

FCC TEST REPORT (BLUETOOTH)

REPORT NO.:	RF130507C21
MODEL NO.:	K00A
FCC ID:	MSQK00A
RECEIVED :	May 07, 2013
TESTED:	May 23, 2013 ~ May 30, 2013
ISSUED :	Jun. 10, 2013

APPLICANT: ASUSTek COMPUTER INC.

ADDRESS: 4F., No. 150, LI-TE Rd., PEITOU, TAIPEI 112, TAIWAN

ISSUED BY:	Bureau Veritas Consumer Products Services (H.K.)
	Ltd., Taoyuan Branch

- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance to the specification

Table of Contents

RELE	ASE CONTROL RECORD	4
1.	CERTIFICATION	
2.	SUMMARY OF TEST RESULTS	6
2.1 MI	EASUREMENT UNCERTAINTY	
3.	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	9
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
3.4	DESCRIPTION OF SUPPORT UNITS	13
3.4.1	CONFIGURATION OF SYSTEM UNDER TEST	13
4.	TEST TYPES AND RESULTS	14
4.1	Radiated Emission AND BANDEDGE Measurement	14
4.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	DEVIATION FROM TEST STANDARD	16
4.1.5	TEST SETUP	17
4.1.6	EUT OPERATING CONDITIONS	17
4.1.7	TEST RESULTS	
4.2	CONDUCTED EMISSION MEASUREMENT	22
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.2.2	TEST INSTRUMENTS	22
4.2.3	TEST PROCEDURES	23
4.2.4	DEVIATION FROM TEST STANDARD	
4.2.5	TEST SETUP	24
4.2.6	EUT OPERATING CONDITIONS	24
4.2.7	TEST RESULTS	
4.3	NUMBER OF HOPPING FREQUENCY USED	27
4.3.1	LIMIT OF HOPPING FREQUENCY USED	27
4.3.2	TEST SETUP	27
4.3.3	TEST INSTRUMENTS	27
4.3.4	TEST PROCEDURES	
4.3.5	DEVIATION FROM TEST STANDARD	
4.3.6	TEST RESULTS	27
4.4	DWELL TIME ON EACH CHANNEL	29
4.4.1	LIMIT OF DWELL TIME USED	29
	TEST SETUP	
4.4.3	TEST INSTRUMENTS	29
	TEST PROCEDURES	
4.4.5	DEVIATION FROM TEST STANDARD	
4.4.6	TEST RESULTS	30
4.5	CHANNEL BANDWIDTH	33
4.5.1	LIMITS OF CHANNEL BANDWIDTH	33
4.5.2	TEST SETUP	33
4.5.3	TEST INSTRUMENTS	33
4.5.4	TEST PROCEDURE	33

4.5.5	DEVIATION FROM TEST STANDARD	33
4.5.6	EUT OPERATING CONDITION	33
4.5.7	TEST RESULTS	34
4.6	HOPPING CHANNEL SEPARATION	35
4.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	35
4.6.2	TEST SETUP	35
4.6.3	TEST INSTRUMENTS	35
4.6.4	TEST PROCEDURES	35
4.6.5	DEVIATION FROM TEST STANDARD	35
4.6.6	TEST RESULTS	36
4.7	MAXIMUM OUTPUT POWER	
4.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	37
4.7.2	TEST SETUP	
4.7.3	TEST INSTRUMENTS	
4.7.4	TEST PROCEDURES	37
4.7.5	DEVIATION FROM TEST STANDARD	37
4.7.6	EUT OPERATING CONDITION	37
4.7.7	TEST RESULTS	
4.8	CONDUCTED OUT OF BAND EMISSION MEASUREMENT	39
4.8.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	39
4.8.2	TEST INSTRUMENTS	39
4.8.3	TEST PROCEDURE	39
4.8.4	DEVIATION FROM TEST STANDARD	39
4.8.5	EUT OPERATING CONDITION	39
4.8.6	TEST RESULTS	
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	43
6.	INFORMATION ON THE TESTING LABORATORIES	44
7.	APPENDIX A - Modifications recorders for engineering changes to the eut BY	THE
	LAB 45	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED	
RF130507C21	Original release	Jun. 10, 2013	

1. CERTIFICATION

PRODUCT: ASUS Tablet
MODEL NO.: K00A
BRAND: ASUS
APPLICANT: ASUSTek COMPUTER INC.
TESTED: May 23, 2013 ~ May 30, 2013
TEST SAMPLE: Production Unit
STANDARDS: FCC Part 15, Subpart C (Section 15.247) ANSI C63.10-2009

The above equipment (model: K00A) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Vera Huang , DATE : Jun. 10, 2013 PREPARED BY Vera Huang / Specialist **APPROVED BY , DATE :** Jun. 10, 2013 Sam Chen / Assistant Manager

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C							
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -17.51dB at 0.19297MHz.				
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.				
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.				
15.247(a)(1)	1. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System		Meet the requirement of limit.				
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.				
15.247(d)	Transmitter Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -8.86dB at 43.23MHz.				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	2.44 dB	
	30MHz ~ 200MHz	2.93 dB	
Radiated emissions	200MHz ~1000MHz	2.95 dB	
Radiated emissions	1GHz ~ 18GHz	2.26 dB	
	18GHz ~ 40GHz	1.94 dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	ASUS Tablet
MODEL NO.	K00A
POWER SUPPLY	5Vdc (adapter) 3.7Vdc (battery)
MODULATION TYPE	GFSK, π /4-DQPSK, 8DPSK
TRANSFER RATE	1/2/3Mbps
OPERATING FREQUENCY	2402 ~ 2480MHz
NUMBER OF CHANNEL	79
CHANNEL SPACING	1MHz
OUTPUT POWER	11.015mW
ANTENNA TYPE	PCB antenna with 5.69dBi gain
ANTENNA CONNECTOR	NA
DATA CABLE	Refer to Note as below
I/O PORTS	Refer to user's manual
ACCESSORY DEVICES	Refer to Note as below

NOTE:

1. The EUT has following accessories.

The EUT has following accessories.						
ITEM	BRAND	MODEL	DESCRIPTION			
AC Adapter 1	ASUS	AD83531	I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 5Vdc, 2A			
AC Adapter 2	ASUS	W12-010N3A	I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 5Vdc, 2A			
AC Adapter 3	ASUS	AD876320	I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 5Vdc, 2A			
AC Adapter 4	ASUS	PSA 10A-050Q	I/P: 100-240Vac, 50-60Hz, 0.28A O/P: 5Vdc, 2A			
Li-ion Battery 1	ASUS	C12P1301	Rating: 3.7Vdc, 25Wh			
Li-ion Battery 2	ASUS	C12P1301	Rating: 3.7Vdc, 25Wh			
USB cable	ASUS	AA780300	0.9m non-shielded cable w/o ferrite core			
LCD Panel 1	AUO	B101UAN01.7_H/W 1A				
LCD Panel 2	CPT	CLAA101FP05				
Front Camera 1	Foxlink	FO50AF-404H				
Front Camera 2	Chicony	CJAC533-1				
Front Camera 3	Liteon	12P2BA536A				
Rear Camera 1	Foxlink	FM12FF-412H				
Rear Camera 2	Liteon	12P2SF181				
WLAN/BT Module	Broadcom	BCM43340				
CPU	CT+ _Security key	INT Z2560	LPDDR2 (220 balls), 1.6GHz			
Mainboard	ASUS	ME302C_MB				
eMMC 1	Hyinix	H26M52002EQR	16G			
eMMC 2	Hyinix	H26M64002DQR	32G			
eMMC 3	Toshiba	THGBMAG8A4JBA4R	32G			

* The 2nd source of accessories (Battery, LCD Panel, Camera, and eMMC) has same design, material, and specification. The difference between them is manufacturer only.

2. The above EUT information is declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

PLC: Power Lir 1. For Radiated er the worse, theref 2. The EUT had be on X-plane. D EMISSION T Scan has been	√ ed Emission above e Conducted Emi- nission test, pre-te ore chosen for the een pre-tested on EST (ABOVE conducted to c en available m cket type.) was (were) s	ssion ested GFSK, e final test an the positione 1 GHz): determine odulations elected for	π/4-DQPSK, 8E d presented in t ed of each 3 axis the worst-cas s, antenna po	ha Port Cond DPSK modul he test reports. The worst se mode forts (if EU	ducted Measurement ation type and found GFSK rt. case was found when posit rom all possible F with antenna diversit		
RE≥1G: Radiate PLC: Power Lir 1. For Radiated er the worse, theref 2. The EUT had be on X-plane. DEMISSION T Scan has been inations betwe ecture) and pa wing channel(s	ed Emission above e Conducted Emi- nission test, pre-te ore chosen for the een pre-tested on EST (ABOVE conducted to c en available m cket type.) was (were) s	e 1GHz ssion ested GFSK, final test an the positione 1 GHz): determine odulations elected for	RE<1G: Radia APCM: Antenr π/4-DQPSK, 8E d presented in t ed of each 3 axis the worst-cas s, antenna po	ha Port Cond DPSK modul he test reports. The worst se mode forts (if EU	ducted Measurement ation type and found GFSK rt. case was found when posit rom all possible F with antenna diversit		
PLC: Power Lir 1. For Radiated er the worse, theref 2. The EUT had be on X-plane. D EMISSION T Scan has been inations betwe recture) and pa wing channel(s LABLE CHANNEI	e Conducted Emi- nission test, pre-te- ore chosen for the een pre-tested on EST (ABOVE conducted to c en available m cket type.) was (were) s	ssion ested GFSK, e final test an the positione 1 GHz): determine odulations elected for	APCM: Antenn π/4-DQPSK, 8E d presented in t ed of each 3 axis the worst-cas s, antenna po	ha Port Cond DPSK modul he test reports. The worst se mode forts (if EU	ducted Measurement ation type and found GFSK rt. case was found when posit rom all possible F with antenna diversit		
the worse, theref 2. The EUT had be on X-plane . D EMISSION T Gcan has been inations betwe ecture) and pa wing channel(s LABLE CHANNEI	ere chosen for the een pre-tested on EST (ABOVE conducted to c en available m cket type.) was (were) s	e final test an the positione <u>1 GHz):</u> determine iodulations elected for	d presented in t ed of each 3 axis the worst-cas s, antenna po	he test repo s. The worst se mode f orts (if EU ⁻	rt. case was found when posit rom all possible Γ with antenna diversit		
Gcan has been inations betwe ecture) and pa wing channel(s LABLE CHANNEI	conducted to c en available m cket type.) was (were) s	letermine odulations elected for	s, antenna po	orts (if EU⁻	F with antenna diversit		
inations betwe ecture) and pa wing channel(s LABLE CHANNEI	en available m cket type.) was (were) s	odulations	s, antenna po	orts (if EU⁻	F with antenna diversit		
LABLE CHANNEI				i as iisieu			
0 to 78		IANNEL	MODULATIC		PACKET TYPE		
	0, 39,	78	GFSI	<	DH5		
architecture) and packet type. Following channel(s) was (were) selected for the final test as listed below.							
		IANNEL					
0 to 78 39 GFSK DH5 OWER LINE CONDUCTED EMISSION TEST:							
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.							
wing channel(s) was (were) s	elected for	r the final tes	t as listed	below.		
LABLE CHANNEI	TESTED CH	IANNEL	MODULATIC	ON TYPE	PACKET TYPE		
0 to 78	39		GFSł	<	DH5		
	can has been of inations betwee ecture) and par ving channel(s LABLE CHANNEL 0 to 78 NE CONDUCT can has been of inations betwee ecture), and par ving channel(s LABLE CHANNEL	can has been conducted to contact and packet type. wing channel(s) was (were) so LABLE CHANNEL TESTED CH 0 to 78 39 NE CONDUCTED EMISSIO can has been conducted to contact and the solution of the	inations between available modulationsecture) and packet type.ving channel(s) was (were) selected forLABLE CHANNELTESTED CHANNEL0 to 7839NE CONDUCTED EMISSION TEST:can has been conducted to determineinations between available modulationsecture), and packet types.ving channel(s) was (were) selected forLABLE CHANNELTESTED CHANNEL	can has been conducted to determine the worst-case inations between available modulations, antenna po- ecture) and packet type.ving channel(s) was (were) selected for the final testLABLE CHANNELTESTED CHANNEL0 to 7839GFSINE CONDUCTED EMISSION TEST: can has been conducted to determine the worst-case inations between available modulations, antenna po- ecture), and packet types.ving channel(s) was (were) selected for the final testLABLE CHANNELTESTED CHANNELMODULATIONMODULATIONMODULATIONMODULATIONMODULATIONCan has been conducted to determine the worst-case inations between available modulations, antenna po- ecture), and packet types.Ving channel(s) was (were) selected for the final testLABLE CHANNELTESTED CHANNELMODULATION	can has been conducted to determine the worst-case mode finations between available modulations, antenna ports (if EU ecture) and packet type. wing channel(s) was (were) selected for the final test as listedLABLE CHANNELTESTED CHANNELMODULATION TYPE0 to 7839GFSKNE CONDUCTED EMISSION TEST:can has been conducted to determine the worst-case mode finations between available modulations, antenna ports (if EU ecture), and packet types. wing channel(s) was (were) selected for the final test as listedLABLE CHANNELTESTED CHANNELMODULATION TYPEdata data data data data data data da		

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	GFSK	DH5
0 to 78	0, 39, 78	π /4-DQPSK	DH5
0 to 78	0, 39, 78	8DPSK	DH5

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Kay Wu
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Johnson Liao
PLC	25deg. C, 65%RH	120Vac, 60Hz	Johnson Liao
APCM	25deg. C, 65%RH	120Vac, 60Hz	Howard Kao

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2009 FCC Public Notice DA 00-705

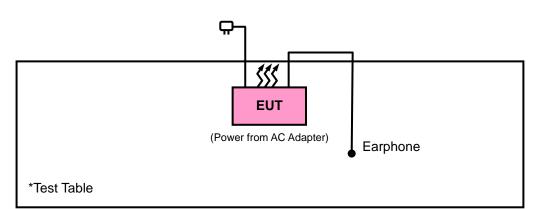
All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B. The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	BLUETOOTH TESTER	R&S	CBT	100870	N/A
2	EARPHONE	Acon	CW-010M.V	N/A	N/A


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A
2	N/A

NOTE:

1. All power cords of the above support units are non-shielded (1.8m).

2. Items 1 acted as communication partners to transfer data.

3.4.1 CONFIGURATION OF SYSTEM UNDER TEST

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Aug. 21, 2012	Aug. 20, 2013
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 17, 2012	Dec. 16, 2013
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Mar. 25, 2013	Mar. 24, 2014
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 07, 2013	Jan. 06, 2014
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 25, 2012	Dec. 24, 2013
Loop Antenna	HFH2-Z2	100070	Jan. 31, 2012	Jan. 30, 2014
Preamplifier EMCI	EMC 012645	980115	Dec. 28, 2012	Dec. 27, 2013
Preamplifier EMCI	EMC 184045	980116	Dec. 28, 2012	Dec. 27, 2013
Preamplifier EMCI	EMC 330H	980112	Dec. 28, 2012	Dec. 27, 2013
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4	Oct. 19, 2012	Oct. 18, 2013
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 19, 2012	Oct. 18, 2013
RF signal cable Worken	RG-213	NA	Dec. 29, 2012	Dec. 28, 2013
Software	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The calibration interval of the loop antenna is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in HwaYa Chamber 10.
- 4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 5. The FCC Site Registration No. is 690701.
- 6. The IC Site Registration No. is IC 7450F-10.

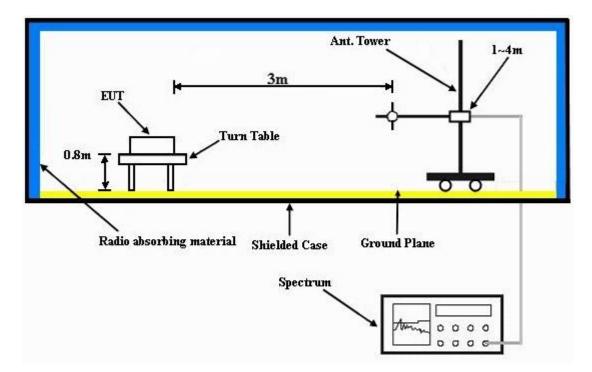
4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection; resolution bandwidth is 1 MHz and video bandwidth is 10 Hz for Average detection (except fundamental, bandedge and harmonic frequency) at frequency above 1GHz.
- 3. The DH5 packet was the worst case duty cycle for a transmit dwell time on a channel, based upon Bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB.

Average value = peak reading + duty cycle correlation factor.


4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

ABOVE 1GHz WORST-CASE DATA : GFSK

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 0	FREQUENCY RANGE	1GHz ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Kay Wu	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2388	37.94	44.11	54	-16.06	31.93	5.4	43.5	138	256	Average
2388	48.5	54.67	74	-25.5	31.93	5.4	43.5	138	256	Peak
2400	16.02	22.16	54	-37.98	31.96	5.4	43.5	138	256	Average
2400	46.12	52.26	74	-27.88	31.96	5.4	43.5	138	256	Peak
2402	77.01	83.15			31.96	5.4	43.5	138	256	Average
2402	107.11	113.25			31.96	5.4	43.5	138	256	Peak
9608	24.81	16.91	57.01	-32.2	36.94	11.55	40.59	100	222	Average
9608	54.91	47.01	87.11	-32.2	36.94	11.55	40.59	100	222	Peak
	Α	NTENN	A POLAR	ITY & TE	EST DISTA	NCE: V	ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR	CABLE LOSS	PREAMP FACTOR	ANTENNA HEIGHT	TABLE ANGLE	REMARK
	(ubuv/iii)	(dBuV)	(abat/iii)	(ub)	(dB/m)	(dB)	(dB)	(cm)	(Degree)	
2354	(dBdv /iii) 36.9	(dBuV) 43.1	54	-17.1	(dB/m) 31.87	(dB) 5.33	(dB) 43.4	(cm) 117	(Degree) 277	Average
2354 2354	、 <i>,</i>	1	、 ,	~ ,	、 ,	、 <i>,</i>	、 ,	、 ,	, ,	
	36.9	43.1	54	-17.1	31.87	5.33	43.4	117	277	Average
2354	36.9 48.28	43.1 54.48	54 74	-17.1 -25.72	31.87 31.87	5.33 5.33	43.4 43.4	117 117	277 277	Average Peak
2354 2400	36.9 48.28 15.85	43.1 54.48 21.99	54 74 54	-17.1 -25.72 -38.15	31.87 31.87 31.96	5.33 5.33 5.4	43.4 43.4 43.5	117 117 117 117	277 277 277 277	Average Peak Average
2354 2400 2400	36.9 48.28 15.85 45.95	43.1 54.48 21.99 52.09	54 74 54	-17.1 -25.72 -38.15	31.87 31.87 31.96 31.96	5.33 5.33 5.4 5.4	43.4 43.4 43.5 43.5	117 117 117 117 117	277 277 277 277 277	Average Peak Average Peak
2354 2400 2400 2402	36.9 48.28 15.85 45.95 75.5	43.1 54.48 21.99 52.09 81.64	54 74 54	-17.1 -25.72 -38.15	31.87 31.87 31.96 31.96 31.96	5.33 5.33 5.4 5.4 5.4 5.4	43.4 43.4 43.5 43.5 43.5 43.5	117 117 117 117 117 117	277 277 277 277 277 277 277	Average Peak Average Peak Average
2354 2400 2400 2402 2402 2402	36.9 48.28 15.85 45.95 75.5 105.6	43.1 54.48 21.99 52.09 81.64 111.74	54 74 54 74	-17.1 -25.72 -38.15 -28.05	31.87 31.87 31.96 31.96 31.96 31.96 31.96	5.33 5.33 5.4 5.4 5.4 5.4 5.4 5.4	43.4 43.4 43.5 43.5 43.5 43.5 43.5	117 117 117 117 117 117 117	277 277 277 277 277 277 277 277	Average Peak Average Peak Average Peak
2354 2400 2400 2402 2402 2402 7206	36.9 48.28 15.85 45.95 75.5 105.6 26	43.1 54.48 21.99 52.09 81.64 111.74 24	54 74 54 74 55.5	-17.1 -25.72 -38.15 -28.05 -29.5	31.87 31.87 31.96 31.96 31.96 31.96 31.96 36	5.33 5.33 5.4 5.4 5.4 5.4 5.4 9.94	43.4 43.4 43.5 43.5 43.5 43.5 43.5 43.5	117 117 117 117 117 117 117 117 100	277 277 277 277 277 277 277 277 277 221	Average Peak Average Peak Average Average

REMARKS:

1. 2402MHz: Fundamental frequency.

2. 7206MHz & 9608MHz: Out of restricted band

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 39	FREQUENCY RANGE	1GHz ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Kay Wu	

	AN	TENNA	POLARIT	Y & TES	T DISTAN	ICE: HO	RIZONT	AL AT 3 M	1	
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2441	77.54	83.72			32.01	5.46	43.65	136	257	Average
2441	107.64	113.82			32.01	5.46	43.65	136	257	Peak
4882	15.59	18.24	54	-38.41	34.31	8.27	45.23	100	122	Average
4882	45.69	48.34	74	-28.31	34.31	8.27	45.23	100	122	Peak
7323	20.74	18.56	54	-33.26	36	9.95	43.77	100	152	Average
7323	50.84	48.66	74	-23.16	36	9.95	43.77	100	152	Peak
9764	25.61	17.65	57.54	-31.93	37.12	11.53	40.69	100	12	Average
9764	55.71	47.75	87.64	-31.93	37.12	11.53	40.69	100	12	Peak
	Α	NTENN	A POLAR	ITY & TE	EST DISTA	NCE: V	ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2441	75.21	81.39			32.01	5.46	43.65	113	274	Average
2441	105.31	111.49			32.01	5.46	43.65	113	274	Peak
4882	15.46	18.11	54	-38.54	34.31	8.27	45.23	100	3	Average
4882	45.56	48.21	74	-28.44	34.31	8.27	45.23	100	3	Peak
7323	26.58	24.4	54	-27.42	36	9.95	43.77	100	22	Average
7323	56.68	54.5	74	-17.32	36	9.95	43.77	100	22	Peak
9764	24.65	16.69	55.21	-30.56	37.12	11.53	40.69	100	55	Average
9764	54.75	46.79	85.31	-30.56	37.12	11.53	40.69	100	55	Peak

REMARKS:

1. 2441MHz: Fundamental frequency.

2. 9764MHz: Out of restricted band

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 78	FREQUENCY RANGE	1GHz ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Kay Wu	

	AN	TENNA	POLARIT	Y & TES	T DISTAN	ICE: HO	RIZONT	AL AT 3 M	1	
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2480	76.79	82.96			32.07	5.5	43.74	133	255	Average
2480	106.89	113.06			32.07	5.5	43.74	133	255	Peak
2483.5	15.24	21.41	54	-38.76	32.07	5.5	43.74	133	255	Average
2483.5	45.34	51.51	74	-28.66	32.07	5.5	43.74	133	255	Peak
2485.5	36.1	42.21	54	-17.9	32.1	5.53	43.74	133	255	Average
2485.5	50.86	56.97	74	-23.14	32.1	5.53	43.74	133	255	Peak
4960	15.66	18.06	54	-38.34	34.37	8.29	45.06	100	122	Average
4960	45.76	48.16	74	-28.24	34.37	8.29	45.06	100	122	Peak
	Α	NTENN	A POLAR	ITY & TE	EST DISTA	NCE: V	ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2480	70.13	76.3			32.07	5.5	43.74	109	276	Average
2480	105.23	111.4			32.07	5.5	43.74	109	276	Peak
2483.5	16.15	22.32	54	-37.85	32.07	5.5	43.74	109	276	Average
2483.5	46.25	52.42	74	-27.75	32.07	5.5	43.74	109	276	Peak
2485.5	36.77	42.88	54	-17.23	32.1	5.53	43.74	109	276	Average
2485.5	48.34	54.45	74	-25.66	32.1	5.53	43.74	109	276	Peak
7440	27.46	24.88	54	-26.54	36	9.96	43.38	100	221	Average
7440	57.56	54.98	74	-16.44	36	9.96	43.38	100	221	Peak

REMARKS:

1. 2480MHz: Fundamental frequency.

BELOW 1GHz WORST-CASE DATA : GFSK

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 39	FREQUENCY RANGE	30MHz ~ 1GHz		
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Quasi-Peak (QP)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Johnson Liao		

	AN	TENNA	POLARIT	Y & TES	T DISTAN	ICE: HO	RIZONTA	AL AT 3 M	1	
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
43.23	28.18	44.99	40	-11.82	13.59	0.71	31.11	101	165	Peak
158.52	22.2	39.92	43.5	-21.3	12.73	1.38	31.83	104	152	Peak
209.82	21.05	41.25	43.5	-22.45	9.77	1.64	31.61	103	204	Peak
495.3	24.1	35.8	46	-21.9	17.23	2.76	31.69	100	132	Peak
719.3	27.16	34.24	46	-18.84	21.09	3.49	31.66	100	261	Peak
925.8	29.3	33.61	46	-16.7	23.66	4.02	31.99	100	184	Peak
	Α	NTENN	A POLAR	ITY & TE	ST DISTA	NCE: V	ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
33.78	29.25	47.11	40	-10.75	12.63	0.59	31.08	101	165	QP
43.23	31.14	47.95	40	-8.86	13.59	0.71	31.11	100	120	QP
162.03	19.05	36.96	43.5	-24.45	12.54	1.4	31.85	100	222	Peak
437.2	20.69	34.04	46	-25.31	16.08	2.57	32	100	95	Peak
659.8	25.07	33.41	46	-20.93	20.33	3.28	31.95	100	275	Peak
849.5	28.63	33.82	46	-17.37	22.86	3.82	31.87	100	195	Peak

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
0.15 ~ 0.5	Quasi-peak	Average
0.13 ~ 0.5	66 to 56	56 to 46
5~30	56	46
3 ~ 50	60	50

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

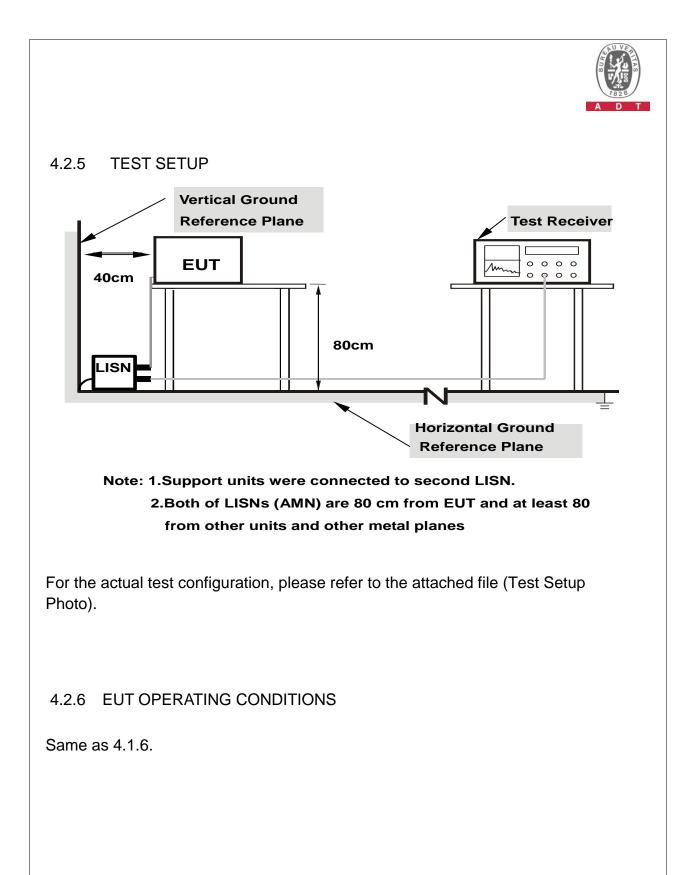
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Nov. 09, 2012	Nov. 08, 2013
RF signal cable Woken	5D-FB	Cable-HYCO2-01	Dec. 28, 2012	Dec. 27, 2013
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Dec. 21, 2012	Dec. 20, 2013
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 06, 2012	Jul. 05, 2013
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2.

3. The VCCI Site Registration No. is C-2047.

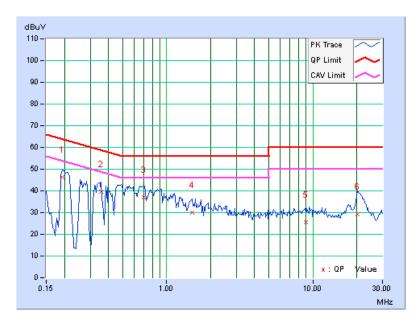


4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

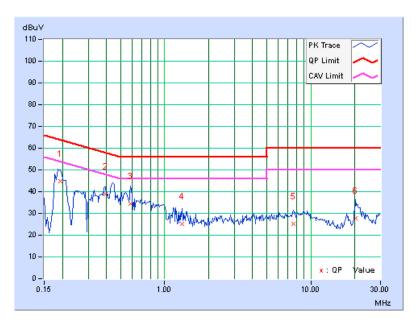

4.2.7 TEST RESULTS

CONDUCTED WORST CASE DATA: GFSK

PHA	SE	Line 1			6d	B BAND	WIDTH	g	9kHz	<u>-</u>		
	Freq.	Corr.	Readin	g Value	Emissie	on Level	Lir	nit		Margin		
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB ((uV)]		(d	IB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	A١	V.	Q.P.	AV.	
1	0.19297	0.12	46.28	29.97	46.40	30.09	63.91	53.	91	-17.51	-23.82	
2	0.35703	0.14	39.50	21.81	39.64	21.95	58.80	48.	80	-19.15	-26.84	
3	0.70078	0.18	36.88	21.03	37.06	21.21	56.00	46.	00	-18.94	-24.79	
4	1.50000	0.22	29.79	15.14	30.01	15.36	56.00	46.	00	-25.99	-30.64	
5	8.96094	0.60	25.13	19.69	25.73	20.29	60.00	50.	00	-34.27	-29.71	
6	20.16016	1.24	28.16	21.56	29.40	22.80	60.00	50.	00	-30.60	-27.20	

REMARKS:

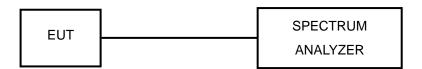
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



PHA	SE	Line 2	2		60	IB BAND	WIDTH	9kH	9kHz		
	Freq.	Corr.	Readin	g Value	Emissi	on Level	Lir	nit	Ма	rgin	
No	-	Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(d	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.19297	0.17	44.74	26.65	44.91	26.82	63.91	53.91	-19.00	-27.09	
2	0.39219	0.21	38.69	21.71	38.90	21.92	58.02	48.02	-19.12	-26.10	
3	0.58750	0.22	34.28	17.78	34.50	18.00	56.00	46.00	-21.50	-28.00	
4	1.31250	0.26	25.06	10.23	25.32	10.49	56.00	46.00	-30.68	-35.51	
5	7.60547	0.51	24.55	18.71	25.06	19.22	60.00	50.00	-34.94	-30.78	
6	20.22266	0.94	26.72	20.25	27.66	21.19	60.00	50.00	-32.34	-28.81	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST SETUP

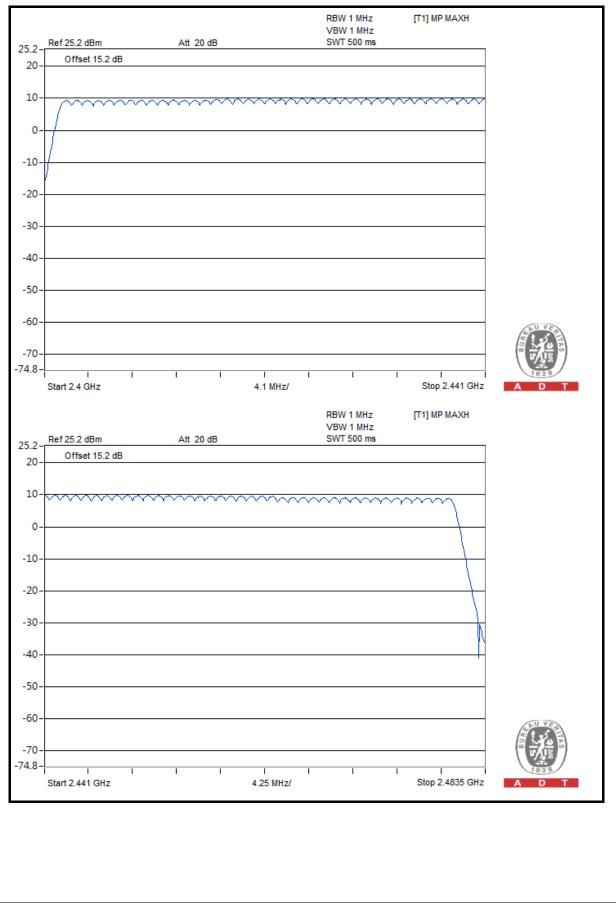
4.3.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 DEVIATION FROM TEST STANDARD

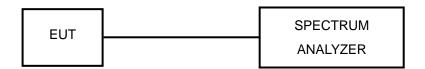

No deviation.

4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plot, it shows that the hopping frequencies are equally spaced.

A D T

GFSK



4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

4.4.6 TEST RESULTS

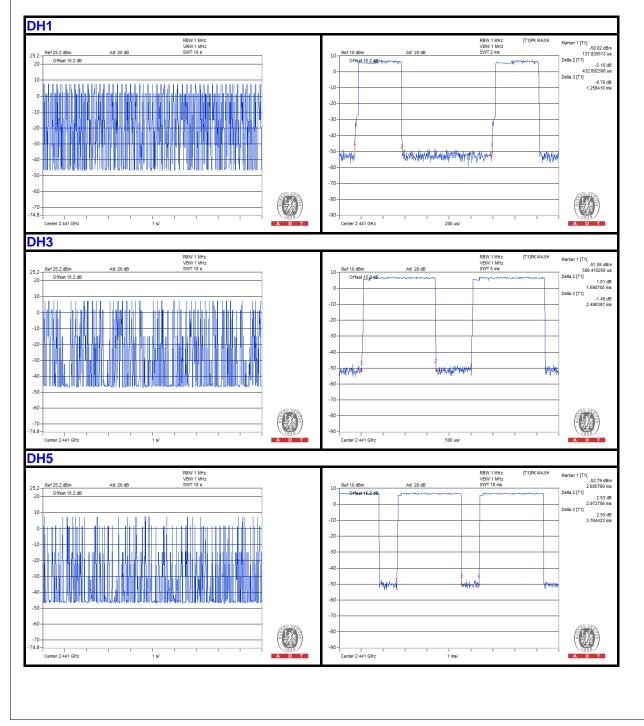
Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	8.70	426.28	0.12	0.4
DH3	5.00	1692.30	0.27	0.4
DH5	3.20	2958.33	0.30	0.4

NOTE:

1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time

- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.

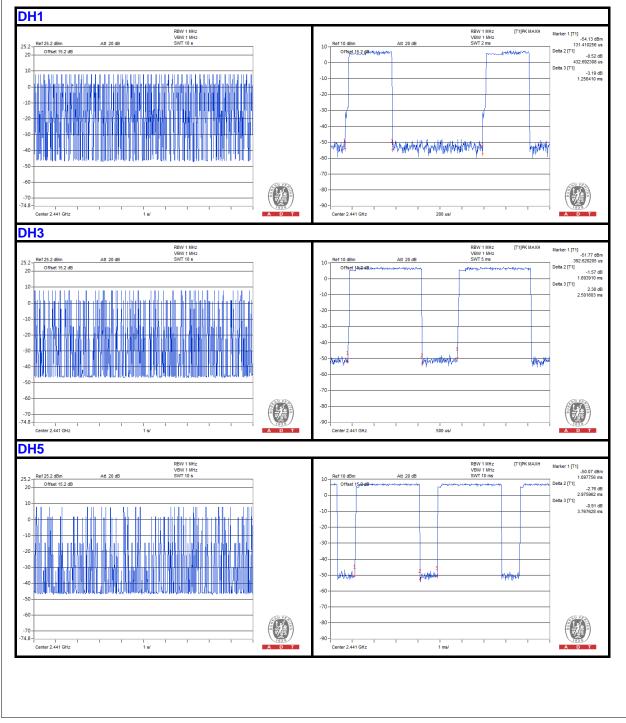


π/4-DQPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	8.20	432.69	0.11	0.4
DH3	4.20	1690.70	0.22	0.4
DH5	2.40	2972.75	0.23	0.4

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)
- 5. Test plots of the transmitting time slot are shown as below.

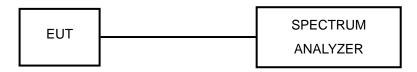


8DPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	9.10	432.69	0.12	0.4
DH3	5.20	1693.91	0.28	0.4
DH5	3.10	2975.96	0.29	0.4

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)
- 5. Test plots of the transmitting time slot are shown as below.



4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 DEVIATION FROM TEST STANDARD

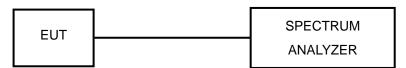
No deviation.

4.5.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

CHANNEL	FREQUENCY	200	Hz)	
ONAMILE	(MHz)	GFSK		8DPSK
0	2402	0.89	1.36	1.31
39	2441	1.02	1.36	1.31
78	2480	1.02	1.36	1.31



4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST SETUP

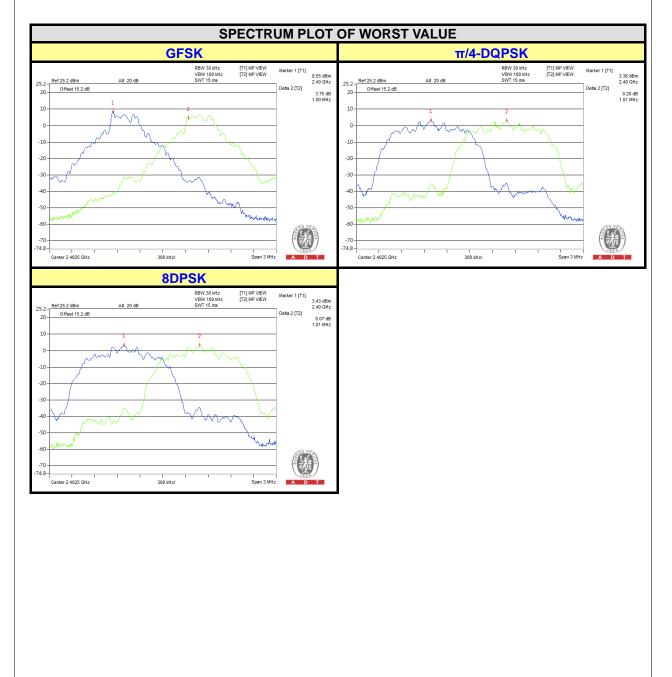
4.6.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.6.4 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

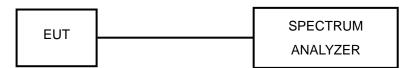
4.6.5 DEVIATION FROM TEST STANDARD


No deviation.

4.6.6 TEST RESULTS

CHAN.	FREQ. (MHz)		CENT CHA EPARATIOI (MHz)		20dB BANDWIDTH (MHz)			MININ	MUM LIMIT (MHz)		PASS / FAIL
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	
0	2402	1.00	1.01	1.01	0.89	1.36	1.31	0.593	0.907	0.873	PASS
39	2441	1.00	1.00	1.01	1.02	1.36	1.31	0.680	0.907	0.873	PASS
78	2480	1.00	1.00	1.00	1.02	1.36	1.31	0.680	0.907	0.873	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.



4.7 MAXIMUM OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

4.7.2 TEST SETUP

4.7.3 TEST INSTRUMENTS

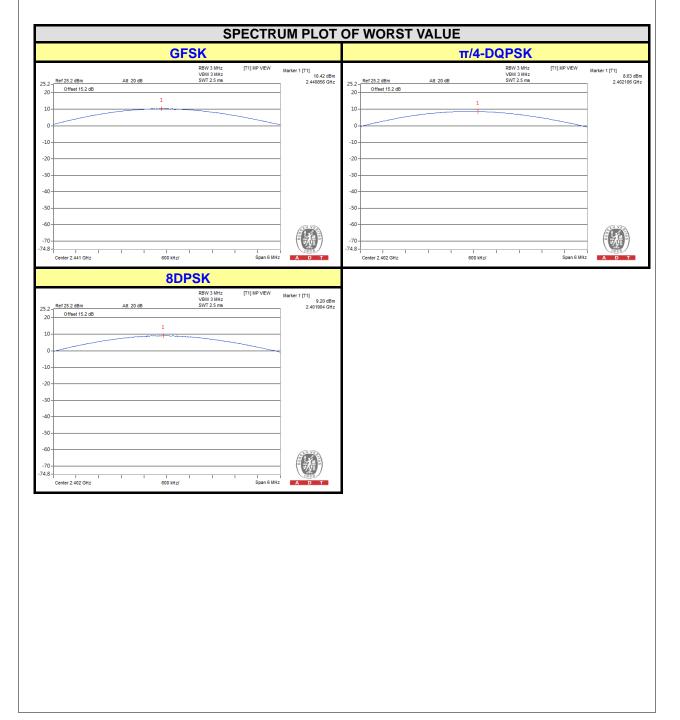
Refer to section 4.1.2 to get information of above instrument.

4.7.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 DEVIATION FROM TEST STANDARD

No deviation.


4.7.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	OU	TPUT POW (mW)	/ER	OU	TPUT POW (dBm)	ER	POWER LIMIT	PASS / FAIL
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	(mW)	
0	2402	9.863	7.295	8.318	9.94	8.63	9.20	125	PASS
39	2441	11.015	7.145	7.925	10.42	8.54	8.99	125	PASS
78	2480	9.141	6.546	7.295	9.61	8.16	8.63	125	PASS

4.8 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

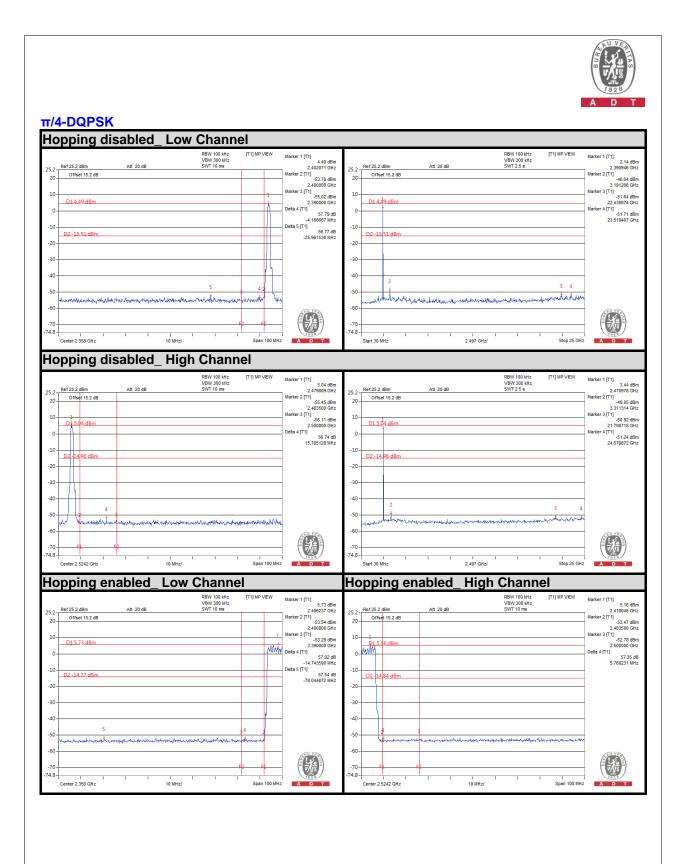
Refer to section 4.1.2 to get information of above instrument.

4.8.3 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set VBW =300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation.


4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit continuously.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---- END ----