SAR Test Results Summary		
	Appendix A. SAR System Validation Data		24
	Appendix B. SAR measurement Data		24
	Appendix C. Test Setup Photographs & EUT Photographs		24
	Appendix D. Probe Calibration Data		24
	Appendix E. Dipole Calibration Data		
	Appendix F. SAR System Validation Data		24

1. General Information

1.1 EUT Description

Product Name	Ultra Mobile PC (UMPC)	
Model No.	R2H	
FCC ID	MSQ-R2H	
TX Frequency	2412MHz ~2462MHz	
Type of Modulation	DSSS/OFDM	
Antenna Type	Internal	
Device Category	Portable	
RF Exposure Environment	Uncontrolled	
Transfer Rate	802.11b: 11Mbps	
	802.11g: 54Mbps	
Max. Output Power	802.11b: 17.36dBm	
(Conducted)	802.11g: 15.39dBm	

1.2 Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	22.4
Humidity (%RH)	30-70	54

Page: 4 of 24 Version:1.0

2. SAR Measurement System

2.1 ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.

ALSAS-10U uses the latest methodologies and FDTD odeling to provide aplatform which is repeatable with minimum uncertainty.

2.1.1 Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR

maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

2.1.3 Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

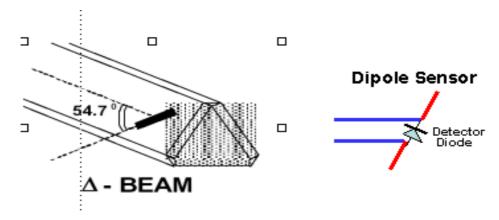
The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

2.2 Isotropic E-Field Probe


The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below:

Calibration Frequency	Air Calibration	Tissue Calibration	
2450MHz	Waveguide	Temperature	

Page: 6 of 24 Version:1.0

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

2.2.1 Isotropic E-Field Probe Specification

Calibration in Air	Frequency Dependent
Calibration in All	
	Below 2GHz Calibration in air performed in a TEM Cell
	Above 2GHz Calibration in air performed in waveguide
Sensitivity	$0.70 \ \mu V/(V/m)^2 \ to \ 0.85 \ \mu V/(V/m)^2$
Dynamic Range	0.0005 W/kg to 100W/kg
Isotropic Response	Better than 0.2dB
Diode Compression point	Calibration for Specific Frequency
(DCP)	
Probe Tip Radius	< 5mm
Sensor Offset	1.56 (+/- 0.02mm)
Probe Length	290mm
Video Bandwidth	@ 500 Hz: 1dB
	@1.02 KHz: 3dB
Boundary Effect	Less than 2% for distance greater than 2.4mm
Spatial Resolution	Diameter less than 5mm Compliant with Standards

2.3 Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq

2.4 Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from 5µV to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20mV to 200mV and 150mV to 800mV
Field Integration	Local Co-Processor utilizing proprietary integration algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

2.5 Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer	Thermo CRS	
Number of Axis	Six independently controlled axis	
Positioning Repeatability 0.05mm		
Controller Type	Single phase Pentium based C500C	
Robot Reach	710mm	
Communication	RS232 and LAN compatible	

Page: 9 of 24 Version:1.0

2.6 ALSAS Universal Workstation

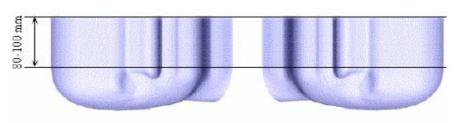
ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

2.7 Universal Device Positioner

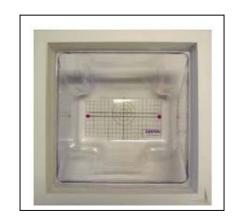
The universal device positioner allow complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

2.8 Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.


Page: 10 of 24 Version:1.0

2.8.1 APREL SAM Phantoms


The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

2.8.2 APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of

handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

INGREDIENT	2450MHz	2450MHz		
(% Weight)	Head	Body	-	-
Water	46.7	73.2	-	-
Salt	0.00	0.04	-	-
Sugar	0.00	0.00	-	-
HEC	0.00	0.00	-	-
Preventol	0.00	0.00	-	-
DGBE	53.3	26.7	-	-

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Anritsu MS4623B Vector Network Analyzer

Head Tissue Simulant Measurement							
Frequency	Description	Dielectric F	Dielectric Parameters				
[MHz]	Description	ε _r	σ [s/m]	[°C]			
	Reference result	39.2	1.8	N/A			
2450MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	IV/A			
	14-June-06	38.25	1.845	22.1			

Body Tissue Simulant Measurement						
Frequency	Description	Dielectric F	Tissue Temp.			
[MHz]	Description	8 r	σ [s/m]	[°C]		
	Reference result	52.7	1.95	N/A		
2450MHz	± 5% window	50.065 to 55.335	1.8525 to 2.0475	IN//A		
	14-June-06	51.28	1.982	22.1		
2412 MHz	Low channel	51.59	2.014	22.1		
2437 MHz	Mid channel	51.38	1.992	22.1		
2462 MHz	High channel	51.19	1.970	22.1		

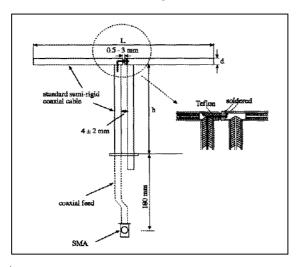
Page: 12 of 24 Version:1.0

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Вс	dy
(MHz)	ϵ_{r}	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)


Page: 13 of 24 Version:1.0

4. SAR Measurement Procedure

4.1 SAR System Validation

4.1.1 Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

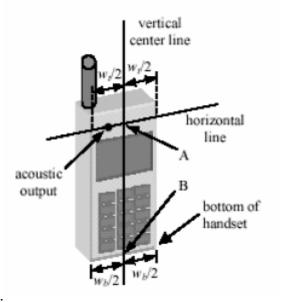
4.1.2 Validation Result

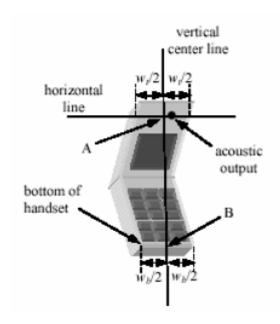
System Performance Check at 2450MHz

Validation Kit: ASL-D-2450-S-2

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 5% window	52.4 49.78 to 55.02	24 22.8 to 25.2	N/A
	14-June-06	51.316	23.408	22.1

Note: All SAR values are normalized to 1W forward power.


4.2 Arrangement Assessment Setup


4.2.1 Test Positions of Device Relative to Head

This specifies exactly two test positions for the handset against the head phantom, the "cheek" position and the "tilted" position. The handset should be tested in both positions on the left and right sides of the SAM phantom. If the handset construction is such that it cannot be positioned using the handset positioning procedures described in 4.2.2.1 and 4.2.2.2 to represent normal use conditions (e.g., asymmetric handset), alternative alignment procedures should be considered with details provided in the test

Page: 14 of 24 Version:1.0

report.

Figure 4.1a Fixed Case

Figure 4.1b Clam Shell

4.2.1.1 Definition of the "Cheek" Position

The "cheek" position is defined as follows:

- a. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.)
- b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 4.1a and 4.1b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 4.1a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 4.1b), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets.
- c. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 4.2), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna.
- e. While maintaining the handset in this plane, rotate it around the LE-RE line until the

Page: 15 of 24 Version:1.0

vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).

- f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF.
- g. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 4.2 the physical angles of rotation should be noted.

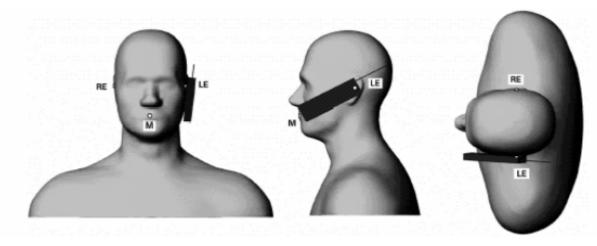


Figure 4.2 – Phone position 1, "cheek" or "touch" position.

4.2.1.2 Definition of the "Tilted" Position

The "tilted" position is defined as follows:

- a. Repeat steps (a) (g) of 4.2.1.1 to place the device in the "cheek position."
- b. While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.
- c. Rotate the handset around the horizontal line by 15 degrees.
- d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g., the antenna with the back of the head).

Page: 16 of 24 Version:1.0

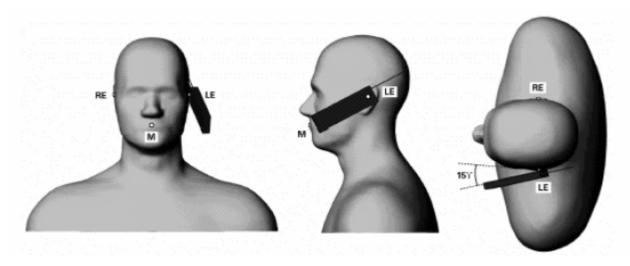


Figure 4.3 – Phone position 2, "tilted" position.

4.2.2 Test Positions for body-worn

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distance may be use, but not exceed 2.5 cm.

4.3 SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined

Page: 17 of 24 Version:1.0

area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

Page: 18 of 24 Version:1.0

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit		
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg		
Spatial Average SAR (whole body)	0.08 W/kg		
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg		

Page: 19 of 24 Version:1.0

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last Calibration
Data Acquisition Package	Aprel	ALS-DAQ-PAQ-2	QTK-337	Nov. 2005
Aprel Laboratories Probe	Aprel	ALS-E020	264	Mar. 2006
Aprel Laboratories Probe	Aprel	ALS-E020	265	Mar. 2006
Aprel Reference Dipole 900Mhz	Aprel	ALS-D-900-S-2	QTK-316	Jun. 2004
Aprel Reference Dipole 1800Mhz	Aprel	ALS-D-1800-S-2	QTK-317	Jun. 2004
Aprel Reference Dipole 2450Mhz	Aprel	ALS-D-2450-S-2	QTK-319	Jun. 2004
Boundary Detection Sensor System	Aprel	ALS-PMDPS-2	QTK-336	N/A
Dielectric Probe Kit	Aprel	ALS-PR-DIEL	QTK-296	N/A
Universal Work Station	Aprel	ALS-UWS	QTK-326	N/A
Device Holder 2.0	Aprel	ALS-H-E-SET-2	QTK-294	N/A
Left Ear SAM Phantom	Aprel	ALS-P-SAM-L	QTK-292	N/A
Right Ear SAM Phantom	Aprel	ALS-P-SAM-R	QTK-288	N/A
Universal Phantom	Aprel	ALS-P-UP-1	QTK-246	N/A
Aprel Dipole Spacer	Aprel	ALS-DS-U	QTK-295	N/A
SAR Software	Aprel	ALSAS-10	Ver. 2.3.0	N/A
CRS C500C Controller	Thermo	ALS-C500	RCF0404433	N/A
CRF F3 Robot	Thermo	ALS-F3	RAF0412222	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A
Directional Coupler	Agilent	778D-012	50550	N/A
Universal Radio	Rohde &	CMU 200	104846	Mar. 2006
Communication Tester	Schwarz			
Vector Network	Anritsu	MS4623B	992801	Mar 2006
Signal Generator	Anritsu	MG3692A	042319	Jun. 2005
Power Meter	Anritsu	ML2487A	6K00001447	Jan. 2006
Wide Bandwidth Sensor	Anritsu	MA2491	030677	Jan. 2006

Page: 20 of 24 Version:1.0

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c, (1-g)	(10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
Measurement System							
_							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	√3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	√3	√cp	√cp	4.4	4.4
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6
Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	√3	1	1	0.5	0.5
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	√3	1	1	0.2	0.2
Restriction			_				
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	4.7	rectangular	√3	1	1	2.7	2.7
-1							
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	normal	1	0.7	0.5	0.1	0.0
Liquid Permittivity(target)	2.0	rectangular	√3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	2.6	normal	1	0.6	0.5	1.6	1.3
Combined Uncertainty		RSS				9.6	9.5
Combined Uncertainty (coverage factor=2)		Normal(k=2)				19.3	18.9

Page: 21 of 24 Version:1.0

8. Test Results

8.1 SAR Test Results Summary

SAR MEASUREMENT

Ambient Temperature (°C): 22.4 ±2 Relative Humidity (%): 54

Liquid Temperature (°C): 22.1 ±2 Depth of Liquid (cm):>15

Product: Ultra Mobile PC (UMPC)

Test Mode: 802.11b

Test Position Head	Antenna	Frequency		Conducted Power	SAR 1g	Limit
	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)
Front	Internal	1	2412	16.65	0.166	1.6
Front	Internal	6	2437	17.36	0.164	1.6
Front	Internal	11	2462	17.31	0.173	1.6
Back	Internal	1	2412	16.65		1.6
Back	Internal	6	2412	17.36	0.148	1.6
Back	Internal	11	2462	17.31	1	1.6
Тор	Internal	1	2412	16.65	-1	1.6
Тор	Internal	6	2437	17.36	0.126	1.6
Тор	Internal	11	2462	17.31		1.6

Note: The EUT test position is touch & tilted 15 degrees.

The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

Page: 22 of 24 Version:1.0

SAR MEASUREMENT

Ambient Temperature (°C):22.4 ±2 Relative Humidity (%): 54

Liquid Temperature (°C): 22.1 ±2 Depth of Liquid (cm):>15

Product: Ultra Mobile PC (UMPC)

Test Mode: 802.11g

Test Position Head	Antenna Position	Frequency		Conducted	SAR 1g	Limit
		Channel	MHz	Power (dBm)	(W/kg)	(W/kg)
Front	Internal	1	2412	15.1	0.218	1.6
Front	Internal	6	2437	15.39	0.19	1.6
Front	Internal	11	2462	15.25	0.187	1.6
Back	Internal	1	2412	15.1		1.6
Back	Internal	6	2437	15.39	0.14	1.6
Back	Internal	11	2462	15.25		1.6
Тор	Internal	1	2412	15.1		1.6
Тор	Internal	6	2437	15.39	0.084	1.6
Тор	Internal	11	2462	15.25		1.6

Note: The EUT test position is touch & tilted 15 degrees.

The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at the high and low channels is option.

Appendix A. SAR System Validation Data

Appendix B. SAR measurement Data

Appendix C. Test Setup Photographs & EUT Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix F. SAR System Validation Data

SAR System Validation Data

ALSAS-10U VER 2.3.0 APREL Laboratories

SAR Test Report

Validation Date : 14-Jun-2006 Measurement Date : 14-Jun-2006

Product Data

Device Name : Dipole-2450

Type : Dipole Frequency : 2450.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 51.5 mm Length : 51.5 mm Width : 3.6 mm Depth : 30.4 mm

Power Drift-Start : 6.762 W/kg Power Drift-Finish: 6.891 W/kg

Power Drift (%) : 1.909

Phantom Data

Name : APREL-Uni Type : Uni-Phant : Uni-Phantom Size (mm) : 280 x 280 x 200 Location : Center

Tissue Data

Type : HEAD
Serial No. : 325-H
Frequency : 2450.00 MHz

Last Calib. Date : 14-Jun-2006 Temperature : 22.10 °C Ambient Temp. : 22.40 °C

Humidity : 54.00 RH%

Epsilon : 38.25 F/m

Sigma : 1.845 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : Probe Model : E020 Type : E-Fie Serial No. : 264 : Probe 264

: E-Field Triangle

Last Calib. Date : 21-Mar-2006 Frequency : 2450.00 MHz

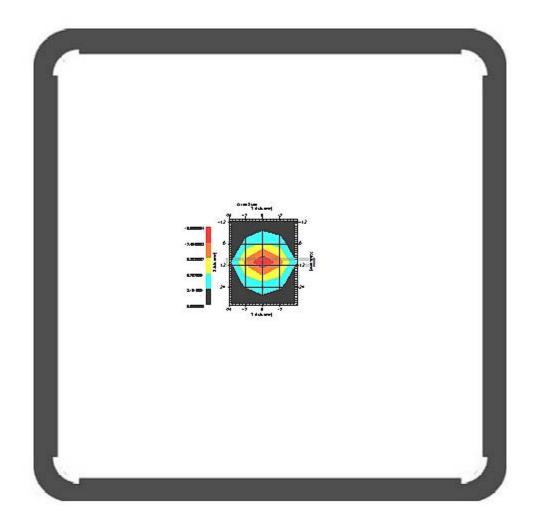
Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C


Ambient Temp. : 22.40 °C

Area Scan : 5x5x1 : Measurement x=12mm, y=12mm, z=4mm

Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

DUT Position : Touch

Frequency : 2450

1 gram SAR value : 12.829 W/kg 10 gram SAR value : 5.852 W/kg Area Scan Peak SAR : 15.504 W/kg Zoom Scan Peak SAR : 26.122 W/kg

> Page: 2 of 3 Version:1.0

SAR-Z Axis at Hotspot x:10.00 y:-2.00

SAR 2.45GHz Measurement Data

ALSAS-10U VER 2.3.0 APREL Laboratories

SAR Test Report

Vaildation Date : 14-Jun-2006 Measurement Date : 14-Jun-2006

Product Data

Device Name : ASUS Type : Other
Model : R2H
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0 W Drift Time : 0 min(s)
Length : 133 mm
Width : 233 mm Width Depth Depth : 27.6 mm
Antenna Type : Internal

Phantom Data

Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Location : Center

Tissue Data

Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz Last Calib. Date : 14-Jun-2006 Last Calib. Date: 14-Jun-2006

Temperature: 22.10 °C

Ambient Temp.: 22.40 °C

Humidity: 54.00 RH%

Epsilon: 51.28 F/m

Sigma: 1.982 S/m

Density: 1000.00 kg/cu. m

Probe Data

Name : Probe 264

Model : E020

Type : E-Field Triangle

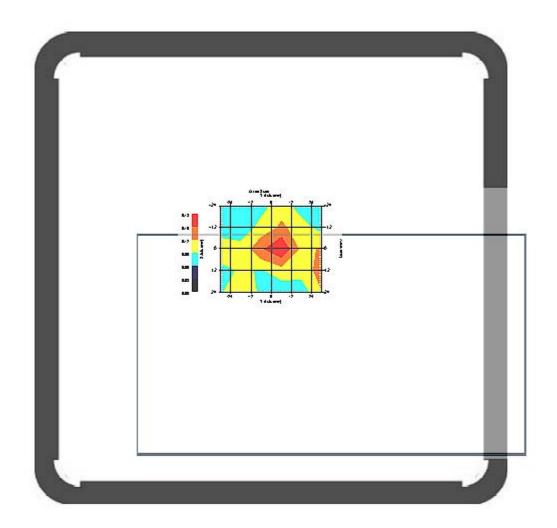
Serial No. : 264

Last Calib. Date : 21-Mar-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

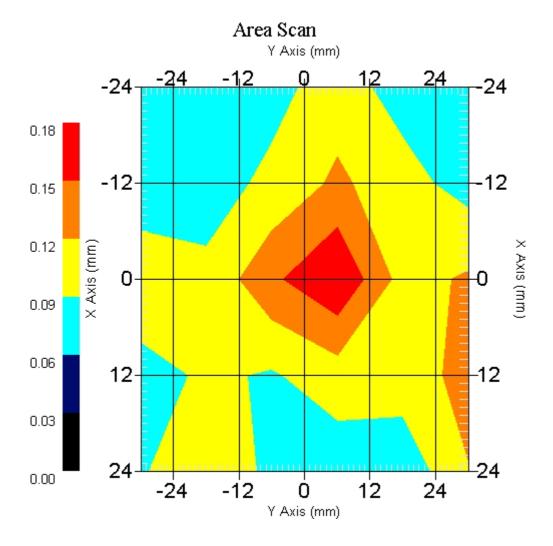

Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm: 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.161 W/kg Power Drift-Finish: 0.163 W/kg

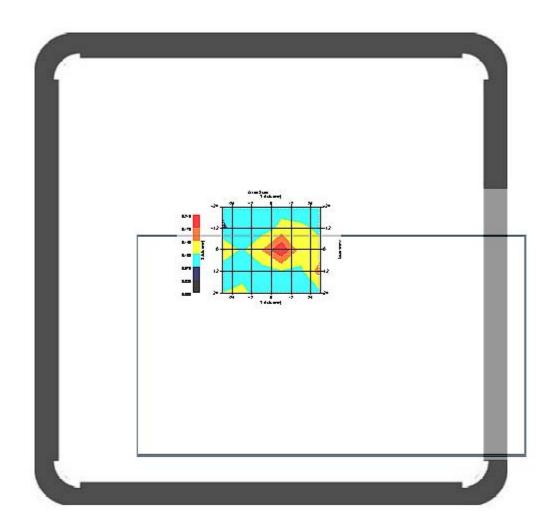
Power Drift (%) : 1.427
DUT Position : Touch
Channel : 1



1 gram SAR value : 0.166 W/kg 10 gram SAR value : 0.126 W/kg Area Scan Peak SAR: 0.178 W/kg Zoom Scan Peak SAR : 0.110 W/kg

> Page: 2 of 24 Version:1.0

This is previous page plot (zoom in)


Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm: 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.162 W/kg Power Drift-Finish: 0.163 W/kg

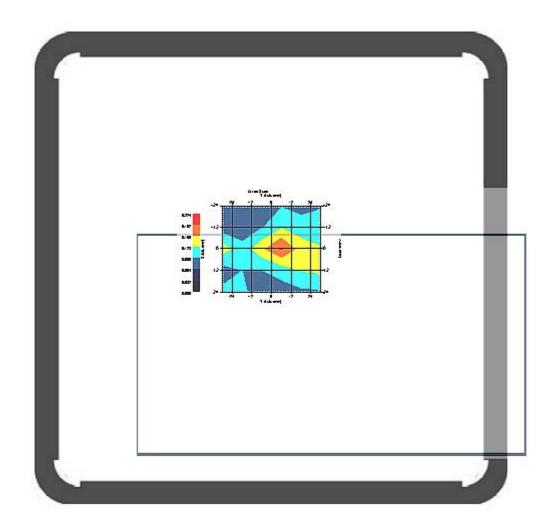
Power Drift (%) : 0.976
DUT Position : Touch
Channel : 6



1 gram SAR value : 0.164 W/kg 10 gram SAR value : 0.125 W/kg Area Scan Peak SAR: 0.208 W/kg Zoom Scan Peak SAR : 0.290 W/kg

> Page: 4 of 24 Version:1.0

This is previous page plot (zoom in)

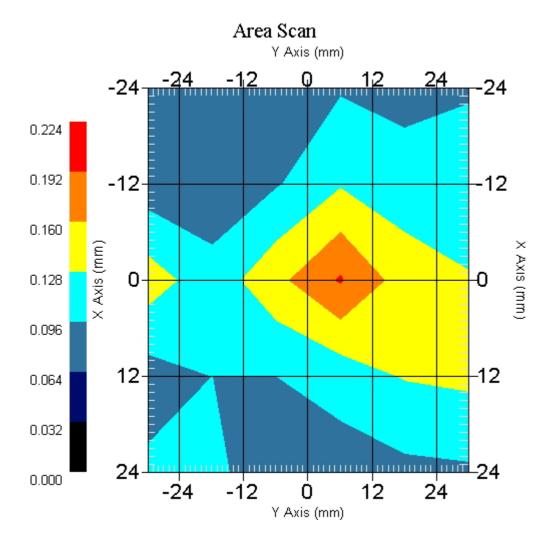

Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm : 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.146 W/kg Power Drift-Finish: 0.148 W/kg

Power Drift (%) : 1.365
DUT Position : Touch
Channel : 11

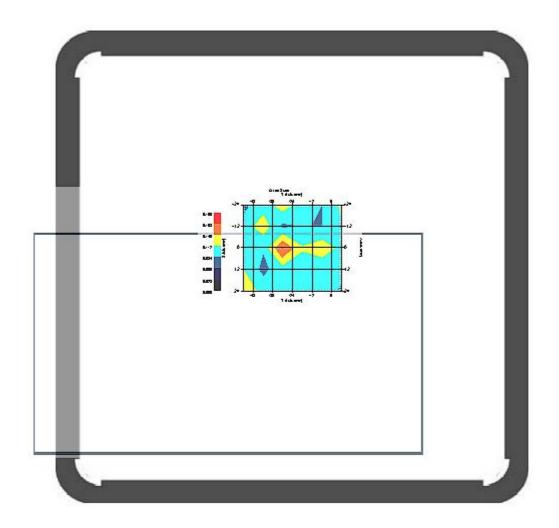


1 gram SAR value : 0.173 W/kg 10 gram SAR value : 0.133 W/kg Area Scan Peak SAR : 0.195 W/kg Zoom Scan Peak SAR : 0.290 W/kg

> Page: 6 of 24 Version:1.0

This is previous page plot (zoom in)

Measurement Data

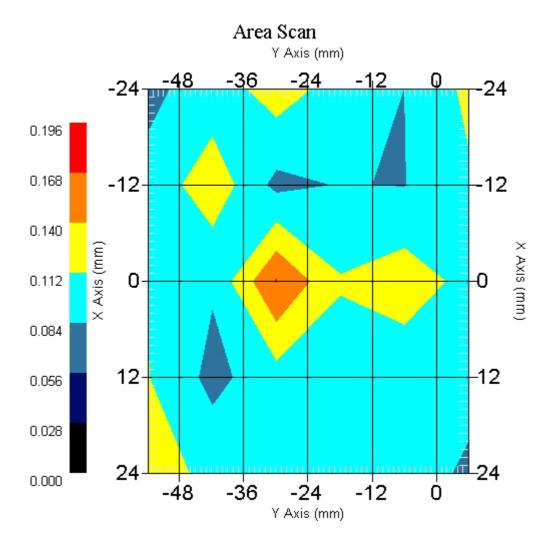

Crest Factor : 1

Tissue Temp. : 22.10 °C Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=12mm, y=5mm, z=5mm: 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.098 W/kg Power Drift-Finish: 0.100 W/kg

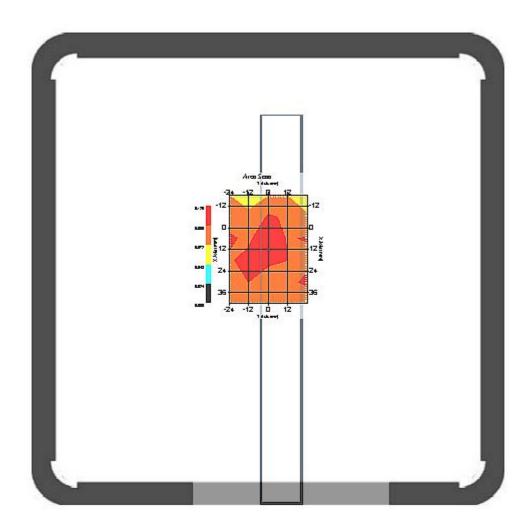
Power Drift (%) : 1.552 DUT Position : Touch Channel : 6



1 gram SAR value : 0.148 W/kg 10 gram SAR value : 0.136 W/kg Area Scan Peak SAR : 0.169 W/kg Zoom Scan Peak SAR : 0.150 W/kg

> Page: 8 of 24 Version:1.0

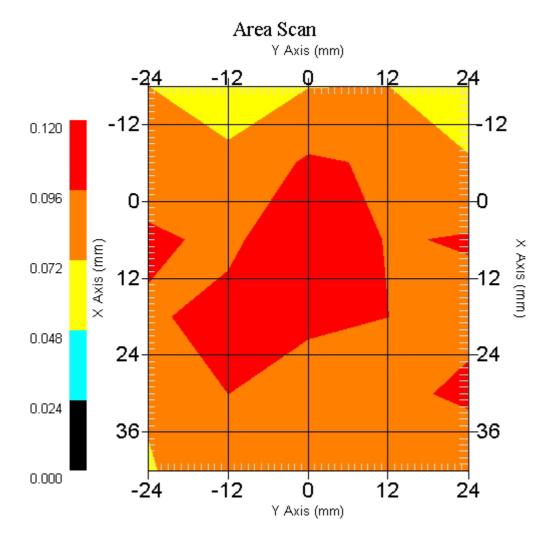
This is previous page plot (zoom in)


Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 6x5x1 : Measurement x=5mm, y=5mm, z=5mm: 6x5x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.085 W/kg Power Drift-Finish: 0.083 W/kg


Power Drift (%) : -1.731
DUT Position : Touch
Channel : 6

1 gram SAR value : 0.126 W/kg 10 gram SAR value : 0.109 W/kg Area Scan Peak SAR: 0.118 W/kg Zoom Scan Peak SAR : 0.100 W/kg

This is previous page plot (zoom in)

ALSAS-10U VER 2.3.0 APREL Laboratories

SAR Test Report

Validation Date : 14-Jun-2006 Measurement Date : 14-Jun-2006

Product Data

Device Name : ASUS
Type : Other Type Model Model : R2H Frequency : 2450.00 MHz

Max. Transmit Pwr : 0 W Drift Time : 0 min(s) Length : 133 mm : Internal

Phantom Data

Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Location : Center

Tissue Data

Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz

Last Calib. Date: 14-Jun-2006 Temperature : 22.10 °C Ambient Temp. : 22.40 °C

Humidity : 54.00 RH%

Epsilon : 51.28 F/m

Sigma : 1.982 S/m

Density : 1000.00 kg

Density : 1000.00 kg/cu. m

Probe Data

: Probe 264 : E020 Name Model

: E-Field Triangle Type

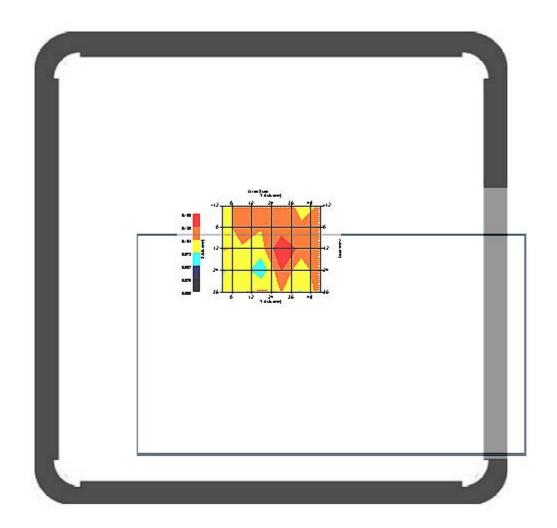
Type : E-Fig Serial No. : 264

Last Calib. Date : 21-Mar-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

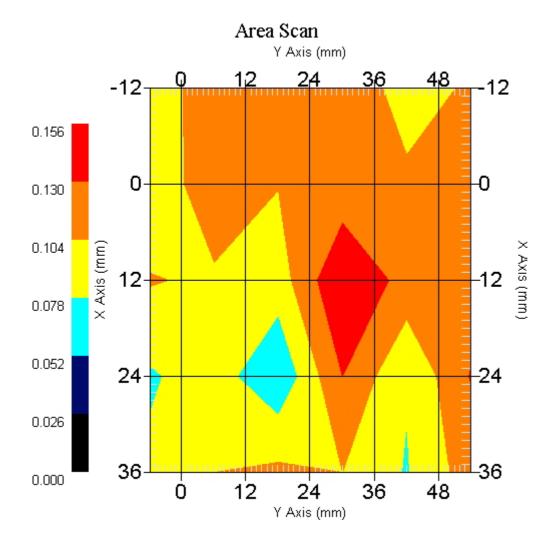

Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm : 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.107 W/kg Power Drift-Finish: 0.109 W/kg

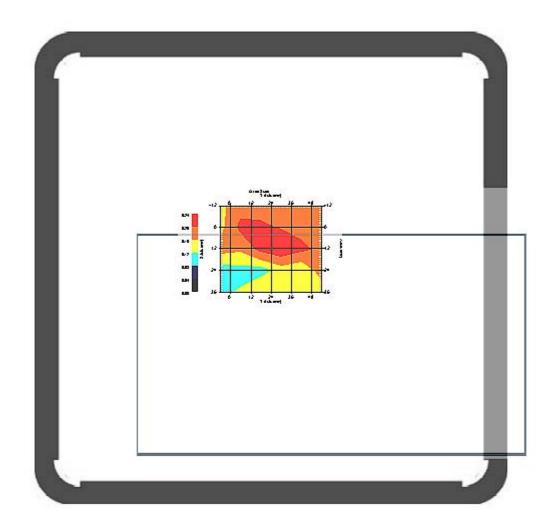
Power Drift (%) : 1.857
DUT Position : Touch
Channel : 1



1 gram SAR value : 0.218 W/kg 10 gram SAR value : 0.174 W/kg Area Scan Peak SAR: 0.154 W/kg Zoom Scan Peak SAR : 0.320 W/kg

Version:1.0

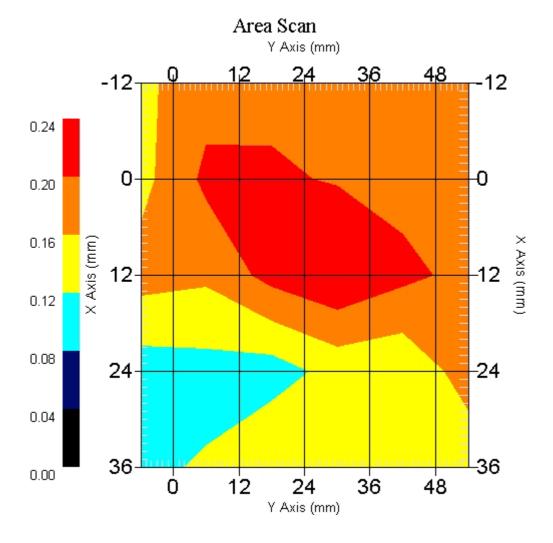
This is previous page plot (zoom in)


Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm: 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

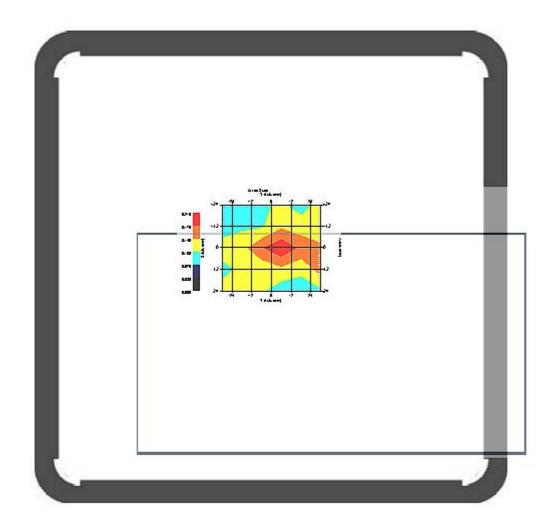
Power Drift-Start : 0.149 W/kg Power Drift-Finish: 0.148 W/kg


Power Drift (%) : -0.973
DUT Position : Touch
Channel : 6

1 gram SAR value : 0.190 W/kg 10 gram SAR value : 0.153 W/kg Area Scan Peak SAR: 0.237 W/kg Zoom Scan Peak SAR : 0.230 W/kg

This is previous page plot (zoom in)

Version:1.0

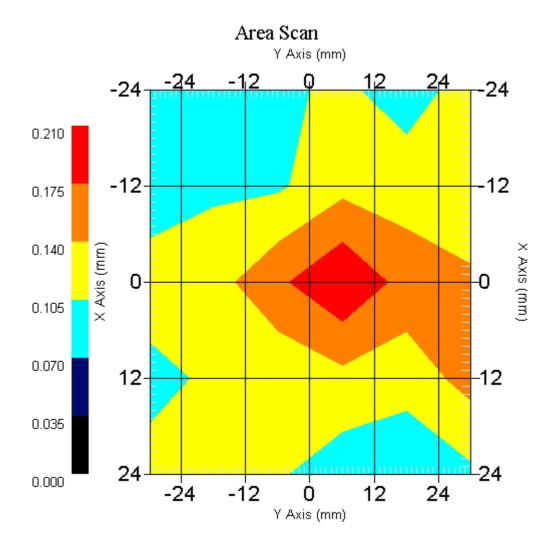

Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm : 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.164 W/kg Power Drift-Finish: 0.166 W/kg

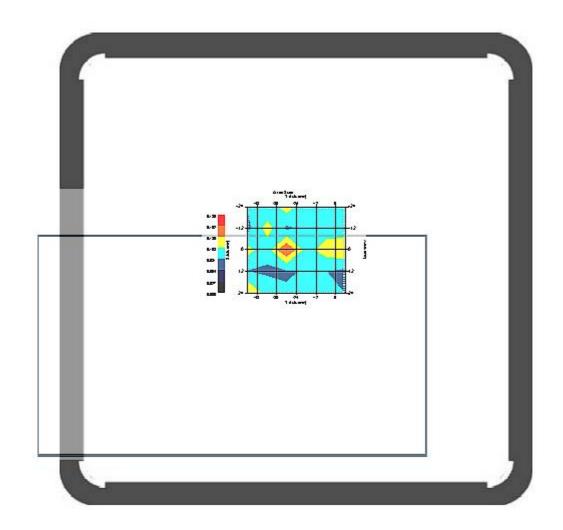
Power Drift (%) : 1.361
DUT Position : Touch
Channel : 11



1 gram SAR value : 0.187 W/kg 10 gram SAR value : 0.135 W/kg Area Scan Peak SAR: 0.207 W/kg Zoom Scan Peak SAR : 0.320 W/kg

> Page: 17 of 24 Version:1.0

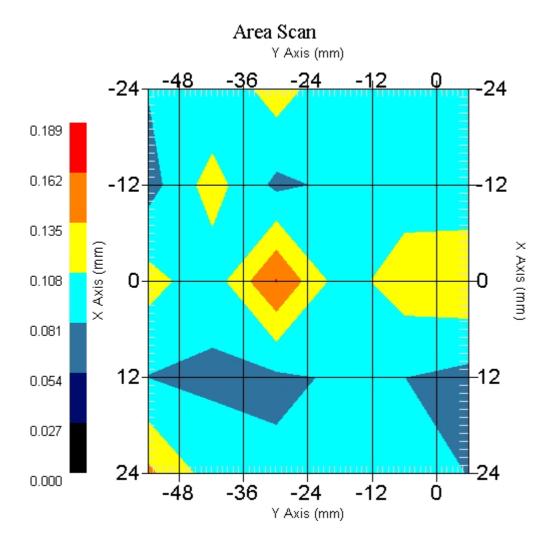
This is previous page plot (zoom in)


Measurement Data

Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 5x6x1 : Measurement x=5mm, y=5mm, z=5mm: 5x6x1 : Measurement x=12mm, y=12mm, z=4mm

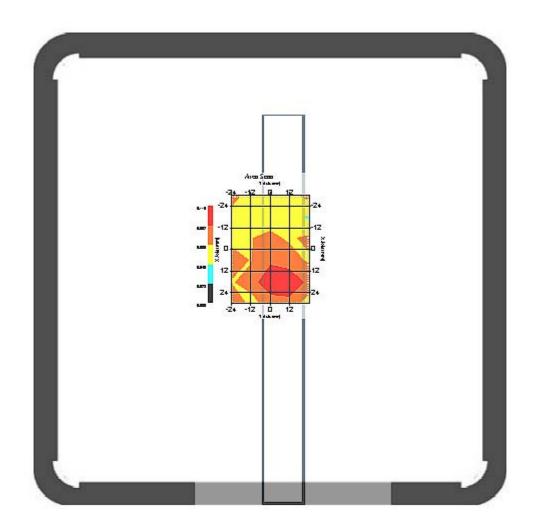
Power Drift-Start : 0.099 W/kg Power Drift-Finish: 0.099 W/kg


Power Drift (%) : -0.732 DUT Position : Touch Channel : 6

1 gram SAR value : 0.140 W/kg 10 gram SAR value : 0.124 W/kg Area Scan Peak SAR: 0.163 W/kg Zoom Scan Peak SAR : 0.200 W/kg

This is previous page plot (zoom in)

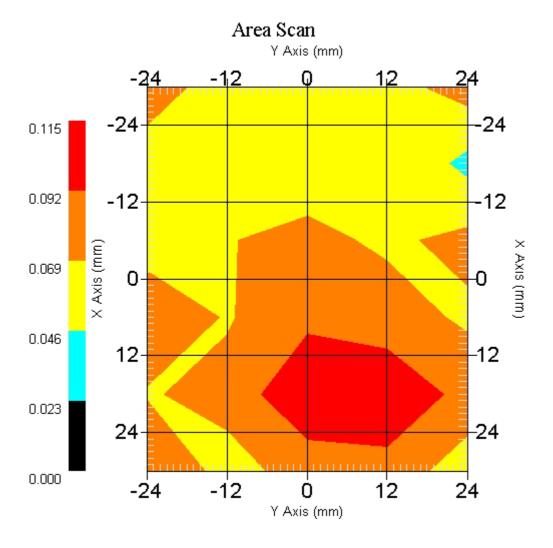
Version:1.0


Measurement Data

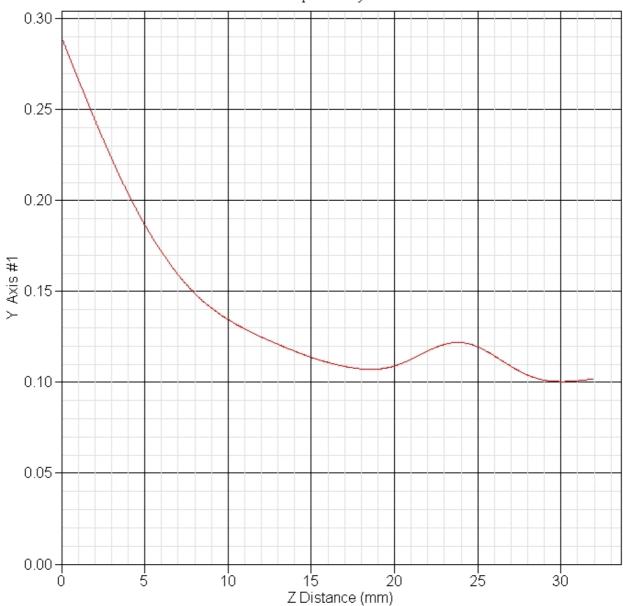
Crest Factor : 1
Tissue Temp. : 22.10 °C
Ambient Temp. : 22.40 °C

Area Scan : 6x5x1 : Measurement x=5mm, y=5mm, z=5mm: 6x5x1 : Measurement x=12mm, y=12mm, z=4mm

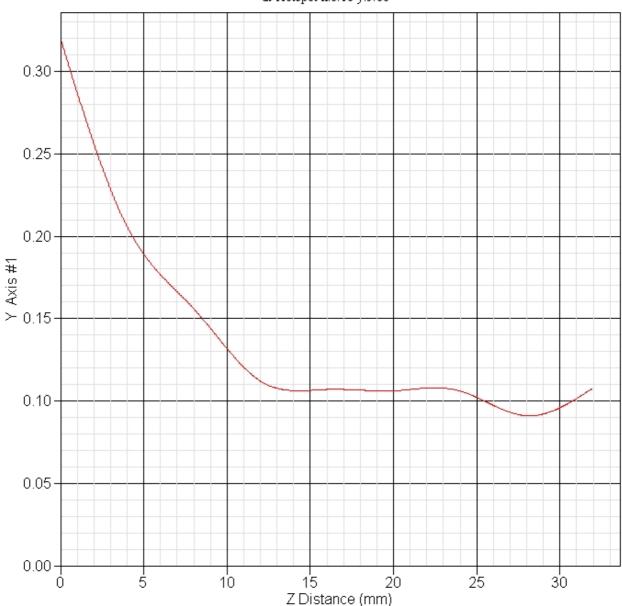
Power Drift-Start : 0.095 W/kg Power Drift-Finish: 0.096 W/kg


Power Drift (%) : 0.967
DUT Position : Touch
Channel : 1

1 gram SAR value : 0.084 W/kg 10 gram SAR value : 0.070 W/kg Area Scan Peak SAR: 0.113 W/kg Zoom Scan Peak SAR : 0.080 W/kg


This is previous page plot (zoom in)

EUT 802.11b SAR test Z-Axis plot (Front, Channel 11)



EUT 802.11g SAR test Z-Axis plot (Front, Channel 1)

SAR-Z Axis at Hotspot x:0.10 y:5.80

Test Setup Photographs

Front

Back

Page: 1 of 3 Version:1.0

Тор

EUT Photographs

Page: 3 of 3 Version:1.0

QuieTek

Appendix - Probe Calibration

Miniature Isotropic RF Probe

M/N: ALS-E-020

S/N: 264

2450MHz Head Calibration page 2~11 2450MHz Body Calibration page 12~21

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-634

Client: QUIETEK

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz

Manufacturer: APREL Laboratories Model No.: ALS-E-020 Serial No.: 264

HEAD Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2
Project No: QUIB-Probe-Cal-5210

Calibrated: 21st March 2006 Released on; 21st March 2006

This Calibration Certificate is Incomplete Unless Ascompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO Division of APREL Lab TEL (613) 820-4988 FAX (610) 820-4161

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained

Division of APREL Laboratories.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 264.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 264 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: 22 $^{\circ}$ C +/- 0.5 $^{\circ}$ C Temperature of the Tissue: 21 $^{\circ}$ C +/- 0.5 $^{\circ}$ C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Yi Pan

Page 2 of 10

Division of APREL Laboratories.

Calibration Results Summary

Probe Type:

E-Field Probe E-020

Serial Number:

264

Frequency:

2450 MHz

Sensor Offset:

1.56 mm

Sensor Length:

2.5 mm

Tip Enclosure:

Ertalyte*

Tip Diameter:

<5 mm

Tip Length:

60 mm

Total Length:

290 mm

Sensitivity in Air

Channel X: Channel Y: Channel Z: 1.2 μV/(V/m)² 1.2 μV/(V/m)² 1.2 μV/(V/m)²

Diode Compression Point:

95 mV

Page 3 of 10

^{*}Resistive to recommended tissue recipes per IEEE-1528

Division of APREL Laboratories.

Sensitivity in Head Tissue

Frequency:

2450 MHz

Epsilon:

39.2 (+/-5%)

Sigma:

1.80 S/m (+/-5%)

ConvF

Channel X:

5.0

Channel Y:

5.0

Channel Z:

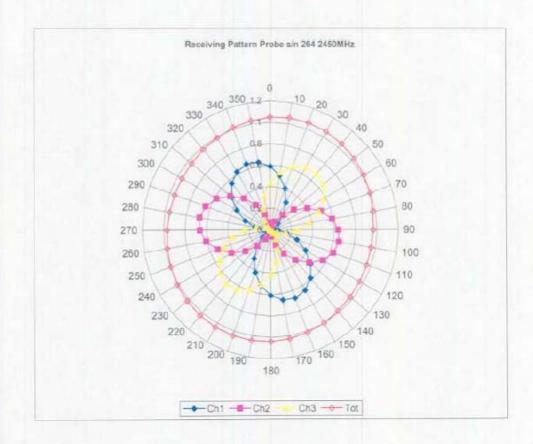
5.0

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Dag-Pag.

Boundary Effect:

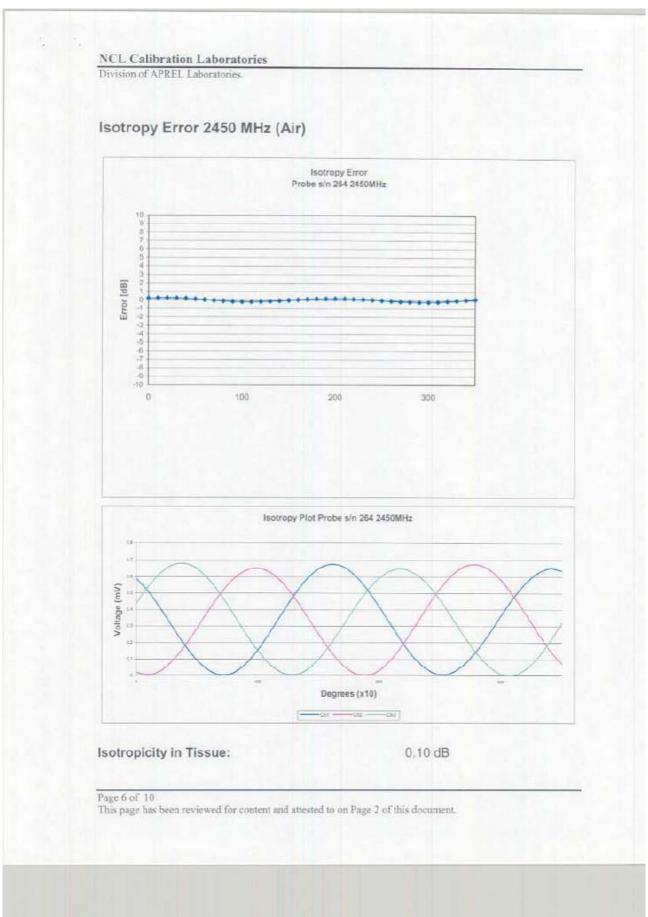
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.

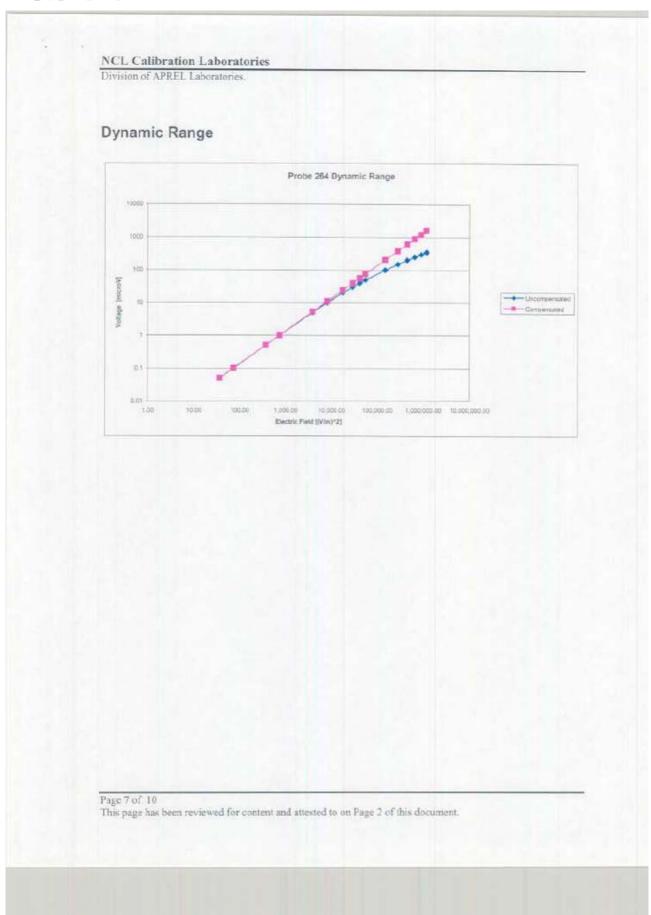
Spatial Resolution:


The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

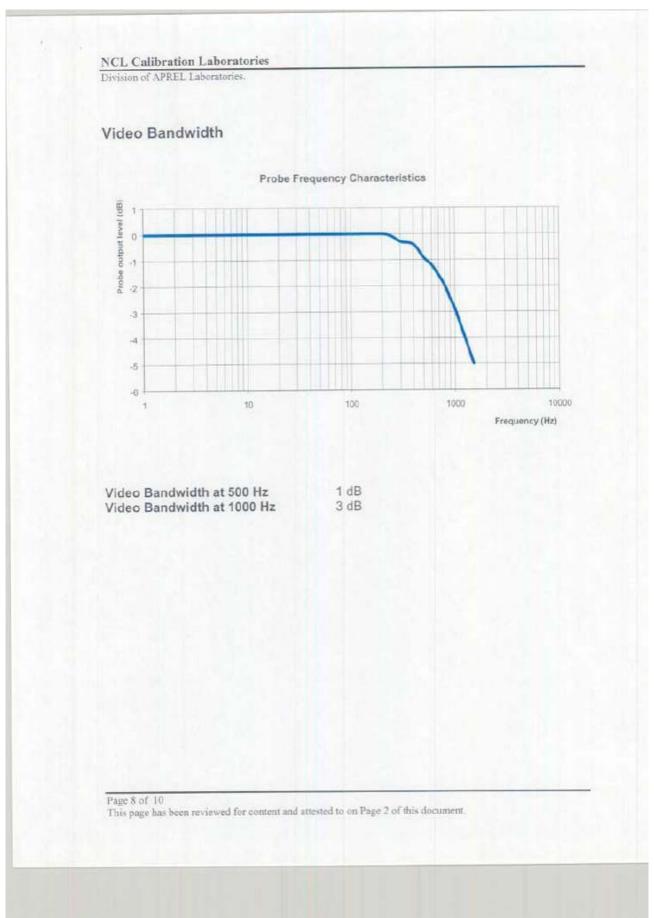
Page 4 of 10

Division of APREL Laboratories.


Receiving Pattern 2450 MHz (Air)


Page 5 of 10

This page has been reviewed for content and attested to on Page 2 of this document.



Division of APREL Laboratories.

Conversion Factor Uncertainty Assessment

Frequency:

2450MHz

Epsilon:

39.2 (+/-5%)

Sigma:

1.80 S/m (+/-5%)

ConvF

Channel X: 5.0

7%(K=2)

Channel Y:

5.0

7%(K=2)

Channel Z:

5.0

7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Page 9 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

Page: 10 of 21

NCL Calibration Laboratories Division of APREL Laboratories. Test Equipment The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List. Page 10 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Page: 11 of 21

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-641

Client: QUIETEK

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz

Manufacturer: APREL Laboratories Model No.: ALS-E-020 Serial No.: 264

BODY Calibration

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: QUIB-Probe-Cal-5210

> Calibrated: 21st March 2006 Released on: 21st March 2006

This Calibration Certificate is incomplete Unless Accompagied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA, K2R 1E6 Division of APREL Lab TEL (613) 820-4988 FAX (613) 820-4161

Division of APREL Laboratories.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 264.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 264 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Yi Pan

Page 2 of 10

NCL Calibration Laboratories Division of APREL Laboratories. Calibration Results Summary Probe Type: E-Field Probe E-020 Serial Number: 264 Frequency: 2450 MHz Sensor Offset: 1.56 mm Sensor Length: 2.5 mm Tip Enclosure: Ertalyte* Tip Diameter: <5 mm Tip Length: 60 mm Total Length: 290 mm *Resistive to recommended tissue recipes per IEEE-1528 Sensitivity in Air Channel X: 1.2 µV/(V/m)2 Channel Y: 1.2 µV/(V/m)2 Channel Z: 1.2 µV/(V/m)2 **Diode Compression Point:** 95 mV Page 3 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Laboratories.

Sensitivity in Body Tissue

Frequency:

2450 MHz

Epsilon:

52.7 (+/-5%)

Sigma:

1.95 S/m (+/-5%)

ConvF

Channel X: 5.2

Channel Y: 5.2

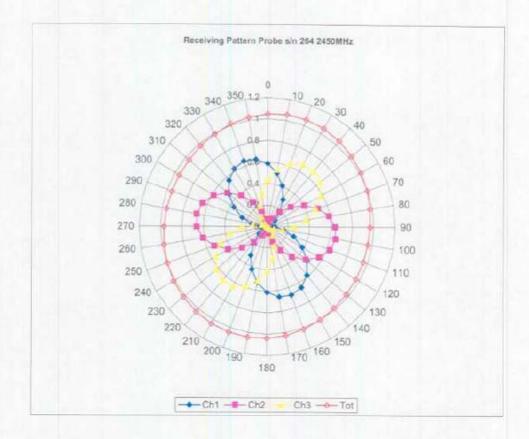
Channel Z: 5.2

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.

Spatial Resolution:


The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Page 4 of 10

Division of APREL Laboratories.

Receiving Pattern 2450 MHz (Air)

