

Specific Absorption Rate (SAR) Test Report

for

ASUSTek COMPUTER INC.

on the

Qual-Band PDA Phone

Report No. : FA822203A

Trade Name : ASUS Model Name : P320

FCC ID : MSQP320

Date of Testing : Mar. 12 and 13, 2008

Date of Report : Apr. 02, 2008 Date of Review : Apr. 02, 2008

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 01

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1.	State	ment of Compliance	!
2.	Admi	nistration Data	
	2.1	Testing Laboratory	2
	2.2	Detail of Applicant	2
		Detail of Manufacturer	
		Application Details	
3.		ral Information	
٠.	3.1		o
		Basic Description of Equipment under Test	٥٥
		Product Photo	
	3.4	Applied Standard	4
	3.5	Device Category and SAR Limits	5
	3.6	Test Conditions:	
		3.6.1 Ambient Condition	
		3.6.2 Test Configuration	5
4.	Speci	fic Absorption Rate (SAR)	7
	4.1		
	4.2	SAR Definition	7
5.		Measurement Setup	
	5.1		
		5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 E-Field Probe Calibration	10
	5.2		
		Robot	
		Measurement Server	
	5.5		
		Device Holder for SAM Twin Phantom	
	5.7	Data Storage and Evaluation	
		5.7.1 Data Storage	
		5.7.2 Data Evaluation	
	5.8	Test Equipment List	18
6.	Tissu	e Simulating Liquidse Simulating Liquids	19
7.	Unce	rtainty Assessment	21
		Measurement Evaluation	
	8.1	Purpose of System Performance check	23
		System Setup	23
		Validation Results	
9.		ription for DUT Testing Position	
		urement Procedures	
10.		Spatial Peak SAR Evaluation	
		Scan Procedures	
		SAR Averaged Methods	
11.		Test Results	
		Right Cheek	
		Right Tilted	
	11.3	Left Cheek	30
		Left Tilted	
	11.5	Front Face with 1.5cm Gap	31
		Rear Face with 1.5cm Gap	
12.		ences	
			-
Ann	endiv	A - System Performance Check Data	
		B - SAR Measurement Data	
		C - Calibration Data	
		D - Product Photo	
Th	CHUIX	D = I TOURUCE I HOLD	

Appendix E - Setup Photo

Test Report No : FA822203A

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum results found during testing for the ASUSTek COMPUTER INC. Qual-Band PDA Phone ASUS P320 are as follows (with expanded uncertainty 21.9%):

Position	GSM850 (W/kg)	PCS1900 (W/Kg)
Head	0.152	0.185
Body	0.622	0.414

Remark:

- 1. WLAN and BT share the same antenna and they can't transmit simultaneously.
- 2. The largest summation of GSM with Bluetooth and GSM with WLAN for head SAR is 0.213 W/kg and its position is right cheek.
- 3. The largest summation of GSM/GPRS/EDGE with Bluetooth and GSM/GPRS/EDGE with WLAN for body SAR is 0.652 W/kg and its position is rear face with 1.5cm gap.

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Ray Wu

Roy Wu Manager

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,

TaoYuan Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-328-4978

2.2 Detail of Applicant

Company Name: ASUSTek COMPUTER INC.

Address: 4F., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Telephone Number: 886-2-2894-3774 **Fax Number:** 886-2-2890-7699

2.3 Detail of Manufacturer

Company Name : 1. Pegatron Corporation Taoyuan Mfg.

2. ProTek (Shanghai) Ltd.

3. MainTek Computer (Suzhou) Co., Ltd.

Address: 1. No.5, Shing Yeh Street, 333 Kwei Shan Hsiang, Taoyuan Hsien, Taiwan

2. No.3768, Xiu Yan Road, Nanhui District, 201315 Shanghai, People's

Republic of China

3. No.233 Jing Feng Road, 215011 Suzhou New District, Jiangsu, People's

Test Report No : FA822203A

Republic of China

2.4 Application Details

Date of reception of application: Feb. 22, 2008 **Start of test:** Mar. 12, 2008 **End of test:** Mar. 13, 2008

3. General Information 3.1 Description of Device Under Test (DUT)

DUT Type	Qual-Band PDA Phone				
Trade Name	ASUS				
Model Name	P320				
FCC ID	MSQP320				
GSM850 : 824 ~ 849 MHz PCS1900 : 1850 ~1910 MHz Bluetooth / Bluetooth EDR : 2400 ~ 2483.5 MHz 802.11b / 802.11g : 2400 ~ 2483.5 MHz					
Rx Frequency	GSM850: 869 ~ 894 MHz PCS1900: 1930 ~ 1990 MHz Bluetooth / Bluetooth EDR: 2400 ~ 2483.5 MHz 802.11b / 802.11g: 2400 ~ 2483.5 MHz GPS: 1575.42 MHz				
Antenna Type	GSM850 / PCS1900 : Fixed Internal GPS : Fixed Internal Bluetooth / Bluetooth EDR : Chip Antenna 802.11b / 802.11g : Chip Antenna				
Power Rating	DC 4.2V, 2.5A				
HW Version	ER2				
SW Version	20080221_Version 2.6.4				
Maximum Output Power to Antenna	GSM850 : 32.07 dBm(GSM) / 32.04 dBm(GPRS10) / 27.23 dBm(EGPRS10) PCS1900 : 29.24 dBm(GSM) / 29.20 dBm(GPRS10) / 26.06 dBm(GPRS10) Buetooth : 2.06 dBm(1Mbps) Bluetooth EDR : -0.1 dBm(2Mbps) / 0.1 dBm(3Mbps) 802.11b : 14.42 dBm 802.11g : 16.81 dBm				
Channel Spacing	GSM / DCS : 200 KHz Bluetooth / Bluetooth EDR : 1 MHz 802.11b / 802.11g : 5 MHz				
Type of Antenna Connector N/A					
GPRS / EGPRS Multislot class	10				
GSM / GPRS : GMSK EDGE : 8PSK Type of Modulation Bluetooth (1Mbps) : GFSK Bluetooth EDR (2Mbps) : /4-DQPSK, 8-DPSK 802.11b/g : DSSS, OFDM					
DUT Stage	Production Unit				

Test Report No : FA822203A

FCC SAR Test Report Test Report No : FA822203A

2 2	Dania	Dagarintia	of E	it under Test
.).Z	Basic	Description	oi Rauinmen	u unaer rest
~		2 csci ipitoit	Of Education	, to the total and the total a

J.Z Dusic De	scripiion of Equipme	the three Test
Equipment		Qual-Band PDA Phone
Trade Name		ASUS
Model Name		P320
FCC ID :		MSQP320
	Trade Name	TAMURA
	Model Name	JSP050090UU
AC Adapter	Power Rating	I/P: 100-240Vac, 50-60Hz, 0.3A; O/P: 5Vdc, 0.9A
	AC Power Cord Type	1.5 meter shielded cable without ferrite core
	Brand Name	L&K
Car Charger	Model Name	04G267011910
Car Charger	Power Rating	I/P: 12/24V; O/P: 5Vdc, 900mA
	AC Power Cord Type	1.8 meter shielded cable without ferrite core
	Trade Name	ASUS
Battery	Model Name	SBP-17
Dattel y	Rating	3.7Vdc, 1100mAh
	Туре	Li-ion
	Trade Name	ASUS
Earphone	Model Name	04G171301270
	Signal line Type	1.5 meter shielded cable without ferrite core
	Trade Name	Foxconn
USB Cable	Model Name	14G000506200
	Signal Line Type	1 meter shielded cable without ferrite core

Remark: Above EUT's information was declared by manufacturer. Please refer to the specifications of manufacturer or User's Manual for more detailed features description.

3.3 Product Photo

Please refer to Appendix D

3.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Qual-Band PDA Phone is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Test Report No : FA822203A

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

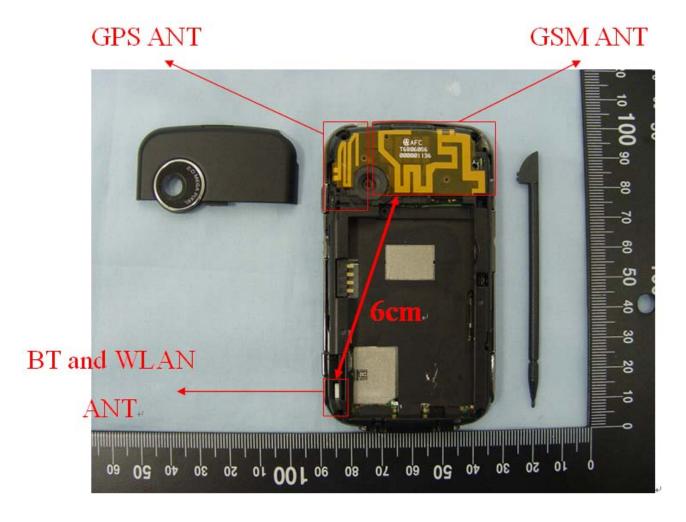
3.6 Test Conditions:

3.6.1 Ambient Condition

Item	HSL_850	MSL_850	HSL_1900	MSL_1900	
Ambient Temperature (°C)	20-24				
Tissue simulating liquid	21.5°C	21.4°C	21.4°C	21.4°C	
temperature (°C)	21.5 C	21.4 C	21. 4 C	21.4 C	
Humidity (%)	<60 %				

3.6.2 <u>Test Configuration</u>

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT.


Measurements were performed on the lowest, middle, and highest channel for each testing position for head SAR testing. Measurements were performed only on the middle channel if the SAR is below 3 dB of limit for body SAR testing.

The DUT was set from the emulator to radiate maximum output power during all tests.

For head SAR testing, EUT is in GSM link mode, and its crest factor is 8.3. For body SAR testing, EUT is in GPRS/EDGE link mode, and its crest factor is 4 because EUT is GPRS/EDGE class 10 device.

WLAN and BT share the same antenna and they can't transmit simultaneously. Distance from GSM antenna to WLAN and BT antenna is 6 cm.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Test Report No : FA822203A

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

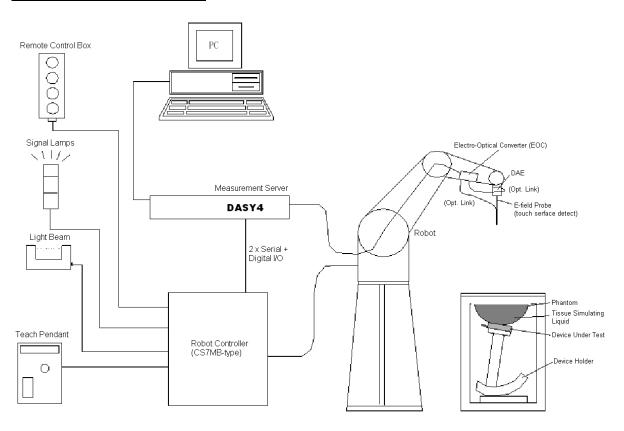


Fig. 5.1 DASY4 System

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

Test Report No : FA822203A

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- ➤ A computer operating Windows XP
- ➤ DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- > A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

Test Report Test Report No : FA822203A

5.1.1 ET3DV6 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

system

Built-in shielding against static charges

PEEK enclosure material (resistant to

organic solvents)

Frequency 10 MHz to 3 GHz

Directivity $\pm 0.2 \text{ dB}$ in brain tissue (rotation around

probe axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range 5 μ W/g to 100mW/g; Linearity: \pm 0.2dB

Surface Detection ± 0.2 mm repeatability in air and clear

liquids on reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary

phantoms

Fig. 5.2 Probe setup on robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Test Report No : FA822203A

> ET3DV6 sn1787

Sensitivity	X axis : 1.63 μV		Y axis : 1.66 μV		Z axis : 2.08 μV
Diode compression point	X axis : 92	X axis : 92 mV Y axi		xis : 96 mV	Z axis : 91 mV
	Frequency (MHz)	X a	xis	Y axis	Z axis
Conversion factor	800~1000	6.58 /	6.10	6.58 / 6.10	6.58 / 6.10
(Head / Body)	1710~1910	5.16 / 4.68		5.16 / 4.68	5.16 / 4.68
	2350~2550	4.50 / 4.02		4.50 / 4.02	4.50 / 4.02
	Frequency (MHz)	Alp	ha	Depth	
Boundary effect	800~1000	0.32 /	0.36	2.42 / 2.52	
(Head / Body)	1710~1910	0.50 /	0.61	2.61 / 2.56	
	2350~2550	0.67 /	0.65	1.81 / 2.15	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY4 system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

Test Report No : FA822203A

- ➤ High precision (repeatability 0.02 mm)
- ➤ High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY4 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY4 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 <u>Data Storage and Evaluation</u>

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Test Report No : FA822203A

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 <u>Data Evaluation</u>

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

- Conversion factor ConvF_i - Diode compression point dcp_i - Frequency f

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $U_i = input signal of channel i (i = x, y, z)$

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

 $\textbf{E-field probes}: E_i \quad = \quad \sqrt{\frac{V_i}{Norm_iConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

 \vec{f} = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

^{*} Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

$$P_{pwe} = \frac{E_{tot}^2}{3770} \qquad \text{or} \qquad P_{pwe} = H_{tot}^2 \cdot 37.7$$

Test Report No : FA822203A

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration		
Manuracture	Name of Equipment	1 y pe/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 28, 2007	Aug. 28, 2008	
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 15, 2006	Mar. 15, 2008	
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2006	Mar. 21, 2008	
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 17, 2007	Sep. 17, 2008	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR	
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	ENA Series Network Analyzer	E5071B	MY42403579	Mar. 29, 2007	Mar. 29, 2008	
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR	
Agilent	Power Meter	E4416A	GB41292344	Feb. 21, 2008	Feb. 20, 2009	
Agilent	Power Sensor	E9327A	US40441548	Feb. 21, 2008	Feb. 20, 2009	

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

Test Report No : FA822203A

The following ingredients for tissue simulating liquid are used:

- \triangleright Water: deionized water (pure H₂0), resistivity 16M as basis for the liquid
- ➤ Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- ➤ Salt: pure NaCl to increase conductivity
- ➤ **Cellulose**: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850MHz and 1900 MHz.

Ingredient	HSL-850	MSL-850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric	f = 835 MHz	f = 835 MHz	f = 1900 MHz	f = 1900 MHz
Parameters at 22°	$_{\rm r}$ = 41.5±5%,		$\varepsilon_{\rm r} = 40.0 \pm 5\%$,	$\varepsilon_{\rm r} = 53.3 \pm 5 \%$,
	$= 0.90\pm5\%$ S/m	$= 0.97 \pm 5\%$ S/m	$\sigma = 1.4 \pm 5\% \text{ S/m}$	σ= 1.52±5% S/m

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Bands	Position	Frequency (MHz)	Permittivity (r)	Conductivity ()	Measurement Date
		824.2	41.0	0.903	
	Head	836.4	40.9	0.914	Mar. 12, 2008
GSM850		848.8	40.7	0.924	
(824 ~ 849 MHz)		824.2	56.3	0.955	Mar. 13, 2008
	Body	836.4	56.3	0.967	
		848.8	56.1	0.976	
		1850.2	39.1	1.38	
	Head	1880.0	39.0	1.40	Mar. 13, 2008
PCS1900		1909.8	38.9	1.43	
$(1850 \sim 1910 \text{ MHz})$		1850.2	51.5	1.47	Mar. 13, 2008
	Body	1880.0	51.4	1.50	
		1909.8	51.3	1.53	

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $_r$ = 41.5±5% and $_r$ = 0.9±5% for head GSM 850 band, $_r$ = 55.2 ± 5% and $_r$ = 0.97 ± 5% for body GSM 850 band, $_r$ = 40.0 ± 5% and $_r$ = 1.4 ± 5% for head PCS 1900 band, and $_r$ = 53.3 ± 5% and $_r$ = 1.52 ± 5% for body PCS 1900 band.

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Test Report No : FA822203A

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

Coverage Factor for 95 %

Expanded uncertainty

(Coverage factor = 2)

Standard vi Uncertainty **Probability** Ci **Error Description** Divisor Unc. or Value ± % Distribution (1g)Veff (1g)**Measurement Equipment** ±5.9 % ±5.9 % Probe Calibration Normal 1 ∞ ±4.7 % √3 0.7 Axial Isotropy Rectangular ±1.9 % ∞ Hemispherical Isotropy ±9.6 % √3 0.7 ±3.9 % Rectangular ∞ √3 Boundary Effects ±1.0 % Rectangular ±0.6 % 1 √3 Linearity ±4.7 % Rectangular 1 ±2.7 % ∞ System Detection Limits ± 1.0 % Rectangular $\sqrt{3}$ 1 ± 0.6 % ∞ Readout Electronics ±0.3 % Normal 1 1 ±0.3 % ∞ Response Time ±0.8 % Rectangular √3 1 ±0.5 % ∞ √3 Integration Time ±2.6 % Rectangular 1 ±1.5 % RF Ambient Noise ±3.0 % Rectangular $\sqrt{3}$ ± 1.7 % ∞ RF Ambient Reflections √3 ±3.0 % Rectangular ±1.7 % 1 ∞ √3 Probe Positioner ±0.4 % Rectangular 1 ±0.2 % ∞ √3 Probe Positioning ±2.9 % Rectangular 1 $\pm 1.7~\%$ ∞ Max. SAR Eval. ±1.0 % Rectangular √3 1 ±0.6 % ∞ Test Sample Related Device Positioning ±2.9 % Normal 1 1 ±2.9 145 Device Holder ±3.6 % Normal 1 1 ± 3.6 5 Power Drift ±5.0 % Rectangular $\sqrt{3}$ ±2.9 1 ∞ Phantom and Setup ±2.3 Phantom Uncertainty ±4.0 % Rectangular $\sqrt{3}$ Liquid Conductivity (target) ±5.0 % Rectangular √3 0.64 ± 1.8 ∞ Liquid Conductivity (meas.) ±2.5 % Normal 0.64 ± 1.6 1 ∞ Liquid Permittivity (target) √3 ±5.0 % Rectangular 0.6 ± 1.7 ∞ Liquid Permittivity (meas.) ±2.5 % Normal 1 0.6 ± 1.5 ∞ **Combined Standard Uncertainty** ±10.9 387

Table 7.2 Uncertainty Budget of DASY4

K=2

Test Report No : FA822203A

±21.9

8. SAR Measurement Evaluation

Each DASY4 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY4 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Test Report No : FA822203A

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

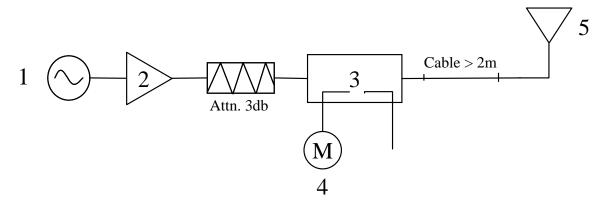


Fig. 8.1 System Evaluation Setup

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Band	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
GSM850 (835MHz)	SAR (1g)	9.24	10.1	9.3 %	Mar. 12, 2008
for Head	SAR (10g)	6.07	6.45	6.3 %	Wiai. 12, 2006
GSM850	SAR (1g)	9.91	10.2	2.9 %	Mar. 12, 2009
(835MHz) for Body	SAR (10g)	6.55	6.8	3.8 %	Mar. 13, 2008
PCS1900 (1900MHz) for Head	SAR (1g)	38.4	40.8	6.3 %	Mar. 13, 2008
	SAR (10g)	20.5	21.9	6.8 %	Wai. 13, 2006
PCS1900	SAR (1g)	41.1	39.9	-2.9 %	Mar. 13, 2008
(1900MHz) for Body	SAR (10g)	21.8	21.2	-2.8 %	Wiai. 13, 2008

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 6 different positions. They are right cheek, right tilted, left cheek, left tilted, front face with 1.5cm Gap and rear face with 1.5cm Gap as illustrated below:

Test Report No : FA822203A

1) "Cheek Position"

- i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).

2) "Tilted Position"

- i) To position the device in the "cheek" position described above.
- ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).

3) "Body Worn"

- i) To position the device parallel to the phantom surface.
- ii) To adjust the phone parallel to the flat phantom.
- iii) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm.

Remark: Please refer to Appendix E for the test setup photo.

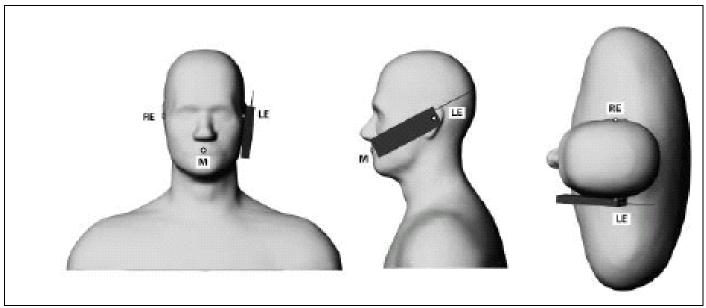


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

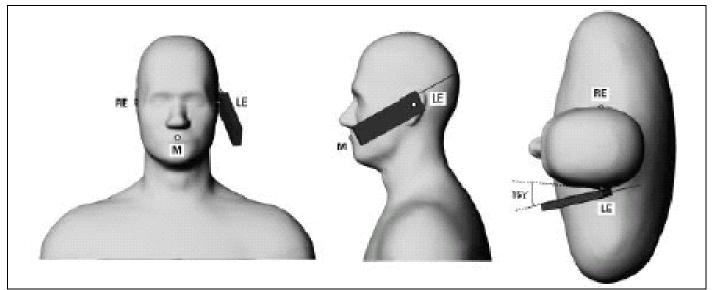


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10.Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- > Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY4 software
- Taking data for the lowest, middle, and highest channel on each testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- Area scan
- Zoom scan
- ► Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

Test Report No : FA822203A

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

Test Report No : FA822203A

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Right Cheek

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
GSM850	128	824.2 (Low)	GMSK	32.07	-0.181	0.114	1.6	Pass
	189	836.4 (Mid)	GMSK	32.06	-0.122	0.1	1.6	Pass
	251	848.8 (High)	GMSK	32.01	1	=	ı	-
PCS1900	512	1850.2 (Low)	GMSK	29.24	-0.034	0.099	1.6	Pass
	661	1880.0 (Mid)	GMSK	29.17	-0.015	0.091	1.6	Pass
	810	1909.8 (High)	GMSK	28.81	-	-	ı	-

Test Report No : FA822203A

11.2 Right Tilted

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (Db)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
GSM850	128	824.2 (Low)	GMSK	32.07	0.04	0.149	1.6	Pass
	189	836.4 (Mid)	GMSK	32.06	0.103	0.128	1.6	Pass
	251	848.8 (High)	GMSK	32.01	0.127	0.138	1.6	Pass
GSM850 with BT on	128	824.2 (Low)	GMSK	32.07	-0.127	0.152	1.6	Pass
	512	1850.2 (Low)	GMSK	29.24	-0.066	0.185	1.6	Pass
PCS1900	661	1880.0 (Mid)	GMSK	29.17	-0.09	0.116	1.6	Pass
	810	1909.8 (High)	GMSK	28.81	0.016	0.089	1.6	Pass
PCS1900 with BT on	512	1850.2 (Low)	GMSK	29.24	0.003	0.184	1.6	Pass

11.3 Left Cheek

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	128	824.2 (Low)	GMSK	32.07	-	-	-	-
GSM850	189	836.4 (Mid)	GMSK	32.06	-0.005	0.096	1.6	Pass
	251	848.8 (High)	GMSK	32.01	-	-	-	-
	512	1850.2 (Low)	GMSK	29.24	-	-	1	-
PCS1900	661	1880.0 (Mid)	GMSK	29.17	0.061	0.066	1.6	Pass
	810	1909.8 (High)	GMSK	28.81	-	-	ı	-

11.4 Left Tilted

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
GSM850	128	824.2 (Low)	GMSK	32.07	-	-	-	-
	189	836.4 (Mid)	GMSK	32.06	-0.006	0.11	1.6	Pass
	251	848.8 (High)	GMSK	32.01	-	-	-	-
	512	1850.2 (Low)	GMSK	29.24	-	-	-	-
PCS1900	661	1880.0 (Mid)	GMSK	29.17	0.041	0.083	1.6	Pass
	810	1909.8 (High)	GMSK	28.81	=	=	ı	-

C SAR Test Report Test Report No : FA822203A

11.5 Front Face with 1.5cm Gap

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
CCM050	128	824.2 (Low)	GMSK	32.03	=	=	ı	-
GSM850 (GPRS10)	189	836.4 (Mid)	GMSK	32.04	-0.12	0.113	1.6	Pass
(GLK510)	251	848.8 (High)	GMSK	32.00	-	-	-	-
PCS (GPRS10)	512	1850.2 (Low)	GMSK	29.20	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.13	0.098	0.051	1.6	Pass
	810	1909.8 (High)	GMSK	28.78	-	-	ı	-

11.6 Rear Face with 1.5cm Gap

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
GSM850	128	824.2 (Low)	GMSK	32.03	-0.079	0.587	1.6	Pass
(GPRS10)	189	836.4 (Mid)	GMSK	32.04	-0.074	0.499	1.6	Pass
(OFK510)	251	848.8 (High)	GMSK	32.00	-0.017	0.614	1.6	Pass
GSM850 (GPRS10) with BT on	251	848.8 (High)	GMSK	32.00	-0.035	0.622	1.6	Pass
CCMOSO	128	824.2 (Low)	8PSK	27.23	-	-	-	-
GSM850 (EDGE10)	189	836.4 (Mid)	8PSK	27.23	-0.14	0.24	1.6	Pass
(EDGE10)	251	848.8 (High)	8PSK	27.06	-	-	-	-
PCS	512	1850.2 (Low)	GMSK	29.20	-0.001	0.411	1.6	Pass
(GPRS10)	661	1880.0 (Mid)	GMSK	29.13	-0.018	0.264	1.6	Pass
(OI K510)	810	1909.8 (High)	GMSK	28.78	-0.048	0.185	1.6	Pass
PCS (GPRS10) with BT on	512	1850.2 (Low)	GMSK	29.20	-0.002	0.414	1.6	Pass
PCS	512	1850.2 (Low)	8PSK	26.06	-	-	-	-
(EDGE10)	661	1880.0 (Mid)	8PSK	25.86	-0.197	0.179	1.6	Pass
(EDGEIU)	810	1909.8 (High)	8PSK	25.59	-	-	-	-

Remark:

- 1. WLAN and BT share the same antenna and they can't transmit simultaneously.
- 2. The largest summation of GSM with Bluetooth and GSM with WLAN for head SAR is 0.213 W/kg and its position is right cheek.
- 3. The largest summation of GSM/GPRS/EDGE with Bluetooth and GSM/GPRS/EDGE with WLAN for body SAR is 0.652 W/kg and its position is rear face with 1.5cm gap.
- 4. Test Engineer: Eric Huang

12.References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003

Test Report No : FA822203A

- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/12

System Check Head 835MHz

DUT: Dipole 900 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

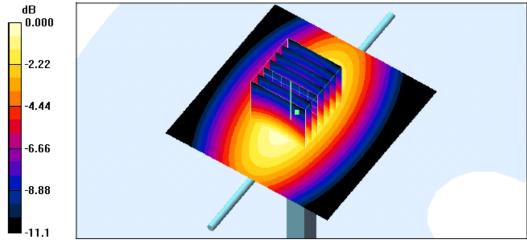
Medium: HSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.913$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Test Report No : FA822203A

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.10 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.9 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.645 mW/gMaximum value of SAR (measured) = 1.09 mW/g

0 dB = 1.09 mW/g

SAR lest Report Test Report No : FA822203A

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/13

System Check_Body_835MHz

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

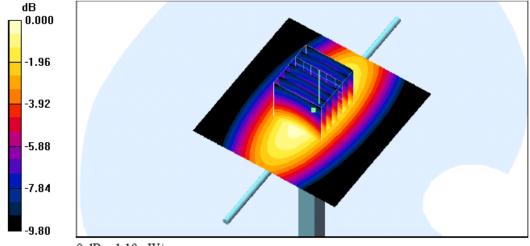
Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.965$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.09 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.1 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.680 mW/gMaximum value of SAR (measured) = 1.10 mW/g

0 dB = 1.10 mW/g

Date: 2008/3/13

System Check_Head_1900MHz

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

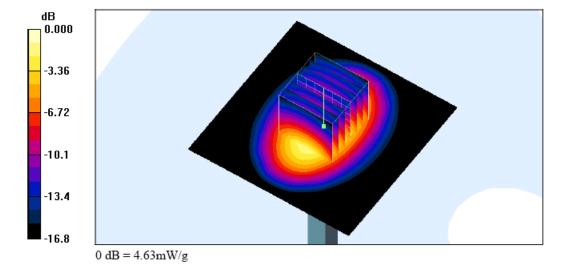
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.4 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 4.71 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.5 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 6.90 W/kg

SAR(1 g) = 4.08 mW/g; SAR(10 g) = 2.19 mW/gMaximum value of SAR (measured) = 4.63 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/13

System Check_Body_1900MHz

DUT: Dipole 1900 MHz

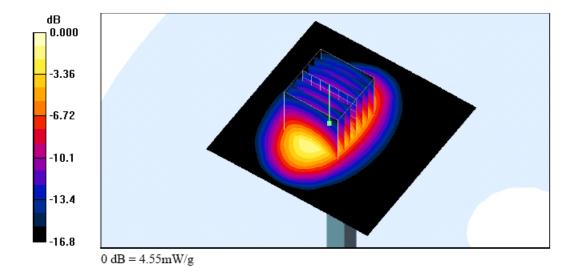
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.68 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.4 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 6.72 W/kg

SAR(1 g) = 3.99 mW/g; SAR(10 g) = 2.12 mW/gMaximum value of SAR (measured) = 4.55 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/12

Right Check_GSM850 Ch128

DUT: 822203

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used : f = 824.2 MHz; $\sigma = 0.903 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA822203A

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.131 mW/g

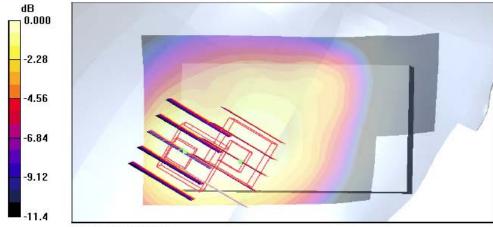
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.181 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.067 mW/g

Maximum value of SAR (measured) = 0.127 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.181 dB

Peak SAR (extrapolated) = 0.159 W/kg

SAR(1 g) = 0.098 mW/g; SAR(10 g) = 0.067 mW/g

Maximum value of SAR (measured) = 0.108 mW/g

Date/Time: 2008/3/12

Right Tilted GSM850 Ch128

DUT: 822203

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.903 \text{ mho/m}$; $\epsilon_e = 41$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.6 °C; Liquid Temperature: 21.5 °C

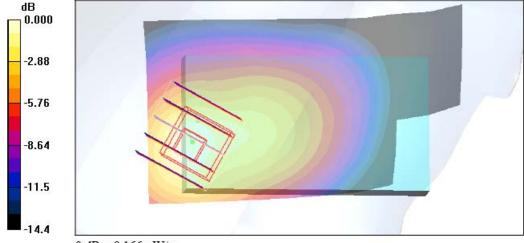
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch128/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.167 mW/g


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.269 W/kg

SAR(1 g) = 0.149 mW/g; SAR(10 g) = 0.084 mW/g

Maximum value of SAR (measured) = 0.166 mW/g

0 dB = 0.166 mW/g

Date: 2008/3/12

Right Tilted_GSM850 Ch128_Bluetooth

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 822203

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

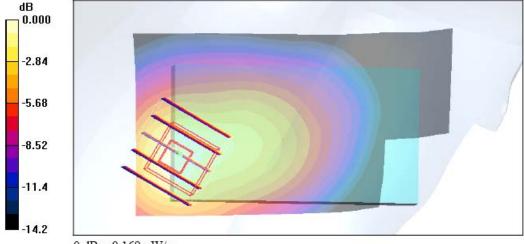
Medium: HSL 850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.903 \text{ mho/m}$; $\varepsilon_{e} = 41$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch128/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.170 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.279 W/kg

SAR(1 g) = 0.152 mW/g; SAR(10 g) = 0.086 mW/gMaximum value of SAR (measured) = 0.169 mW/g

0 dB = 0.169 mW/g

Date: 2008/3/12

Left Cheek GSM850 Ch189

DUT: 822203

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.5 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.111 mW/g

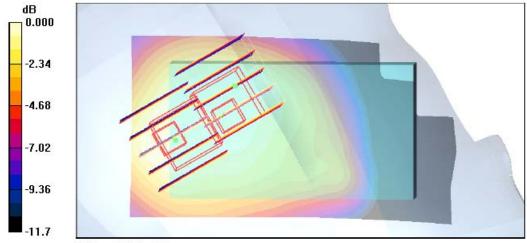
Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.096 mW/g; SAR(10 g) = 0.059 mW/g

Maximum value of SAR (measured) = 0.107 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 0.117 W/kg

SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.059 mW/g

Maximum value of SAR (measured) = 0.089 mW/g

0 dB = 0.089 mW/g

Date: 2008/3/12

Left Tilted_GSM850 Ch189

DUT: 822203

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.914 \text{ mho/m}$; $\epsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.6 °C; Liquid Temperature: 21.5 °C

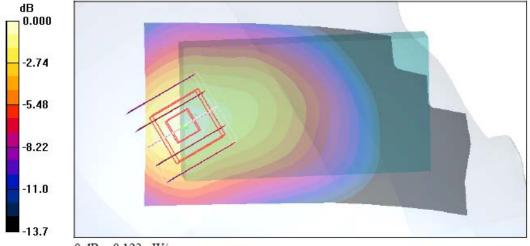
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.123 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.187 W/kg

SAR(1 g) = 0.110 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.123 mW/g

0 dB = 0.123 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/13

Right Check_PCS Ch512

DUT: 822203

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

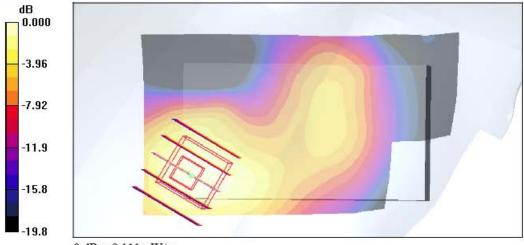
Ambient Temperature: 22.4 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.118 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.76 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.172 W/kg

SAR(1 g) = 0.099 mW/g; SAR(10 g) = 0.054 mW/g

Maximum value of SAR (measured) = 0.111 mW/g

0 dB = 0.111 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/13

Right Tilted PCS Ch512

DUT: 822203

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Test Report No : FA822203A

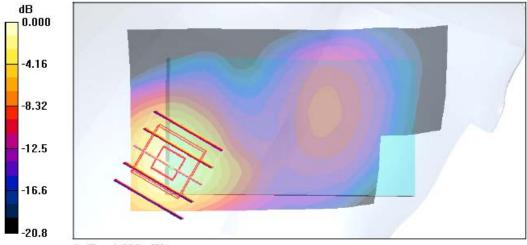
Ambient Temperature: 22.4 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.214 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.80 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.185 mW/g; SAR(10 g) = 0.094 mW/g

Maximum value of SAR (measured) = 0.222 mW/g

0 dB = 0.222 mW/g

Date: 2008/3/13

Right Tilted PCS Ch512 Bluetooth

DUT: 822203

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

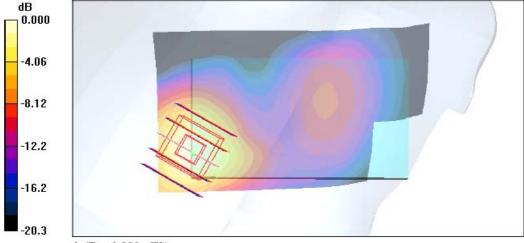
Ambient Temperature: 22.6 °C; Liquid Temperature: 21.4 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.214 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.74 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.184 mW/g; SAR(10 g) = 0.093 mW/gMaximum value of SAR (measured) = 0.220 mW/g

0 dB = 0.220 mW/g

Date: 2008/3/13

Left Cheek PCS Ch661

DUT: 822203

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.6 °C; Liquid Temperature: 21.4 °C

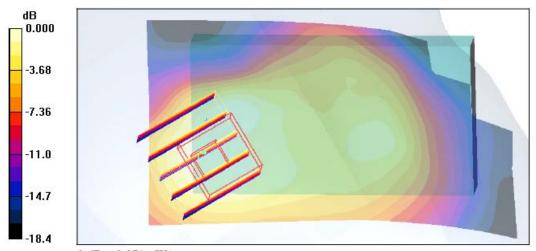
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.073 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.52 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.107 W/kg

SAR(1 g) = 0.066 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.071 mW/g

0 dB = 0.071 mW/g

Date: 2008/3/13

Left Tilted PCS Ch661

DUT: 822203

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

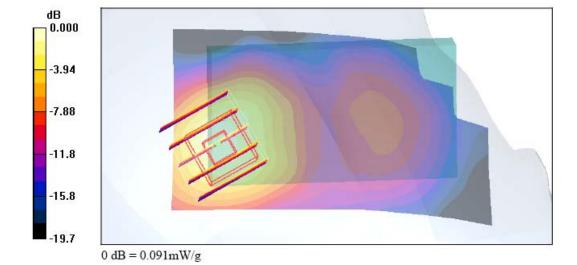
Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.084 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.18 V/m; Power Drift = 0.041 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.044 mW/gMaximum value of SAR (measured) = 0.091 mW/g

Date: 2008/3/13

Body_GSM850 Ch189_Front Face With 1.5cm Gap_GPRS10

DUT: 822203

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.967 \text{ mho/m}$; $\epsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.4 °C

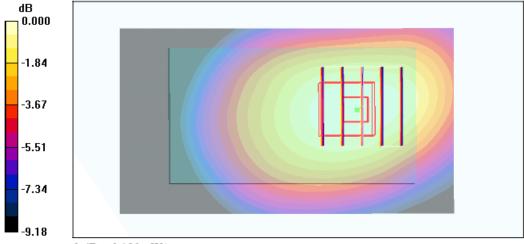
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.120 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.083 mW/g

Maximum value of SAR (measured) = 0.120 mW/g

0 dB = 0.120 mW/g

Date: 2008/3/13

Body_PCS Ch661_Front Face With 1.5cm Gap_GPRS10

DUT: 822203

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.4$; $\rho = 1000$ kg/m³

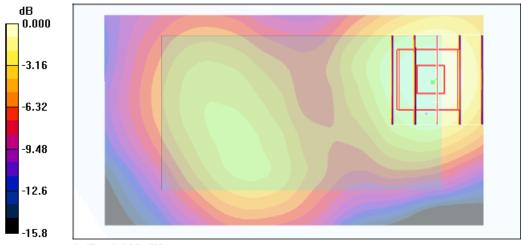
Ambient Temperature: 22.5 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.056 mW/g

Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.74 V/m; Power Drift = 0.098 dB

Peak SAR (extrapolated) = 0.075 W/kg

SAR(1 g) = 0.051 mW/g; SAR(10 g) = 0.032 mW/gMaximum value of SAR (measured) = 0.055 mW/g

0 dB = 0.055 mW/g

Date: 2008/3/13

Body GSM850 Ch251 Rear Face With 1.5cm Gap GPRS10

DUT: 822203

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.976$ mho/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.4 °C

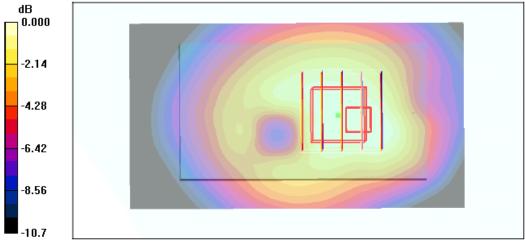
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.674 mW/g


Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.855 W/kg

SAR(1 g) = 0.614 mW/g; SAR(10 g) = 0.444 mW/g

Maximum value of SAR (measured) = 0.644 mW/g

0 dB = 0.644 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/13

Body GSM850 Ch251 Rear Face With 1.5cm Gap GPRS10 Bluetooth

DUT: 822203

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

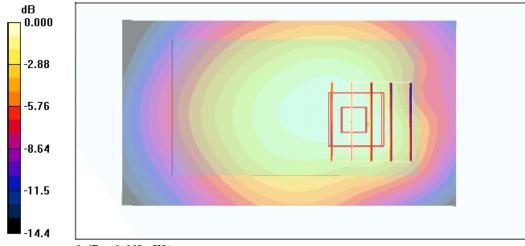
Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.976 \text{ mho/m}$; $\epsilon_r = 56.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.662 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.3 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.878 W/kg

SAR(1 g) = 0.622 mW/g; SAR(10 g) = 0.428 mW/gMaximum value of SAR (measured) = 0.662 mW/g

0 dB = 0.662 mW/g

Date: 2008/3/13

Body PCS Ch512 Rear Face With 1.5cm Gap GPRS10

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 822203

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

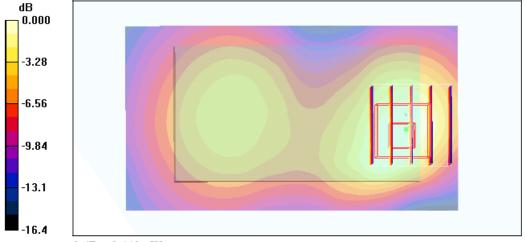
Ambient Temperature: 22.6 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.464 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.6 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 0.637 W/kg

SAR(1 g) = 0.411 mW/g; SAR(10 g) = 0.243 mW/g

Maximum value of SAR (measured) = 0.440 mW/g

0 dB = 0.440 mW/g

Date: 2008/3/13

Body PCS Ch512 Rear Face With 1.5cm Gap GPRS10 Bluetooth

DUT: 822203

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

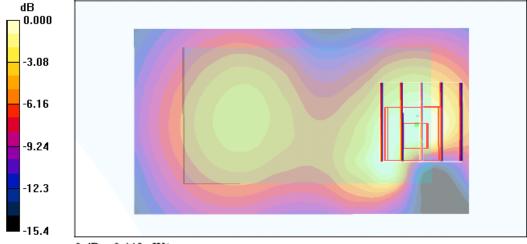
Ambient Temperature: 22.6 °C; Liquid Temperature: 21.4 °C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.566 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.639 W/kg

SAR(1 g) = 0.414 mW/g; SAR(10 g) = 0.246 mW/gMaximum value of SAR (measured) = 0.445 mW/g

0 dB = 0.445 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/13

Body_GSM850 Ch189_Rear Face With 1.5cm Gap_EDGE10

DUT: 822203

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

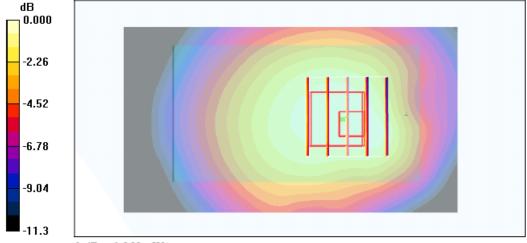
Medium: MSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch189/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.256 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.89 V/m; Power Drift = -0.140 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.240 mW/g; SAR(10 g) = 0.174 mW/gMaximum value of SAR (measured) = 0.252 mW/g

0 dB = 0.252 mW/g