

Product Name	ASUS VivoTab
Model No	K0X
FCC ID.	MSQK0X

Applicant	ASUSTeK COMPUTER INC.		
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.		

Date of Receipt	Oct. 05, 2012
Issue Date	Nov. 01, 2012
Report No.	12A129R-RFUSP42V01
Report Version	V1.0
AC-MRA	Testing Laboratory 0914

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Nov. 01, 2012 Report No.: 12A129R-RFUSP42V01

Product Name	ASUS VivoTab		
Applicant	ASUSTeK COMPUTER INC.		
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.		
Manufacturer	Tech-Com(Shanghai) Computer Co.Ltd.		
Model No.	K0X		
FCC ID.	MSQK0X		
EUT Rated Voltage	AC 100-240V, 50-60Hz		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	ASUS		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010		
	ANSI C63.4: 2003		
Test Result	Complied		

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

sanne lin

(Adm. Specialist / Joanne Lin)

Tested By

Andy Lin

(Assistant Engineer / Andy Lin)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	Description	
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
12	Operational Description	7
13	Tested System Details	8
1.5.	Configuration of Tested System	8
1.4.	EUT Exercise Software	
1.5.	Test Facility	
n.o.	Conducted Emission	
2.		
2.1.	Test Equipment	
2.2.	Test Setup	10
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	12
3.	Peak Power Output	14
3.1.	Test Equipment	
3.2	Test Setup	14
33	Limits	14
31	Test Procedure	11
2.5	Uncortainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	
41	Test Equipment	18
4 2	Test Setun	19
1.2.	Limite	20
т.J. Л Л	Test Procedure	
4.4. 15	Lincontainty	
4.3.	Uncertainty	
4.0.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	54
6.1.	Test Equipment	
6.2.	Test Setup	55
63	Limits	55
6.4	Test Procedure	
о. т . 65	Uncertainty	
6.6	Test Result of Rand Edge	
0.0.	rest result of Dalid Euge	

7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	79
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	80
9.	EMI Reduction Method During Compliance Testing	

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	ASUS VivoTab
Trade Name	ASUS
Model No.	K0X
FCC ID.	MSQK0X
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW
Number of Channels	802.11b/g/n-20MHz: 11
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 72.2Mbps
Type of Modulation 802.11b:DSSS (DBPSK, DQPSK, CCK)	
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	PIFA Antenna
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto
Power Adapter	MFR: PIE, M/N: AD876320
	Input: AC 100-240V~0.3A, 50/60Hz
	Output: DC 5V, 2A
USB Cable	Shielded, 1m
Contain Module	Azurewave / AW-NH665

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	SINBON	A9701279-D	PIFA	2.81dBi for 2.4 GHz
2	ACON	APE00-000013	PIFA	1.82dBi for 2.4 GHz

Note: 1. The antenna of EUT is conforming to FCC 15.203.

2. Only the higher gain antenna was tested and recorded in this report.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is an ASUS VivoTab with a built-in WLAN
 Bluetooth and NFC transceiver, this report for WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$ 802.11g is 6Mbps \$ 802.11n(20M-BW) is 7.2Mbps and)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	DELL	ST2320LF	CN-OM2NN6-72872-2 2I-C9WS	N/A
2	Earphone	PCHOME	N/A	N/A	N/A

Signal Cable Type		Signal cable Description
Α	HDMI to Micro Cable	Non-Shielded, 1.5m
В	Earphone Cable	Non-Shielded, 1.3m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute software on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on						
	Federal Communications Commission						
	FCC Engineering Laboratory						
	7435 Oakland Mills Road						
	Columbia, MD 21046						
	Registration Number: 92195						
	Accreditation on NVLAP						
	NVLAP Lab Code: 200533-0						
Site Name:	Quietek Corporation						
Site Address:	No.5-22, Ruishukeng,						
	Linkou Dist. New Taipei City 24451,						
	Taiwan, R.O.C.						
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789						
	E-Mail : <u>service@quietek.com</u>						

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2012	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2012	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2012	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2012	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit								
Frequency	Limits							
MHz	QP	AVG						
0.15 - 0.50	66-56	56-46						
0.50-5.0	56	46						
5.0 - 30	60	50						

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	ASUS VivoTab
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
Line 1					
Quasi-Peak					
0.189	9.830	33.310	43.140	-21.746	64.886
0.377	9.830	31.280	41.110	-18.404	59.514
0.603	9.830	30.890	40.720	-15.280	56.000
2.111	9.840	27.280	37.120	-18.880	56.000
3.627	9.860	31.670	41.530	-14.470	56.000
8.455	9.952	29.420	39.372	-20.628	60.000
Average					
0.189	9.830	25.040	34.870	-20.016	54.886
0.377	9.830	13.180	23.010	-26.504	49.514
0.603	9.830	18.680	28.510	-17.490	46.000
2.111	9.840	20.450	30.290	-15.710	46.000
3.627	9.860	9.070	18.930	-27.070	46.000
8.455	9.952	19.170	29.122	-20.878	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: ASUS VivoTab									
Test Item	: Conducted Emission Test									
Power Line	: Line 2									
Test Mode	: Mode 3: T	ransmit (802.11	n MCS0 7.2Mbps 20	M-BW) (2437MH	łz)					
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBµV	dBµV	dB	dBµV					
Line 2										
Quasi-Peak										
0.173	9.836	30.880	40.716	-24.627	65.343					
0.310	9.840	32.690	42.530	-18.899	61.429					
0.439	9.840	31.370	41.210	-16.533	57.743					
2.103	9.860	27.440	37.300	-18.700	56.000					
4.060	9.870	31.160	41.030	-14.970	56.000					
9.697	10.046	31.920	41.966	-18.034	60.000					
Average										
0.173	9.836	15.360	25.196	-30.147	55.343					
0.310	9.840	16.260	26.100	-25.329	51.429					
0.439	9.840	14.900	24.740	-23.003	47.743					
2.103	9.860	7.340	17.200	-28.800	46.000					
4.060	9.870	13.810	23.680	-22.320	46.000					
9.697	10.046	21.560	31.606	-18.394	50.000					

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.					
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012					
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2012					
Note:									
1.	All equipments are	calibrated with trace	eable calibrations. Each calibr	ation is traceable to the					
	national or international standards.								

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	ASUS VivoTab
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No	Frequency	For d	Average ifferent Da	e Power ata Rate (N	lbps)	Peak Power	Required	Result
	(MHz)	1	2	5.5	11	1	Limit	
			Measur					
01	2412	11.85				15.03	<30dBm	Pass
06	2437	11.76	11.73	11.68	11.6	14.91	<30dBm	Pass
11	2462	11.58				14.84	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	ASUS VivoTab
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

	_		Average PowerPFor different Data Rate (Mbps)Pc									
Channel No	Frequency (MHz)	6	9	12	18	24	36	48	54	6	Required Limit	Result
			Measurement Level (dBm)									
01	2412	11.47								19.66	<30dBm	Pass
06	2437	11.36	11.33	11.3	11.27	11.25	11.22	11.19	11.15	19.61	<30dBm	Pass
11	2462	11.14								19.41	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	ASUS VivoTab
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

F	Fraguanay		Average PowerPeakFor different Data Rate (Mbps)Power						Paguirad			
Channel No	(MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Limit	Result
			Measurement Level (dBm)									
01	2412	11.21								19.63	<30dBm	Pass
06	2437	10.91	10.88	10.85	10.8	10.77	10.75	10.71	10.69	19.44	<30dBm	Pass
11	2462	10.71								19.23	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m@3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	ASUS VivoTab
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	0.428	48.220	48.649	-25.351	74.000
7236.000	7.177	37.880	45.057	-28.943	74.000
9648.000	8.019	37.530	48.550	-28.450	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	0.836	49.070	49.907	-24.093	74.000
7236.000	7.676	38.420	46.096	-27.904	74.000
9648.000	8.556	37.330	45.887	-28.113	74.000
Average Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	Z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	0.076	50.150	50.227	-23.773	74.000		
7311.000	7.512	36.860	44.372	-29.628	74.000		
9748.000	7.630	36.780	44.410	-29.590	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	0.532	49.960	50.492	-23.508	74.000		
7311.000	8.089	37.710	45.799	-28.201	74.000		
9748.000	8.266	36.860	45.127	-28.873	74.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2462 MHz)						
Fraguerau	Correct	Daading	Maaguramant	Morain	T imit		
Frequency		Keauling	Measurement	Margin	Lillint		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	0.191	47.310	47.501	-26.499	74.000		
7386.000	8.373	36.400	44.774	-29.226	74.000		
9848.000	7.964	37.590	45.554	-28.446	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4924.000	0.805	46.550	47.355	-26.645	74.000		
7386.000	9.180	38.340	45.520	-28.480	74.000		
9848.000	8.801	39.070	45.871	-28.129	74.000		
Average Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2412MHz	:)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	3.261	52.660	55.921	-18.079	74.000		
7236.000	10.650	34.990	45.640	-28.360	74.000		
9648.000	13.337	34.250	47.586	-26.414	74.000		
Average Detector:							
4824.000	3.261	34.450	37.711	-16.289	54.000		
Vertical							
Peak Detector:							
4824.000	6.421	48.830	55.251	-18.749	74.000		
7236.000	11.495	34.800	46.295	-27.705	74.000		
9648.000	13.807	34.540	48.346	-25.654	74.000		
Average Detector:							
4824.000	6.421	31.370	37.791	-16.209	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2437 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	3.038	51.460	54.497	-19.503	74.000	
7311.000	11.795	36.590	48.384	-25.616	74.000	
9748.000	12.635	36.690	49.325	-24.675	74.000	
Average Detector:						
4874.000	3.038	33.240	36.277	-17.723	54.000	
Paals Dataataw						
Peak Delector:	5 01 0		50 (01	21 200	5 4 000	
48/4.000	5.812	46.790	52.601	-21.399	/4.000	
7311.000	12.630	36.790	49.419	-24.581	74.000	
9748.000	13.126	36.720	49.846	-24.154	74.000	
Average Detector:						

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2462 MHz)						
_							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	2.858	48.290	51.147	-22.853	74.000		
7386.000	12.127	35.410	47.538	-26.462	74.000		
9848.000	12.852	37.370	50.223	-23.777	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4924.000	5.521	44.920	50.440	-23.560	74.000		
7386.000	13.254	35.740	48.994	-25.006	74.000		
9848.000	13.367	36.650	50.017	-23.983	74.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3:	Transmit (802.11	n MCS0 7.2Mbps 20	M-BW)(2412MH	Hz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	3.261	52.090	55.351	-18.649	74.000		
7236.000	10.650	36.550	47.200	-26.800	74.000		
9648.000	13.337	36.170	49.506	-24.494	74.000		
Average Detector:							
4824.000	3.261	33.630	36.891	-17.109	54.000		
Vertical							
Peak Detector:							
4824.000	6.421	48.660	55.081	-18.919	74.000		
7236.000	11.495	37.590	49.085	-24.915	74.000		
9648.000	13.807	36.520	50.326	-23.674	74.000		
Average Detector:							
4824.000	6.421	31.060	37.481	-16.519	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	ASUS VivoTab
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	51.100	54.137	-19.863	74.000
7311.000	11.795	36.440	48.234	-25.766	74.000
9748.000	12.635	36.720	49.355	-24.645	74.000
Average Detector:					
4874.000	3.038	32.280	35.317	-18.683	54.000
Vertical					
Peak Detector:					
4874.000	5.812	46.750	52.561	-21.439	74.000
7311.000	12.630	35.950	48.579	-25.421	74.000
9748.000	13.126	36.290	49.416	-24.584	74.000

Average Detector:

- All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. Measurement Level = Reading Level + Correct Factor.
 - 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.
 - 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Note:

Product	:	ASUS VivoTab
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	48.070	50.927	-23.073	74.000
7386.000	13.254	35.860	49.114	-24.886	74.000 74.000
9848.000	13.367	36.330	49.697	-24.303	
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	45.200	50.720	-23.280	74.000
7386.000	13.254	35.460	48.714	-25.286	74.000
9848.000	13.367	36.480	49.847	-24.153	74.000
Average Detector:					

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11b 1Mbps)(2437 MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
239.520	-6.878	36.004	29.126	-16.874	46.000					
400.540	0.942	28.468	29.410	-16.590	46.000					
480.080	1.870	30.087	31.957	-14.043	46.000					
549.920	3.662	25.884	29.545	-16.455	46.000					
720.640	3.826	28.150	31.976	-14.024	46.000					
961.200	6.810	30.268	37.078	-16.922	54.000					
Vertical										
92.080	-5.373	37.259	31.886	-11.614	43.500					
239.520	-6.138	34.943	28.805	-17.195	46.000					
480.080	-3.390	33.069	29.679	-16.321	46.000					
617.820	0.958	29.188	30.146	-15.854	46.000					
720.640	-0.754	31.326	30.572	-15.428	46.000					
961.200	3.310	29.588	32.898	-21.102	54.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

: ASUS VivoTab									
: General Radiated Emission Data									
: No.3 OATS									
: Mode 2: Transmit (802.11g 6Mbps)(2437 MHz)									
Correct	Reading	Measurement	Margin	Limit					
Factor	Level	Level							
dB	dBuV	dBuV/m	dB	dBuV/m					
-10.730	33.012	22.282	-21.218	43.500					
-6.878	35.490	28.612	-17.388	46.000					
0.942	30.158	31.100	-14.900	46.000					
1.870	31.309	33.179	-12.821	46.000					
3.826	28.963	32.789	-13.211	46.000					
6.810	29.993	36.803	-17.197	54.000					
-5.373	36.784	31.411	-12.089	43.500					
-6.138	35.024	28.886	-17.114	46.000					
-3.390	31.105	27.715	-18.285	46.000					
0.958	28.968	29.926	-16.074	46.000					
-0.754	31.704	30.950	-15.050	46.000					
3.310	29.747	33.057	-20.943	54.000					
	 ASUS V General No.3 OA Mode 2: Correct Factor dB -10.730 -6.878 0.942 1.870 3.826 6.810 -5.373 -6.138 -3.390 0.958 -0.754 3.310 	 ASUS VivoTab General Radiated Emissio No.3 OATS Mode 2: Transmit (802.11) Correct Reading Factor Level dB dBuV -10.730 33.012 -6.878 35.490 0.942 30.158 1.870 31.309 3.826 28.963 6.810 29.993 -5.373 36.784 -6.138 35.024 -3.390 31.105 0.958 28.968 -0.754 31.704 3.310 29.747 	 ASUS VivoTab General Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11g 6Mbps)(2437 MHz Correct Reading Measurement Factor Level Level dB dBuV dBuV/m -10.730 33.012 22.282 -6.878 35.490 28.612 0.942 30.158 31.100 1.870 31.309 32.789 6.810 29.993 36.803 -5.373 36.784 31.411 -6.138 35.024 28.886 -3.390 31.105 27.715 0.958 28.968 29.926 -0.754 31.704 30.950 3.310 29.747 33.057 	: ASUS VivoTab : General Radiated Emission Data : No.3 OATS : Mode 2: Transmit (802.11g 6Mbps)(2437 MHz) Correct Reading Measurement Margin Factor Level Level dB dBuV dBuV/m dB -10.730 33.012 22.282 -21.218 -6.878 35.490 28.612 -17.388 0.942 30.158 31.100 -14.900 1.870 31.309 33.179 -12.821 3.826 28.963 32.789 -13.211 6.810 29.993 36.803 -17.197 -5.373 36.784 31.411 -12.089 -6.138 35.024 28.886 -17.114 -3.390 31.105 27.715 -18.285 0.958 28.968 29.926 -16.074 -0.754 31.704 30.950 -15.050 3.310 29.747 33.057 -20.943					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS VivoTab									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 3:	Transmit (802.11	n MCS0 7.2Mbps 20	M-BW)(2437 MI	Hz)					
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
239.520	-6.878	36.940	30.062	-15.938	46.000					
400.540	0.942	29.448	30.390	-15.610	46.000					
480.080	1.870	31.231	33.101	-12.899	46.000					
549.920	3.662	26.704	30.365	-15.635	46.000					
833.160	6.616	24.902	31.518	-14.482	46.000					
961.200	6.810	29.098	35.908	-18.092	54.000					
Vertical										
92.080	-5.373	38.142	32.769	-10.731	43.500					
179.380	-0.824	30.697	29.873	-13.627	43.500					
480.080	-3.390	31.250	27.860	-18.140	46.000					
617.820	0.958	27.670	28.628	-17.372	46.000					
720.640	-0.754	30.875	30.121	-15.879	46.000					
961.200	3.310	29.314	32.624	-21.376	54.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	ASUS VivoTab
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Agiler	it Spectr	um Analyzer -	Swept SA								
LXI R	L Fr	RF 50	DΩ AC		SE	NSE:INT	Aug Tup	ALIGN AUTO	05:17:15 F	M Oct 17, 2012	Frequency
Cen	iter Fi	eq 515.0		IZ PNO: Fast 🗔	Trig: Free	Run	U18 1364	. Log-r wi	TY	E M WWWW	
			IF	Gain:Low	#Atten: 30) dB			Di	ET IP IN IN IN IN IN	Auto Tuno
								Mk	r1 790.4	80 MHz	Auto Tune
10 di	B/div	Ref 20.00	0 dBm						-59.	64 dBm	
Log											Conton From
10.0											Center Freq
10.0											515.000000 MHZ
0.00											
0.00											Start Freq
-10.0										0	30.000000 MHz
10.0										16.73 dBm	
-20.0										-10.15 dbm	
											Stop Freq
-30.0											1.00000000 GHz
-40.0											CF Step
											97.000000 MHz
-50.0											<u>Auto</u> Man
									1		
-60.0										A BUILD BOTT	Freq Offset
15	Lesi), Les	Plant after a traffi	And a state of the second		r (n jales jales frank statistic	and a second second			All books on the state	parties this as he forwards	0 Hz
-70.0	100 M										
Star #Do	t 30.0			#\/D\//	1.0 844-			Swaan 0	Stop 1.0	0000 GHz	
#Re	5 044	TUU KHZ	27	#VDVV	1.0 MHZ			sweep a	iu.u ms (1	ooo i pisj	
MSG 🤇	₽File <	<lmage.png></lmage.png>	saved					STATUS	5		

Agilent Spectr	um Analyzer - Swe	pt SA							
Center Fr	RF 50 Ω req 6.50000	AC 0000 GHz	SEI	NSE:INT	Avg Type	ALIGNAUTO	05:16:39 F TRAC	M Oct 17, 2012	Frequency
10 dB/div	Ref 20.00 d	PNO: Fast G IFGain:Low Bm	#Atten: 30	dB		Mk	r1 2.41: 3.	3 5 GHz 27 dBm	Auto Tune
10.0	1								Center Freq 6.50000000 GHz
-10.0									Start Freq 1.00000000 GHz
-20.0								-16.73 dBm	Stop Freq 12.00000000 GHz
-30.0									CF Step 1.10000000 GHz Auto Man
-50.0			And the second second	a la falla en la falla de.			and the second s		Freq Offset 0 Hz
-70.0									
Start 1.00 #Res BW	0 GHz 100 kHz	#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
мsg 🔱 Point	s changed; all t	races cleared				STATUS			

Agilen	it Spectru	ım Analyzer - Sv	vept SA								
Cen	L Iter Fr	eq 18.500	2 AC 000000 G	Hz	SEI	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	05:17:51P TRAC	M Oct 17, 2012	Frequency
10 di Log	B/div	Ref 20.00	dBm	NO: Fast 🕞	#Atten: 30) dB		Mkr	1 23.850 -47.) 8 GHz 50 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0										-16.73 dBm	Start Freq 12.000000000 GHz
-20.0 -30.0											Stop Freq 25.00000000 GHz
-40.0 -50.0				L.						•1	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0		a second second								and the second of the second	Freq Offset 0 Hz
-70.0 Star #Re:	t 12.00 s BW 1	00 GHz 100 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🤇	₽File <	Image.png> s	saved					STATUS			

Agilent Spectr	um Analyzer - Sw	ept SA								
Center F	RF 50 Ω req 515.000	AC DOOO MHz	:	SEI	NSE:INT	Avg Type	ALIGNAUTO	05:29:08P	M Oct 17, 2012	Frequency
10 dB/div	Ref 20.00 (Ph IFG d B m	IO: Fast () iain:Low	#Atten: 30) dB		Mk	(r1 508.1 -58.1	13 MHz 64 dBm	Auto Tune
10.0			<u>.</u>							Center Freq 515.000000 MHz
-10.0									-15.90 dBm	Start Freq 30.000000 MHz
-20.0 -30.0			5							Stop Freq 1.000000000 GHz
-40.0										CF Step 97.000000 MHz <u>Auto</u> Man
-60.0		i mula seguina	, sel se contral e picture na ficenza e site potenti			ana a baat na asarata na basa ina da data ka			ang bay ti sa kuta kuta an Manji ya Anta Kata ana kuta	Freq Offset 0 Hz
Start 30.0 #Res BW	MHz 100 kHz	aved	#VBW	1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	

Channel 06 (2437MHz)

Agilent	t Spectru	m Analy	zer - Sw	ept SA						900		
LXI RL	-	RF	50 Ω	AC		SEI	NSE:INT		ALIGN AUTO	05:28:32 F	M Oct 17, 2012	Frequency
Cent	ter Fr	eq 6.	50000	00000	GHz	Tuin Ener	. D	Avg Type	: Log-Pwr	TRAC TVI	E 1 2 3 4 5 6	requericy
10 dE	3/div	Ref 2	20.00 d	dBm	PNO: Fast 😱 IFGain:Low	#Atten: 30) dB		Mk	r1 2.43 4.	6 6 GHz 10 dBm	Auto Tune
Log 10.0) ¹									Center Freq 6.50000000 GHz
0.00 -10.0											-15.90 dBm	Start Freq 1.000000000 GHz
-20.0 -30.0												Stop Freq 12.000000000 GHz
-40.0 ·												CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	alle a priorite a particular			Married Married	in de bree de colorido		l gan for the factors	danlar direct	~~~		a and the second	Freq Offset 0 Hz
-70.0 Start	t 1.000	GHz	47		#VBM	1.0 MHz			Sween	Stop 12	.000 GHz	
MSG 🤤	Points	chang	jed; all	traces cle	eared	1.0 191172			STATUS	1.02 3 (1	000 i proj	

Agilen	t Spectru	ım Analyzer - S	iwept SA								
Cen	ter Fr	eq 18.50	Ω AC DO00000 (SEI	Run	Avg Type	LIGNAUTO	05:29:44 P TRAC TYP	M Oct 17, 2012 E 1 2 3 4 5 6 E M WWWWWW	Frequency
10 dE	3/div	Ref 20.00	i⊧ IdBm	Gain:Low	#Atten: 30	dB		Mkr	₀ 1 21.521 -48.0	1 2 GHz D9 dBm	Auto Tune
10.0										<u>.</u>	Center Freq 18.50000000 GHz
0.00 -10.0										-15.90 dBm	Start Freq 12.000000000 GHz
-20.0 -30.0											Stop Freq 25.00000000 GHz
-40.0 -50.0				1.4				↓ ¹	a ya man 1	and a second state of	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0		Seal Million			tillen Slaver						Freq Offset 0 Hz
Star #Res	t 12.00 s BW ⁻ File <	00 GHz 100 kHz Image.png>	saved	#VBW	1.0 MHz			Sweep Status	Stop 25. 1.20 s (1	000 GHz 0001 pts)	

Agilen	t Spectru	m Analyzei	- Swept SA								
LXI RL	-	RF	50 Ω AC		SE	VSE:INT		ALIGN AUT	0 05:40:29F	M Oct 17, 2012	Frequency
Cen	ter Fr	eq 515	.000000	MHz	Tria: Eroz	Dun	Avg Type	: Log-Pw	r TRAU		Trequency
				PNO: Fast ()	#Atten: 30) dB			D	PNNNN	
				II Gam.cow					Lud 070 5	OF MALL-	Auto Tune
								IVI	Kr1 673.0	95 WHZ	
10 dE	3/div	Ref 20.	.00 dBm						-58.	97 aBm	
Log											
											Center Freq
10.0			-	2			+				515.000000 MHz
0.00											
											Start Fred
											20 000000 MU-
-10.0											30.000000 IVITI2
						-				-17.23 dBm	
-20.0						-	-				01
										- I	StopFreq
.30.0											1.000000000 GHz
30.0											
											05.04
-40.0							-				CF Step
											97.000000 MH2
-50.0											Auto Mari
							1			- I	
CO 0									10		Freg Offset
-60.0	his qualities	المسلما ومغر	de al de la dung de	and with a start being stated with	n ala ta	antine for the set	القروم فكالوقد في وأرقتهم	Interfact to see	and the second secon	anter an in fin an anter	
	ad the first sector	and the second sec	deli Maria Securitati	The first between the state of the section is	forfic fill me holder tot		()) a second at the developed field	Arrest and the second			0 112
-70.0						-	-				
Star	t 30.0	MHz							Stop 1.0	0000 GHz	
#Res	BW '	00 kHz		#VBW	1.0 MHz		5	Sweep	90.0 ms (1	0001 pts)	
MSG 🕃	File <	lmage.pn	a> saved					STAT	rus		00
		-361	J								

Channel 11 (2462MHz)

Agilen	t Spectru	um Analyzer - Sv	wept SA								
LXI RL	- • • • • •	RF 50	Ω ΑC	NI-	SEI	VSE:INT	Aug Type	ALIGNAUTO	05:41:05 F	M Oct 17, 2012	Frequency
Cen	ter Fr	eq 18.500	P000000	NO: Fast 🕟	Trig: Free	Run	UAR INC	. Log-r wi	TY	E M WWWW	35 5
			IÈ	Gain:Low	#Atten: 30	dB			D	TIP NNNNN	Auto Tuno
								Mkr	1 21.22	37 GHz	Auto Tune
10 dE	3/div	Ref 20.00	dBm						-47.	79 dBm	
Log											
											Center Freq
10.0											18.50000000 GHz
0.00			-	5							Otort From
											Start Freq
-10.0											12.00000000 GHZ
										-17.23 dBm	
-20.0				2							Stop Freg
											25 00000000 GHz
-30.0											
-40.0				8		2	-	. 1		-	CF Step
							5	♦ '			1.300000000 GHZ
-50.0				. العد م	. Bernard at a	and a star	And the state of	Langer and Barry	apales and the second	Non-Aligned Street	
	1	L. Hilling	tell _{seller} s ^{til} sler _e Jiedh	a start a start of the		The second second	all and a second second	and the second second	dial provide the	and the second second	
-60.0	and the second	A CONTRACTOR OF THE OWNER OWNE	and the second se				1.17.1				Freq Offset
											0 Hz
-70.0											
									e t 05		
star #Dou	t 12.00	100 GHZ		#\/D\//	1.0 844-			Curoon	Stop 25	.000 GHZ	
#Res			87	#VBW	1.0 WHZ			Sweep	1.20 \$ (1	oour prs)	
MSG 🥥	File <	Image.png> :	saved					STATUS			

Product	:	ASUS VivoTab
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz)

Agilent Spec	trum Analyzer - Swep	i SA							
LXI RL	RF 50 Ω	AC	SENS	BE:INT		ALIGN AUTO	05:53:36 P	M Oct 17, 2012	Frequency
Center F	req 515.0000	00 MHz		_	Avg Type	: Log-Pwr	TRAC	E123456	Frequency
10 dB/div	Ref 20.00 dE	PNO: Fast 🆵 IFGain:Low	#Atten: 30	dB		Mk	r1 871.2 -58.0	81 MHz 61 dBm	Auto Tune
10.0									Center Freq 515.000000 MHz
0.00 <u></u> 10.0 <u></u>									Start Freq 30.000000 MHz
-20.0								-22:00 dBm	Stop Freq 1.000000000 GHz
-40.0									CF Step 97.000000 MHz <u>Auto</u> Man
-60.0		a pod pla na se na se di Aleman pod pomenen na dal 10 gi da di La di ancienta di alterna di mana pod ancienta pod ancienta pod a			na na ing ini kata na ing ini kata na ing	a daga daga ay kasa ya kata ya kata ya Manana sa kasa ya kata ya			Freq Offset 0 Hz
Start 30. #Res BW	0 MHz / 100 kHz	#VBW	1.0 MHz		ş	Sweep !	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	
MSG PIIE	<image.png> sav</image.png>	ea				STATU	0		

Agilent	t Spectr	um Analyzer -	Swept SA								
	tor E	RF 50	Ω AC	CHa	SEI	NSE:INT			05:53:00 F	M Oct 17, 2012	Frequency
10 dF	udiv	Ref 20.00) dBm	PNO: Fast IFGain:Low	Trig: Free #Atten: 30	e Run)dB	018 13be	Mk	r1 2.41: -2.	3 5 GHz	Auto Tune
Log	2012	Noi 2010.					1				
10.0 -											Center Freq 6.50000000 GHz
0.00		1									
-10.0 -			_								Start Freq 1.000000000 GHz
-20.0										-22:00 dBm	Stop Freq
-30.0											12.000000000 GHz
-40.0 -											CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	and the set			Alexandra a la sectorio de la construcción de la construcción de la construcción de la construcción de la const		a hangina		~~			Freq Offset
-70.0 -											
L Start #Res	t 1.00 s BW	0 GHz 100 kHz		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤇	Point	s changed; a	all traces	cleared				STATUS			

Agiler	nt Spectri	ım Analyzer -	Swept SA								
Cen	L Iter Fr	req 18.50	Ω AC 0000000 C	GHz	SE	NSE:INT	Avg Type	LIGNAUTO	05:54:11P TRAC	M Oct 17, 2012 E 1 2 3 4 5 6	Frequency
10 di	B/div	Ref 20.00	⊮ ⊫ 0 dBm	NO: Fast 🕞 Gain:Low	#Atten: 30) dB		Mkr	1 23.23 -47.9	7 2 GHz 92 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0											Start Freq 12.000000000 GHz
-20.0 -30.0										-22.00 dBm	Stop Freq 25.000000000 GHz
-40.0 -50.0					4. 14		a		↓ ¹	Contraction of the second	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0											Freq Offset 0 Hz
-70.0 Star #Re	t 12.00 s BW	00 GHz 100 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🤇	₽File <	lmage.png>	saved					STATUS	6		

Agilen	t Spectr	um Analyzer	- Swept SA								
Cen	ter Fi	RF 1	50Ω AC	MHz	SE	NSE:INT	Avg Type	ALIGNAUTO Log-Pwr	06:03:46F	M Oct 17, 2012	Frequency
10 dE	3/div	Ref 20.0)0 dBm	PNO: Fast G	J Trig: Free #Atten: 30	∍Run)dB		Mk	™ ⊳ 1914.5 -58.	43 MHz 65 dBm	Auto Tune
10.0					, ,						Center Freq 515.000000 MHz
0.00 -10.0											Start Freq 30.000000 MHz
-20.0 -30.0										-22.45 dBm	Stop Freq 1.000000000 GHz
-40.0 -50.0											CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	aking salati Salati ng Salati Sal	nana an Anna Anna Anna Anna an Anna Anna	and for the state states	land top of provide the strengthe	Alternation of the Alternation	lang pada laya Dani La palatan pada ataut	lenegal negative			♦ ¹	Freq Offset 0 Hz
-70.0 Star #Re:	t 30.0 s BW	MHz 100 kHz		#VBW	(1.0 MHz			Sweep !	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	
MSG 🤇	File <	Image.png	> saved					STATU	JS		

Channel 06 (2437MHz)

Agiler	nt Spectri	ım Analy	rzer - Sw	ept SA								
Cen	L nter Fr	RF eq 6.	50 Ω	AC 00000 G	Hz	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:03:10 F	M Oct 17, 2012 E 1 2 3 4 5 6	Frequency
10 di	B/div	Ref 2	20.00 (IF IF	'NO: Fast 🖵 Gain:Low	#Atten: 30	≥ Run) dB		Mk	r1 2.43 -2.4	7 7 GHz 45 dBm	Auto Tune
10.0			.1									Center Freq 6.50000000 GHz
0.00 -10.0		_										Start Freq 1.000000000 GHz
-20.0 -30.0											-22.45 dBm	Stop Freq 12.00000000 GHz
-40.0 -50.0												CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0					n fasta fasta fasta fi	an inspectively.	altes Laubac		A	a deliver and the	that the second	Freq Offset 0 Hz
-70.0 Star #Re	t 1.00 s BW	0 GHz 100 ki	Hz		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤇	Point	s chan	ged; all	traces clea	red				STATUS			

Agilen	t Spectri	ım Analyzer - S	wept SA								
LXI RI		RF 50	Ω AC	~ !!-	SEI	NSE:INT	Aug Type		06:04:21 F	M Oct 17, 2012	Frequency
Cen	ter Fr	eq 18.500	000000	GHZ PNO: Fast 🕠	Trig: Free	Run	Avgiype	. Log-rwi	TY	E MWWWW	
				Gain:Low	#Atten: 30	dB			D	ET IP NININININ	
								Mkr	1 23.16	7 0 GHz	Auto Tune
10 dE	3/div	Ref 20.00	dBm						-48.	24 dBm	
Log											
40.0											Center Freq
10.0											18.500000000 GHz
0.00											
0.00											Start From
10.0											12 00000000 GHz
-10.0											12.0000000000000
-20.0							-			-22.45 dBm	Stop Freq
											25.00000000 GHz
-30.0											
10.0											CE Stop
-40.0									×1		1.300000000 GHz
50.0										here added	<u>Auto</u> Man
-50.0		- LA	a	م المالية و معاد ما الله	he Barring Light	all a strength of the	Aller Martin	and the second second	THE OWNER	Shine of the local division of the second	
	hound	Shep rith		Condender of	Deally and a strength of the local	William and an and a second	a standard a standard				Fred Offset
-60.01	and when the	(Jul)									0.47
70.0											0112
-70.0											
Star	t 12.0	00 GHz		·····				No. of	Stop 25	.000 GHz	
#Res	s BW	100 kHz		#VBW	1.0 MHz			Sweep	1.20 s (1	0001 pts)	
MSG 🤇	VFile <	Image.png>	saved					STATUS			

Agilent Spectrum Analyzer - Swept SA												
Cen	ter Fr	req 515.00	Ω AC 100000 MH:	z		NSE:INT	Avg Type	ALIGNAUTO	06:15:36 P TRAC	M Oct 17, 2012	Frequency	
10 di	3/div	Ref 20.00	P IF1 dBm	NO: Fast 🖵 Gain:Low	#Atten: 30	dB		Mk	r1 868.9 -58.4	53 MHz 48 dBm	Auto Tune	
10.0											Center Freq 515.000000 MHz	
0.00 -10.0											Start Freq 30.000000 MHz	
-20.0 -30.0										-20.32 dBm	Stop Freq 1.000000000 GHz	
-40.0 -50.0											CF Step 97.000000 MHz <u>Auto</u> Man	
-60.0	a na bu a li a	in Mary and Jacobie (Sarah and Sarah Sarah ang Pang Dan Jacobie (Sarah ang Sarah ang Pang Dan Jacobie (Sarah ang	ales and the spectrum spectrum part	a por a staff for por staff for (for an a na staff	Altern (ng) karang panasala Manasal (karang ng) karatala		r tagi ki juga na malaki pan Taga sa sa mila ku nika ta m	a de la secta d		an a	Freq Offset 0 Hz	
Star #Re	t 30.0 s BW	MHz 100 kHz		#VBW	1.0 MHz			Sweep 9	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)		
MSG 🤇	₽File <	Image.png>	saved					STATU	s			

Channel 11 (2462MHz)

Agilent Sp	pectrum Analyze	r - Swept SA			12					
LXI RL	RF	50 Ω AC		SEI	VSE:INT		ALIGN AUTO	06:15:00 P	M Oct 17, 2012	Frequency
Cente	r Freq 6.5	00000000	GHZ PNO: Fast IFGain:Low	Trig: Free #Atten: 30	Run) dB	Avg Type	: Log-Pwr	TYF	™ 2 3 4 5 6 ™ ₩₩₩₩₩₩ ET P N N N N N	
10 dB/d	liv Ref 20	.00 dBm					Mk	r1 2.459 -0.3	9 7 GHz 32 dBm	Auto Tune
										Center Freq
10.0 —	.									6.500000000 GHz
0.00 —										Start Freq
-10.0 —										1.000000000 GHz
-20.0									-20.32 dBm	Stop Freq
-30.0 —										12.00000000 GHz
-40.0										CF Step
-50.0 —										<u>Auto</u> Man
-60.0		-the state	المراجع والمراجع والمراجع والمراجع	al legelenet theory	والمتحالين والمتحادين	ومانين والمعد	a statistica and the	and all all a strength	and and	Freg Offset
			The star		y para da filitada da da filitar y		and the second se			0 Hz
-70.0										
Start 1	1.000 GHz	,	#\/B\M	10 MHz	1	1	Sween	Stop 12	.000 GHz	
MSG 🗼 F	Points change	d; all traces o	leared	1.0 10112			STATUS	1.02 5 (1	000 i pts)	

Agilen	it Spectri	um Analyzer - S	wept SA		- 12	12					
LXI RI	L	RF 50	Ω AC		SEI	VSE:INT	A	ALIGNAUTO	06:16:12P	M Oct 17, 2012	Frequency
Cen	iter Fr	eq 18.500	0000000	SHZ	Trig: Free	Run	Avg Type	: Log-Pwr	TYP	EM WWWW	riequency
			IF	Gain:Low	#Atten: 30	dB			DE	PNNNN	
								Mkr	1 23 060		Auto Tune
								IVINI	1 20.000	17 dBm	
10 di Log	B/div	Ref 20.00	aBm						-40.0		
											0
10.0											Center Freq
10.0											18.50000000 GHz
0.00							-				
											Start Freq
-10.0											12.00000000 GHz
										-20-32 dBm	
-20.0				1				Ì		-20.52 ubm	Stop Freg
											25 00000000 GHz
-30.0				8							23.000000000 GHZ
-40.0											CF Step
40.0											1.30000000 GHz
								10 m			Auto Man
-50.0			a sat fai	La La Maria	1 Hale I day	a dura a	مع العلم وربيع	A STATE OF	Aller and and	And a state of the	
	h and	an dealers and			a support of the		a free and the state	Hard and the second	and the second second		2015 March 2
-60.0	The fille		and a second		1841 - AS	1.1					Freq Offset
	a. 12										0 Hz
70.0											
-70.0											
Ctar	+ 12 0								Stop 25	000 CHz	
#Do	e BM			#\/R\M	1.0 MHz			Swoon	1 20 c /1	0001 of 2	
#RC:	5 0 11			#VDVV				oweep	1.20 5 (1	0001 pts)	
MSG 🤇	File <	Image.png>	saved					STATUS			

Product	:	ASUS VivoTab
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel 01 (2412MHz)

Agilent	Spectru	ım Analyzer -	Swept SA								
LXI RL		RF 51	JΩ AC		SE	NSE:INT		ALIGN AUTO	D 06:28:38 F	M Oct 17, 2012	Francisco
Cent	ter Fr	eq 515.0	00000 MH	z]	_	Avg Type	: Log-Pwi	TRAC	E123456	Frequency
10 dB	l/div	Ref 20.0	⊪ ©dBm	PNO: Fast 😱 Gain:Low	⁴ Trig: Free #Atten: 30	≥Run)dB		М	kr1 855.0 -59.	82 MHz 05 dBm	Auto Tune
10.0 -											Center Freq 515.000000 MHz
0.00 - -10.0 -											Start Freq 30.000000 MHz
-20.0 -30.0 -										-23.74 dBm	Stop Freq 1.00000000 GHz
-40.0 -											CF Step 97.000000 MHz <u>Auto</u> Man
-60.0 -		l lager privati i lager p	Herritel Newscowstation	<mark>) b</mark> y the transmission of the test	an a	alaa jarin jalijul ju	a al falle a sur a fall falsa falsa Yurun a sur a fan al a stra	anter de la companya		(1) (1, etc.), a star a farmel	Freq Offset 0 Hz
-70.0 Start #Res	30.0 BW	MHz 100 kHz		#VBW	1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz	
MSG 其	File <	Image.png>	saved	1 (1000) (100 (100 (100 (100 (100 (100 (STAT	us		1

Agilent Spectrum Analyzer - Swept SA 100 R.L RF 50.9 AC SENSE:INT ALIGNAUTO 06/28/02 PM Oct 17: 2012												
Cen	L Iter Fr	RF eq 6.	50 Ω	AC 00000 G	Hz	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:28:02 F	M Oct 17, 2012	Frequency
10 di	3/div	Ref	20.00 (dBm	PNO: Fast 🖵 Gain:Low	#Atten: 30	dB		Mk	r1 2.41 -3.	1 3 GHz 74 dBm	Auto Tune
10.0			lane									Center Freq 6.50000000 GHz
0.00 -10.0			1									Start Freq 1.000000000 GHz
-20.0 -30.0											-23.74 dBm	Stop Freq 12.000000000 GHz
-40.0 -50.0												CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	und (Les palling Landel Institution	i i i i	hand			leten konstilletter Menseliser			A.			Freq Offset 0 Hz
-70.0 Star	t 1 00		,							Stop 12	000 GH7	
#Re	s BW	100 k	Hz		#VBW	1.0 MHz			Sweep	1.02 s (1	0001 pts)	
MSG 🤇	Point	s chan	ged; all	traces clea	ared				STATUS			

Off RL RF 500 AC ESNEENT ALIGNATIO Decisition Frequency Center Freq 18.50000000 CHz PN0: Fast Trig: Free Run Avig Type: Log-Pwr Trace [1:3:45] Frequency 10 dB/div Ref 20.00 dBm Mkr1 24.485 2 GHz Auto Tune 10 dB/div Ref 20.00 dBm Center Freq 18.50000000 GHz 48.189 dBm 10 dB/div Ref 20.00 dBm Start Freq 18.50000000 GHz 18.50000000 GHz 10 dB/div Ref 20.00 dBm Start Freq 18.50000000 GHz 18.50000000 GHz 10 dB/div Ref 20.00 dBm Start Freq 18.50000000 GHz 10.000 GHz 200 Start 12.000 GHz Working Start Freq 130000000 GHz 130000000 GHz 200 Start 12.000 GHz Working Start Freq 130000000 GHz 130000000 GHz 400 Start 12.000 GHz Working Start Stop 25.000 GHz Stop 25.000 GHz Freq Offset 700 Stop 100 KHz #VEW 1.0 MHz Stop 25.000 GHz Freq Offset 0 Hz Stop 25.000 GHz Stop 25.000 GHz Stop 25.000 GHz NHz	Agilent	Spectru	m Analyzer - S	wept SA								
Center Freq 18.50000000 GHz Productor Trig: Free Run Pres With Ref 20.00 dBm Trig: Free Run Pres With Ref 20.00 dBm Auto Tune 100 -48.189 dBm -48.189 dBm Auto Tune 100 -48.189 dBm -48.189 dBm Start Freq 18.50000000 GHz 100 -200 -2374 dem -2374 dem 200 -2374 dem -2374 dem -2374 dem 300 -200 -2374 dem -2374 dem 300 -200 -2374 dem -2374 dem 300 -200 -2374 dem -200 300 -200 -200 -200 300 -200 -2374 dem -2374 dem 400 -200 -200 -200 -200 300 -200 -200 -200 -200 400 -200 -200 -200 -200 400 -200 -200 -200 -200 500 -200	LXI RL		RF 50	Ω AC		SEI	VSE:INT		ALIGN AUTO	06:29:13P	M Oct 17, 2012	Frequency
PN0: Fast FGainLow Ing. Free Kun Auto Mkr1 24.485 2 GHz -48.189 dBm Auto Tune 10g Img. Free Kun -48.189 dBm Img. Free Kun -48.189 dBm Img. Free Kun -48.189 dBm Img. Free Kun -48.189 dBm	Cent	ter Fr	eq 18.500	0000000	GHz		D	Avg Type	: Log-Pwr	TRAC	E123456	requericy
Instant Low Instant of degree Mkr1 24.485 2 GHz -48.189 dBm Auto Tune 100					PNO: Fast	#Atton: 30	Run			DE	PNNNN	
Mikr1 24.485 2 GHz -48.189 dBm Alto Tune 10 dB/div Ref 20.00 dBm -48.189 dBm 10 dB/div Ref 20.00 dBm -48.189 dBm 10 dB/div Image: Center Freq 18.50000000 GHz 18.50000000 GHz 10 dB/div Image: Center Freq 18.50000000 GHz 18.50000000 GHz 200 dBm Image: Center Freq 12.00000000 GHz 18.50000000 GHz 200 dBm Image: Center Freq 12.00000000 GHz 18.50000000 GHz 300 dBm Image: Center Freq 12.00000000 GHz 18.50000000 GHz 400 dBm Image: Center Freq 1.30000000 GHz 18.50000000 GHz 500 dBm Image: Center Freq 1.20 s (10001 pts) 18.50000000 GHz 500 GHz #VBW 1.0 MHz Start IS 500 GHz #VBW 1.0 MHz Starts					FGain:Low	#Atten. ot			1010-0101			
10.0 BM -48.189 dBm 10.0 Center Freq 10.0 Start Freq 20.0 Start Freq 30.0 Start Freq 30.0 Start Freq 40.0 Start Freq 40.0 Start Freq 40.0 Start Freq 40.0 Start Freq 50.0 Start Start Freq 1.30000000 GHz Start Greg 30.0 Start Start Freq 50.0 Start Start Start Freq 1.30000000 GHz Start Start Freq 1.30000000 GHz Start S									Mkr	1 24.48	5 2 GHz	Autorune
Log 10.0 1	10 dB	/div	Ref 20.00) dBm						-48.1	89 dBm	
10.0 Center Freq 0.00 Start Freq 10.0 Start Freq 20.0 Start Freq 10.0 Start Freq 1.00000000 GHz Start Stop Freq 20.0 Start	^{Log} г				1			<u> </u>				
10.0 Image: Construction of the second s												Center Fred
0.00 10.0	10.0											40 500000000 CU-
0.00 Image: Construction of the second s	10.0											18.50000000 GHZ
0.00 Image: start stree st												
-10.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	0.00											
-10.0												Start Freq
-20.0 -23.74 dBm -20.0 -23.74 dBm -30.0 -23.74 dBm -40.0 -20.0 -40.0 -20.0 -40.0 -20.0 -50.0 -20.0 -40.0 -20.0 -50.0 -20.0 -40.0 -20.0 -50.0 -20.0 -60.0 -20.0 -60.0 -20.0 -70.0 -20.0 -70.0 -20.0 Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz #VBW 1.0 MHz Start 2.000 GHz -20.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Start 2.000 GHz -20.000 GHz -20.0	-10.0											12.00000000 GHz
-20. -2. -20. -2. -20. -2	10.0											
-200 -23.74 dem -23.74 dem Stop Freq -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -40.0												
30.0 30.0	-20.0								-		02.74 dBm	Stop From
-30.0 -40.0 -40.0 -60.0 -60.0 -60.0 -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz BW 100 MHz #VBW 1.0 MHz Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz Start 12.000 GHz Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz Start											-23.74 UDNI	StopFreq
-40.0 -40.0 -60.0 -60.0 -60.0 -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz Start 12.000 GHz #VBW 1.0 MHz Start 12.000 GHz Start 1	30.0											25.000000000 GHz
-40.0 -60.0 -60.0 -70.0 Start 12.000 GHz #Res BW 100 KHz #VBW 1.0 MHz Start Sweep 1.20 s (10001 pts) Misc Alignment Completed	30.0											
-40.0 -50.0 -60.0 -60.0 -70.0 -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Start Stop 25.000 GHz 1.20 s (10001 pts) MISG Alignment Completed												
-50.0 -5	-40.0		-						-		-	CF Step
-50.0 -60.0 -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Start 2.000 GHz #VBW 1.0 MHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz #VBW 1.0 MHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz Start 3.000 GHz #VBW 1.0 MHz Start 3.000 GHz Start 3.0000 GHZ Start 3.00											≜ 1	1.300000000 GHz
Start 12.000 GHz #VBW 1.0 MHz Stop 25.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)	50.0				0			62	(h)		Alex marks	<u>Auto</u> Man
-60.0 Human and the second status sta	-30.0			and the state of the state	والألك والمساوميا		Allow della sur al	الما الألباني والمهالا	and the state of the state	In the second	Street open and in the second	
-60.0 Freq Offset -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts) MISG Alignment Completed		Million M	the state of the state	ALC: NO.	A CONTRACTOR OF THE OWNER OF THE	No.	the second second	and the second s				
-70.0	-60.0	indegraphical	The second second	dis.								FreqOffset
-70.0 CHz Stop 25.000 CHZ Stop												0 Hz
Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Start Sweep 1.20 s (10001 pts)	70.0											
Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Stop 25.000 GHz 1.20 s (10001 pts)	-70.0											
Start 12.000 GHz #Res BW 100 kHz Stop 25.000 GHz #VBW 1.0 MHz Stop 25.000 GHz 1.20 s (10001 pts)												
#Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)	Ctort	40.00			1			I	I	Stop 25		
#Res Div 100 Km2 #VD/V 1.0 Wm2 Sweep 1.20 S (10001 pts) Msg JAlignment Completed status	Staft #Dec	DW 4			#\/D\4/	4 0 BALI-			Cureen	510p 20	0001 ptc)	
MSG JAlignment Completed STATUS	#Res	DAA .			#VBW	1.0 WINZ			oweep	1.20 \$ (1	oour pis)	
	MSG 🤳	Align	nent Comple	eted					STATUS			

Agilent Spect	rum Analyzer - Swe	pt SA								
Center F	RF 50 Ω		,	SEI	NSE:INT	Avg Type	ALIGNAUTO	06:40:04 F	M Oct 17, 2012	Frequency
10 dB/div	Ref 20.00 d	Bm	IO: Fast 😱 Jain:Low	┘ Trig: Free #Atten: 30	e Run) dB		MI	™ kr1 786.6 -59.	et P NNNNN 600 MHz 09 dBm	Auto Tune
10.0										Center Freq 515.000000 MHz
0.00										Start Freq 30.000000 MHz
-20.0									-24.03 dBm	Stop Freq 1.000000000 GHz
-40.0										CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	and a manager that the	ulmenneley avg	an de ser ja in di Di D	r yn Anergryf Hiller A nerei y Aller	Rijnsterski statiji og st	Territor filling for the start of a		1	a stiget til beska server som	Freq Offset 0 Hz
Start 30.0 #Res BW	0 MHz 100 kHz <image ppg=""/> sa	ved	#VBW	1.0 MHz		ę	Sweep	Stop 1.0 90.0 ms (1	0000 GHz 0001 pts)	

Channel 06 (2437MHz)

Agilent Spec	trum Analyzer - Swe	ept SA							
Center	RF 50 Ω Freq 6.50000	AC 00000 GHz	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:39:28 F	M Oct 17, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div	Ref 20.00 c	PNO: Fast ⊂ IFGain:Low IBM	Atten: 3	o dB		Mk	r1 2.43 -4.	7 7 GHz 03 dBm	Auto Tune
10.0									Center Freq 6.50000000 GHz
-10.0	• ¹								Start Freq 1.000000000 GHz
-20.0								-24.03 dBm	Stop Freq 12.00000000 GHz
-40.0									CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0	In the second second					**	a and the second se		Freq Offset 0 Hz
-70.0 Start 1.0	000 GHz						Stop 12	.000 GHz	
#Res BV	V 100 kHz	#VB	W 1.0 MHz			Sweep	1.02 s (1	0001 pts)	
	into changeu, an i	laces ciedieu				514105			

Agilent Spect	rum Analyzer - Sw	ept SA							
Center F	RF 50 Ω req 18.500(AC 000000 GHz	SE	NSE:INT	Avg Type:	LIGNAUTO	06:40:40 PM TRACE TYPE	1 Oct 17, 2012	Frequency
10 dB/div	Ref 20.00 ·	PNU: Fast IFGain:Low dBm	#Atten: 30) dB		Mkr	DET 1 21.798 -48.2	^{P NNNNN} 1 GHz 2 dBm	Auto Tune
10.0									Center Freq 18.500000000 GHz
0.00 -10.0									Start Freq 12.000000000 GHz
-20.0								-24.03 dBm	Stop Freq 25.00000000 GHz
-40.0			del 1 altro	1		1		and the second	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0						and the state			Freq Offset 0 Hz
-70.0 Start 12.0 #Res BW)00 GHz 100 kHz	#VBW	1.0 MHz			Sweep	Stop 25.	000 GHz	
мsg 🕹 File	<lmage.png> s</lmage.png>	aved				STATUS			

Agilen	t Spectru	m Analyzer	Swept SA								
LXI RI	L	RF	50Ω AC		SE	NSE:INT		ALIGN AUTO	06:53:41 P	M Oct 17, 2012	Frequency
Cen	ter Fr	eg 515.0	000000	MHz			Avg Type	: Log-Pwr	TRAC	E123456	Frequency
				PNO: Fast 😱 IFGain:Low	#Atten: 30	≘Run)dB			TYP DE		
10 dE	3/div	Ref 20.0	00 dBm					Mł	(r1 942.3 -58.4	82 MHz 46 dBm	Auto Tune
209											Center Freq
10.0											515.000000 MHz
0.00											
											Start Freq
-10.0											30.000000 MHz
-20.0											
										-23.48 dBm	Stop Freq
-30.0											
-40.0		_	_								CF Step
											97.000000 MHz Auto Man
-50.0										<u>_1</u>	
-60.0					de stille dans	that she		f Incomenciation and	the state of the second se	AND AND A	Freq Offset
- 9		and and the set	and the property of the second		deline del producto de la composición d Calendar de la composición de la composi	and the local days from the second		a la constitution	that the Rate (see the state of the	17- ALCONTRACTOR	0 Hz
-70.0											
Otor	+ 20.0								Stop 1 0		
#Res	s BW	100 kHz		#VBW	1.0 MHz			Sweep	90.0 ms (1	0001 pts)	
MSG 🤇	₽File <	lmage.png	> saved					STAT	US		

Channel 11 (2462MHz)

Agilent	t Spectru	m Analyzer - Sv	wept SA								
LXI RL		RF 50 :	Ω AC	-	SEI	VSE:INT	0	ALIGN AUTO	06:54:17 F	M Oct 17, 2012	Frequency
Cen	ter Fr	eq 18.500	000000		Trig: Free	Run	Avgiype	. Log-Pwr	TY	E M WWWW	
			, i	Gain:Low	#Atten: 30	dB			D		
								Mkr	1 23.62	20 GHz	Auto Tune
10 dF	Vdiv	Ref 20.00	dBm						-47.	74 dBm	
Log				1							
											Center Freq
10.0								-			18.50000000 GHz
0.00		_	-								
											Start Freq
-10.0		_									12.00000000 GHz
20.0											
-20.0			<u></u>							-23.48 dBm	Stop Freq
											25.00000000 GHz
-30.0											
-40.0		-	-	8			-			1	CF Step
										Y	1.30000000 GHZ
-50.0							all . All . I day	a literation of the last	Sheet of Street	and a more than a first	<u>Auto</u> mun
		i. Aller	the of the stand	A Los and discharge	Adapted in the second second	And Post in the Party of the Pa		and the second second	And a part of the second	A CONTRACTOR OF	
-60.0	n Lina (II)	A CONTRACTOR	An and the second	and the second s	- T		5 (1977)				Freq Offset
		0.04									0 Hz
.70.0											
10.0											
Star	t 12.00	0 GHz							Stop 25	.000 GHz	
#Res	BW 1	00 kHz		#VBW	1.0 MHz			Sweep	1.20 s (1	0001 pts)	
MSG 🤇	File <	lmage.png> :	saved					STATUS			

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	X Pre-Amplifier		Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. **Test Result of Band Edge**

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2389.200	31.506	28.516	60.022	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	26.755	58.264	74.00	54.00	Pass
01 (Peak)	2413.000	31.646	76.675	108.321			Pass
01 (Average)	2389.000	31.505	17.329	48.834	74.00	54.00	Pass
01 (Average)	2390.000	31.509	15.922	47.431	74.00	54.00	Pass
01 (Average)	2411.400	31.634	72.818	104.452			Pass

Figure Channel 01:

Horizontal (Average)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- "*", means this data is the worst emission level. 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2367.400	31.019	26.089	57.109	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	25.127	56.042	74.00	54.00	Pass
01 (Peak)	2413.000	30.956	73.757	104.713			Pass
01 (Average)	2389.000	30.920	14.451	45.371	74.00	54.00	Pass
01 (Average)	2390.000	30.915	13.915	44.830	74.00	54.00	Pass
01 (Average)	2412.800	30.955	69.939	100.894			Pass

Figure Channel 01:

VERTICAL (Peak)

Figure Channel 01:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.900	32.011	76.740	108.751			Pass
11 (Peak)	2483.500	32.182	25.847	58.029	74.00	54.00	Pass
11 (Peak)	2489.100	32.224	27.880	60.104	74.00	54.00	Pass
11 (Average)	2461.300	32.014	73.092	105.106			Pass
11 (Average)	2483.500	32.182	14.401	46.583	74.00	54.00	Pass
11 (Average)	2485.700	32.198	16.055	48.254	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2462.900	31.296	74.604	105.900			Pass
11 (Peak)	2483.500	31.435	24.575	56.010	74.00	54.00	Pass
11 (Peak)	2491.100	31.487	26.801	58.288	74.00	54.00	Pass
11 (Average)	2461.100	31.285	70.914	102.198			Pass
11 (Average)	2483.500	31.435	13.595	45.030	74.00	54.00	Pass
11 (Average)	2488.700	31.471	15.246	46.716	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	39.772	71.281	74.00	54.00	Pass
01 (Peak)	2411.800	31.636	77.303	108.940			Pass
01 (Average)	2390.000	31.509	17.808	49.317	74.00	54.00	Pass
01 (Average)	2413.000	31.646	63.648	95.294			Pass

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2389.600	30.917	37.924	68.841	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	36.786	67.701	74.00	54.00	Pass
01 (Peak)	2412.200	30.951	74.427	105.378			Pass
01 (Average)	2390.000	30.915	16.259	47.174	74.00	54.00	Pass
01 (Average)	2413.200	30.957	60.703	91.660			Pass

Figure Channel 01:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2461.900	32.018	77.605	109.624			Pass
11 (Peak)	2483.500	32.182	39.955	72.137	74.00	54.00	Pass
11 (Peak)	2484.700	32.192	40.115	72.306	74.00	54.00	Pass
11 (Average)	2461.100	32.013	63.678	95.691			Pass
11 (Average)	2483.500	32.182	20.712	52.894	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2463.300	31.299	73.379	104.678			Pass
11 (Peak)	2483.500	31.435	36.878	68.313	74.00	54.00	Pass
11 (Peak)	2485.500	31.449	38.656	70.105	74.00	54.00	Pass
11 (Average)	2460.900	31.283	60.530	91.813			Pass
11 (Average)	2483.500	31.435	18.765	50.200	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2386.800	31.497	40.381	71.878	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	39.262	70.771	74.00	54.00	Pass
01 (Peak)	2413.000	31.646	76.651	108.297			Pass
01 (Average)	2390.000	31.509	17.849	49.358	74.00	54.00	Pass
01 (Average)	2413.000	31.646	58.622	90.268			Pass

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2389.600	30.917	39.495	70.412	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	38.023	68.938	74.00	54.00	Pass
01 (Peak)	2412.200	30.951	73.403	104.354			Pass
01 (Average)	2390.000	30.915	17.131	48.046	74.00	54.00	Pass
01 (Average)	2413.000	30.956	55.948	86.904			Pass

Figure Channel 01:

VERTICAL (Peak)

Figure Channel 01:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2461.700	32.017	76.651	108.668			Pass
11 (Peak)	2483.500	32.182	39.811	71.993	74.00	54.00	Pass
11 (Peak)	2484.100	32.186	40.746	72.933	74.00	54.00	Pass
11 (Average)	2461.100	32.013	58.906	90.919			Pass
11 (Average)	2483.500	32.182	20.381	52.563	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	ASUS VivoTab
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2461.300	31.286	74.191	105.477			Pass
11 (Peak)	2483.500	31.435	39.614	71.049	74.00	54.00	Pass
11 (Average)	2461.100	31.285	57.296	88.580			Pass
11 (Average)	2483.500	31.435	19.258	50.693	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	ASUS VivoTab
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	7250	>500	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA		
X RL RF 50 Ω AC Center Freq 2.412000000 GHz	SENSE:INT Avg Type	ALIGN AUTO 05:14:02 PM Oct 17, 2012 : Log-Pwr TRACE 1 2 3 4 5 6 Frequency
PN0: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB	Mkr2 2.408 40 GHz
10 dB/div Ref 20.00 dBm Log 10.0 .00	2 1 month	-0.74 dBin -0.72 dBin 2.412000000 GH
-20.0 -30.0 -40.0		Start Fre 2.387000000 GH
-50.0		Stop Fre 2.437000000 GH
Center 2.41200 GHz #Res BW 300 kHz #VBW MSR M0009 TEC SCL X 1 N 1 f 2.412 50 GHz	1.0 MHz Y Function Fun 5.28 dBm	Span 50.00 MHz Sweep 1.00 ms (1001 pts) CHION WIDTH FUNCTION VALUE Auto Ma
2 N 1 f (Δ) 2.408 40 GHz (Δ) 3 N 1 f (Δ) 2.415 65 GHz (Δ) 4 - - - - - 5 - - - - - 6 - - - - - 7 - - - - - -	-0.74 dBm -0.97 dBm	Freq Offse
8 9 9 10 11 11 12 12		

Product	:	ASUS VivoTab
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	7250	>500	Pass

Figure Channel 6:

Agile	nt Spe	ctrun	n An	alyzer - Swe	ept SA								
Cer	ıter	Fre	RF Pq 2	50 Ω 2.43700	AC 00000 GH	lz	Si Tria: Fra		Avg Typ	ALIGNAUTO e: Log-Pwr	05:27:14 F TRAC	M Oct 17, 2012	Frequency
10 d	Bídis	,	Rei	F 20 00 (NO: Fast Gain:Low	* #Atten: 3	0 dB		Mkr	2 2.433 -1.	40 GHz	Auto Tune
Log 10.0 0.00 -10.0				20.00			2 Martine	Anna 3	1			-1.02 dBm	Center Freq 2.437000000 GHz
-20.0 -30.0 -40.0				m	wwwww	And	×		- hours	W. ordoood	more and	0.0	Start Freq 2.412000000 GHz
-50.0 -60.0 -70.0		Ray Con										the of the second	Stop Freq 2.462000000 GHz
Cer #Re	nter es Bl MODE	2.43 W 3	370 00	0 GHz kHz	× 2.437 5	#VE	W 1.0 MHz	FUN	CTION F	Sweep	Span 5 1.00 ms (0.00 MHz 1001 pts) NVALUE	CF Step 5.000000 MHz <u>Auto</u> Man
2 3 4 5 6 7 0	N	1	f	(Δ) (Δ)	2.433 4 2.440 6	0 GHz (, 5 GHz (,	Δ) -1.13 c Δ) -1.39 c						Freq Offset 0 Hz
9 10 11 12 MSG										STATUS			

Product	:	ASUS VivoTab
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	7250	>500	Pass

Figure Channel 11:

Agilent Spe	ectrum	Analyzer - Sv	vept SA								
Center	Free	RF 50 S	2 AC 00000 GH	łz		NSE:INT	Avg Ty	ALIGNAUTO pe: Log-Pwr	05:37:20 F TRAC	M Oct 17, 2012	Frequency
10 dB/div	/ F	Ref 20.00	dBm	IO: Fast (iain:Low	#Atten: 30) dB		Mkr	2 2.458 -1.0	40 GHz 06 dBm	Auto Tune
10.0 0.00 -10.0				- Asi	2 month	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4			-1.02 dBm	Center Free 2.462000000 GH
-20.0 -30.0 -40.0		-	-	Jan Martin			- 4 - 4	horno	and man		Start Fre 2.437000000 GH
-50.0	hal									L.a., da,	Stop Fre 2.487000000 GH
Center Res B	2.46: W 30	200 GHz 0 kHz	X	#VBW	/ 1.0 MHz	FUN		Sweep	Span 5 1.00 ms (0.00 MHz 1001 pts)	CF Ste 5.000000 MH AutoMa
1 N 2 N 3 N 4 5 6	1	f f (Δ) f (Δ)	2.462 50 2.458 40 2.465 69) GHz) GHz (Δ) 5 GHz (Δ)	4.98 dl -1.06 dl -1.38 dl	3m Bm Bm					Freq Offso 0 ⊦
7 8 9 10 11											
IZ								STATUS	;		

Product	:	ASUS VivoTab
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	16600	>500	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA								
Center Freq 2.41200000) GHz	SENSE:INT	Avg Type:	Log-Pwr	10:15:40 P TRAC	M Oct 23, 2012 E 1 2 3 4 5 6	Frequency	
10 dB/div Ref 20.00 dBm	PNO: Fast 😱 IFGain:Low	Atten: 30 dB	Avginoid.>	Mkr1	2.413 2.1	55 GHz 20 dBm	Auto Tune	
10.0 0.00 -10.0	Q ²	1_				-3.88 dBm	Center Freq 2.412000000 GHz	
-20.0 -30.0 -40.0	enstrative for the			~الديمة. مالديمة. مالديمة مالية مالديمة مالية مالديمة مالية مالديمة مالية مالديمة مالية مالديمة مالية مالديمة مالية ماليه مالية ماليمة ماليماني ماليما مالي مالية مالية مالية مالية مالية مالية مالية ماليا ماليما ماليا مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالي مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالية مالي مالي مالي ماليم مالي مالي مالي مال	tzenandu Tok Pres	u barrowsky	Start Freq 2.387000000 GHz	
-50.0							Stop Freq 2.437000000 GHz	
Center 2.41200 GHz #Res BW 300 kHz	enter 2.41200 GHz Span 50.00 MHz Res BW 300 kHz #VBW 1.0 MHz Sweep 1.00 ms (1001 pts)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	413 55 GHz 403 75 GHz (<u>A)</u> 420 35 GHz (A)	2.120 dBm -4.154 dBm -3.911 dBm					Freq Offset 0 Hz	