

FCC Test Report

Equipment	:	ASUS Tablet
Brand Name	:	ASUS
Model No.	:	K01G
FCC ID	:	MSQK01G
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
Equipment Class	:	DSS
Applicant Manufacturer	:	ASUSTeK COMPUTER INC. 4F, No. 150, LI-TE RD., PEITOU, TAIPEI, TAIWAN
RF Module	:	BROADCOM / BCM43340

The product sample received on Aug. 08, 2014 and completely tested on Aug. 22, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

01,

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	.5
1.1	Information	.5
1.2	Support Equipment	.7
1.3	Testing Applied Standards	.7
1.4	Testing Location Information	.8
1.5	Measurement Uncertainty	.8
2	TEST CONFIGURATION OF EUT	.9
2.1	The Worst Case Modulation Configuration	.9
2.2	Test Channel Frequencies Configuration	.9
2.3	The Worst Case Power Setting Parameter	.9
2.4	The Worst Case Measurement Configuration	10
2.5	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	20dB Bandwidth and Carrier Frequency Separation	16
3.3	Number of Hopping Frequencies	18
3.4	Time of Occupancy (Dwell Time)	20
3.5	RF Output Power	22
3.6	Transmitter Radiated Bandedge Emissions	24
3.7	Transmitter Radiated Unwanted Emissions	27
4	TEST EQUIPMENT AND CALIBRATION DATA	38

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications								
Report Ref. Std. Clause Clause		Description	Measured	Limit	Result				
1.1.3	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied				
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.3633820 MHz 43.40 (Margin 15.25 dB) - QP 38.35 (Margin 10.30 dB) - AV	FCC 15.207	Complied				
3.2	15.247(a)	20dB Bandwidth	EDR: 1.3372 MHz	N/A	Complied				
3.2	15.247(a)	Carrier Frequency Separation (ChS)	EDR: 1.0000 MHz	ChS ≥ BW _{20dB} x2/3.	Complied				
3.3	15.247(a)	Number of Hopping Frequencies (N)	Max: 79 Min: 15	N ≥ 15	Complied				
3.4	15.247(a)	Time of Occupancy (Dwell Time)	EDR: 0.317 sec	0.4 s within 0.4 x N	Complied				
3.5	15.247(b)	RF Output Power (that Maximum Peak Conducted Output Power)	Power [dBm] BR: 6.57 EDR: 5.20	Power [dBm] BR:21 EDR:21	Complied				
3.6	15.247(c)	Transmitter Radiated Bandedge Emissions	Restricted Bands [dBuV/m at 3m]: 2483.53 MHz 55.98 (Margin 18.02 dB) - PK 45.44 (Margin 8.56 dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied				
3.7	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 30.00 MHz 28.00 (Margin 12.00 dB) - PK	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied				

Revision History

FR473113AD Rev. 01 Initial issue of report Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 09, 2014 Image: Sep. 2014 Image: Sep. 09, 2014<	Report No.	Version	Description	Issued Date
Image: section of the section of th	FR473113AD	Rev. 01	Initial issue of report	Sep. 09, 2014
Image: section of the section of th				
Image: series of the series				
Image: sector				
Image: section of the section of th				
Image: section of the section of th				
Image: state s				
Image: section of the section of th				
Image: Section of the section of th				
Image: state stat				
Image: Section of the section of th				
Image: Section of the section of th				
Image: Section of the section of th				
Image: Constraint of the second se				
Image: Market State				
Image: second				

1 General Description

1.1 Information

1.1.1 Manufacturer and Factory Information

Manufacturer :	ASUSTeK COMPUTER INC. 4F, No. 150, LI-TE RD., PEITOU, TAIPEI, TAIWAN			
Factory 1.	COTEK ELECTRONICS (SUZHOU) CO LTD 288 MAYUN RD NEW DISTRICT SUZHOU JIANGSU CHINA			

1.1.2 RF General Information

RF General Information							
Frequency Range (MHz)Bluetooth ModeCh. Frequency (MHz)Channel NumberRF Output Power (dBm)							
2400-2483.5 BR / EDR 2402-2480 0-78 [79] 6.57							
Note 1: Bluetooth BR uses a GFSK (1Mbps). Note 2: Bluetooth EDR uses a combination of $\pi/4$ -DOPSK (2Mbps) and 8DPSK (3Mbps)							

Note 2: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK (2Mbps) and 8DPSK (3Mbps).

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

1.1.3 Antenna Information

	Antenna Category						
\square	Integral antenna (antenna permanently attached)						
	Temporary RF connector provided						
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.						

	Antenna General Information						
No.	No. Ant. Cat. Ant. Type Gain (dBi)						
1	Integral	PIFA	-0.33				

1.1.4 Type of EUT

	Identify EUT				
EUT	Γ Serial Number	N/A			
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
] Other:				

1.1.5 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle						
Operated test mode for worst duty cycle						
Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)						
☑ 78.38% - test mode single channel- BR-1Mbps DH5	1.06					
79.15% - test mode single channel- EDR-2Mbps DH5 1.02						
79.15% - test mode single channel- EDR-3Mbps DH5	1.02					
Bluetooth ACL packets can be 1, 3, or 5 time slots. The DH1 pac	licet can accur a single time slat. The DU					

Bluetooth ACL packets can be 1, 3, or 5 time slots. The DH1 packet can cover a single time slot. The DH3 packet can cover up to 3 time slots. The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle.

1.1.6 EUT Operational Condition

Supply Voltage	\boxtimes	AC mains	\boxtimes	DC		
Type of DC Source	\boxtimes	External DC adapter	\boxtimes	From system	\boxtimes	Li-ion Battery

1.2 Accessories and Support Equipment

Accessories Information						
	Brand Name	ASUS	JS Model Name			
AC Adapter 1	Vendor	Chicony	Model Name	W12-010N3A		
	Power Rating	I/P: 100-240V~50/60Hz 0.3A; O/P:	: 5V 2A			
	Brand Name	ASUS	Model Name	AD897320		
AC Adapter 2	Vendor	PI	Model Name			
	Power Rating	I/P: 100-240V~50/60Hz 0.3A; O/P: 5V===2A				
	Brand Name	ASUS	Madal Nama	C11P1329		
Li-ion battery	Vendor	SMP	Model Name			
	Power Rating	3.8V 3948mAh, 15.2Wh	·			
USB Cable	Brand Name	ASUS	Madal Nama			
	Vendor	FOXCONN	Model Name	CUHD003B-Y11EF		

Note: Regarding to more detail and other information, please refer to user manual.

	Sup	port Equipment- RF Conducted	
No.	Equipment	Brand Name	Model Name
1	Base Station	Anritsu	MT8852B
2	Notebook PC	DELL	E5520

	Suppo	rt Equipment- Radiated Emission	n
No.	Equipment	Brand Name	Model Name
1	Base Station	R&S	CBT

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.10-2009
- 47 CFR FCC Part 15
- FCC DA 00-0705

1.4 Testing Location Information

				Testing	Location	
\bowtie	HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., H Tao Yuan Hsien, Taiwan, F		/ei-Shan Hsiang,
		TEL	:	886-3-327-3456 FAX	886-3-327-0973	
	Test Cond	ition		Test Site No.	Test Engineer	Test Environment
	AC Condu	ction		CO04-HY	Zeus	25°C / 45%
	RF Condu	cted		TH06-HY	Cain	24.6°C / 66%
I	Radiated Err	nission		03CH03-HY	Hunter	26.1°C / 45%

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Μ	easurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.3 dB
Emission bandwidth, 20dB bandwidth		±1.4 %
RF output power, conducted		±0.6 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.5 dB
	1 – 18 GHz	±0.7 dB
	18 – 40 GHz	±0.8 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.5 dB
	0.15 – 30 MHz	±2.3 dB
	30 – 1000 MHz	±2.6 dB
	1 – 18 GHz	±3.6 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.4 %
Duty Cycle		±1.4 %

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Worst N	Iodulation Used	for Conformance	Testing	
Bluetooth Mode	Transmit Chains (N _{TX})	Data Rate	Modulation Mode	RF Output Power (dBm)	Worst Mode
BR	1	1 Mbps	BR-1Mbps	6.57	
EDR	1	2 Mbps	EDR-2Mbps	5.01	BR-1Mbps
EDR	1	3 Mbps	EDR-3Mbps	5.20	
Note 1: Bluetooth	BR uses a combin	nation of GFSK (1	Mbps).		

Note 2: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK (2Mbps) and 8DPSK (3Mbps).

Note 3: Modulation modes consist below configuration:

FHSS BR-1Mbps: GFSK (1Mbps), EDR-2Mbps: π/4-DQPSK (2Mbps), EDR-3Mbps: 8DPSK(3Mbps) Note 4: RF output power specifies that Maximum Peak Conducted Output Power

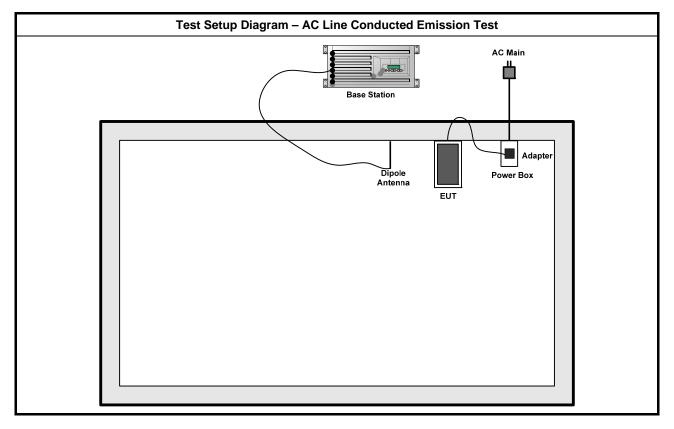
2.2 Test Channel Frequencies Configuration

Test Channel Freque	encies Configuration
Bluetooth Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)
BR / EDR	2402-(F1), 2441-(F2), 2480-(F3)

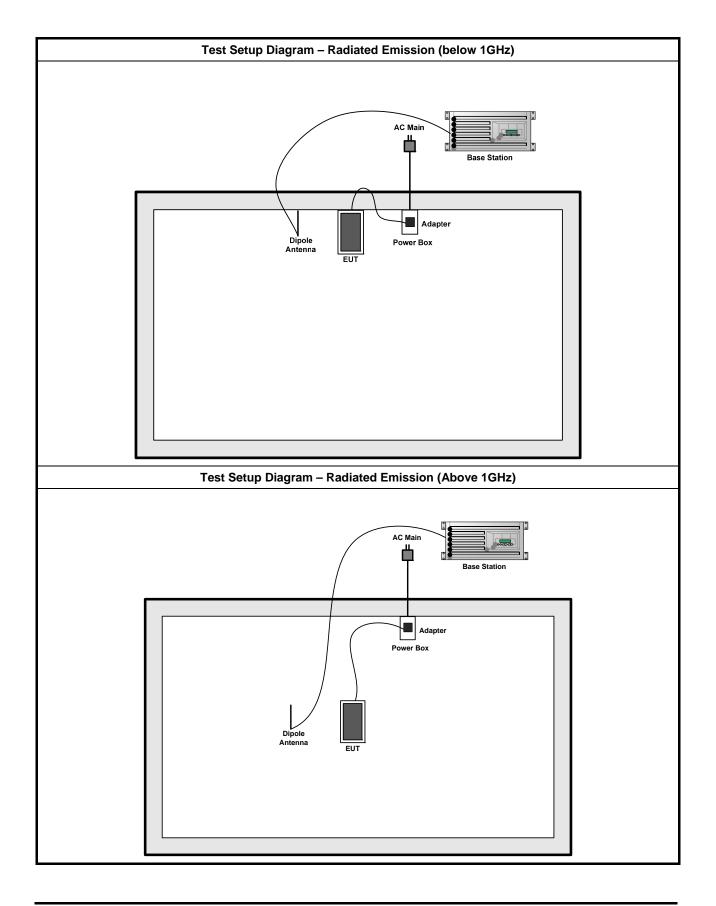
2.3 The Worst Case Power Setting Parameter

	The Worst Case Pow	ver Setting Parameter	
Test Software Version		DUT Mode	
Modulation Mode	2402 MHz	2440 MHz	2480 MHz
BR,1Mbps	Default	Default	Default
EDR,2Mbps	Default	Default	Default
EDR,3Mbps	Default	Default	Default

2.4 The Worst Case Measurement Configuration


٦	The Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	Adapter mode and transmit
2	USB mode and transmit
For operating mode 1 is	the worst case and it was record in this test report.

Th	e Worst Case Mode for Following Conformance Tests
	RF Output Power, 20dB Bandwidth, Carrier Frequency Separation (ChS) Number of Hopping Frequencies (N), Time of Occupancy (Dwell Time)
Test Condition	Conducted measurement at transmit chains
Modulation Mode	BR-1Mbps, EDR-3Mbps


Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts
Tests Item	Transmitter Radiated Band Transmitter Radiated Unwa		
Test Condition	Radiated measurement		
	EUT will be placed in	fixed position.	
User Position	ser Position EUT will be placed in mobile position and operating multiple position shall be performed three orthogonal planes. The worst planes is X EUT will be a hand-held or body-worn battery-powered devices an		
User Position		eld or body-worn battery-pov sitions. EUT shall be perforn	
Operating Mode	 Adapter mode and trans USB mode and transm For operating mode 1 is the 		ord in this test report.
Modulation Mode			ops of the transmitter were this test report and shown
	Transmitter Radiated Band BR-1Mbps / EDR-2Mbps / Transmitter Radiated Unwa		S
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			

2.5 Test Setup Diagram

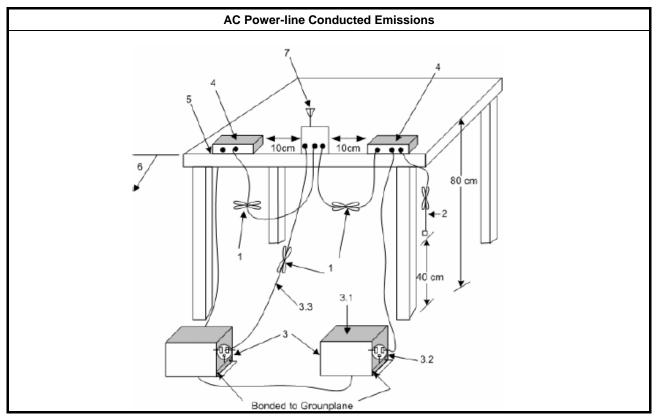
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Po	wer-line Conducted Emissions Lin	nit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50

3.1.2 Measuring Instruments

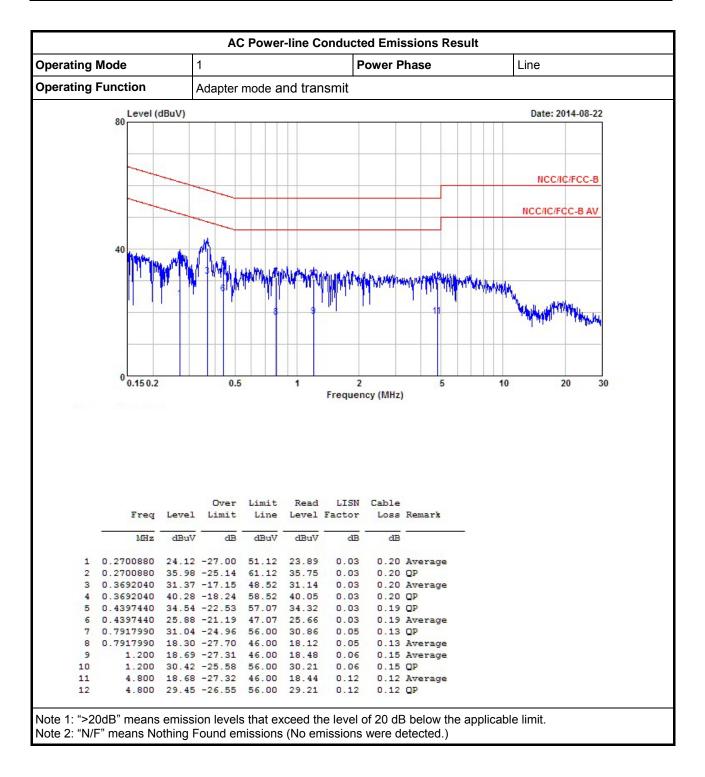

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

 \boxtimes Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



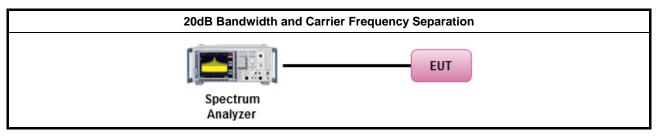
poraning	Mode	· ·	1			P	ower P	hase		Neutra	al	
perating	Function	ļ	Adapter r	node ar	nd tran	smit				·		
	Level (dBuV)								Date	e: 2014-08	-22
	00											
											-	_
	-										CC/IC/FCC	
	-									nt	cenerce	-D
		~								NCC/I	IC/FCC-B A	w
	40											
	40	MA 1	W.	Jam Melal	Horald use							
	Thurs.	121	'NN	Ammy MW	n'n prip	untrational	hy have have	AN A HANNA	hipping an and a second	h 1. My		_
	. 144		9 - 9 -	Î	1	1.24	2010	12		William I	c data at	00
			_							"INITY	WHIT INAL	W.
												_
	0 0.15 0.2		0.5		1	2 Frequen	cv (MHz)	5		10	20	30
	0 0.15 0.2		0.5	Limit		Frequen				10	20	30
	0 0.150.2 Freq	Level		Limit Line	Read	Frequen	Cable			10	20	30
	0.15 0.2	Level	Over		Read	Frequen	Cable			10	20	30
1	0.150.2	dBuV	Over Limit dB	Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark		10	20	30
1 2	0.150.2	dBuV 35.88 30.26	Over Limit dB -25.32 -20.94	Line dBuV 61.20 51.20	Read Level dBuV 35.66 30.04	LISN Factor	Cable Loss dB 0.20 0.20	Remark OP Average		10	20	30
2	Ereq MHz 0.2672410 0.2672410 0.3633820	dBuV 35.88 30.26 43.40	Over Limit -25.32 -20.94 -15.25	Line dBuV 61.20 51.20 58.65	Read Level dBuV 35.66 30.04 43.17	LISN Factor dB 0.02 0.02 0.03	Cable Loss dB 0.20 0.20 0.20	Remark QP Average QP		10	20	30
2	Ereq MHz 0.2672410 0.2672410	dBuV 35.88 30.26 43.40 38.35	Over Limit -25.32 -20.94 -15.25 -10.30	Line dBuV 61.20 51.20 58.65 48.65	Read Level dBuV 35.66 30.04	LISN Factor dB 0.02 0.02	Cable Loss dB 0.20 0.20 0.20 0.20	Remark OP Average]	10	20	30
2 3 4 5 6	Ereq MHz 0.2672410 0.2672410 0.3633820 0.3633820 0.4374210 0.4374210	dBuV 35.88 30.26 43.40 38.35 33.81 36.61	Over Limit dB -25.32 -20.94 -15.25 -10.30 -13.30 -20.50	Line dBuV 61.20 51.20 58.65 48.65 47.11 57.11	Read Level dBuV 35.66 30.04 43.17 38.12 33.59 36.39	LISN Factor dB 0.02 0.02 0.03 0.03 0.03 0.03	Cable Loss dB 0.20 0.20 0.20 0.20 0.20 0.19 0.19	Remark OP Average OP Average OP]	10	20	30
2 3 4 5 6 7	Ereq 0.2672410 0.2672410 0.2672410 0.3633820 0.4374210 0.4374210 0.4374210 0.4374210	dBuV 35.88 30.26 43.40 38.35 33.81 36.61 32.71	Over Limit -25.32 -20.94 -15.25 -10.30 -13.30 -20.50 -23.29	Line dBuV 61.20 51.20 58.65 48.65 47.11 57.11 56.00	Read Level dBuV 35.66 30.04 43.17 38.12 33.59 36.39 32.54	LISN Factor dB 0.02 0.03 0.03 0.03 0.03 0.04	Cable Loss dB 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.13	Remark OP Average OP Average OP OP]	10	20	30
2 3 4 5 6 7 8	Freq MHz 0.2672410 0.2672410 0.3633820 0.4374210 0.4374210 0.4374210 0.7549280 0.7549280	dBuV 35.88 30.26 43.40 38.35 33.81 36.61 32.71 26.18	Over Limit -25.32 -20.94 -15.25 -10.30 -23.29 -13.30 -23.29 -19.82	Line dBuV 61.20 51.20 58.65 48.65 47.11 57.11 56.00 46.00	Read Level 35.66 30.04 43.17 38.12 33.59 36.39 32.54 26.01	Frequen LISN Factor dB 0.02 0.03 0.03 0.03 0.03 0.04 0.04	Cable Loss dB 0.20 0.20 0.20 0.20 0.19 0.19 0.13 0.13	Remark OP Average OP Average OP OP Average]	10	20	30
2 3 4 5 6 7 8 9	Freq MHz 0.2672410 0.2672410 0.3633820 80.3633820 0.4374210 0.4374210 0.7549280 0.7549280 1.070	dBuV 35.88 30.26 43.40 38.35 33.81 36.61 32.71 26.18 25.95	Over Limit -25.32 -20.94 -15.25 -10.30 -13.30 -20.50 -23.29 -19.82 -20.05	Line dBuV 61.20 51.20 58.65 47.11 57.11 56.00 46.00 46.00	Read Level dBuV 35.66 30.04 43.17 38.12 33.59 36.39 32.54 26.01 25.78	EISN Factor dB 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04	Cable Loss dB 0.20 0.20 0.20 0.20 0.19 0.13 0.13 0.13	Remark OP Average OP Average OP Average Average Average]	10	20	30
2 3 4 5 6 7 8	Ereq MHz 0.2672410 0.2672410 0.3633820 80.3633820 0.4374210 0.4374210 0.7549280 0.7549280 0.7549280 1.070 1.070	dBuV 35.88 30.26 43.40 38.35 33.81 36.61 32.71 26.18 25.95 32.47	Over Limit -25.32 -20.94 -15.25 -10.30 -23.29 -13.82	Line dBuV 61.20 51.20 58.65 48.65 47.11 57.11 56.00 46.00 46.00 56.00	Read Level 35.66 30.04 43.17 38.12 33.59 36.39 32.54 26.01	Frequen LISN Factor dB 0.02 0.03 0.03 0.03 0.03 0.04 0.04	Cable Loss dB 0.20 0.20 0.20 0.20 0.19 0.19 0.13 0.13	Remark OP Average OP Average OP Average Average OP]	10	20	30

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 20dB Bandwidth and Carrier Frequency Separation

3.2.1 20dB Bandwidth and Carrier Frequency Separation Limit

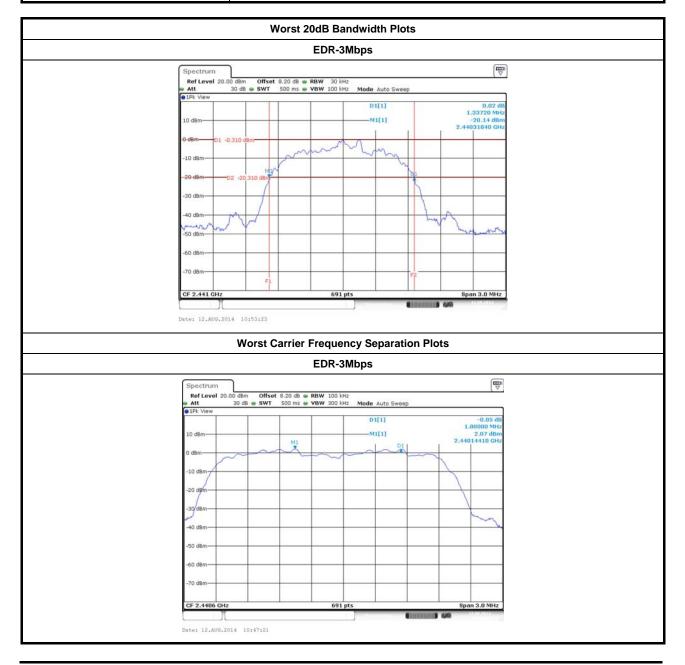
		20dB Bandwidth and Carrier Frequency Separation Limit for Frequency Hopping Systems	
\square	240	D-2483.5 MHz Band:	
		N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz).	
	\boxtimes	N \geq 15 and ChS \geq MAX (20 dB bandwidth x 2/3, 25 kHz).	
N: N	N: Number of Hopping Frequencies; ChS: Hopping Channel Separation		


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method					
\boxtimes	Refer as ANSI C63.10, clause 6.9.1 for 20 dB bandwidth measurement.					
\boxtimes	Refer as ANSI C63.10, clause 7.7.2 for carrier frequency separation measurement.					
\boxtimes	For conducted measurement.					
	The EUT supports single transmit chain and measurements performed on this transmit chain.					
	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.					


3.2.4 Test Setup

3.2.5 Test Result of 20dB Bandwidth and Carrier Frequency Separation

	20dB Bandwidth and Carrier Frequency Separation Result				
Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)
BR-1Mbps	2402	1.0289	0.9247	1.0000	0.68593
BR-1Mbps	2441	1.0333	0.9204	1.0000	0.68887
BR-1Mbps	2480	1.0333	0.9247	1.0000	0.68887
EDR-3Mbps	2402	1.3329	1.2069	1.0000	0.88860
EDR-3Mbps	2441	1.3372	1.2026	1.0000	0.89147
EDR-3Mbps	2480	1.3329	1.2069	1.0000	0.88860
Result			Com	plied	

3.3 Number of Hopping Frequencies

3.3.1 Number of Hopping Frequencies Limit

	Number of Hopping Frequencies Limit for Frequency Hopping Systems			
\boxtimes	2400-2483.5 MHz Band:			
	□ N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz).			
	\square N ≥ 15 and ChS ≥ MAX (20 dB bandwidth x 2/3, 25 kHz).			
N: N	N: Number of Hopping Frequencies; ChS: Hopping Channel Separation			

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method				
\square	Refer as ANSI C63.10, clause 7.7.3 for number of hopping frequencies measurement.				
\boxtimes	For conducted measurement.				
	The EUT supports single transmit chain and measurements performed on this transmit chain.				
	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.				

3.3.4 Test Setup

Number of Hopping Frequencies		
Spectrum Analyzer	EUT	

3.3.5 Test Result of Number of Hopping Frequencies

Number of Hopping Frequencies Result				
Modulation Mode	Freq. (MHz)	Hopping Channel Number (N)	Hopping Channel Number Limits	
EDR-3Mbps	2402-2480	79	15	
Result Complied				

	R-3Mbps	
Spectrum		
Ref Level 20.00 dBm Offset 8.20 dB - RBW 1		1
Att 30 dB SWT 1 s VBW 3	00 kHz Mode Auto Sweep	
DIPK VIEW	M2[1]	1.10 dB
		2.480000 GH
10 dBm	M1[1]	1.62 dB
M1		2.402000 GH
o Bagerran frankan frankan frankan franka	virhauvirhauvirhauvir	munning
-10 dBm		
-20 dBm		
-30 dBm-		
40 dBm		
-50 dBm		
-60 dBm-		
-70 dBm		
Start 2.4 GHz	691 pts	Stop 2.4835 GHz

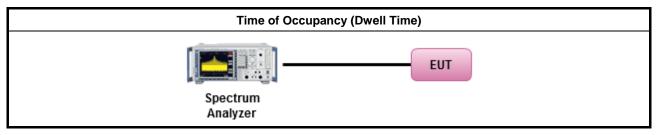
3.4 Time of Occupancy (Dwell Time)

3.4.1 Time of Occupancy (Dwell Time) Limit

Time of Occupancy (Dwell Time) Limit for Frequency Hopping Systems

 \boxtimes 2400-2483.5 MHz Band: Dwell time \leq 0.4 second within 0.4 x N

N: Number of Hopping Frequencies

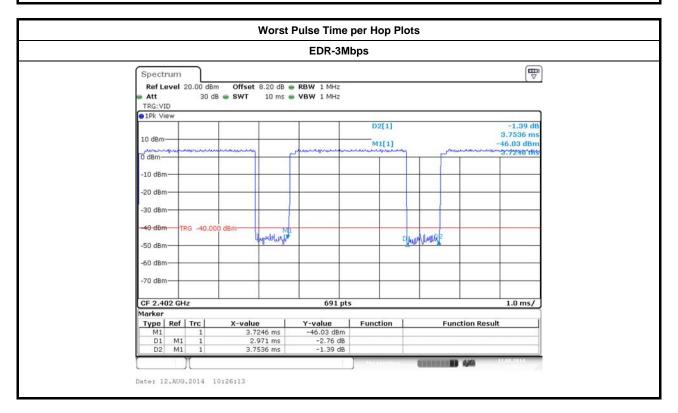

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method		
Refer as ANSI C63.10, clause 7.7.4 for dwell time measurement.			
Bluetooth ACL packets can be 1, 3, or 5 time slots. Following as dwell time. Operate DH5 at maximum dwell time and maximum duty cycle.			
	The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds.		
	The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is $3/1600$ seconds, or 1.875 ms. DH3 Packet permit maximum $1600 / 79 / 4 = 5.06$ hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds.		
	The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds		
For	conducted measurement.		
\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.		
	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.		
	Blue and X		

3.4.4 Test Setup



3.4.5 Test Result of Time of Occupancy (Dwell Time)

Time of Occupancy (Dwell Time) Result					
Modulation Mode	Freq. (MHz)	Pulse Time per Hop (ms)	Number of Pulse in [0.4 x N sec]	Dwell Time in [0.4 x N sec] (s)	Dwell Time Limits (s)
EDR-3Mbps	2402	2.971	106.7	0.317	0.4
Result		Complied			

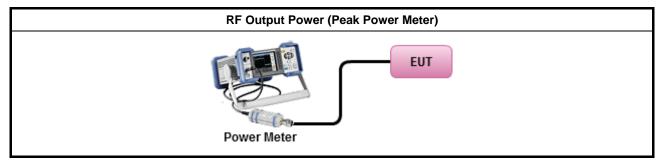
Bluetooth ACL packets can be 1, 3, or 5 time slots. The DH1 packet can cover a single time slot. The DH3 packet can cover up to 3 time slots. The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

3.5 RF Output Power

3.5.1 RF Output Power Limit

		RF Output Power Limit for Frequency Hopping Systems				
Мах	Maximum Peak Conducted Output Power Limit					
\boxtimes	240	0-2483.5 MHz Band:				
		For Hopping Channel: N ≥ 75				
		If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)				
		If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm				
	\square	For Hopping Channel: N ≥ 15				
		If $G_{TX} \le 6$ dBi, then $P_{Out} \le 21$ dBm (0.125 W)				
		If $G_{TX} > 6$ dBi, then $P_{Out} = 21 - (G_{TX} - 6)$ dBm				
e.i.r	.p. Po	bwer Limit:				
\boxtimes	240	0-2483.5 MHz Band:				
		For Hopping Channel: N \ge 75 - P _{eirp} \le 36 dBm (4 W)				
	For Hopping Channel: N \ge 15 - P _{eirp} \le 27 dBm (0.5 W)					
P _{eirp} N: N	G _{TX} = the maximum transmitting antenna directional gain in dBi. P _{eirp} = e.i.r.p. Power in dBm. N: Number of Hopping Frequencies ChS: Hopping Channel Separation					

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method				
\boxtimes	Maximum Peak Conducted Output Power				
		Refer as FCC DA 00-0705, spectrum analyzer for peak power.			
	\boxtimes	Refer as FCC DA 00-0705, peak power meter for peak power.			
		Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.			
		Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW).			
\boxtimes	For	conducted measurement.			
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.			
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.			

3.5.4 Test Setup

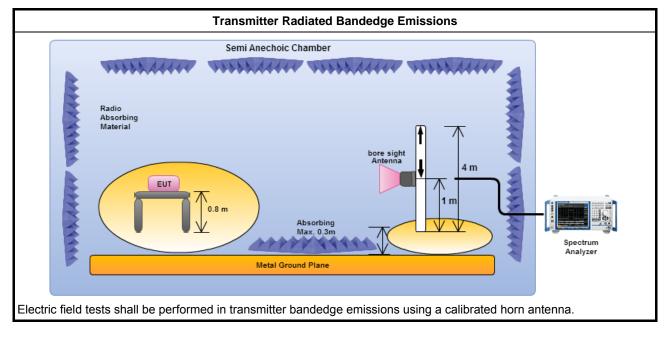
3.5.5 Test Result of Maximum Peak Conducted Output Power

	Maximum Peak Conducted Output Power Result								
Condition		RF Output Power (dBm)							
Modulation Mode	Freq. (MHz)	RF Output Power	Power Limit	Antenna Gain (dBi)	EIRP Power	EIRP Limit			
BR-1Mbps	2402	5.60	21	-0.33	5.27	27			
BR-1Mbps	2441	6.57	21	-0.33	6.24	27			
BR-1Mbps	2480	6.52	21	-0.33	6.19	27			
EDR-3Mbps	2402	4.79	21	-0.33	4.46	27			
EDR-3Mbps	2441	5.20	21	-0.33	4.87	27			
EDR-3Mbps	2480	4.99	21	-0.33	4.66	27			
Result				Complied					

3.6 Transmitter Radiated Bandedge Emissions

3.6.1 Transmitter Radiated Bandedge Emissions Limit

3.6.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

		Test Method – General Information					
\boxtimes	⊠ The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].						
\boxtimes		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nnel and highest frequency channel within the allowed operating band.					
\square	For	the transmitter unwanted emissions shall be measured using following options below:					
	\boxtimes	For unwanted emissions into non-restricted bands. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.					
	\boxtimes	For unwanted emissions into restricted bands.					
	Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.						
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.					
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.					
\boxtimes	For the transmitter bandedge emissions shall be measured using following options below:						
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.					
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.					
	\boxtimes	Refer as ANSI C63.10, clause 7.7.9 for band-edge testing into non-restricted bands.					
\square	Refe	er as ANSI C63.10, clause 6.6 for radiated emissions and test distance is 3m.					

3.6.4 Test Setup

3.6.5 Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
BR-1Mbps	1	2402	97.99	2390.58	59.51	38.48	20	н
BR-1Mbps	1	2480	101.84	2518.71	60.95	40.89	20	Н
EDR-2Mbps	1	2402	93.23	2391.19	59.86	33.37	20	Н
EDR-2Mbps	1	2480	97.65	2517.40	61.07	36.58	20	Н
EDR-3Mbps	1	2402	93.41	2397.31	60.18	33.23	20	Н
EDR-3Mbps	1	2480	97.11	2505.26	60.67	36.44	20	Н

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
BR-1Mbps	1	2402	3	2330.60	56.27	74	2311.43	43.51	54	Н
BR-1Mbps	1	2480	3	2483.94	55.98	74	2483.53	45.44	54	Н
EDR-2Mbps	1	2402	3	2372.02	56.65	74	2315.71	43.50	54	Н
EDR-2Mbps	1	2480	3	2495.26	57.06	74	2483.53	44.72	54	Н
EDR-3Mbps	1	2402	3	2329.58	56.07	74	2314.49	43.49	54	Н
EDR-3Mbps	1	2480	3	2493.62	56.54	74	2483.53	44.55	54	Н

3.7 Transmitter Radiated Unwanted Emissions

3.7.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

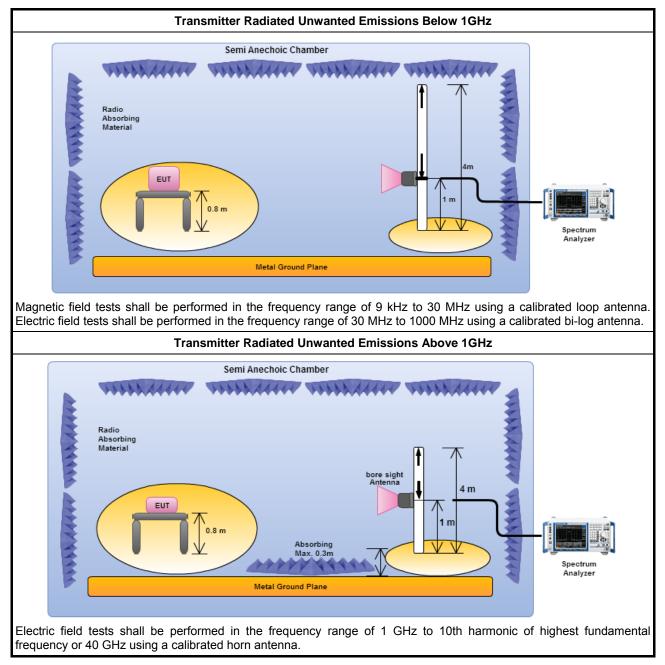
Un-restricted Band Emissions Limit						
RF output power procedure Limit (dB)						
20						
30						
-						

compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

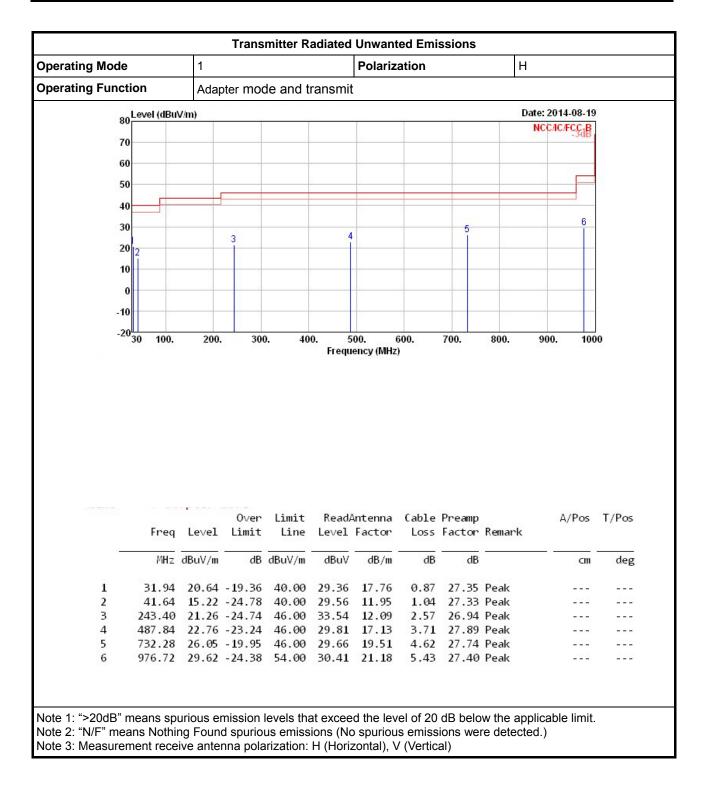


3.7.3 Test Procedures

		Test Method – General Information
\boxtimes	perfe equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements).
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC DA 00-0705, for spurious radiated emissions. The dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms)
	\boxtimes	For unwanted emissions into non-restricted bands. Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
	\boxtimes	For unwanted emissions into restricted bands.
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\boxtimes	For	radiated measurement.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.
\boxtimes	The	any unwanted emissions level shall not exceed the fundamental emission level.
\boxtimes		mplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

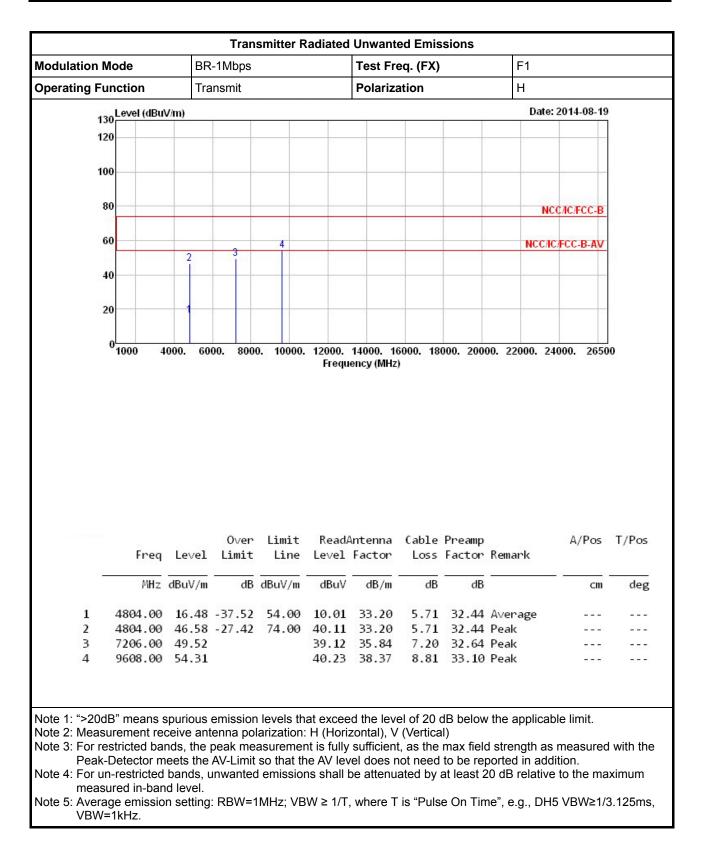
3.7.4 Test Setup

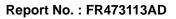
3.7.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)


All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

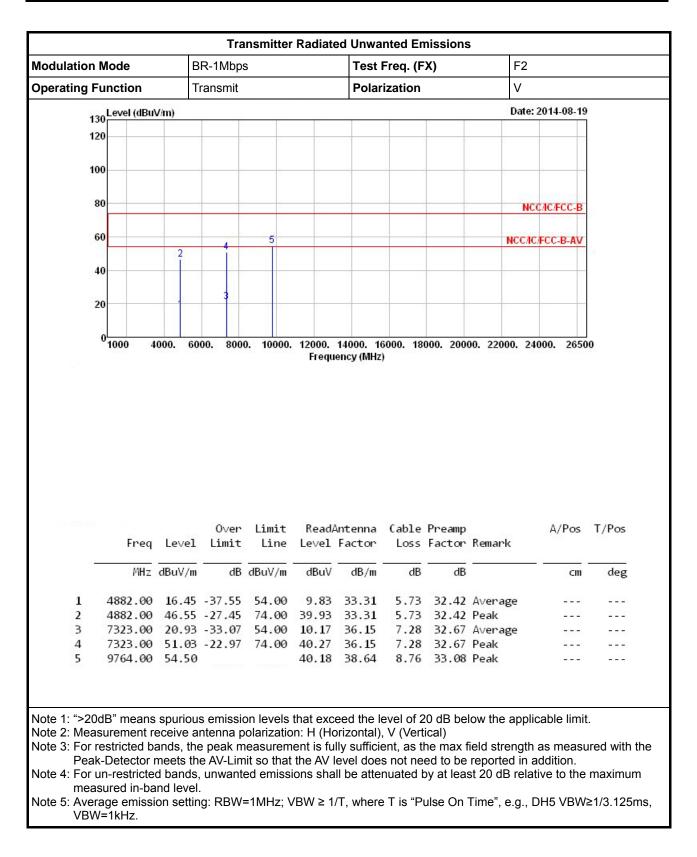
Derating Function Adapter mode and transmit 30 Level (dBuV/m) Date: 2014-08-19 70 0 NCC/CFC_GB 60 0 0 2 3 4 30 2 3 4 5 6 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 2 3 10 3 <t< th=""><th>erating Mode</th><th>1</th><th></th><th>Pola</th><th>rizatior</th><th>า</th><th></th><th>V</th><th></th><th></th></t<>	erating Mode	1		Pola	rizatior	า		V			
Over Limit ReadAntenna Cable Preamp A/Pos T/Pos -10 -0	erating Function	Adapter m	ode and tra	nsmit							
Over Limit ReadAntenna Cable Preamp A/Pos T/Pos -10 -0	Level (dBuV/n	n)					D	Date: 2014-08-19			
$= \frac{1}{30,00} + \frac{1}{28,00} + \frac{1}{120,00} + \frac{1}{40,00} + \frac{1}{30,00} + \frac{1}{28,00} + \frac{1}{120,00} + \frac{1}{12$	80							NCC/IC/	FCC-B		
$= \frac{1}{30,00} + \frac{1}{28,00} + \frac{1}{120,00} + \frac{1}{40,00} + \frac{1}{40,00} + \frac{1}{120,00} + \frac{1}{120,000} + \frac{1}{120,0000} + \frac{1}{120,000} + \frac{1}{120,00$	70										
40 30 4 5 6 20 3 4 5 6 10 20 3 4 5 6 10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0<	60										
40 30 4 5 6 20 3 4 5 6 10 20 3 4 5 6 10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0<	50		-		2						
$\frac{30}{20} \frac{1}{2} \frac{3}{2} \frac{4}{3} \frac{4}{4} \frac{1}{4} \frac{5}{4} \frac{5}{4} \frac{6}{4} \frac{6}{4} \frac{1}{4} $	50								_		
$\frac{20}{10} \frac{1}{10} $	40						2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30					5			6		
10	2			4		Ĭ					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	3									
$-\frac{10}{-20} \frac{1}{30 - 100} \frac{1}{200} \frac{1}{300} \frac{1}{200} \frac{1}{300} \frac{1}{300} \frac{1}{300} \frac{1}{400} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}$	10										
$-\frac{10}{-20} \frac{1}{30 - 100} \frac{1}{200} \frac{1}{300} \frac{1}{200} \frac{1}{300} \frac{1}{300} \frac{1}{300} \frac{1}{400} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}$	0										
$-\frac{20}{30} \frac{100}{100} \frac{200}{200} \frac{300}{300} \frac{400}{400} \frac{500}{800} \frac{600}{700} \frac{700}{800} \frac{800}{900} \frac{900}{1000} \frac{1000}{1000}$ $-\frac{1000}{1000} \frac{1000}{1000} 1$											
Frequency (MHz) Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1 30.00 28.00 -12.00 40.00 35.72 18.85 0.82 27.39 Peak 2 43.58 19.46 -20.54 40.00 34.91 10.82 1.07 27.34 Peak 3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak	-10			0.0							
Frequency (MHz) Frequency (MHz) Over Limit ReadAntenna Cable Preamp A/Pos T/Pos Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1 30.00 28.00 -12.00 40.00 35.72 18.85 0.82 27.39 Peak 2 43.58 19.46 -20.54 40.00 34.91 10.82 1.07 27.34 Peak 3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak	-20										
Freq Level Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB dB/m dB dB cm deg 1 30.00 28.00 -12.00 40.00 35.72 18.85 0.82 27.39 Peak 2 43.58 19.46 -20.54 40.00 34.91 10.82 1.07 27.34 Peak 3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak											
MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB cm deg 1 30.00 28.00 -12.00 40.00 35.72 18.85 0.82 27.39 Peak 2 43.58 19.46 -20.54 40.00 34.91 10.82 1.07 27.34 Peak 3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak											
1 30.00 28.00 -12.00 40.00 35.72 18.85 0.82 27.39 Peak 2 43.58 19.46 -20.54 40.00 34.91 10.82 1.07 27.34 Peak 3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak		0ver	Limit Re	adAntenna	Cable	Preamp		A	/Pos	T/Pos	
2 43.58 19.46 -20.54 40.00 34.91 10.82 1.07 27.34 Peak 3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak	Freq 1						Remark	Ą	/Pos	T/Pos	
3 243.40 17.59 -28.41 46.00 29.87 12.09 2.57 26.94 Peak 4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak		Level Limit	Line Lev	el Factor	Loss	Factor	Remark	Α,			
4 487.84 21.48 -24.52 46.00 28.53 17.13 3.71 27.89 Peak 5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak	MHz dE	Level Limit BuV/m dB 28.00 -12.00	Line Lev dBuV/m dB	vel Factor GUV dB/m 72 18.85	Loss dB	Factor dB		А,			
5 732.28 26.30 -19.70 46.00 29.91 19.51 4.62 27.74 Peak	MHz dE 1 30.00 2 2 43.58 1	Level Limit BuV/m dB 28.00 -12.00 19.46 -20.54	Line Lev dBuV/m dB 40.00 35. 40.00 34.	vel Factor GUV dB/m 72 18.85 91 10.82	Loss dB 0.82 1.07	Factor dB 27.39 27.34	Peak Peak	A,			
	MHz de 1 30.00 2 2 43.58 1 3 243.40 1	Level Limit BuV/m dB 28.00 -12.00 19.46 -20.54 17.59 -28.41	Line Lev dBuV/m dB 40.00 35. 40.00 34. 46.00 29.	rel Factor dW dB/m 72 18.85 91 10.82 87 12.09	Loss dB 0.82 1.07 2.57	Factor dB 27.39 27.34 26.94	Peak Peak Peak	A,			
6 976.72 27.40 -26.60 54.00 28.19 21.18 5.43 27.40 Peak	MHz de 1 30.00 2 2 43.58 1 3 243.40 1 4 487.84 2	Level Limit BuV/m dB 28.00 -12.00 19.46 -20.54 17.59 -28.41 21.48 -24.52	Line Lev dBuV/m dB 40.00 35. 40.00 34. 46.00 29. 46.00 28.	rel Factor dW dB/m 72 18.85 91 10.82 87 12.09 53 17.13	Loss dB 0.82 1.07 2.57 3.71	Factor dB 27.39 27.34 26.94 27.89	Peak Peak Peak Peak Peak	A,			
	MHz de 1 30.00 2 2 43.58 1 3 243.40 1 4 487.84 2 5 732.28 2	Level Limit BuV/m dB 28.00 -12.00 19.46 -20.54 17.59 -28.41 21.48 -24.52 26.30 -19.70	Line Lev dBuV/m dB 40.00 35. 40.00 34. 46.00 29. 46.00 28. 46.00 29.	rel Factor dW dB/m 72 18.85 91 10.82 87 12.09 53 17.13 91 19.51	Loss dB 0.82 1.07 2.57 3.71 4.62	Factor dB 27.39 27.34 26.94 27.89 27.74	Peak Peak Peak Peak Peak Peak	A,			

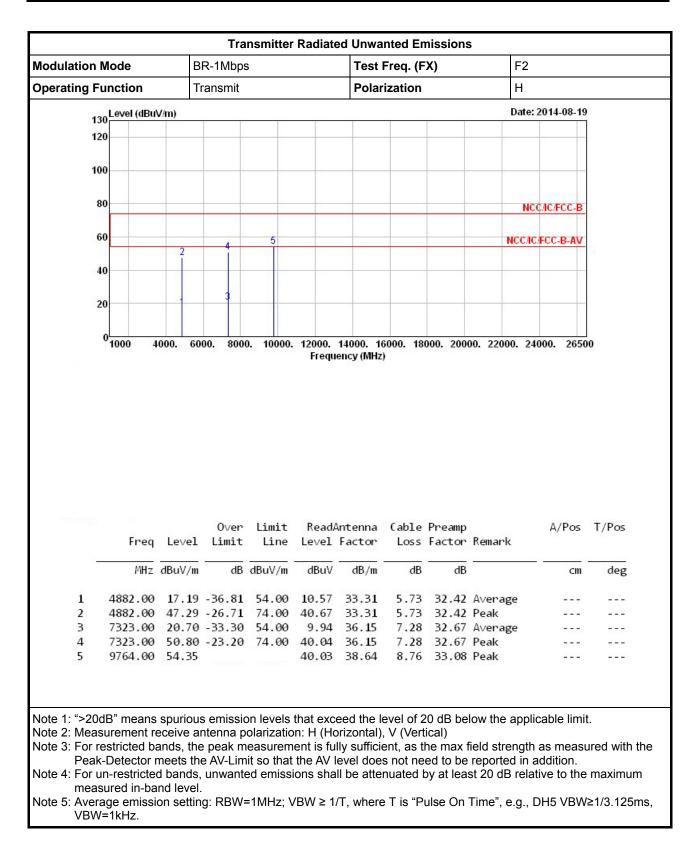
3.7.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

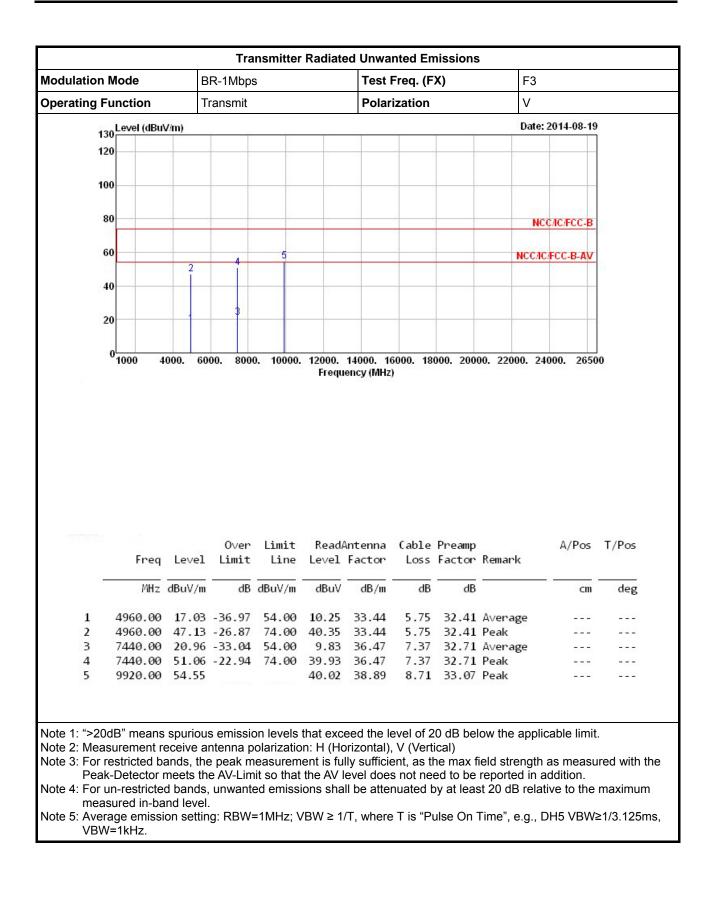


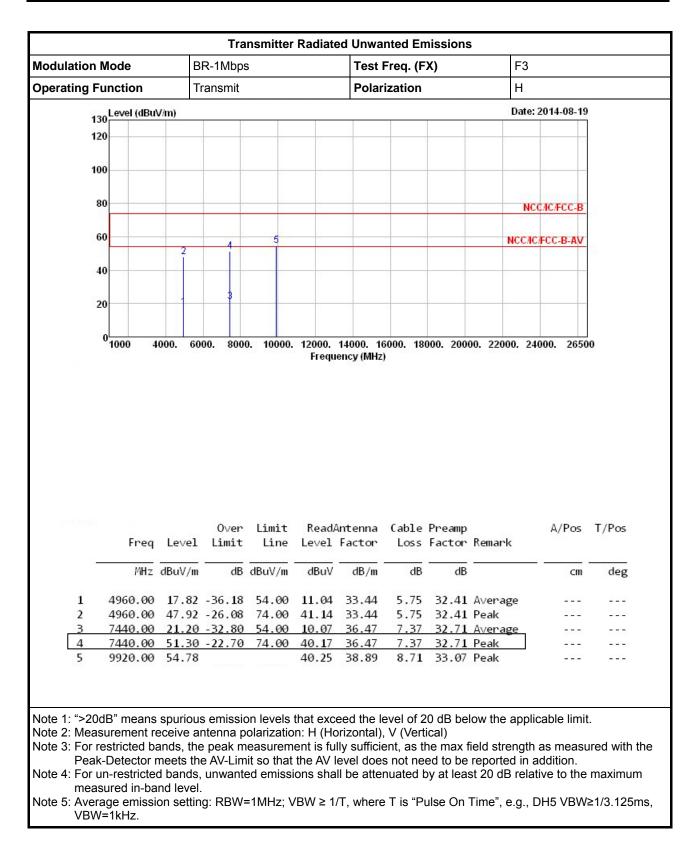

			-1Mbps			1631116	q. (FX)		F1		
Operating Fu	Inction	Tra	nsmit			Polariza	tion		V		
	30 Level (dBu)	//m)					- 2019-2004-1943 M		Date	: 2014-08-19)
	0.00										1
1	20					0					
	00										
	00										
13	80	_					_			CICECC D	
		-			0	-				CC/IC/FCC-B	1
	60			4					NCCA	C/FCC-B-AV	
		2	3								
10	40										
	20										1
1	20		8 - K	00	0	0		8		- (c) - (c)	
:		000. 60	00. 800	0. 10000.		14000. 1(encv (MHz		000. 2000	0. 22000. 2	4000. 2650	00
	0 1000 4		0ver	Limit	Freque	encv (MH7	Cable	Preamp			D0 T/Pos
	0 4	Level	0ver Limit	Limit Line	Frem ReadA Level	encv (MHz Intenna Factor	Cable Loss	Preamp Factor		A/Pos	T/Pos
	0 <mark>-1000 4</mark> Freq MHz	Level dBuV/m	Over Limit ────dB	Limit Line dBuV/m	ReadA Level dBuV	encv (MHz Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB	Remark		
1	0 4	Level dBuV/m 16.69	Over Limit 	Limit Line dBuV/m 54.00	ReadA Level dBuV 10.22	encv (MHz Antenna Factor dB/m 33.20	Cable Loss dB 5.71	Preamp Factor 	Remark 	A/Pos	T/Pos
	0 <mark>-1000 4</mark> Freq MHz	Level dBuV/m 16.69 46.79	0ver Limit 	Limit Line dBuV/m 54.00	Read/ Level dBuV 10.22 40.32	encv (MHz Antenna Factor dB/m 33.20	Cable Loss dB 5.71 5.71	Preamp Factor dB	Remark Average Peak	A/Pos cm	T/Pos deg

3.7.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)









4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2014	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2014	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2013	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz ~ 40GHz	Jan. 25, 2014	RF Conducted
Signal enerator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 31, 2014	RF Conducted
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Sep. 11, 2013	RF Conducted
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Sep. 11, 2013	RF Conducted
RF Cable-1m	HUBER+SUHNER	SUCOFLEX_104	SN 324557	30MHz ~ 26.5GHz	Dec. 02, 2013	RF Conducted
RF Cable-0.5m	HUBER+SUHNER	SUCOFLEX_103	10715/4 10716/4	30MHz ~ 26.5GHz	Dec. 02, 2013	RF Conducted
DC Power Source	G.W.	GPS-3030DD	GEN865896	DC 0V ~ 30V	Nov. 21, 2013	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiated Emission
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 05, 2014	Radiated Emission
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Aug. 20, 2013	Radiated Emission
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiated Emission
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 21, 2013	Radiated Emission
Horn Antenna	ETS · LINDGREN	3115	6741	1GHz ~ 18GHz	Jun. 11, 2014	Radiated Emission
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 10, 2014	Radiated Emission
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 16, 2013	Radiated Emission
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 11, 2013	Radiated Emission
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiated Emission

Note: Calibration Interval of instruments listed above is two year.