

Report No. : SA130326C14

Applicant : ASUSTek COMPUTER INC.

Address : 4F., No. 150, LI-TE Rd., PEITOU, TAIPEI 112, TAIWAN

Product : ASUS Tablet

FCC ID : MSQK005

Brand : ASUS

Model No. : K005

Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1991 / IEEE 1528:2003

FCC OET Bulletin 65 Supplement C (Edition 01-01)

KDB 248227 D01 v01r02 / KDB 447498 D01 v05 / KDB 616217 D04 v01 KDB 941225 D01 v02 / KDB 941225 D02 v02r01 / KDB 941225 D03 v01

KDB 941225 D05 v02r01

Date of Testing : Apr. 02, 2013 ~ Apr. 18, 2013

**CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch - Taiwan HwaYa Lab**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies.

Prepared By:

Vera Huang / Specialist

Approved By:

Roy Wu / Manager



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report Format Version 5.0.0 Page No. : 1 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



# **Table of Contents**

| ĸe |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ontrol Record                                         |    |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----|--|--|--|
| 1. | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |    |  |  |  |
| 2. | the first of the f |                                                       |    |  |  |  |
| 3. | SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measurement System                                    | 7  |  |  |  |
|    | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Definition of Specific Absorption Rate (SAR)          | 7  |  |  |  |
|    | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPEAG DASY System                                     |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.1 Robot                                           |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.2 Probes                                          |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.3 Data Acquisition Electronics (DAE)              |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.4 Phantoms                                        |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.5 Device Holder                                   | 1¹ |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.6 System Validation Dipoles                       |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2.7 Tissue Simulating Liquids                       |    |  |  |  |
|    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAR System Verification                               | 15 |  |  |  |
|    | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAR Measurement Procedure                             | 16 |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4.1 Area & Zoom Scan Procedure                      | 16 |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4.2 Volume Scan Procedure                           |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4.3 Power Drift Monitoring                          | 17 |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4.4 Spatial Peak SAR Evaluation                     | 17 |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4.5 SAR Averaged Methods                            | 17 |  |  |  |
| 4. | SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measurement Evaluation                                | 18 |  |  |  |
|    | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EUT Configuration and Setting                         | 18 |  |  |  |
|    | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EUT Testing Position                                  | 22 |  |  |  |
|    | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tissue Verification                                   | 24 |  |  |  |
|    | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | System Validation                                     | 24 |  |  |  |
|    | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | System Verification                                   | 25 |  |  |  |
|    | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum Output Power                                  | 25 |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6.1 Maximum Conducted Power                         |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6.2 Measured Conducted Power Result                 | 27 |  |  |  |
|    | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAR Testing Results                                   |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7.1 SAR Results for Body                            | 48 |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7.2 SAR Measurement Variability                     |    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7.3 Simultaneous Multi-band Transmission Evaluation |    |  |  |  |
| 5. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ration of Test Equipment                              |    |  |  |  |
| 6. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urement Uncertainty                                   |    |  |  |  |
| 7  | Infor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mation on the Testing Laboratories                    | ΩF |  |  |  |

Appendix A. SAR Plots of System Verification

Appendix B. SAR Plots of SAR Measurement

Appendix C. Calibration Certificate for Probe and Dipole

Appendix D. Photographs of EUT and Setup



## **Release Control Record**

| Issue No. | Reason for Change | Date Issued  |
|-----------|-------------------|--------------|
| R01       | Initial release   | May 09, 2013 |
|           |                   |              |
|           |                   |              |

Report Format Version 5.0.0 Page No. : 3 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



## 1. Summary of Maximum SAR Value

| Equipment<br>Class                    | Mode      | Highest Reported<br>Body SAR <sub>1α</sub><br>(W/kg) |
|---------------------------------------|-----------|------------------------------------------------------|
|                                       | GSM850    | 0.97                                                 |
|                                       | GSM1900   | 1.23                                                 |
|                                       | WCDMA II  | 1.30                                                 |
| DCD                                   | WCDMA V   | 1.01                                                 |
| PCB                                   | LTE 2     | 1.36                                                 |
|                                       | LTE 4     | 1.05                                                 |
|                                       | LTE 5     | 0.76                                                 |
|                                       | LTE 17    | 1.25                                                 |
| DTC                                   | 2.4G WLAN | 1.11                                                 |
| DTS                                   | 5.8G WLAN | 1.19                                                 |
| NII                                   | 5.2G WLAN | 0.69                                                 |
| DSS                                   | Bluetooth | N/A                                                  |
| Himboot Ci                            |           | Body                                                 |
| Highest Simultaneous Transmission SAR |           | (W/kg)                                               |
| PCB + DTS                             |           | 1.58                                                 |
| PCB + NII                             |           | 1.47                                                 |
| PCB + DSS                             |           | 1.56                                                 |

### Note:

1. The SAR limit (Head & Body: SAR<sub>1g</sub> 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1991.

Report Format Version 5.0.0 Page No. : 4 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



## 2. <u>Description of Equipment Under Test</u>

| EUT Type                        | ASUS Tablet                                  |
|---------------------------------|----------------------------------------------|
| FCC ID                          | MSQK005                                      |
| Brand Name                      | ASUS                                         |
| Model Name                      | K005                                         |
|                                 | GSM850 : 824.2 ~ 848.8                       |
|                                 | GSM1900 : 1850.2 ~ 1909.8                    |
|                                 | WCDMA Band II: 1852.4 ~ 1907.6               |
|                                 | WCDMA Band V : 826.4 ~ 846.6                 |
| Tx Frequency Bands              | LTE Band 2: 1850.7 ~ 1909.3                  |
| (Unit: MHz)                     | LTE Band 4: 1710.7 ~ 1754.3                  |
|                                 | LTE Band 5 : 824.7 ~ 848.3                   |
|                                 | LTE Band 17: 706.5 ~ 713.5                   |
|                                 | WLAN : 2412 ~ 2462, 5180 ~ 5240, 5745 ~ 5805 |
|                                 | Bluetooth : 2402 ~ 2480                      |
|                                 | GPRS: GMSK                                   |
|                                 | EDGE: 8PSK                                   |
|                                 | WCDMA: QPSK                                  |
| Uplink Modulations              | LTE: QPSK, 16QAM                             |
|                                 | 802.11b : DSSS                               |
|                                 | 802.11a/g/n : OFDM                           |
|                                 | Bluetooth : GFSK                             |
|                                 | GSM850 : 32.1                                |
|                                 | GSM1900 : 30.2                               |
|                                 | WCDMA Band II : 23.0                         |
|                                 | WCDMA Band V: 23.5                           |
| W. J                            | LTE Band 2 : 23.6                            |
| Maximum Tune-up Conducted Power | LTE Band 4 : 23.3                            |
| (Unit: dBm)                     | LTE Band 5 : 23.7                            |
|                                 | LTE Band 17 : 23.7<br>WLAN 2.4G : 13.7       |
|                                 | WLAN 5.2G : 13.7<br>  WLAN 5.2G : 11.5       |
|                                 | WLAN 5.2G : 11.5<br> WLAN 5.8G : 11.0        |
|                                 | Bluetooth: 6.5                               |
| Antenna Type                    | Fixed Internal Antenna                       |
| EUT Stage                       | Identical Prototype                          |
| LUT Staye                       | nuemilicai i Tototype                        |

#### Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

Report Format Version 5.0.0 Page No. : 5 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013





### **List of Key Component:**

| -              | Brand Name        | SMP (cell SDI)         |
|----------------|-------------------|------------------------|
|                | Model Name        | C12P1302               |
| Battery        | Power Rating      | 3.7Vdc, 6560mAh        |
|                | Type              | Li-ion                 |
|                | Brand Name        | AUO                    |
| LCD Panel      | Model Name        | AUO/B101UAN01.7_H/W 1A |
|                | Brand Name        | Qualcomm               |
| WWAN Module    | Model Name        | MDM-9215M              |
| NAZI ANI BAll- | Brand Name        | Qualcomm               |
| WLAN Module    | Model Name        | WCN-3660               |
| Video Camera   | Brand Name        | Liteon                 |
| (Front)        | Model Name        | LITEON/10P2SF130K      |
| Video Camera   | Brand Name        | Liteon                 |
| (Rear)         | Model Name        | LITEON/12P2BA540       |
|                | Brand Name        | Qualcomm               |
| CPU            | Model Name        | APQ-8064               |
|                | Signal Line       | 1.7GHz, 1067 pins      |
| Mainboard      | <b>Brand Name</b> | Asus                   |
| iviaiiiboalu   | Model Name        | ME302KL                |

Report Format Version 5.0.0 Page No. : 6 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



## 3. SAR Measurement System

### 3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and E is the RMS electrical field strength.

### 3.2 SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4/5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

Report Format Version 5.0.0 Page No. : 7 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



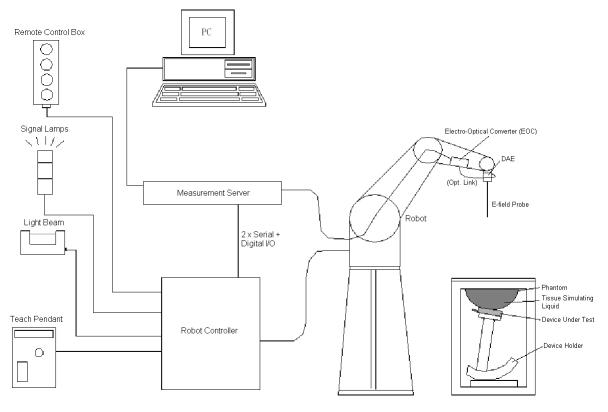



Fig-3.1 DASY System Setup

#### 3.2.1 Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- · High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)



Report Format Version 5.0.0 Report No.: SA130326C14

Revision: R01

Page No. : 8 of 85
Issued Date : May 09, 2013



#### 3.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

| Model         | EX3DV4                                                                                                                                                   |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction  | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). |  |
| Frequency     | 10 MHz to 6 GHz<br>Linearity: ± 0.2 dB                                                                                                                   |  |
| Directivity   | ± 0.3 dB in HSL (rotation around probe axis)<br>± 0.5 dB in tissue material (rotation normal to probe axis)                                              |  |
| Dynamic Range | 10 μW/g to 100 mW/g<br>Linearity: ± 0.2 dB (noise: typically < 1 μW/g)                                                                                   |  |
| Dimensions    | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm                           |  |

| Model         | ES3DV3                                                                                                                                                                        |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction  | Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). |  |
| Frequency     | 10 MHz to 4 GHz<br>Linearity: ± 0.2 dB                                                                                                                                        |  |
| Directivity   | ± 0.2 dB in HSL (rotation around probe axis)<br>± 0.3 dB in tissue material (rotation normal to probe axis)                                                                   |  |
| Dynamic Range | 5 μW/g to 100 mW/g<br>Linearity: ± 0.2 dB                                                                                                                                     |  |
| Dimensions    | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm                                                      |  |

### 3.2.3 Data Acquisition Electronics (DAE)

| Model                   | DAE3, DAE4                                                                                                                                                                                                                                             |           |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Construction            | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. |           |
| Measurement             | -100 to +300 mV (16 bit resolution and two range settings: 4mV,                                                                                                                                                                                        |           |
| Range                   | 400mV)                                                                                                                                                                                                                                                 | The delle |
| Input Offset<br>Voltage | < 5µV (with auto zero)                                                                                                                                                                                                                                 |           |
| Input Bias Current      | < 50 fA                                                                                                                                                                                                                                                |           |
| Dimensions              | 60 x 60 x 68 mm                                                                                                                                                                                                                                        |           |

Report Format Version 5.0.0 Page No. : 9 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 3.2.4 Phantoms

| Model           | Twin SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction    | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. |  |
| Material        | Vinylester, glass fiber reinforced (VE-GF)                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Dimensions      | Length: 1000 mm<br>Width: 500 mm<br>Height: adjustable feet                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Filling Volume  | approx. 25 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |



| Model           | ELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction    | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. |  |
| Material        | Vinylester, glass fiber reinforced (VE-GF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Shell Thickness | $2.0 \pm 0.2$ mm (bottom plate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Dimensions      | Major axis: 600 mm<br>Minor axis: 400 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Filling Volume  | approx. 30 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |



Report Format Version 5.0.0 Report No. : SA130326C14

Revision: R01

Page No. : 10 of 85 Issued Date : May 09, 2013

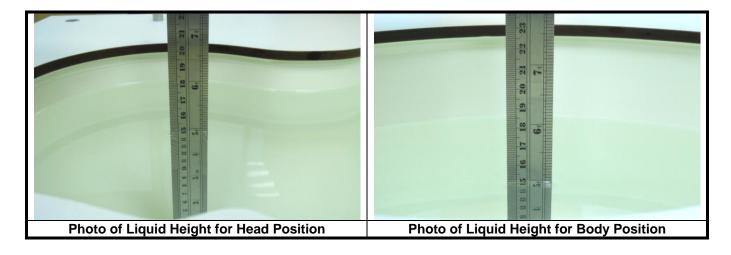


### 3.2.5 Device Holder

| Model        | Mounting Device                                                                                                                                                                                                                                                                                                                                                                                                               | - |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Construction | In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). |   |
| Material     | POM                                                                                                                                                                                                                                                                                                                                                                                                                           |   |

| Model        | Laptop Extensions Kit                                                                                                                                                                                                                                                                   |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction | Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. |  |
| Material     | POM, Acrylic glass, Foam                                                                                                                                                                                                                                                                |  |

## 3.2.6 System Validation Dipoles


| Model            | D-Serial                                                                                                                                                             |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction     | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. |  |
| Frequency        | 750 MHz to 5800 MHz                                                                                                                                                  |  |
| Return Loss      | > 20 dB                                                                                                                                                              |  |
| Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz)                                                                                                                                |  |

Report Format Version 5.0.0 Page No. : 11 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



#### 3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.



The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528 and FCC OET 65 Supplement C Appendix C. For the body tissue simulating liquids, the dielectric properties are defined in FCC OET 65 Supplement C Appendix C. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Report Format Version 5.0.0 Page No. : 12 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



**Table-3.1 Targets of Tissue Simulating Liquid** 

| Frequency | Target       | Range of    | Target                                             | Range of    |
|-----------|--------------|-------------|----------------------------------------------------|-------------|
| (MHz)     | Permittivity | ±5%         | Conductivity                                       | ±5%         |
|           | 1            | For Head    | <del>,                                      </del> |             |
| 750       | 41.9         | 39.8 ~ 44.0 | 0.89                                               | 0.85 ~ 0.93 |
| 835       | 41.5         | 39.4 ~ 43.6 | 0.90                                               | 0.86 ~ 0.95 |
| 900       | 41.5         | 39.4 ~ 43.6 | 0.97                                               | 0.92 ~ 1.02 |
| 1450      | 40.5         | 38.5 ~ 42.5 | 1.20                                               | 1.14 ~ 1.26 |
| 1640      | 40.3         | 38.3 ~ 42.3 | 1.29                                               | 1.23 ~ 1.35 |
| 1750      | 40.1         | 38.1 ~ 42.1 | 1.37                                               | 1.30 ~ 1.44 |
| 1800      | 40.0         | 38.0 ~ 42.0 | 1.40                                               | 1.33 ~ 1.47 |
| 1900      | 40.0         | 38.0 ~ 42.0 | 1.40                                               | 1.33 ~ 1.47 |
| 2000      | 40.0         | 38.0 ~ 42.0 | 1.40                                               | 1.33 ~ 1.47 |
| 2300      | 39.5         | 37.5 ~ 41.5 | 1.67                                               | 1.59 ~ 1.75 |
| 2450      | 39.2         | 37.2 ~ 41.2 | 1.80                                               | 1.71 ~ 1.89 |
| 2600      | 39.0         | 37.1 ~ 41.0 | 1.96                                               | 1.86 ~ 2.06 |
| 3500      | 37.9         | 36.0 ~ 39.8 | 2.91                                               | 2.76 ~ 3.06 |
| 5200      | 36.0         | 34.2 ~ 37.8 | 4.66                                               | 4.43 ~ 4.89 |
| 5300      | 35.9         | 34.1 ~ 37.7 | 4.76                                               | 4.52 ~ 5.00 |
| 5500      | 35.6         | 33.8 ~ 37.4 | 4.96                                               | 4.71 ~ 5.21 |
| 5600      | 35.5         | 33.7 ~ 37.3 | 5.07                                               | 4.82 ~ 5.32 |
| 5800      | 35.3         | 33.5 ~ 37.1 | 5.27                                               | 5.01 ~ 5.53 |
|           |              | For Body    |                                                    |             |
| 750       | 55.5         | 52.7 ~ 58.3 | 0.96                                               | 0.91 ~ 1.01 |
| 835       | 55.2         | 52.4 ~ 58.0 | 0.97                                               | 0.92 ~ 1.02 |
| 900       | 55.0         | 52.3 ~ 57.8 | 1.05                                               | 1.00 ~ 1.10 |
| 1450      | 54.0         | 51.3 ~ 56.7 | 1.30                                               | 1.24 ~ 1.37 |
| 1640      | 53.8         | 51.1 ~ 56.5 | 1.40                                               | 1.33 ~ 1.47 |
| 1750      | 53.4         | 50.7 ~ 56.1 | 1.49                                               | 1.42 ~ 1.56 |
| 1800      | 53.3         | 50.6 ~ 56.0 | 1.52                                               | 1.44 ~ 1.60 |
| 1900      | 53.3         | 50.6 ~ 56.0 | 1.52                                               | 1.44 ~ 1.60 |
| 2000      | 53.3         | 50.6 ~ 56.0 | 1.52                                               | 1.44 ~ 1.60 |
| 2300      | 52.9         | 50.3 ~ 55.5 | 1.81                                               | 1.72 ~ 1.90 |
| 2450      | 52.7         | 50.1 ~ 55.3 | 1.95                                               | 1.85 ~ 2.05 |
| 2600      | 52.5         | 49.9 ~ 55.1 | 2.16                                               | 2.05 ~ 2.27 |
| 3500      | 51.3         | 48.7 ~ 53.9 | 3.31                                               | 3.14 ~ 3.48 |
| 5200      | 49.0         | 46.6 ~ 51.5 | 5.30                                               | 5.04 ~ 5.57 |
| 5300      | 48.9         | 46.5 ~ 51.3 | 5.42                                               | 5.15 ~ 5.69 |
| 5500      | 48.6         | 46.2 ~ 51.0 | 5.65                                               | 5.37 ~ 5.93 |
| 5600      | 48.5         | 46.1 ~ 50.9 | 5.77                                               | 5.48 ~ 6.06 |
| 5800      | 48.2         | 45.8 ~ 50.6 | 6.00                                               | 5.70 ~ 6.30 |

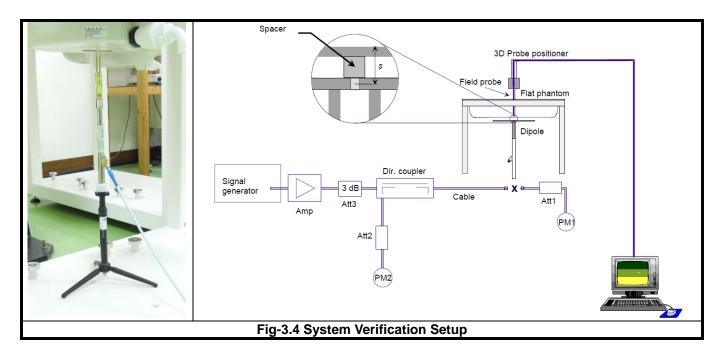
 Report Format Version 5.0.0
 Page No.
 : 13 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



The following table gives the recipes for tissue simulating liquids.

**Table-3.2 Recipes of Tissue Simulating Liquid** 


| Tissue<br>Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton<br>X-100 | Water | Diethylene<br>Glycol<br>Mono-<br>hexylether |
|----------------|-------------|------|-----|------|---------|-----------------|-------|---------------------------------------------|
| H750           | 0.2         | -    | 0.2 | 1.5  | 56.0    | -               | 42.1  | -                                           |
| H835           | 0.2         | -    | 0.2 | 1.5  | 57.0    | -               | 41.1  | -                                           |
| H900           | 0.2         | -    | 0.2 | 1.4  | 58.0    | -               | 40.2  | -                                           |
| H1450          | -           | 43.3 | -   | 0.6  | -       | -               | 56.1  | -                                           |
| H1640          | -           | 45.8 | -   | 0.5  | -       | -               | 53.7  | -                                           |
| H1750          | -           | 47.0 | -   | 0.4  | -       | -               | 52.6  | -                                           |
| H1800          | -           | 44.5 | -   | 0.3  | -       | -               | 55.2  | -                                           |
| H1900          | -           | 44.5 | -   | 0.2  | -       | -               | 55.3  | -                                           |
| H2000          | -           | 44.5 | -   | 0.1  | -       | -               | 55.4  | -                                           |
| H2300          | -           | 44.9 | -   | 0.1  | -       | -               | 55.0  | -                                           |
| H2450          | -           | 45.0 | -   | 0.1  | -       | -               | 54.9  | -                                           |
| H2600          | -           | 45.1 | -   | 0.1  | -       | -               | 54.8  | -                                           |
| H3500          | -           | 8.0  | -   | 0.2  | -       | 20.0            | 71.8  | -                                           |
| H5G            | -           | -    | -   | -    | -       | 17.2            | 65.5  | 17.3                                        |
| B750           | 0.2         | -    | 0.2 | 0.8  | 48.8    | -               | 50.0  | -                                           |
| B835           | 0.2         | -    | 0.2 | 0.9  | 48.5    | -               | 50.2  | -                                           |
| B900           | 0.2         | -    | 0.2 | 0.9  | 48.2    | -               | 50.5  | -                                           |
| B1450          | -           | 34.0 | -   | 0.3  | -       | -               | 65.7  | -                                           |
| B1640          | -           | 32.5 | -   | 0.3  | -       | -               | 67.2  | -                                           |
| B1750          | -           | 31.0 | -   | 0.2  | -       | -               | 68.8  | -                                           |
| B1800          | -           | 29.5 | -   | 0.4  | -       | -               | 70.1  | -                                           |
| B1900          | -           | 29.5 | -   | 0.3  | -       | -               | 70.2  | -                                           |
| B2000          | -           | 30.0 | -   | 0.2  | -       | -               | 69.8  | -                                           |
| B2300          | -           | 31.0 | -   | 0.1  | -       | -               | 68.9  | -                                           |
| B2450          | -           | 31.4 | -   | 0.1  | -       | -               | 68.5  | -                                           |
| B2600          | -           | 31.8 | -   | 0.1  | -       | -               | 68.1  | -                                           |
| B3500          | -           | 28.8 | -   | 0.1  | -       | -               | 71.1  | -                                           |
| B5G            | -           | -    | -   | 1    | -       | 10.7            | 78.6  | 10.7                                        |

Report Format Version 5.0.0 Page No. : 14 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.



The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Report Format Version 5.0.0 Report No. : SA130326C14

Revision: R01

Page No. : 15 of 85
Issued Date : May 09, 2013



#### 3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

#### 3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664D01v01, the resolution for Area and Zoom scan is specified in the table below.

| Items                 | <= 2 GHz | 2-3 GHz  | 3-4 GHz  | 4-5 GHz  | 5-6 GHz  |
|-----------------------|----------|----------|----------|----------|----------|
| Area Scan<br>(Δx, Δy) | <= 15 mm | <= 12 mm | <= 12 mm | <= 10 mm | <= 10 mm |
| Zoom Scan<br>(Δx, Δy) | <= 8 mm  | <= 5 mm  | <= 5 mm  | <= 4 mm  | <= 4 mm  |
| Zoom Scan<br>(Δz)     | <= 5 mm  | <= 5 mm  | <= 4 mm  | <= 3 mm  | <= 2 mm  |
| Zoom Scan<br>Volume   | >= 30 mm | >= 30 mm | >= 28 mm | >= 25 mm | >= 22 mm |

#### Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of  $\Delta x / \Delta y$  (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

#### 3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Report Format Version 5.0.0 Page No. : 16 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



#### 3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

#### 3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

#### 3.4.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Report Format Version 5.0.0 Page No. : 17 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 4. SAR Measurement Evaluation

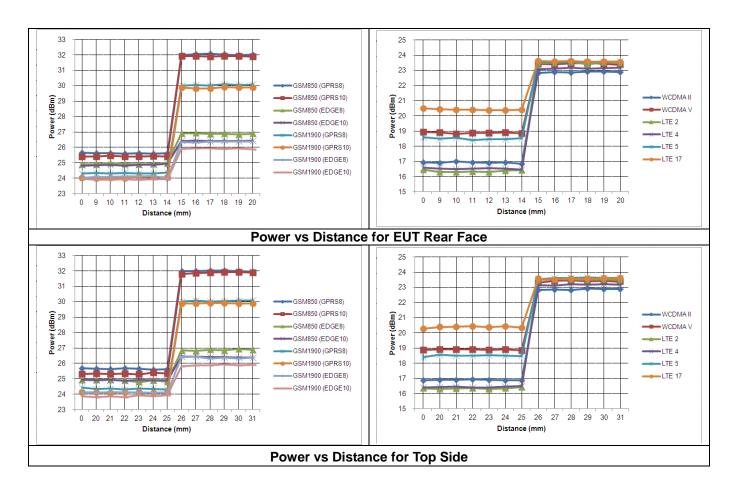
### 4.1 EUT Configuration and Setting

The EUT is a data transmitter device that contains one WWAN transmitter. The GSM/WCDMA and LTE cannot transmit simultaneously. Confirming the LTE transmitter follows 3GPP standards, is category 3, Band 2 (BW 1.4/3/5/10/15/20 MHz), Band 4 (BW 1.4/3/5/10/15/20 MHz), Band 5 (BW 1.4/3/5/10 MHz), Band 17 (BW 5/10 MHz), supports QPSK / 16QAM modulations. Tested per 3GPP 36.521 maximum transmit procedures for both QPSK and 16QAM.

LTE Maximum Power Reduction in accordance with 3GPP 36.101: Power Reduction in accordance to 3GPP is active all times during LTE operation.

|            | Channel Bandwidth / RB Configurations |          |          |           |           |           |                 |  |  |  |  |
|------------|---------------------------------------|----------|----------|-----------|-----------|-----------|-----------------|--|--|--|--|
| Modulation | BW 1.4 MHz                            | BW 3 MHz | BW 5 MHz | BW 10 MHz | BW 15 MHz | BW 20 MHz | Setting<br>(dB) |  |  |  |  |
| QPSK       | > 5                                   | > 4      | > 8      | > 12      | > 16      | > 18      | 1               |  |  |  |  |
| 16QAM      | <= 5                                  | <= 4     | <= 8     | <= 12     | <= 16     | <= 18     | 1               |  |  |  |  |
| 16QAM      | > 5                                   | > 4      | > 8      | > 12      | > 16      | > 18      | 2               |  |  |  |  |

Note: MPR is according to the standard and implemented in the circuit (mandatory).


In addition, the device is compliant with A-MPR requirements defined in 36.101 section 6.2.4 that may be required to meet 3GPP Adjacent Channel Leakage Ratio ("ACLR") requirements. A-MPR was disabled for all FCC compliance testing.

The device is tablet PC which supports WWAN, WLAN, Bluetooth and wireless hotspot capabilities. Because of the SAR issue, this device has designed with a proximity sensor which can trigger/not trigger power reduction for GPRS/EDGE, WCDMA and LTE on EUT Rear Face and Top Side orientations for SAR compliance. Others RF capabilities (WLAN and BT) have no power reduction. The power levels for all wireless technologies and the power reduction please refer to section 4.6.1 of this report.

The power vs distance plots for EUT Rear Face and Top Side and power chart for tilt angle influence are shown as below.

Report Format Version 5.0.0 Page No. : 18 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013





According to the procedures noticed in KDB 616217 D04, the proximity sensor triggering distance is 14 mm for EUT Rear Face, and 25 mm for Top Side. The separation distance of 25 mm determined by the smallest triggering distance on Top Side is used to assess the tilt angle influence. However, the sensor will be release during  $\pm 45$  degree until the separation distance be reduced to 18 mm. Therefore, the smallest separation distance for tilt angle influence on Top Side is 17 mm. Considering the production units may have 1 mm tolerance for proximity sensor triggering, the conservative triggering distance based on the separation distance for the sensor triggered / not triggered as EUT with power reduction at 0 mm, EUT without power reduction at 14 mm for EUT Rear Face, and EUT without power reduction at 17 mm for Top Side is used to test SAR.

Report Format Version 5.0.0 Report No. : SA130326C14

Revision: R01

Page No. : 19 of 85 Issued Date : May 09, 2013



The simultaneous transmission possibilities are listed as below.

| Simultaneous Tx  Combination | RF Configuration                      | Hotspot<br>Mode | Body SAR<br>Evaluated? |
|------------------------------|---------------------------------------|-----------------|------------------------|
| 1                            | GSM850 (Data) + WLAN 2.4G (Data)      | Yes             | Yes                    |
| 2                            | GSM1900 (Data) + WLAN 2.4G (Data)     | Yes             | Yes                    |
| 3                            | WCDMA II (Data) + WLAN 2.4G (Data)    | Yes             | Yes                    |
| 4                            | WCDMA V (Data) + WLAN 2.4G (Data)     | Yes             | Yes                    |
| 5                            | LTE Band 2 (Data) + WLAN 2.4G (Data)  | Yes             | Yes                    |
| 6                            | LTE Band 4 (Data) + WLAN 2.4G (Data)  | Yes             | Yes                    |
| 7                            | LTE Band 5 (Data) + WLAN 2.4G (Data)  | Yes             | Yes                    |
| 8                            | LTE Band 17 (Data) + WLAN 2.4G (Data) | Yes             | Yes                    |
| 9                            | GSM850 (Data) + WLAN 5G (Data)        | No              | Yes                    |
| 10                           | GSM1900 (Data) + WLAN 5G (Data)       | No              | Yes                    |
| 11                           | WCDMA II (Data) + WLAN 5G (Data)      | No              | Yes                    |
| 12                           | WCDMA V (Data) + WLAN 5G (Data)       | No              | Yes                    |
| 13                           | LTE Band 2 (Data) + WLAN 5G (Data)    | No              | Yes                    |
| 14                           | LTE Band 4 (Data) + WLAN 5G (Data)    | No              | Yes                    |
| 15                           | LTE Band 5 (Data) + WLAN 5G (Data)    | No              | Yes                    |
| 16                           | LTE Band 17 (Data) + WLAN 5G (Data)   | No              | Yes                    |
| 17                           | GSM850 (Data) + BT (Data)             | No              | Yes                    |
| 18                           | GSM1900 (Data) + BT (Data)            | No              | Yes                    |
| 19                           | WCDMA II (Data) + BT (Data)           | No              | Yes                    |
| 20                           | WCDMA V (Data) + BT (Data)            | No              | Yes                    |
| 21                           | LTE Band 2 (Data) + BT (Data)         | No              | Yes                    |
| 22                           | LTE Band 4 (Data) + BT (Data)         | No              | Yes                    |
| 23                           | LTE Band 5 (Data) + BT (Data)         | No              | Yes                    |
| 24                           | LTE Band 17 (Data) + BT (Data)        | No              | Yes                    |

#### Note:

- 1. This device does not support voice transmission capability.
- 2. The 2.4G WLAN and 5G WLAN cannot transmit simultaneously.
- 3. WLAN and BT cannot transmit at the same time.
- 4. The proximity sensor and power reduction do not affect the simultaneous transmission modes.
- 5. The power reduction due to P-sensor is also active for hotspot mode.
- 6. Since the body SAR test requirement for tablet is more conservative than the hotspot mode, hotspot SAR is not required.

 Report Format Version 5.0.0
 Page No. : 20 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



The power reduction is depends on the proximity sensor input. For a steady SAR test, the power reduction was enabled/disabled manually by engineering software during SAR testing.

For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C is used for GSM/WCDMA, and Anritsu MT8820C is used for LTE). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

For GSM850, the power control level is set to 5. For GPRS850 (GMSK, CS1), the power control level is set to 5. For EDGE850 (8PSK:MCS9), the power control level is set to 8. For GSM1900, the power control level is set to 0. For GPRS1900 (GMSK, CS1), the power control level is set to 0. For EDGE1900 (8PSK:MCS9), the power control level is set to 2.

For WCDMA, head and body SAR is tested under 12.2k RMC mode with power control set all up bits. SAR for AMR is not required since its power is less than 1/4 dB higher than RMC. SAR for HSDPA/HSUPA is not required since its power is less than 1/4 dB higher than RMC without HSDPA/HSUPA and SAR for 12.2 kbps RMC is less than 75% of the SAR limit (1.2 W/kg).

For LTE, set the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB in base station simulator. When the EUT has registered and communicated to base station simulator, set the simulator to make EUT transmitting the maximum radiated power. The steps for system simulator (Anritsu MT8820C) setup are as below.

- 1. Press the "Std" button to select "LTE 22.20S" function
- 2. Choose the "Screen Select" item to "Fundamental Measurement"
- 3. Enter the "Common" item
- 4. Set the Operating Band
- 5. Set the Channel Bandwidth
- 6. Set the UL Channel & Frequency
- 7. Set the Modulation
- 8. Set the RB number and RB shift
- 9. Press "Start Call" button when EUT register to the system simulator
- 10. Set the TX-1 Max. Power to make the EUT transmit maximum output power

For WLAN SAR testing, the EUT has installed WLAN engineering testing software which can provide continuous transmitting RF signal. According to KDB 248227 D01, WLAN SAR should tested at the lowest data rate, and testing at higher data rate is not required when the maximum average output power is less than 1/4 dB higher than those measured at the lowest data rate. Since the WLAN power at lowest data rate has highest output power, WLAN SAR for this device was performed at the lowest data rate as set in 1 Mbps for 802.11b, and 6 Mbps for 802.11a. This RF signal utilized in SAR measurement has almost 100% duty cycle and the duty factor is 1 for WLAN SAR testing.

Report Format Version 5.0.0 Page No. : 21 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 4.2 EUT Testing Position

According to KDB 616217 D04v01, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required.

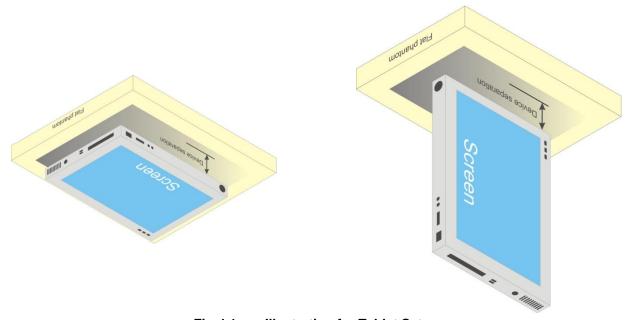



Fig-4.1 Illustration for Tablet Setup

 Report Format Version 5.0.0
 Page No.
 : 22 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



According to KDB 447498 D01v05, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula.

1. For the test separation distance <= 50 mm

$$\frac{\text{Max.Tune up Power}_{(mW)}}{\text{Min.Test Separation Distance}_{(mm)}} \times \sqrt{f_{(GHz)}} \leq 3.0$$

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

2. For the test separation distance > 50 mm, and the frequency at 100 MHz to 1500 MHz

$$\left[ \text{(Threshold at 50 mm in Step 1)} + \text{(Test Separation Distance} - 50 \text{ mm)} \times \left( \frac{f_{\text{(MHz)}}}{150} \right) \right]_{\text{(mW)}}$$

3. For the test separation distance > 50 mm, and the frequency at > 1500 MHz to 6 GHz  $\left[ (\text{Threshold at 50 mm in Step 1}) + (\text{Test Separation Distance} - 50 \text{ mm}) \times 10 \right]_{(mW)}$ 

|              | Max.                      | Max.                     |                            | Rear Face                      |                            |                            | Left Side                      |                            |                            | Right Side                     | !                          |                            | Top Side                       |                            | E                          | Bottom Sid                     | е                          |
|--------------|---------------------------|--------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|
| Mode         | Tune-up<br>Power<br>(dBm) | Tune-up<br>Power<br>(mW) | Ant. to<br>Surface<br>(mm) | Exclusion<br>Threshold<br>(mW) | Require<br>SAR<br>Testing? |
| GSM<br>850   | 26.0                      | 398                      | 5                          | 16                             | Yes                        | 165.7                      | 818                            | No                         | 19.8                       | 64                             | Yes                        | 2.45                       | 16                             | Yes                        | 165.05                     | 814                            | No                         |
| GSM<br>1900  | 24.0                      | 251                      | 5                          | 11                             | Yes                        | 165.7                      | 1266                           | No                         | 19.8                       | 43                             | Yes                        | 2.45                       | 11                             | Yes                        | 165.05                     | 1259                           | No                         |
| WCDMA<br>II  | 23.0                      | 200                      | 5                          | 11                             | Yes                        | 165.7                      | 1266                           | No                         | 19.8                       | 43                             | Yes                        | 2.45                       | 11                             | Yes                        | 165.05                     | 1259                           | No                         |
| WCDMA<br>V   | 23.5                      | 224                      | 5                          | 16                             | Yes                        | 165.7                      | 816                            | No                         | 19.8                       | 65                             | Yes                        | 2.45                       | 16                             | Yes                        | 165.05                     | 813                            | No                         |
| LTE<br>2     | 23.6                      | 229                      | 5                          | 11                             | Yes                        | 165.7                      | 1266                           | No                         | 19.8                       | 43                             | Yes                        | 2.45                       | 11                             | Yes                        | 165.05                     | 1259                           | No                         |
| LTE<br>4     | 23.3                      | 214                      | 5                          | 11                             | Yes                        | 165.7                      | 1270                           | No                         | 19.8                       | 45                             | Yes                        | 2.45                       | 11                             | Yes                        | 165.05                     | 1264                           | No                         |
| LTE<br>5     | 23.7                      | 234                      | 5                          | 16                             | Yes                        | 165.7                      | 816                            | No                         | 19.8                       | 65                             | Yes                        | 2.45                       | 16                             | Yes                        | 165.05                     | 813                            | No                         |
| LTE<br>17    | 23.7                      | 234                      | 5                          | 18                             | Yes                        | 165.7                      | 728                            | No                         | 19.8                       | 70                             | Yes                        | 2.45                       | 18                             | Yes                        | 165.05                     | 725                            | No                         |
| WLAN<br>2.4G | 13.7                      | 23                       | 5                          | 10                             | Yes                        | 32.1                       | 61                             | No                         | 226.1                      | 1857                           | No                         | 6.15                       | 12                             | Yes                        | 173.14                     | 1327                           | No                         |
| WLAN<br>5.2G | 11.5                      | 14                       | 5                          | 7                              | Yes                        | 32.1                       | 42                             | No                         | 226.1                      | 1827                           | No                         | 6.15                       | 8                              | Yes                        | 173.14                     | 1297                           | No                         |
| WLAN<br>5.8G | 11.0                      | 13                       | 5                          | 6                              | Yes                        | 32.1                       | 40                             | No                         | 226.1                      | 1823                           | No                         | 6.15                       | 8                              | Yes                        | 173.14                     | 1294                           | No                         |
| ВТ           | 6.5                       | 4                        | 5                          | 10                             | No                         | 32.1                       | 61                             | No                         | 226.1                      | 1856                           | No                         | 6.15                       | 12                             | No                         | 173.14                     | 1327                           | No                         |

 Report Format Version 5.0.0
 Page No.
 : 23 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



## 4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

| Test<br>Date  | Tissue<br>Type | Frequency<br>(MHz) | Liquid<br>Temp.<br>(℃) | Measured<br>Conductivity<br>(σ) | Measured<br>Permittivity<br>(ε <sub>r</sub> ) | Target<br>Conductivity<br>(σ) | Target<br>Permittivity<br>(ε <sub>r</sub> ) | Conductivity Deviation (%) | Permittivity<br>Deviation<br>(%) |
|---------------|----------------|--------------------|------------------------|---------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------|----------------------------|----------------------------------|
| Apr. 13, 2013 | Body           | 750                | 20.9                   | 0.971                           | 55.60                                         | 0.96                          | 55.5                                        | 1.15                       | 0.18                             |
| Apr. 04, 2013 | Body           | 835                | 20.8                   | 0.979                           | 55.854                                        | 0.97                          | 55.2                                        | 0.93                       | 1.18                             |
| Apr. 12, 2013 | Body           | 835                | 20.6                   | 0.973                           | 55.201                                        | 0.97                          | 55.2                                        | 0.31                       | 0.00                             |
| Apr. 16, 2013 | Body           | 1750               | 20.4                   | 1.468                           | 53.825                                        | 1.49                          | 53.4                                        | -1.48                      | 0.80                             |
| Apr. 02, 2013 | Body           | 1900               | 20.1                   | 1.551                           | 52.998                                        | 1.52                          | 53.3                                        | 2.04                       | -0.57                            |
| Apr. 07, 2013 | Body           | 1900               | 20.5                   | 1.551                           | 52.983                                        | 1.52                          | 53.3                                        | 2.04                       | -0.59                            |
| Apr. 14, 2013 | Body           | 1900               | 20.2                   | 1.55                            | 52.906                                        | 1.52                          | 53.3                                        | 1.97                       | -0.74                            |
| Apr. 18, 2013 | Body           | 2450               | 20.9                   | 1.966                           | 54.662                                        | 1.95                          | 52.7                                        | 0.82                       | 3.72                             |
| Apr. 13, 2013 | Body           | 5200               | 20.7                   | 5.363                           | 47.683                                        | 5.30                          | 49.0                                        | 1.19                       | -2.69                            |
| Apr. 13, 2013 | Body           | 5800               | 20.9                   | 6.181                           | 46.386                                        | 6.00                          | 48.2                                        | 3.02                       | -3.76                            |

#### Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within  $\pm 5\%$  of the target values. Liquid temperature during the SAR testing must be within  $\pm 2\%$ .

### 4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01v01. The validation status in tabulated summary is as below.

| Tool          | Drobo        |           |          | Measured         | Measured                    | Va                   | lidation for C     | w                 | Valida             | Validation for Modulation |      |  |
|---------------|--------------|-----------|----------|------------------|-----------------------------|----------------------|--------------------|-------------------|--------------------|---------------------------|------|--|
| Test<br>Date  | Probe<br>S/N | Calibrati | on Point | Conductivity (σ) | Permittivity $(\epsilon_r)$ | Sensitivity<br>Range | Probe<br>Linearity | Probe<br>Isotropy | Modulation<br>Type | Duty Factor               | PAR  |  |
| Apr. 13, 2013 | 3590         | Body      | 750      | 0.971            | 55.60                       | Pass                 | Pass               | Pass              | N/A                | N/A                       | N/A  |  |
| Apr. 04, 2013 | 3864         | Body      | 835      | 0.979            | 55.854                      | Pass                 | Pass               | Pass              | GMSK               | Pass                      | N/A  |  |
| Apr. 12, 2013 | 3661         | Body      | 835      | 0.973            | 55.201                      | Pass                 | Pass               | Pass              | N/A                | N/A                       | N/A  |  |
| Apr. 16, 2013 | 3590         | Body      | 1750     | 1.468            | 53.825                      | Pass                 | Pass               | Pass              | N/A                | N/A                       | N/A  |  |
| Apr. 02, 2013 | 3864         | Body      | 1900     | 1.551            | 52.998                      | Pass                 | Pass               | Pass              | N/A                | N/A                       | N/A  |  |
| Apr. 07, 2013 | 3661         | Body      | 1900     | 1.551            | 52.983                      | Pass                 | Pass               | Pass              | GMSK               | Pass                      | N/A  |  |
| Apr. 14, 2013 | 3590         | Body      | 1900     | 1.55             | 52.906                      | Pass                 | Pass               | Pass              | N/A                | N/A                       | N/A  |  |
| Apr. 18, 2013 | 3661         | Body      | 2450     | 1.966            | 54.662                      | Pass                 | Pass               | Pass              | OFDM               | N/A                       | Pass |  |
| Apr. 13, 2013 | 3661         | Body      | 5200     | 5.363            | 47.683                      | Pass                 | Pass               | Pass              | OFDM               | N/A                       | Pass |  |
| Apr. 13, 2013 | 3590         | Body      | 5800     | 6.181            | 46.386                      | Pass                 | Pass               | Pass              | OFDM               | N/A                       | Pass |  |

Report Format Version 5.0.0 Page No. : 24 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 4.5 System Verification

The measuring result for system verification is tabulated as below.

| Test<br>Date  | Mode | Frequency<br>(MHz) | 1W Target<br>SAR-1g<br>(W/kg) | Measured<br>SAR-1g<br>(W/kg) | Normalized<br>to 1W<br>SAR-1g<br>(W/kg) | Deviation<br>(%) | Dipole<br>S/N | Probe<br>S/N | DAE<br>S/N |
|---------------|------|--------------------|-------------------------------|------------------------------|-----------------------------------------|------------------|---------------|--------------|------------|
| Apr. 13, 2013 | Body | 750                | 8.80                          | 2.27                         | 9.08                                    | 3.18             | 1013          | 3590         | 861        |
| Apr. 04, 2013 | Body | 835                | 9.60                          | 2.49                         | 9.96                                    | 3.75             | 4d021         | 3864         | 679        |
| Apr. 12, 2013 | Body | 835                | 9.60                          | 2.55                         | 10.20                                   | 6.25             | 4d021         | 3661         | 579        |
| Apr. 16, 2013 | Body | 1750               | 37.20                         | 9.00                         | 36.00                                   | -3.23            | 1055          | 3590         | 861        |
| Apr. 02, 2013 | Body | 1900               | 41.00                         | 9.53                         | 38.12                                   | -7.02            | 5d036         | 3864         | 679        |
| Apr. 07, 2013 | Body | 1900               | 41.00                         | 10.5                         | 42.00                                   | 2.44             | 5d036         | 3661         | 579        |
| Apr. 14, 2013 | Body | 1900               | 41.00                         | 9.91                         | 39.64                                   | -3.32            | 5d036         | 3590         | 861        |
| Apr. 18, 2013 | Body | 2450               | 49.60                         | 12.1                         | 48.40                                   | -2.42            | 737           | 3661         | 579        |
| Apr. 13, 2013 | Body | 5200               | 73.00                         | 7.73                         | 77.30                                   | 5.89             | 1019          | 3661         | 579        |
| Apr. 13, 2013 | Body | 5800               | 73.40                         | 6.80                         | 68.00                                   | -7.36            | 1019          | 3590         | 861        |

#### Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

### 4.6 Maximum Output Power

#### 4.6.1 Maximum Conducted Power

The maximum conducted power (Unit: dBm) including tune-up tolerance is shown as below.

| Mode                     | GSM850<br>(without Power Reduction) | GSM850 (with Power Reduction) | Power Reduction (dB) |
|--------------------------|-------------------------------------|-------------------------------|----------------------|
| GPRS 8 (GMSK, 1 Uplink)  | 32.1                                | 25.7                          | 6.4                  |
| GPRS 10 (GMSK, 2 Uplink) | 32.0                                | 25.5                          | 6.5                  |
| EDGE 8 (8PSK, 1 Uplink)  | 27.0                                | 25.0                          | 2.0                  |
| EDGE 10 (8PSK, 2 Uplink) | 26.5                                | 25.0                          | 1.5                  |

| Mode                     | GSM1900<br>(without Power Reduction) | GSM1900<br>(with Power Reduction) | Power Reduction (dB) |
|--------------------------|--------------------------------------|-----------------------------------|----------------------|
| GPRS 8 (GMSK, 1 Uplink)  | 30.2                                 | 24.5                              | 5.7                  |
| GPRS 10 (GMSK, 2 Uplink) | 30.0                                 | 24.2                              | 5.8                  |
| EDGE 8 (8PSK, 1 Uplink)  | 26.5                                 | 24.2                              | 2.3                  |
| EDGE 10 (8PSK, 2 Uplink) | 26.0                                 | 24.0                              | 2.0                  |

| Mode      | WCDMA Band II (without Power Reduction) | WCDMA Band II (with Power Reduction) | Power Reduction<br>(dB) |  |
|-----------|-----------------------------------------|--------------------------------------|-------------------------|--|
| RMC 12.2K | 23.0                                    | 17.0                                 | 6.0                     |  |

| Mode      | WCDMA Band V (without Power Reduction) | WCDMA Band V (with Power Reduction) | Power Reduction<br>(dB) |  |
|-----------|----------------------------------------|-------------------------------------|-------------------------|--|
| RMC 12.2K | 23.5                                   | 19.0                                | 4.5                     |  |

 Report Format Version 5.0.0
 Page No.
 : 25 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013

| Mode         | LTE 2 (without Power Reduction) | LTE 2 (with Power Reduction) | Power Reduction<br>(dB) |  |
|--------------|---------------------------------|------------------------------|-------------------------|--|
| QPSK / 16QAM | 23.6                            | 16.5                         | 7.1                     |  |

| Mode         | LTE 4 (without Power Reduction) | LTE 4 (with Power Reduction) | Power Reduction<br>(dB) |  |
|--------------|---------------------------------|------------------------------|-------------------------|--|
| QPSK / 16QAM | 23.3                            | 16.6                         | 6.7                     |  |

| Mode         | LTE 5 (without Power Reduction) | LTE 5 (with Power Reduction) | Power Reduction<br>(dB) |  |
|--------------|---------------------------------|------------------------------|-------------------------|--|
| QPSK / 16QAM | 23.7                            | 18.6                         | 5.1                     |  |

| Mode         | LTE 17 (without Power Reduction) | LTE 17 (with Power Reduction) | Power Reduction<br>(dB) |  |
|--------------|----------------------------------|-------------------------------|-------------------------|--|
| QPSK / 16QAM | 23.7                             | 20.5                          | 3.2                     |  |

| Mode         | 2.4G WLAN | 5.2G WLAN | 5.8G WLAN |
|--------------|-----------|-----------|-----------|
| 802.11b      | 13.5      | N/A       | N/A       |
| 802.11g      | 13.7      | N/A       | N/A       |
| 802.11a      | N/A       | 11.5      | 11.0      |
| 802.11n HT20 | 13.0      | 11.5      | 11.0      |
| 802.11n HT40 | N/A       | 10.5      | 11.0      |

| Mode | Bluetooth |  |  |
|------|-----------|--|--|
| All  | 6.5       |  |  |

 Report Format Version 5.0.0
 Page No.
 : 26 of 85

 Report No. : SA130326C14
 Issued Date
 : May 09, 2013



#### 4.6.2 Measured Conducted Power Result

The measuring conducted power (Unit: dBm) is shown as below.

| Band                                |                                     | GSM850               |                  |                 | GSM1900 |        |  |  |  |
|-------------------------------------|-------------------------------------|----------------------|------------------|-----------------|---------|--------|--|--|--|
| Channel                             | 128                                 | 189                  | 251              | 512             | 661     | 810    |  |  |  |
| Frequency (MHz)                     | 824.2                               | 836.4                | 848.8            | 1850.2          | 1880.0  | 1909.8 |  |  |  |
|                                     | EUT wit                             | hout Power Red       | uction (P-Senso  | r NOT Triggered | )       |        |  |  |  |
|                                     |                                     | <b>Maximum Burst</b> | -Averaged Outp   | ut Power        |         |        |  |  |  |
| GPRS 8 (GMSK, 1 Uplink)             | 32.02                               | 32.04                | 32.09            | 29.79           | 29.99   | 30.19  |  |  |  |
| GPRS 10 (GMSK, 2 Uplink)            | 31.72                               | 31.78                | 31.81            | 29.66           | 29.82   | 29.91  |  |  |  |
| EDGE 8 (8PSK, 1 Uplink)             | 26.70                               | 26.67                | 26.72            | 25.90           | 25.90   | 26.08  |  |  |  |
| EDGE 10 (8PSK, 2 Uplink)            | 26.45                               | 26.39                | 26.41            | 25.73           | 25.70   | 25.84  |  |  |  |
| Maximum Frame-Averaged Output Power |                                     |                      |                  |                 |         |        |  |  |  |
| GPRS 8 (GMSK, 1 Uplink)             | 23.02                               | 23.04                | 23.09            | 20.79           | 20.99   | 21.19  |  |  |  |
| GPRS 10 (GMSK, 2 Uplink)            | 25.72                               | 25.78                | 25.81            | 23.66           | 23.82   | 23.91  |  |  |  |
| EDGE 8 (8PSK, 1 Uplink)             | 17.70                               | 17.67                | 17.72            | 16.90           | 16.90   | 17.08  |  |  |  |
| EDGE 10 (8PSK, 2 Uplink)            | 20.45                               | 20.39                | 20.41            | 19.73           | 19.70   | 19.84  |  |  |  |
|                                     | EU <sup>-</sup>                     | T with Power Red     | duction (P-Sense | or Triggered)   |         |        |  |  |  |
|                                     |                                     | <b>Maximum Burst</b> | -Averaged Outp   | ut Power        |         |        |  |  |  |
| GPRS 8 (GMSK, 1 Uplink)             | 25.51                               | 25.64                | 25.65            | 24.38           | 24.30   | 24.39  |  |  |  |
| GPRS 10 (GMSK, 2 Uplink)            | 25.29                               | 25.43                | 25.44            | 24.17           | 24.15   | 24.18  |  |  |  |
| EDGE 8 (8PSK, 1 Uplink)             | 24.93                               | 24.78                | 24.76            | 24.11           | 23.93   | 24.15  |  |  |  |
| EDGE 10 (8PSK, 2 Uplink)            | 24.68                               | 24.54                | 24.57            | 23.80           | 23.66   | 23.81  |  |  |  |
|                                     | Maximum Frame-Averaged Output Power |                      |                  |                 |         |        |  |  |  |
| GPRS 8 (GMSK, 1 Uplink)             | 16.51                               | 16.64                | 16.65            | 15.38           | 15.30   | 15.39  |  |  |  |
| GPRS 10 (GMSK, 2 Uplink)            | 19.29                               | 19.43                | 19.44            | 18.17           | 18.15   | 18.18  |  |  |  |
| EDGE 8 (8PSK, 1 Uplink)             | 15.93                               | 15.78                | 15.76            | 15.11           | 14.93   | 15.15  |  |  |  |
| EDGE 10 (8PSK, 2 Uplink)            | 18.68                               | 18.54                | 18.57            | 17.80           | 17.66   | 17.81  |  |  |  |

#### Note:

- 1. SAR testing was performed on the maximum frame-averaged power mode.
- 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8)

Report Format Version 5.0.0 Page No. : 27 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



| Band            | \      | WCDMA Band    | II                  | V              | VCDMA Band | V     | 3PGG |
|-----------------|--------|---------------|---------------------|----------------|------------|-------|------|
| Channel         | 9262   | 9400          | 9538                | 4132           | 4182       | 4233  | MPR  |
| Frequency (MHz) | 1852.4 | 1880.0        | 1907.6              | 826.4          | 836.4      | 846.6 | (dB) |
|                 | EUT v  | without Power | <b>Reduction (P</b> | Sensor NOT     | Triggered) |       |      |
| RMC 12.2K       | 22.83  | 22.97         | 22.65               | 23.41          | 23.14      | 23.31 | -    |
| HSDPA Subtest-1 | 22.05  | 22.19         | 21.87               | 22.39          | 22.12      | 22.29 | 0    |
| HSDPA Subtest-2 | 22.03  | 22.17         | 21.85               | 22.35          | 22.08      | 22.25 | 0    |
| HSDPA Subtest-3 | 21.23  | 21.37         | 21.05               | 21.85          | 21.58      | 21.75 | 0.5  |
| HSDPA Subtest-4 | 21.54  | 21.68         | 21.36               | 21.84          | 21.57      | 21.74 | 0.5  |
| HSUPA Subtest-1 | 20.55  | 20.69         | 20.37               | 21.60          | 21.33      | 21.50 | 0    |
| HSUPA Subtest-2 | 18.47  | 18.55         | 18.37               | 19.57          | 19.32      | 19.50 | 2    |
| HSUPA Subtest-3 | 19.34  | 19.38         | 19.36               | 20.47          | 20.20      | 20.37 | 1    |
| HSUPA Subtest-4 | 18.48  | 18.59         | 18.29               | 19.33          | 19.14      | 19.29 | 2    |
| HSUPA Subtest-5 | 20.43  | 20.37         | 20.35               | 21.30          | 20.97      | 21.04 | 0    |
|                 | E      | UT with Powe  | r Reduction (F      | P-Sensor Trigg | jered)     |       |      |
| RMC 12.2K       | 16.65  | 16.70         | 16.64               | 18.79          | 18.83      | 18.76 | -    |
| HSDPA Subtest-1 | 15.57  | 15.77         | 15.54               | 17.44          | 18.02      | 17.92 | -    |
| HSDPA Subtest-2 | 15.58  | 15.84         | 15.68               | 17.37          | 17.18      | 17.26 | -    |
| HSDPA Subtest-3 | 14.92  | 15.17         | 15.52               | 16.89          | 16.78      | 16.87 | -    |
| HSDPA Subtest-4 | 15.11  | 15.21         | 15.48               | 17.53          | 16.80      | 17.45 | -    |
| HSUPA Subtest-1 | 14.95  | 14.94         | 15.22               | 17.63          | 17.80      | 17.76 | -    |
| HSUPA Subtest-2 | 14.45  | 14.91         | 15.35               | 16.75          | 16.86      | 16.64 | -    |
| HSUPA Subtest-3 | 14.19  | 14.22         | 14.66               | 16.13          | 16.07      | 16.08 | -    |
| HSUPA Subtest-4 | 15.00  | 15.12         | 15.45               | 17.19          | 17.27      | 17.25 | -    |
| HSUPA Subtest-5 | 15.21  | 15.82         | 15.55               | 17.79          | 17.78      | 17.73 | -    |

Report Format Version 5.0.0 Page No. : 28 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



| Band / BW               | Modulation | RB<br>Size    | RB<br>Offset        | Low CH<br>18607<br>Frequency<br>1850.7 MHz | Mid CH<br>18900<br>Frequency<br>1880.0 MHz | High CH<br>19193<br>Frequency<br>1909.3 MHz | 3PGG<br>MPR<br>(dB) |
|-------------------------|------------|---------------|---------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------|
|                         | <u>'</u>   | EUT without I | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                             |                     |
|                         |            | 1             | 0                   | 22.91                                      | 23.17                                      | 23.20                                       | 0                   |
|                         |            | 1             | 2                   | 22.64                                      | 22.90                                      | 22.93                                       | 0                   |
|                         |            | 1             | 5                   | 23.12                                      | 23.38                                      | 23.41                                       | 0                   |
|                         | QPSK       | 3             | 0                   | 22.72                                      | 22.98                                      | 23.01                                       | 0                   |
|                         |            | 3             | 1                   | 22.70                                      | 22.96                                      | 22.99                                       | 0                   |
|                         |            | 3             | 3                   | 22.69                                      | 22.95                                      | 22.98                                       | 0                   |
| 2 / 1.4M                |            | 6             | 0                   | 21.87                                      | 22.13                                      | 22.16                                       | 1                   |
| 2 / 1.4IVI              |            | 1             | 0                   | 21.91                                      | 22.13                                      | 22.19                                       | 1                   |
|                         |            | 1             | 2                   | 21.69                                      | 21.95                                      | 21.98                                       | 1                   |
|                         |            | 1             | 5                   | 22.35                                      | 22.51                                      | 22.54                                       | 1                   |
|                         | 16QAM      | 3             | 0                   | 21.69                                      | 21.95                                      | 21.98                                       | 1                   |
|                         |            | 3             | 1                   | 22.50                                      | 21.96                                      | 21.99                                       | 1                   |
|                         |            | 3             | 3                   | 21.69                                      | 21.95                                      | 21.98                                       | 1                   |
|                         |            | 6             | 0                   | 20.67                                      | 20.93                                      | 20.96                                       | 2                   |
|                         |            | EUT with      | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                             |                     |
|                         |            | 1             | 0                   | 15.73                                      | 15.52                                      | 16.34                                       | 0                   |
|                         |            | 1             | 2                   | 16.03                                      | 15.58                                      | 16.07                                       | 0                   |
|                         |            | 1             | 5                   | 15.98                                      | 15.54                                      | 16.09                                       | 0                   |
|                         | QPSK       | 3             | 0                   | 15.97                                      | 15.66                                      | 16.33                                       | 0                   |
|                         |            | 3             | 1                   | 16.14                                      | 15.93                                      | 16.25                                       | 0                   |
|                         |            | 3             | 3                   | 15.95                                      | 15.54                                      | 16.05                                       | 0                   |
| 2 / 1.4M                |            | 6             | 0                   | 14.97                                      | 14.93                                      | 15.14                                       | 1                   |
| ∠ / 1. <del>4</del> iVl |            | 1             | 0                   | 15.27                                      | 15.02                                      | 15.48                                       | 1                   |
|                         |            | 1             | 2                   | 15.47                                      | 15.12                                      | 15.41                                       | 1                   |
|                         |            | 1             | 5                   | 15.42                                      | 15.08                                      | 15.43                                       | 1                   |
|                         | 16QAM      | 3             | 0                   | 15.05                                      | 14.74                                      | 15.41                                       | 1                   |
|                         |            | 3             | 1                   | 15.22                                      | 15.01                                      | 15.33                                       | 1                   |
|                         |            | 3             | 3                   | 15.03                                      | 14.62                                      | 14.58                                       | 1                   |
|                         |            | 6             | 0                   | 14.41                                      | 14.47                                      | 14.48                                       | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 29 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation                                           | RB<br>Size | RB<br>Offset  | Low CH<br>18615<br>Frequency<br>1851.5 MHz | Mid CH<br>18900<br>Frequency<br>1880.0 MHz | High CH<br>19185<br>Frequency<br>1908.5 MHz | 3PGG<br>MPR<br>(dB) |  |  |  |
|-----------|------------------------------------------------------|------------|---------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------|--|--|--|
|           | EUT without Power Reduction (P-Sensor NOT Triggered) |            |               |                                            |                                            |                                             |                     |  |  |  |
|           |                                                      | 1          | 0             | 22.94                                      | 23.20                                      | 23.23                                       | 0                   |  |  |  |
|           |                                                      | 1          | 7             | 22.67                                      | 22.93                                      | 22.96                                       | 0                   |  |  |  |
|           |                                                      | 1          | 14            | 23.15                                      | 23.41                                      | 23.44                                       | 0                   |  |  |  |
|           | QPSK                                                 | 8          | 0             | 21.65                                      | 21.91                                      | 21.94                                       | 1                   |  |  |  |
|           |                                                      | 8          | 3             | 21.63                                      | 21.89                                      | 21.92                                       | 1                   |  |  |  |
|           |                                                      | 8          | 7             | 21.62                                      | 21.88                                      | 21.91                                       | 1                   |  |  |  |
| 2 / 3M    |                                                      | 15         | 0             | 21.90                                      | 22.16                                      | 22.19                                       | 1                   |  |  |  |
| 2 / SIVI  |                                                      | 1          | 0             | 21.94                                      | 22.16                                      | 22.22                                       | 1                   |  |  |  |
|           |                                                      | 1          | 7             | 21.62                                      | 21.88                                      | 21.91                                       | 1                   |  |  |  |
|           |                                                      | 1          | 14            | 22.38                                      | 22.54                                      | 22.57                                       | 1                   |  |  |  |
|           | 16QAM                                                | 8          | 0             | 20.62                                      | 20.88                                      | 20.91                                       | 2                   |  |  |  |
|           |                                                      | 8          | 3             | 20.83                                      | 20.89                                      | 20.92                                       | 2                   |  |  |  |
|           |                                                      | 8          | 7             | 20.62                                      | 20.88                                      | 20.91                                       | 2                   |  |  |  |
|           |                                                      | 15         | 0             | 20.70                                      | 20.96                                      | 20.99                                       | 2                   |  |  |  |
|           |                                                      | EUT with   | Power Reducti | ion (P-Sensor T                            | riggered)                                  |                                             |                     |  |  |  |
|           |                                                      | 1          | 0             | 15.74                                      | 15.53                                      | 16.35                                       | 0                   |  |  |  |
|           |                                                      | 1          | 7             | 16.04                                      | 15.59                                      | 16.08                                       | 0                   |  |  |  |
|           |                                                      | 1          | 14            | 15.99                                      | 15.55                                      | 16.10                                       | 0                   |  |  |  |
|           | QPSK                                                 | 8          | 0             | 14.97                                      | 14.66                                      | 15.33                                       | 1                   |  |  |  |
|           |                                                      | 8          | 3             | 15.14                                      | 14.93                                      | 15.25                                       | 1                   |  |  |  |
|           |                                                      | 8          | 7             | 14.95                                      | 14.54                                      | 15.05                                       | 1                   |  |  |  |
| 2 / 3M    |                                                      | 15         | 0             | 14.98                                      | 14.94                                      | 15.15                                       | 1                   |  |  |  |
| ∠ / SIVI  |                                                      | 1          | 0             | 15.28                                      | 15.03                                      | 15.49                                       | 1                   |  |  |  |
|           |                                                      | 1          | 7             | 15.48                                      | 15.13                                      | 15.42                                       | 1                   |  |  |  |
|           |                                                      | 1          | 14            | 15.43                                      | 15.09                                      | 15.44                                       | 1                   |  |  |  |
|           | 16QAM                                                | 8          | 0             | 14.41                                      | 14.20                                      | 14.47                                       | 2                   |  |  |  |
|           |                                                      | 8          | 3             | 14.48                                      | 14.47                                      | 14.49                                       | 2                   |  |  |  |
|           |                                                      | 8          | 7             | 14.49                                      | 14.08                                      | 14.49                                       | 2                   |  |  |  |
|           |                                                      | 15         | 0             | 14.42                                      | 14.48                                      | 14.49                                       | 2                   |  |  |  |

 Report Format Version 5.0.0
 Page No.
 : 30 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size    | RB<br>Offset        | Low CH<br>18625<br>Frequency<br>1852.5 MHz | Mid CH<br>18900<br>Frequency<br>1880.0 MHz | High CH<br>19175<br>Frequency<br>1907.5 MHz                                                                                                                                        | 3PGG<br>MPR<br>(dB) |
|-----------|------------|---------------|---------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|           |            | EUT without l | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                                                                                                                                                                    |                     |
|           |            | 1             | 0                   | 22.97                                      | 23.23                                      | 23.26                                                                                                                                                                              | 0                   |
|           |            | 1             | 12                  | 22.70                                      | 22.96                                      | 22.99                                                                                                                                                                              | 0                   |
|           |            | 1             | 24                  | 23.18                                      | 23.44                                      | 19175<br>/ Frequency<br>z 1907.5 MHz<br>d)<br>23.26                                                                                                                                | 0                   |
|           | QPSK       | 12            | 0                   | 21.62                                      | 21.88                                      |                                                                                                                                                                                    | 1                   |
|           |            | 12            | 6                   | 21.91                                      | 21.87                                      |                                                                                                                                                                                    | 1                   |
|           |            | 12            | 13                  | 21.65                                      | 21.91                                      |                                                                                                                                                                                    | 1                   |
| 2 / 5M    |            | 25            | 0                   | 21.93                                      | 22.19                                      |                                                                                                                                                                                    | 1                   |
| 2 / SIVI  |            | 1             | 0                   | 21.97                                      | 22.19                                      | 22.25                                                                                                                                                                              | 1                   |
|           |            | 1             | 12                  | 21.65                                      | 21.91                                      | 21.94                                                                                                                                                                              | 1                   |
|           |            | 1             | 24                  | 22.41                                      | 22.57                                      | 22.50                                                                                                                                                                              | 1                   |
|           | 16QAM      | 12            | 0                   | 20.95                                      | 20.91                                      | 20.94                                                                                                                                                                              | 2                   |
|           |            | 12            | 6                   | 20.91                                      | 20.97                                      | 20.90                                                                                                                                                                              | 2                   |
|           |            | 12            | 13                  | 20.91                                      | 20.87                                      | 20.90                                                                                                                                                                              | 2                   |
|           |            | 25            | 0                   | 20.73                                      | 20.99                                      | 21.02                                                                                                                                                                              | 2                   |
|           |            | EUT with      | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                                                                                                                                                                    |                     |
|           |            | 1             | 0                   | 15.76                                      | 15.51                                      | 16.37                                                                                                                                                                              | 0                   |
|           |            | 1             | 12                  | 16.06                                      | 15.61                                      | 16.10                                                                                                                                                                              | 0                   |
|           |            | 1             | 24                  | 16.01                                      | 15.57                                      | 19175 Frequency 1907.5 MHz  23.26 22.99 23.47 21.91 21.90 21.94 22.22 22.25 21.94 22.50 20.90 20.90 21.02  16.37 16.10 16.12 15.35 15.27 15.07 15.17 15.41 15.44 15.46 14.49 14.41 | 0                   |
|           | QPSK       | 12            | 0                   | 14.99                                      | 14.68                                      |                                                                                                                                                                                    | 1                   |
|           |            | 12            | 6                   | 15.16                                      | 14.95                                      | 15.27                                                                                                                                                                              | 1                   |
|           |            | 12            | 13                  | 14.97                                      | 14.56                                      | 15.07                                                                                                                                                                              | 1                   |
| 2 / 5M    |            | 25            | 0                   | 15.00                                      | 14.96                                      | 15.17                                                                                                                                                                              | 1                   |
| Z / 3IVI  |            | 1             | 0                   | 15.30                                      | 15.05                                      | 15.41                                                                                                                                                                              | 1                   |
|           |            | 1             | 12                  | 15.40                                      | 15.15                                      | 15.44                                                                                                                                                                              | 1                   |
|           |            | 1             | 24                  | 15.45                                      | 15.11                                      | 15.46                                                                                                                                                                              | 1                   |
|           | 16QAM      | 12            | 0                   | 14.43                                      | 14.22                                      | 14.49                                                                                                                                                                              | 2                   |
|           |            | 12            | 6                   | 14.40                                      | 14.49                                      | 14.41                                                                                                                                                                              | 2                   |
|           |            | 12            | 13                  | 14.41                                      | 14.10                                      | 14.41                                                                                                                                                                              | 2                   |
|           |            | 25            | 0                   | 14.44                                      | 14.40                                      | 14.41                                                                                                                                                                              | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 31 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset        | Low CH<br>18650<br>Frequency<br>1855.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mid CH<br>18900<br>Frequency<br>1880.0 MHz                                                                                                                                                                                                                                                                                                                                           | High CH<br>19150<br>Frequency<br>1905.0 MHz                                                                                                                                                    | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|           |            | EUT without | Power Reduction     | on (P-Sensor N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OT Triggered)                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                     |
|           |            | 1           | 0                   | 22.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.25                                                                                                                                                                                                                                                                                                                                                                                | 23.28                                                                                                                                                                                          | 0                   |
|           |            | 1           | 24                  | 22.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.98                                                                                                                                                                                                                                                                                                                                                                                | 23.01                                                                                                                                                                                          | 0                   |
|           |            | 1           | 49                  | 23.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.46                                                                                                                                                                                                                                                                                                                                                                                | 19150<br>Frequency<br>2 1905.0 MHz<br>1)<br>23.28                                                                                                                                              | 0                   |
|           | QPSK       | 25          | 0                   | 21.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.90                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 1                   |
|           |            | 25          | 12                  | 21.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.89                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 1                   |
|           |            | 25          | 25                  | 24       22.72       22.98       23.01         49       23.20       23.46       23.49         0       21.64       21.90       21.93         12       21.63       21.89       21.92         25       21.67       21.93       21.96         0       21.95       22.21       22.24         0       21.99       22.21       22.27         24       21.67       21.93       21.96         49       22.43       22.59       22.52         0       20.67       20.93       20.96         12       20.63       20.89       20.92         25       20.63       20.89       20.92         25       20.63       20.89       20.92         0       20.75       21.01       21.04         ver Reduction (P-Sensor Triggered)         0       15.78       15.53       16.39         24       16.08       15.63       16.12         49       16.03       15.59       16.14 | 21.96                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                              |                     |
| 2 / 10M   |            | 50          | 0                   | 21.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.21                                                                                                                                                                                                                                                                                                                                                                                | 19150 Frequency 1905.0 MHz  23.28 23.01 23.49 21.93 21.92 21.96 22.24 22.27 21.96 22.52 20.96 20.92 20.92 21.04  16.39 16.12 16.14 15.37 15.29 15.09 15.19 15.43 15.46 15.48 14.41 14.43 14.43 | 1                   |
| 2 / TUIVI |            | 1           | 0                   | 21.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.21                                                                                                                                                                                                                                                                                                                                                                                | 22.27                                                                                                                                                                                          | 1                   |
|           |            | 1           | 24                  | 21.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.93                                                                                                                                                                                                                                                                                                                                                                                | 22.27<br>21.96<br>22.52<br><b>20.96</b><br>20.92<br>20.92                                                                                                                                      | 1                   |
|           |            | 1           | 49                  | 22.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22.59                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 1                   |
|           | 16QAM      | 25          | 0                   | 20.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.93                                                                                                                                                                                                                                                                                                                                                                                | 20.96                                                                                                                                                                                          | 2                   |
|           |            | 25          | 12                  | 20.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.89                                                                                                                                                                                                                                                                                                                                                                                | 20.92                                                                                                                                                                                          | 2                   |
|           |            | 25          | 25                  | 20.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.89                                                                                                                                                                                                                                                                                                                                                                                | 20.92                                                                                                                                                                                          | 2                   |
|           |            | 50          | 0                   | 20.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.01                                                                                                                                                                                                                                                                                                                                                                                | 21.04                                                                                                                                                                                          | 2                   |
|           |            | EUT with    | <b>Power Reduct</b> | ion (P-Sensor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | riggered)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                     |
|           |            | 1           | 0                   | 15.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.53                                                                                                                                                                                                                                                                                                                                                                                | 16.39                                                                                                                                                                                          | 0                   |
|           |            | 1           | 24                  | 16.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.63                                                                                                                                                                                                                                                                                                                                                                                | 16.12                                                                                                                                                                                          | 0                   |
|           |            | 1           | 49                  | 16.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.59                                                                                                                                                                                                                                                                                                                                                                                | 19150 Frequency 1905.0 MHz  23.28 23.01 23.49 21.93 21.92 21.96 22.24 22.27 21.96 22.52 20.96 20.92 20.92 21.04  16.39 16.12 16.14 15.37 15.29 15.09 15.19 15.43 15.46 15.48 14.41 14.43 14.43 | 0                   |
|           | QPSK       | 25          | 0                   | 15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency 1880.0 MHz 1905.0 MHz 2017 Triggered)  23.25 23.28 22.98 23.01 23.46 23.49 21.90 21.93 21.89 21.92 21.93 21.96 22.21 22.24 22.21 22.27 21.93 21.96 22.59 22.52 20.93 20.96 20.89 20.92 21.01 21.04  riggered)  15.53 16.39 15.63 16.12 15.59 16.14 14.70 15.37 14.97 15.29 14.58 15.09 14.98 15.19 15.07 15.43 15.17 15.46 15.13 15.48 14.24 14.41 14.41 14.43 14.12 14.43 | 15.37                                                                                                                                                                                          | 1                   |
|           |            | 25          | 12                  | 15.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.97                                                                                                                                                                                                                                                                                                                                                                                | 15.29                                                                                                                                                                                          | 1                   |
|           |            | 25          | 25                  | 14.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.58                                                                                                                                                                                                                                                                                                                                                                                | 15.09                                                                                                                                                                                          | 1                   |
| 2 / 10M   |            | 50          | 0                   | 15.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.98                                                                                                                                                                                                                                                                                                                                                                                | 15.19                                                                                                                                                                                          | 1                   |
| ∠ / TUIVI |            | 1           | 0                   | 15.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.07                                                                                                                                                                                                                                                                                                                                                                                | 15.43                                                                                                                                                                                          | 1                   |
|           |            | 1           | 24                  | 15.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.17                                                                                                                                                                                                                                                                                                                                                                                | 15.46                                                                                                                                                                                          | 1                   |
|           |            | 1           | 49                  | 15.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.13                                                                                                                                                                                                                                                                                                                                                                                | 15.48                                                                                                                                                                                          | 1                   |
|           | 16QAM      | 25          | 0                   | 14.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.24                                                                                                                                                                                                                                                                                                                                                                                | 14.41                                                                                                                                                                                          | 2                   |
|           |            | 25          | 12                  | 14.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.41                                                                                                                                                                                                                                                                                                                                                                                | 14.43                                                                                                                                                                                          | 2                   |
|           |            | 25          | 25                  | 14.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.12                                                                                                                                                                                                                                                                                                                                                                                | 14.43                                                                                                                                                                                          | 2                   |
|           |            | 50          | 0                   | 14.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.42                                                                                                                                                                                                                                                                                                                                                                                | 14.43                                                                                                                                                                                          | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 32 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RB<br>Offset        | Low CH<br>18675<br>Frequency<br>1857.5 MHz | Mid CH<br>18900<br>Frequency<br>1880.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | High CH<br>19125<br>Frequency<br>1902.5 MHz                                                                                                                                  | 3PGG<br>MPR<br>(dB) |
|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|           |            | EUT without I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power Reduction     | on (P-Sensor N                             | OT Triggered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                              |                     |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   | 23.05                                      | 23.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.34                                                                                                                                                                        | 0                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                  | 22.78                                      | 23.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.07                                                                                                                                                                        | 0                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                  | 23.26                                      | (P-Sensor NOT Triggered)           23.05         23.31         23.34           22.78         23.04         23.07           23.26         23.52         23.55           21.70         21.96         21.99           21.69         21.95         21.98           21.63         21.89         21.92           22.01         22.27         22.30           22.05         22.27         22.33           21.63         21.89         21.92           22.49         22.55         22.58           20.93         20.99         20.92           20.99         20.95         20.98           20.91         21.07         21.10           16.79         21.10         15.65           16.14         16.05         15.61         16.14           16.05         15.61         16.16           15.03         14.72         15.39           15.01         14.60         15.11           15.04         15.00         15.21           15.34         15.09         15.45 | 0                                                                                                                                                                            |                     |
|           | QPSK       | PSK 36 0 21.70 21.96 21.99 36 19 21.63 21.89 21.92 75 0 22.01 22.27 22.30 1 37 21.63 21.89 21.92 21.95 21.98 21.92 21.95 21.98 21.92 21.95 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 21.92 | 21.99               | 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              |                     |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                  | 21.69                                      | 23.52 23.55 21.96 21.99 21.95 21.98 21.89 21.92 22.27 22.30 22.27 22.33 21.89 21.92 22.55 22.58 20.99 20.92 20.95 20.98 21.07 21.10 r Triggered) 15.55 16.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.98                                                                                                                                                                        | 1                   |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                  | 21.63                                      | 21.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.92                                                                                                                                                                        | 1                   |
| 2 / 15M   |            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 22.01                                      | 22.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19125 Frequency 1902.5 MHz  23.34 23.07 23.55 21.99 21.98 21.92 22.30 22.33 21.92 22.58 20.92 20.98 20.98 21.10  16.41 16.14 16.16 15.39 15.31 15.11 15.21                   | 1                   |
| 2 / 13101 |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   | 22.05                                      | 22.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.33                                                                                                                                                                        | 1                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                  | 21.63                                      | 21.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.92<br>22.58<br>20.92<br>20.98<br>20.98                                                                                                                                    | 1                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                  | 22.49                                      | 22.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                              | 1                   |
|           | 16QAM      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 20.93                                      | 20.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.92                                                                                                                                                                        | 2                   |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 20.99                                      | 20.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.98                                                                                                                                                                        | 2                   |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                  |                                            | 20.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.98                                                                                                                                                                        | 2                   |
|           |            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŭ                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.10                                                                                                                                                                        | 2                   |
|           |            | EUT with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |                     |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                   | 15.80                                      | 15.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.41                                                                                                                                                                        | 0                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                  | 16.10                                      | 15.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.14                                                                                                                                                                        | 0                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                  | 16.05                                      | 15.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19125 Frequency 1902.5 MHz  23.34 23.07 23.55 21.99 21.98 21.92 22.30 22.33 21.92 20.98 20.98 20.98 21.10  16.41 16.14 16.16 15.39 15.31 15.11 15.21 15.45 15.48 15.40 14.43 | 0                   |
|           | QPSK       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 15.03                                      | 14.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.39                                                                                                                                                                        | 1                   |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                  | 15.20                                      | 14.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.31                                                                                                                                                                        | 1                   |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                  | 15.01                                      | 14.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.11                                                                                                                                                                        | 1                   |
| 2 / 15M   |            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 15.04                                      | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.21                                                                                                                                                                        | 1                   |
| Z / 10W   |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   | 15.34                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              | 1                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                  | 15.44                                      | 15.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.48                                                                                                                                                                        | 1                   |
|           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                  | 15.49                                      | 15.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.40                                                                                                                                                                        | 1                   |
|           | 16QAM      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 14.47                                      | 14.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.43                                                                                                                                                                        | 2                   |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                  | 14.44                                      | 14.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.45                                                                                                                                                                        | 2                   |
|           |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                  | 14.45                                      | 14.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.45                                                                                                                                                                        | 2                   |
|           |            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   | 14.48                                      | 14.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.45                                                                                                                                                                        | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 33 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size | RB<br>Offset        | Low CH<br>18700<br>Frequency<br>1860.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mid CH<br>18900<br>Frequency<br>1880.0 MHz | High CH<br>19100<br>Frequency<br>1900.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3PGG<br>MPR<br>(dB) |
|-----------|------------|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|           |            |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|           |            | 1          | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   |
|           |            | 1          | 50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                   |
|           |            | 1          | 99                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | 19100<br>Frequency<br>2 1900.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                   |
|           | QPSK       | 50         | 0                   | 23.08 23.34 23.37<br>22.81 23.07 23.10<br>23.29 23.55 23.58<br>21.73 21.99 22.02<br>21.72 21.98 22.01<br>21.66 21.92 21.95<br>22.04 22.30 22.33<br>22.08 22.30 22.33<br>22.08 22.30 22.36<br>21.66 21.92 21.95<br>22.09 22.52 22.58 22.51<br>20.96 20.92 20.95<br>20.92 20.98 20.91<br>20.92 20.98 20.91<br>20.94 21.10 21.13<br>20 (P-Sensor Triggered)<br>15.83 15.58 16.44<br>16.13 15.68 16.17<br>16.08 15.64 16.19<br>15.06 14.75 15.42<br>15.23 15.02 15.34<br>15.04 14.63 15.14 |                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|           |            | 50         | 25                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | 1900.0 MHz   23.37   23.10   23.58   22.02   22.01   21.95   22.33   22.36   21.95   20.95   20.91   20.91   21.13     16.44   16.17   16.19   15.42   15.34   15.14   15.24   15.48   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   15.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41   16.41 | 1                   |
|           |            | 50         | 50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |
| 2 / 20M   |            | 100        | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |
| Z / ZOIVI |            | 1          | 0                   | 22.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.30                                      | 22.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           |            | 1          | 50                  | 21.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | 21.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           |            | 1          | 99                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.58                                      | 22.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           | 16QAM      | 50         | 0                   | 20.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.92                                      | 20.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |
|           |            | 50         | 25                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.88                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                   |
|           |            | 50         | 50                  | 20.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.98                                      | 20.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |
|           |            | 100        | 0                   | 20.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.10                                      | 21.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |
|           |            | EUT with   | <b>Power Reduct</b> | ion (P-Sensor T                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | riggered)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|           |            | 1          | 0                   | 15.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.58                                      | 16.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                   |
|           |            | 1          | 50                  | 16.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.68                                      | 16.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                   |
|           |            | 1          | 99                  | 16.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.64                                      | 19100 Prequency 1900.0 MHz  23.37 23.10 23.58 22.02 22.01 21.95 22.33 22.36 21.95 20.91 20.91 20.91 21.13  16.44 16.17 16.19 15.42 15.34 15.14 15.24 15.48 15.41 15.43 14.46 14.48 14.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                   |
|           | QPSK       | 50         | 0                   | 15.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.75                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |
|           |            | 50         | 25                  | 15.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.02                                      | 15.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           |            | 50         | 50                  | 15.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.63                                      | 15.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
| 2 / 20M   |            | 100        | 0                   | 15.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.03                                      | 15.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
| Z / ZUIVI |            | 1          | 0                   | 15.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.12                                      | 15.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           |            | 1          | 50                  | 15.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.22                                      | 15.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           |            | 1          | 99                  | 15.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.18                                      | 15.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |
|           | 16QAM      | 50         | 0                   | 14.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.29                                      | 14.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |
|           |            | 50         | 25                  | 14.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.46                                      | 14.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |
|           |            | 50         | 50                  | 14.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.17                                      | 14.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |
|           |            | 100        | 0                   | 14.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.47                                      | 14.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   |

 Report Format Version 5.0.0
 Page No. : 34 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



| Band / BW  | Modulation | RB<br>Size    | RB<br>Offset        | Low CH<br>19957<br>Frequency<br>1710.7 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mid CH<br>20175<br>Frequency<br>1732.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High CH<br>20393<br>Frequency<br>1754.3 MHz                                                                                        | 3PGG<br>MPR<br>(dB) |
|------------|------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|            |            | EUT without I | Power Reduction     | on (P-Sensor N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OT Triggered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                     |
|            |            | 1             | 0                   | 22.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.85                                                                                                                              | 0                   |
|            |            | 1             | 2                   | 22.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.95                                                                                                                              | 0                   |
|            |            | 1             | 5                   | 22.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.63         22.76         22.85           22.73         22.86         22.95           22.63         22.76         22.85           22.64         22.77         22.86           22.60         22.73         22.82           22.17         22.20         22.29           22.07         22.20         22.21           22.11         22.24         22.25           22.06         22.19         22.20           22.14         22.27         22.28           22.13         22.26         22.27           22.09         22.22         22.23           21.14         21.27         21.28 | 0                                                                                                                                  |                     |
|            | QPSK       | 3             | 0                   | 22.73         22.86         22.95           22.63         22.76         22.85           22.64         22.77         22.86           22.60         22.73         22.82           22.17         22.20         22.29           22.07         22.20         22.21           22.11         22.24         22.25           22.06         22.19         22.20           22.14         22.27         22.28           22.13         22.26         22.27           22.09         22.22         22.23           21.14         21.27         21.28           *tion (P-Sensor Triggered)         15.69         16.13         16.21           15.61         15.65         15.70           16.18         16.23         16.31           15.90         16.36         16.44 | 22.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                  |                     |
|            |            | 3             | 1                   | 22.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.86                                                                                                                              | 0                   |
|            |            | 3             | 3                   | 22.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.82                                                                                                                              | 0                   |
| 4 / 1.4M   |            | 6             | 0                   | 22.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.29<br>22.21<br><b>22.25</b><br>22.20                                                                                            | 1                   |
| 4 / 1.4IVI |            | 1             | 0                   | 22.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.21                                                                                                                              | 1                   |
|            |            | 1             | 2                   | 22.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.25                                                                                                                              | 1                   |
|            |            | 1             | 5                   | 22.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.21<br>22.25<br>22.20<br>22.28<br>22.27<br>22.23                                                                                 | 1                   |
|            | 16QAM      | 3             | 0                   | 22.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.28                                                                                                                              | 1                   |
|            |            | 3             | 1                   | 22.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.27                                                                                                                              | 1                   |
|            |            | 3             | 3                   | 22.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.23                                                                                                                              | 1                   |
|            |            | 6             | 0                   | 21.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.28                                                                                                                              | 2                   |
|            |            | EUT with      | <b>Power Reduct</b> | ion (P-Sensor T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | riggered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                    |                     |
|            |            | 1             | 0                   | 15.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.21                                                                                                                              | 0                   |
|            |            | 1             | 2                   | 16.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.50                                                                                                                              | 0                   |
|            |            | 1             | 5                   | 15.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20393 Frequency 1754.3 MHz  22.85 22.95 22.86 22.86 22.82 22.29 22.21 22.25 22.20 22.28 22.27 22.23 21.28  16.21 16.50 15.70 16.31 | 0                   |
|            | QPSK       | 3             | 0                   | 16.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.73 22.82 22.20 22.29 22.20 22.21 22.24 22.25 22.19 22.20 22.27 22.28 22.26 22.27 22.22 22.23 21.27 21.28  or Triggered) 16.13 16.21 16.41 16.50 15.65 15.70 16.23 16.31 16.36 16.44 15.87 15.96 14.99 15.18 15.24 15.32 15.51 14.75 14.80                                                                                                                                                                                                                                                                                                                                      | 16.31                                                                                                                              | 0                   |
|            |            | 3             | 1                   | 15.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.44                                                                                                                              | 0                   |
|            |            | 3             | 3                   | 15.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.96                                                                                                                              | 0                   |
| 4 / 1.4M   |            | 6             | 0                   | 14.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.18                                                                                                                              | 1                   |
| 4 / 1.4IVI |            | 1             | 0                   | 14.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.32                                                                                                                              | 1                   |
|            |            | 1             | 2                   | 15.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.51                                                                                                                              | 1                   |
|            |            | 1             | 5                   | 14.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.80                                                                                                                              | 1                   |
|            | 16QAM      | 3             | 0                   | 15.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.30                                                                                                                              | 1                   |
|            |            | 3             | 1                   | 14.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.43                                                                                                                              | 1                   |
|            |            | 3             | 3                   | 14.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.95                                                                                                                              | 1                   |
|            |            | 6             | 0                   | 14.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.34                                                                                                                              | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 35 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size    | RB<br>Offset        | Low CH<br>19965<br>Frequency<br>1711.5 MHz | Mid CH<br>20175<br>Frequency<br>1732.5 MHz | High CH<br>20385<br>Frequency<br>1753.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3PGG<br>MPR<br>(dB) |
|-----------|------------|---------------|---------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|           |            | EUT without I | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|           |            | 1             | 0                   | 22.73                                      | 23.02                                      | 22.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                   |
|           |            | 1             | 7                   | 22.72                                      | 23.01                                      | 22.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                   |
|           |            | 1             | 14                  | 22.70                                      | 22.99                                      | 20175         20385           Frequency         Frequency           732.5 MHz         1753.5 MHz           Triggered)           23.02         22.83           23.01         22.82           22.99         22.80           22.12         21.93           22.08         21.89           22.04         21.85           22.18         22.07           22.18         22.07           21.08         20.97           21.09         20.98           21.05         20.94           21.09         20.98           21.09         20.98 | 0                   |
|           | QPSK       | 8             | 0                   | 21.83                                      | 22.12                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |
|           |            | 8             | 3                   | 21.83                                      | 22.12                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |
|           |            | 8             | 7                   | 21.79                                      | 22.08                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |
| 4 / 3M    |            | 15            | 0                   | 21.75                                      | 22.04                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |
| 4 / 3101  |            | 1             | 0                   | 21.94                                      | 22.18                                      | 22.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           |            | 1             | 7                   | 22.01                                      | 22.25                                      | 22.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           |            | 1             | 14                  | 21.94                                      | 22.18                                      | 22.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           | 16QAM      | 8             | 0                   | 20.84                                      | 21.08                                      | 20.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | 8             | 3                   | 20.85                                      | 21.09                                      | 20.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | 8             | 7                   | 20.81                                      | 21.05                                      | 20.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | 15            | 0                   | 20.85                                      |                                            | 20.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | EUT with      | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|           |            | 1             | 0                   | 15.61                                      | 16.14                                      | 16.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                   |
|           |            | 1             | 7                   | 16.12                                      | 16.43                                      | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                   |
|           |            | 1             | 14                  | 15.62                                      | 15.66                                      | 20385 Frequency 1753.5 MHz  22.83 22.82 22.80 21.93 21.93 21.89 21.85 22.07 22.14 22.07 20.97 20.98 20.94 20.98  16.22 16.52 15.71 15.42 15.55 15.07 15.19 15.33 15.52 14.81 14.58 14.51 14.23                                                                                                                                                                                                                                                                                                                              | 0                   |
|           | QPSK       | 8             | 0                   | 15.29                                      | 15.34                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                   |
|           |            | 8             | 3                   | 15.01                                      | 15.47                                      | 15.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           |            | 8             | 7                   | 14.74                                      | 14.98                                      | 15.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
| 4 / 3M    |            | 15            | 0                   | 14.86                                      | 15.00                                      | 15.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
| 4 / SIVI  |            | 1             | 0                   | 14.72                                      | 15.25                                      | 15.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           |            | 1             | 7                   | 15.42                                      | 15.53                                      | 15.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           |            | 1             | 14                  | 14.72                                      | 14.76                                      | 14.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                   |
|           | 16QAM      | 8             | 0                   | 14.45                                      | 14.50                                      | 14.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | 8             | 3                   | 14.17                                      | 14.53                                      | 14.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | 8             | 7                   | 13.90                                      | 14.14                                      | 14.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|           |            | 15            | 0                   | 14.02                                      | 14.16                                      | 14.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 36 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset        | Low CH<br>19975<br>Frequency<br>1712.5 MHz | Mid CH<br>20175<br>Frequency<br>1732.5 MHz | High CH<br>20375<br>Frequency<br>1752.5 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------|
|           |            | EUT without | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                             |                     |
|           |            | 1           | 0                   | 22.83                                      | 23.05                                      | 22.94                                       | 0                   |
|           |            | 1           | 12                  | 22.67                                      | 22.89                                      | 22.78                                       | 0                   |
|           |            | 1           | 24                  | 22.82                                      | 23.04                                      | 22.93                                       | 0                   |
|           | QPSK       | 12          | 0                   | 21.83                                      | 22.05                                      | 21.94                                       | 1                   |
|           |            | 12          | 6                   | 21.83                                      | 22.05                                      | 21.94                                       | 1                   |
|           |            | 12          | 13                  | 21.86                                      | 22.08                                      | 21.97                                       | 1                   |
| 4 / 5M    |            | 25          | 0                   | 21.73                                      | 21.95                                      | 21.84                                       | 1                   |
| 4 / 5101  |            | 1           | 0                   | 21.90                                      | 22.20                                      | 22.25                                       | 1                   |
|           |            | 1           | 12                  | 21.60                                      | 21.90                                      | 22.05                                       | 1                   |
|           |            | 1           | 24                  | 21.72                                      | 22.02                                      | 22.17                                       | 1                   |
|           | 16QAM      | 12          | 0                   | 20.69                                      | 20.99                                      | 21.14                                       | 2                   |
|           |            | 12          | 6                   | 20.62                                      | 20.92                                      | 21.07                                       | 2                   |
|           |            | 12          | 13                  | 20.77                                      | 21.07                                      | 21.22                                       | 2                   |
|           |            | 25          | 0                   | 20.67                                      | 20.97                                      | 21.12                                       | 2                   |
|           |            | EUT with    | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                             |                     |
|           |            | 1           | 0                   | 15.62                                      | 16.15                                      | 16.23                                       | 0                   |
|           |            | 1           | 12                  | 16.13                                      | 16.44                                      | 16.53                                       | 0                   |
|           |            | 1           | 24                  | 15.61                                      | 15.65                                      | 15.70                                       | 0                   |
|           | QPSK       | 12          | 0                   | 15.30                                      | 15.35                                      | 15.43                                       | 1                   |
|           |            | 12          | 6                   | 15.02                                      | 15.48                                      | 15.56                                       | 1                   |
|           |            | 12          | 13                  | 14.75                                      | 14.99                                      | 15.08                                       | 1                   |
| 4 / 5M    |            | 25          | 0                   | 14.87                                      | 15.01                                      | 15.20                                       | 1                   |
| 4 / JIVI  |            | 1           | 0                   | 14.73                                      | 15.26                                      | 15.34                                       | 1                   |
|           |            | 1           | 12                  | 15.43                                      | 15.54                                      | 15.53                                       | 1                   |
|           |            | 1           | 24                  | 14.73                                      | 14.77                                      | 14.82                                       | 1                   |
|           | 16QAM      | 12          | 0                   | 14.46                                      | 14.51                                      | 14.59                                       | 2                   |
|           |            | 12          | 6                   | 14.18                                      | 14.54                                      | 14.52                                       | 2                   |
|           |            | 12          | 13                  | 13.91                                      | 14.15                                      | 14.24                                       | 2                   |
|           |            | 25          | 0                   | 14.03                                      | 14.17                                      | 14.36                                       | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 37 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset        | Low CH<br>20000<br>Frequency<br>1715.0 MHz | Mid CH<br>20175<br>Frequency<br>1732.5 MHz | High CH<br>20350<br>Frequency<br>1750.0 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------|
|           |            | EUT without | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                             |                     |
|           |            | 1           | 0                   | 22.86                                      | 23.03                                      | 23.08                                       | 0                   |
|           |            | 1           | 24                  | 22.73                                      | 22.90                                      | 22.95                                       | 0                   |
|           |            | 1           | 49                  | 22.79                                      | 22.96                                      | 23.01                                       | 0                   |
|           | QPSK       | 25          | 0                   | 21.80                                      | 21.97                                      | 22.02                                       | 1                   |
|           |            | 25          | 12                  | 21.65                                      | 21.82                                      | 21.87                                       | 1                   |
|           |            | 25          | 25                  | 21.57                                      | 21.74                                      | 21.79                                       | 1                   |
| 4 / 4014  |            | 50          | 0                   | 21.71                                      | 21.88                                      | 21.93                                       | 1                   |
| 4 / 10M   |            | 1           | 0                   | 21.82                                      | 22.02                                      | 22.14                                       | 1                   |
|           |            | 1           | 24                  | 21.66                                      | 21.86                                      | 21.98                                       | 1                   |
|           |            | 1           | 49                  | 21.74                                      | 21.94                                      | 22.06                                       | 1                   |
|           | 16QAM      | 25          | 0                   | 20.60                                      | 20.80                                      | 20.92                                       | 2                   |
|           |            | 25          | 12                  | 20.57                                      | 20.77                                      | 20.89                                       | 2                   |
|           |            | 25          | 25                  | 20.56                                      | 20.76                                      | 20.88                                       | 2                   |
|           |            | 50          | 0                   | 20.64                                      | 20.84                                      | 20.96                                       | 2                   |
|           |            | EUT with    | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                             |                     |
|           |            | 1           | 0                   | 15.63                                      | 16.16                                      | 16.24                                       | 0                   |
|           |            | 1           | 24                  | 16.15                                      | 16.46                                      | 16.55                                       | 0                   |
|           |            | 1           | 49                  | 15.62                                      | 15.66                                      | 15.71                                       | 0                   |
|           | QPSK       | 25          | 0                   | 15.31                                      | 15.36                                      | 15.44                                       | 1                   |
|           |            | 25          | 12                  | 15.03                                      | 15.49                                      | 15.57                                       | 1                   |
|           |            | 25          | 25                  | 14.76                                      | 15.00                                      | 15.09                                       | 1                   |
| 4 / 10M   |            | 50          | 0                   | 14.88                                      | 15.02                                      | 15.21                                       | 1                   |
| 4 / 10101 |            | 1           | 0                   | 14.74                                      | 15.27                                      | 15.35                                       | 1                   |
|           |            | 1           | 24                  | 15.44                                      | 15.55                                      | 15.54                                       | 1                   |
|           |            | 1           | 49                  | 14.74                                      | 14.78                                      | 14.83                                       | 1                   |
|           | 16QAM      | 25          | 0                   | 14.47                                      | 14.52                                      | 14.50                                       | 2                   |
|           |            | 25          | 12                  | 14.19                                      | 14.55                                      | 14.53                                       | 2                   |
|           |            | 25          | 25                  | 13.92                                      | 14.16                                      | 14.25                                       | 2                   |
|           |            | 50          | 0                   | 14.04                                      | 14.18                                      | 14.37                                       | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 38 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size    | RB<br>Offset        | Low CH<br>20025<br>Frequency<br>1717.5 MHz | Mid CH<br>20175<br>Frequency<br>1732.5 MHz | High CH<br>20325<br>Frequency<br>1747.5 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|---------------|---------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------|
|           |            | EUT without I | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                             |                     |
|           |            | 1             | 0                   | 22.93                                      | 23.10                                      | 23.15                                       | 0                   |
|           |            | 1             | 37                  | 22.80                                      | 22.97                                      | 23.02                                       | 0                   |
|           |            | 1             | 74                  | 22.86                                      | 23.03                                      | 23.08                                       | 0                   |
|           | QPSK       | 36            | 0                   | 21.87                                      | 22.04                                      | 22.09                                       | 1                   |
|           |            | 36            | 19                  | 21.72                                      | 21.89                                      | 21.94                                       | 1                   |
|           |            | 36            | 39                  | 21.64                                      | 21.81                                      | 21.86                                       | 1                   |
| 4 / 4514  |            | 75            | 0                   | 21.78                                      | 21.95                                      | 22.00                                       | 1                   |
| 4 / 15M   |            | 1             | 0                   | 21.89                                      | 22.09                                      | 22.21                                       | 1                   |
|           |            | 1             | 37                  | 21.73                                      | 21.93                                      | 22.05                                       | 1                   |
|           |            | 1             | 74                  | 21.81                                      | 22.01                                      | 22.13                                       | 1                   |
|           | 16QAM      | 36            | 0                   | 20.67                                      | 20.87                                      | 20.99                                       | 2                   |
|           |            | 36            | 19                  | 20.64                                      | 20.84                                      | 20.96                                       | 2                   |
|           |            | 36            | 39                  | 20.63                                      | 20.83                                      | 20.95                                       | 2                   |
|           |            | 75            | 0                   | 20.71                                      | 20.91                                      | 21.03                                       | 2                   |
|           |            | EUT with      | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                             |                     |
|           |            | 1             | 0                   | 15.81                                      | 16.14                                      | 16.22                                       | 0                   |
|           |            | 1             | 37                  | 16.17                                      | 16.48                                      | 16.57                                       | 0                   |
|           |            | 1             | 74                  | 15.75                                      | 15.75                                      | 15.70                                       | 0                   |
|           | QPSK       | 36            | 0                   | 15.34                                      | 15.39                                      | 15.47                                       | 1                   |
|           |            | 36            | 19                  | 15.06                                      | 15.52                                      | 15.51                                       | 1                   |
|           |            | 36            | 39                  | 14.79                                      | 15.03                                      | 15.12                                       | 1                   |
| 4 / 15M   |            | 75            | 0                   | 14.91                                      | 15.05                                      | 15.24                                       | 1                   |
| 4 / 151/1 |            | 1             | 0                   | 14.77                                      | 15.30                                      | 15.38                                       | 1                   |
|           |            | 1             | 37                  | 15.47                                      | 15.58                                      | 15.57                                       | 1                   |
|           |            | 1             | 74                  | 14.77                                      | 14.81                                      | 14.86                                       | 1                   |
|           | 16QAM      | 36            | 0                   | 14.50                                      | 14.55                                      | 14.53                                       | 2                   |
|           |            | 36            | 19                  | 14.22                                      | 14.58                                      | 14.56                                       | 2                   |
|           |            | 36            | 39                  | 13.95                                      | 14.19                                      | 14.28                                       | 2                   |
|           |            | 75            | 0                   | 14.07                                      | 14.21                                      | 14.40                                       | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 39 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size    | RB<br>Offset        | Low CH<br>20050<br>Frequency<br>1720.0 MHz | Mid CH<br>20175<br>Frequency<br>1732.5 MHz | High CH<br>20300<br>Frequency<br>1745.0 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|---------------|---------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------|
|           |            | EUT without I | Power Reduction     | on (P-Sensor N                             | OT Triggered)                              |                                             |                     |
|           |            | 1             | 0                   | 22.99                                      | 23.16                                      | 23.21                                       | 0                   |
|           |            | 1             | 50                  | 22.86                                      | 23.03                                      | 23.08                                       | 0                   |
|           |            | 1             | 99                  | 22.92                                      | 23.09                                      | 23.14                                       | 0                   |
|           | QPSK       | 50            | 0                   | 21.93                                      | 22.10                                      | 22.15                                       | 1                   |
|           |            | 50            | 25                  | 21.78                                      | 21.95                                      | 22.00                                       | 1                   |
|           |            | 50            | 50                  | 21.70                                      | 21.87                                      | 21.92                                       | 1                   |
| 4 / 20M   |            | 100           | 0                   | 21.84                                      | 22.01                                      | 22.06                                       | 1                   |
| 4 / 20101 |            | 1             | 0                   | 21.95                                      | 22.15                                      | 22.27                                       | 1                   |
|           |            | 1             | 50                  | 21.79                                      | 21.99                                      | 22.11                                       | 1                   |
|           | 16QAM      | 1             | 99                  | 21.87                                      | 22.07                                      | 22.19                                       | 1                   |
|           |            | 50            | 0                   | 20.73                                      | 20.93                                      | 21.05                                       | 2                   |
|           |            | 50            | 25                  | 20.70                                      | 20.90                                      | 21.02                                       | 2                   |
|           |            | 50            | 50                  | 20.69                                      | 20.89                                      | 21.01                                       | 2                   |
|           |            | 100           | 0                   | 20.77                                      | 20.97                                      | 21.09                                       | 2                   |
|           |            | EUT with      | <b>Power Reduct</b> | ion (P-Sensor T                            | riggered)                                  |                                             |                     |
|           |            | 1             | 0                   | 15.63                                      | 16.16                                      | 16.24                                       | 0                   |
|           |            | 1             | 50                  | 16.19                                      | 16.50                                      | 16.59                                       | 0                   |
|           |            | 1             | 99                  | 15.63                                      | 15.67                                      | 15.72                                       | 0                   |
|           | QPSK       | 50            | 0                   | 15.36                                      | 15.41                                      | 15.49                                       | 1                   |
|           |            | 50            | 25                  | 15.08                                      | 15.54                                      | 15.58                                       | 1                   |
|           |            | 50            | 50                  | 14.81                                      | 15.05                                      | 15.14                                       | 1                   |
| 4 / 20M   |            | 100           | 0                   | 14.93                                      | 15.07                                      | 15.26                                       | 1                   |
| 4 / ZUIVI |            | 1             | 0                   | 14.79                                      | 15.32                                      | 15.40                                       | 1                   |
|           |            | 1             | 50                  | 15.49                                      | 15.56                                      | 15.59                                       | 1                   |
|           |            | 1             | 99                  | 14.79                                      | 14.83                                      | 14.88                                       | 1                   |
|           | 16QAM      | 50            | 0                   | 14.52                                      | 14.57                                      | 14.55                                       | 2                   |
|           |            | 50            | 25                  | 14.24                                      | 14.57                                      | 14.58                                       | 2                   |
|           |            | 50            | 50                  | 13.97                                      | 14.21                                      | 14.30                                       | 2                   |
|           |            | 100           | 0                   | 14.09                                      | 14.23                                      | 14.42                                       | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 40 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset        | Low CH<br>20407<br>Frequency<br>824.7 MHz | Mid CH<br>20525<br>Frequency<br>836.5 MHz | High CH<br>20643<br>Frequency<br>848.3 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|
|           |            | EUT without | Power Reducti       | on (P-Sensor N                            | OT Triggered)                             |                                            |                     |
|           |            | 1           | 0                   | 23.45                                     | 23.48                                     | 23.05                                      | 0                   |
|           |            | 1           | 2                   | 23.41                                     | 23.44                                     | 23.01                                      | 0                   |
|           |            | 1           | 5                   | 23.44                                     | 23.47                                     | 23.04                                      | 0                   |
|           | QPSK       | 3           | 0                   | 23.52                                     | 23.55                                     | 23.12                                      | 0                   |
|           |            | 3           | 1                   | 23.51                                     | 23.54                                     | 23.11                                      | 0                   |
|           |            | 3           | 3                   | 23.50                                     | 23.53                                     | 23.10                                      | 0                   |
| 5 / 1.4M  |            | 6           | 0                   | 22.52                                     | 22.55                                     | 22.12                                      | 1                   |
| 3 / 1.4W  |            | 1           | 0                   | 22.45                                     | 22.56                                     | 22.00                                      | 1                   |
|           |            | 1           | 2                   | 22.41                                     | 22.44                                     | 22.01                                      | 1                   |
|           | 16QAM      | 1           | 5                   | 22.44                                     | 22.47                                     | 22.04                                      | 1                   |
|           |            | 3           | 0                   | 22.52                                     | 22.55                                     | 22.12                                      | 1                   |
|           |            | 3           | 1                   | 22.51                                     | 22.54                                     | 22.11                                      | 1                   |
|           |            | 3           | 3                   | 22.60                                     | 22.63                                     | 22.50                                      | 1                   |
|           |            | 6           | 0                   | 21.62                                     | 21.65                                     | 21.22                                      | 2                   |
|           |            | EUT with    | <b>Power Reduct</b> | ion (P-Sensor 1                           | riggered)                                 |                                            |                     |
|           |            | 1           | 0                   | 18.36                                     | 18.32                                     | 18.38                                      | 0                   |
|           |            | 1           | 2                   | 18.36                                     | 18.32                                     | 18.38                                      | 0                   |
|           |            | 1           | 5                   | 18.19                                     | 18.15                                     | 18.21                                      | 0                   |
|           | QPSK       | 3           | 0                   | 18.40                                     | 18.37                                     | 18.31                                      | 0                   |
|           |            | 3           | 1                   | 17.76                                     | 17.72                                     | 17.78                                      | 0                   |
|           |            | 3           | 3                   | 17.68                                     | 17.64                                     | 17.70                                      | 0                   |
| 5 / 1.4M  |            | 6           | 0                   | 17.58                                     | 17.54                                     | 17.60                                      | 1                   |
| 5 / 1.4W  |            | 1           | 0                   | 16.89                                     | 16.85                                     | 16.91                                      | 1                   |
|           |            | 1           | 2                   | 17.51                                     | 17.57                                     | 17.53                                      | 1                   |
|           |            | 1           | 5                   | 17.04                                     | 17.00                                     | 17.06                                      | 1                   |
|           | 16QAM      | 3           | 0                   | 17.35                                     | 16.91                                     | 17.03                                      | 1                   |
|           |            | 3           | 1                   | 17.28                                     | 17.00                                     | 16.70                                      | 1                   |
|           |            | 3           | 3                   | 16.71                                     | 16.67                                     | 16.73                                      | 1                   |
|           |            | 6           | 0                   | 16.52                                     | 16.58                                     | 16.54                                      | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 41 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset        | Low CH<br>20415<br>Frequency<br>825.5 MHz | Mid CH<br>20525<br>Frequency<br>836.5 MHz | High CH<br>20635<br>Frequency<br>847.5 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|
|           |            | EUT without | Power Reduction     | on (P-Sensor N                            | OT Triggered)                             |                                            |                     |
|           |            | 1           | 0                   | 23.45                                     | 23.59                                     | 23.49                                      | 0                   |
|           |            | 1           | 7                   | 23.44                                     | 23.58                                     | 23.48                                      | 0                   |
|           |            | 1           | 14                  | 23.34                                     | 23.48                                     | 23.38                                      | 0                   |
|           | QPSK       | 8           | 0                   | 22.53                                     | 22.67                                     | 22.57                                      | 1                   |
|           |            | 8           | 3                   | 22.43                                     | 22.57                                     | 22.47                                      | 1                   |
|           |            | 8           | 7                   | 22.66                                     | 22.69                                     | 22.68                                      | 1                   |
| 5 / 3M    |            | 15          | 0                   | 22.50                                     | 22.64                                     | 22.54                                      | 1                   |
| 5 / 31/1  |            | 1           | 0                   | 22.64                                     | 22.48                                     | 22.44                                      | 1                   |
|           |            | 1           | 7                   | 22.49                                     | 22.33                                     | 22.29                                      | 1                   |
|           |            | 1           | 14                  | 22.50                                     | 22.34                                     | 22.30                                      | 1                   |
|           | 16QAM      | 8           | 0                   | 21.39                                     | 21.23                                     | 21.19                                      | 2                   |
|           |            | 8           | 3                   | 21.40                                     | 21.24                                     | 21.20                                      | 2                   |
|           |            | 8           | 7                   | 21.61                                     | 21.45                                     | 21.41                                      | 2                   |
|           |            | 15          | 0                   | 21.48                                     | 21.32                                     | 21.28                                      | 2                   |
|           |            | EUT with    | <b>Power Reduct</b> | ion (P-Sensor T                           | riggered)                                 |                                            |                     |
|           |            | 1           | 0                   | 18.40                                     | 18.38                                     | 18.31                                      | 0                   |
|           |            | 1           | 7                   | 18.45                                     | 18.43                                     | 18.36                                      | 0                   |
|           |            | 1           | 14                  | 18.38                                     | 18.36                                     | 18.29                                      | 0                   |
|           | QPSK       | 8           | 0                   | 17.51                                     | 17.59                                     | 17.52                                      | 1                   |
|           |            | 8           | 3                   | 17.51                                     | 17.59                                     | 17.52                                      | 1                   |
|           |            | 8           | 7                   | 17.52                                     | 17.57                                     | 17.53                                      | 1                   |
| 5 / 3M    |            | 15          | 0                   | 17.59                                     | 17.57                                     | 17.57                                      | 1                   |
| 3 / SIVI  |            | 1           | 0                   | 17.21                                     | 17.19                                     | 17.12                                      | 1                   |
|           |            | 1           | 7                   | 17.55                                     | 17.53                                     | 17.56                                      | 1                   |
|           |            | 1           | 14                  | 17.53                                     | 17.51                                     | 17.44                                      | 1                   |
|           | 16QAM      | 8           | 0                   | 16.59                                     | 16.58                                     | 16.51                                      | 2                   |
|           |            | 8           | 3                   | 16.57                                     | 16.55                                     | 16.58                                      | 2                   |
|           |            | 8           | 7                   | 16.59                                     | 16.57                                     | 16.60                                      | 2                   |
|           |            | 15          | 0                   | 16.51                                     | 16.59                                     | 16.52                                      | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 42 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset  | Low CH<br>20425<br>Frequency<br>826.5 MHz | Mid CH<br>20525<br>Frequency<br>836.5 MHz | High CH<br>20625<br>Frequency<br>846.5 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|
|           |            | EUT without | Power Reducti | on (P-Sensor N                            | OT Triggered)                             |                                            |                     |
|           |            | 1           | 0             | 23.38                                     | 23.56                                     | 23.36                                      | 0                   |
|           |            | 1           | 12            | 23.35                                     | 23.53                                     | 23.33                                      | 0                   |
|           |            | 1           | 24            | 23.43                                     | 23.61                                     | 23.41                                      | 0                   |
|           | QPSK       | 12          | 0             | 21.88                                     | 22.06                                     | 21.86                                      | 1                   |
|           |            | 12          | 6             | 22.38                                     | 22.56                                     | 22.36                                      | 1                   |
|           |            | 12          | 13            | 22.58                                     | 22.66                                     | 22.56                                      | 1                   |
| C / CN4   |            | 25          | 0             | 22.22                                     | 22.40                                     | 22.20                                      | 1                   |
| 5 / 5M    |            | 1           | 0             | 22.40                                     | 22.60                                     | 22.54                                      | 1                   |
|           |            | 1           | 12            | 22.23                                     | 22.53                                     | 22.37                                      | 1                   |
|           | 16QAM      | 1           | 24            | 22.38                                     | 22.68                                     | 22.52                                      | 1                   |
|           |            | 12          | 0             | 21.33                                     | 21.63                                     | 21.47                                      | 2                   |
|           |            | 12          | 6             | 21.26                                     | 21.56                                     | 21.40                                      | 2                   |
|           |            | 12          | 13            | 21.38                                     | 21.68                                     | 21.52                                      | 2                   |
|           |            | 25          | 0             | 21.15                                     | 21.45                                     | 21.29                                      | 2                   |
|           |            | EUT with    | Power Reduct  | tion (P-Sensor 1                          | riggered)                                 |                                            |                     |
|           |            | 1           | 0             | 18.35                                     | 18.40                                     | 18.30                                      | 0                   |
|           |            | 1           | 12            | 18.45                                     | 18.50                                     | 18.40                                      | 0                   |
|           |            | 1           | 24            | 18.38                                     | 18.43                                     | 18.33                                      | 0                   |
|           | QPSK       | 12          | 0             | 17.53                                     | 17.58                                     | 17.58                                      | 1                   |
|           |            | 12          | 6             | 17.58                                     | 17.53                                     | 17.53                                      | 1                   |
|           |            | 12          | 13            | 17.57                                     | 17.52                                     | 17.52                                      | 1                   |
| C / CN4   |            | 25          | 0             | 17.56                                     | 17.51                                     | 17.51                                      | 1                   |
| 5 / 5M    |            | 1           | 0             | 17.60                                     | 17.55                                     | 17.55                                      | 1                   |
|           |            | 1           | 12            | 17.52                                     | 17.57                                     | 17.57                                      | 1                   |
|           |            | 1           | 24            | 17.52                                     | 17.57                                     | 17.47                                      | 1                   |
|           | 16QAM      | 12          | 0             | 16.55                                     | 16.60                                     | 16.50                                      | 2                   |
|           |            | 12          | 6             | 16.50                                     | 16.55                                     | 16.55                                      | 2                   |
|           |            | 12          | 13            | 16.43                                     | 16.48                                     | 16.38                                      | 2                   |
|           |            | 25          | 0             | 16.49                                     | 16.54                                     | 16.44                                      | 2                   |

 Report Format Version 5.0.0
 Page No. : 43 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset  | Low CH<br>20450<br>Frequency<br>829.0 MHz | Mid CH<br>20525<br>Frequency<br>836.5 MHz | High CH<br>20600<br>Frequency<br>844.0 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|
|           |            | EUT without | Power Reducti | on (P-Sensor N                            |                                           | 044.0 111112                               |                     |
|           |            |             | 0             | 23.51                                     | 23.62                                     | 23.58                                      | 0                   |
|           |            | 1           | 24            | 23.52                                     | 23.63                                     | 23.59                                      | 0                   |
|           |            | 1           | 49            | 23.40                                     | 23.51                                     | 23.47                                      | 0                   |
|           | QPSK       | 25          | 0             | 22.30                                     | 22.41                                     | 22.37                                      | 1                   |
|           |            | 25          | 12            | 22.44                                     | 22.55                                     | 22.61                                      | 1                   |
|           |            | 25          | 25            | 22.36                                     | 22.47                                     | 22.43                                      | 1                   |
| 5 / 40NA  |            | 50          | 0             | 22.32                                     | 22.43                                     | 22.39                                      | 1                   |
| 5 / 10M   |            | 1           | 0             | 22.54                                     | 22.63                                     | 22.67                                      | 1                   |
|           |            | 1           | 24            | 22.38                                     | 22.47                                     | 22.51                                      | 1                   |
|           | 16QAM      | 1           | 49            | 22.28                                     | 22.37                                     | 22.41                                      | 1                   |
|           |            | 25          | 0             | 21.34                                     | 21.43                                     | 21.47                                      | 2                   |
|           |            | 25          | 12            | 21.22                                     | 21.31                                     | 21.35                                      | 2                   |
|           |            | 25          | 25            | 21.20                                     | 21.29                                     | 21.33                                      | 2                   |
|           |            | 50          | 0             | 21.11                                     | 21.20                                     | 21.24                                      | 2                   |
|           |            | EUT with    | Power Reduct  | ion (P-Sensor 1                           | riggered)                                 |                                            |                     |
|           |            | 1           | 0             | 18.34                                     | 18.42                                     | 18.37                                      | 0                   |
|           |            | 1           | 24            | 18.48                                     | 18.56                                     | 18.51                                      | 0                   |
|           |            | 1           | 49            | 18.41                                     | 18.49                                     | 18.44                                      | 0                   |
|           | QPSK       | 25          | 0             | 17.42                                     | 17.48                                     | 17.45                                      | 1                   |
|           |            | 25          | 12            | 17.46                                     | 17.54                                     | 17.49                                      | 1                   |
|           |            | 25          | 25            | 17.42                                     | 17.50                                     | 17.45                                      | 1                   |
| 5 / 40NA  |            | 50          | 0             | 17.51                                     | 17.59                                     | 17.54                                      | 1                   |
| 5 / 10M   |            | 1           | 0             | 17.22                                     | 17.30                                     | 17.25                                      | 1                   |
|           |            | 1           | 24            | 17.38                                     | 17.46                                     | 17.41                                      | 1                   |
|           |            | 1           | 49            | 17.37                                     | 17.45                                     | 17.40                                      | 1                   |
|           | 16QAM      | 25          | 0             | 16.07                                     | 16.15                                     | 16.10                                      | 2                   |
|           |            | 25          | 12            | 16.14                                     | 16.22                                     | 16.17                                      | 2                   |
|           |            | 25          | 25            | 16.12                                     | 16.20                                     | 16.15                                      | 2                   |
|           |            | 50          | 0             | 16.08                                     | 16.16                                     | 16.11                                      | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 44 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW | Modulation | RB<br>Size  | RB<br>Offset        | Low CH<br>23755<br>Frequency<br>706.5 MHz | Mid CH<br>23790<br>Frequency<br>710.0 MHz | High CH<br>23825<br>Frequency<br>713.5 MHz | 3PGG<br>MPR<br>(dB) |
|-----------|------------|-------------|---------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|
|           |            | EUT without | Power Reducti       | on (P-Sensor N                            | OT Triggered)                             |                                            |                     |
|           |            | 1           | 0                   | 23.54                                     | 23.48                                     | 23.34                                      | 0                   |
|           |            | 1           | 12                  | 23.20                                     | 23.14                                     | 23.00                                      | 0                   |
|           |            | 1           | 24                  | 23.58                                     | 23.52                                     | 23.38                                      | 0                   |
|           | QPSK       | 12          | 0                   | 22.26                                     | 22.20                                     | 22.06                                      | 1                   |
|           |            | 12          | 6                   | 22.10                                     | 22.04                                     | 21.90                                      | 1                   |
|           |            | 12          | 13                  | 22.33                                     | 22.27                                     | 22.13                                      | 1                   |
| 17 / 5M   |            | 25          | 0                   | 22.07                                     | 22.01                                     | 21.87                                      | 1                   |
| 17 / 5101 |            | 1           | 0                   | 22.65                                     | 22.51                                     | 22.37                                      | 1                   |
|           |            | 1           | 12                  | 22.28                                     | 22.14                                     | 22.00                                      | 1                   |
|           | 16QAM      | 1           | 24                  | 22.61                                     | 22.47                                     | 22.33                                      | 1                   |
|           |            | 12          | 0                   | 21.21                                     | 21.07                                     | 20.93                                      | 2                   |
|           |            | 12          | 6                   | 21.01                                     | 20.87                                     | 20.73                                      | 2                   |
|           |            | 12          | 13                  | 21.26                                     | 21.12                                     | 20.98                                      | 2                   |
|           |            | 25          | 0                   | 21.02                                     | 20.88                                     | 20.74                                      | 2                   |
|           |            | EUT with    | <b>Power Reduct</b> | ion (P-Sensor T                           | riggered)                                 |                                            |                     |
|           |            | 1           | 0                   | 20.07                                     | 20.03                                     | 19.97                                      | 0                   |
|           |            | 1           | 12                  | 19.96                                     | 19.92                                     | 19.86                                      | 0                   |
|           |            | 1           | 24                  | 20.16                                     | 20.12                                     | 20.06                                      | 0                   |
|           | QPSK       | 12          | 0                   | 19.06                                     | 19.02                                     | 18.96                                      | 1                   |
|           |            | 12          | 6                   | 19.00                                     | 18.96                                     | 18.90                                      | 1                   |
|           |            | 12          | 13                  | 19.11                                     | 19.07                                     | 19.01                                      | 1                   |
| 17 / 5M   |            | 25          | 0                   | 18.95                                     | 18.91                                     | 18.85                                      | 1                   |
| T/ / SIVI |            | 1           | 0                   | 19.11                                     | 19.07                                     | 19.01                                      | 1                   |
|           |            | 1           | 12                  | 19.07                                     | 19.03                                     | 18.97                                      | 1                   |
|           |            | 1           | 24                  | 19.22                                     | 19.18                                     | 19.12                                      | 1                   |
|           | 16QAM      | 12          | 0                   | 17.59                                     | 17.54                                     | 17.51                                      | 2                   |
|           |            | 12          | 6                   | 17.91                                     | 17.87                                     | 17.81                                      | 2                   |
|           |            | 12          | 13                  | 18.05                                     | 18.01                                     | 17.95                                      | 2                   |
|           |            | 25          | 0                   | 17.82                                     | 17.78                                     | 17.72                                      | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 45 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| Band / BW  | Modulation | RB<br>Size  | RB<br>Offset  | Low CH<br>23780<br>Frequency<br>709.0 MHz | Mid CH<br>23790<br>Frequency<br>710.0 MHz | High CH<br>23800<br>Frequency<br>711.0 MHz | 3PGG<br>MPR<br>(dB) |
|------------|------------|-------------|---------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------|
|            |            | EUT without | Power Reducti | on (P-Sensor N                            | OT Triggered)                             |                                            |                     |
|            |            | 1           | 0             | 23.61                                     | 23.55                                     | 23.41                                      | 0                   |
|            |            | 1           | 24            | 23.27                                     | 23.21                                     | 23.07                                      | 0                   |
|            |            | 1           | 49            | 23.65                                     | 23.59                                     | 23.45                                      | 0                   |
|            | QPSK       | 25          | 0             | 22.33                                     | 22.27                                     | 22.13                                      | 1                   |
|            |            | 25          | 12            | 22.17                                     | 22.11                                     | 21.97                                      | 1                   |
|            |            | 25          | 25            | 22.40                                     | 22.34                                     | 22.20                                      | 1                   |
| 17 / 10M   |            | 50          | 0             | 22.14                                     | 22.08                                     | 21.94                                      | 1                   |
| 17 / TOIVI |            | 1           | 0             | 22.62                                     | 22.58                                     | 22.44                                      | 1                   |
|            |            | 1           | 24            | 22.35                                     | 22.21                                     | 22.07                                      | 1                   |
|            | 16QAM      | 1           | 49            | 22.68                                     | 22.54                                     | 22.40                                      | 1                   |
|            |            | 25          | 0             | 21.28                                     | 21.14                                     | 21.00                                      | 2                   |
|            |            | 25          | 12            | 21.08                                     | 20.94                                     | 20.80                                      | 2                   |
|            |            | 25          | 25            | 21.33                                     | 21.19                                     | 21.05                                      | 2                   |
|            |            | 50          | 0             | 21.09                                     | 20.95                                     | 20.81                                      | 2                   |
|            |            | EUT with    | Power Reduct  | tion (P-Sensor 1                          | Triggered)                                |                                            |                     |
|            |            | 1           | 0             | 20.42                                     | 20.32                                     | 20.12                                      | 0                   |
|            |            | 1           | 24            | 20.48                                     | 20.38                                     | 20.18                                      | 0                   |
|            |            | 1           | 49            | 20.33                                     | 20.23                                     | 20.03                                      | 0                   |
|            | QPSK       | 25          | 0             | 19.40                                     | 19.30                                     | 19.10                                      | 1                   |
|            |            | 25          | 12            | 19.46                                     | 19.36                                     | 19.16                                      | 1                   |
|            |            | 25          | 25            | 19.38                                     | 19.28                                     | 19.08                                      | 1                   |
| 17 / 10M   |            | 50          | 0             | 19.18                                     | 19.08                                     | 18.88                                      | 1                   |
| I//IUIVI   |            | 1           | 0             | 19.37                                     | 19.27                                     | 19.07                                      | 1                   |
|            |            | 1           | 24            | 19.42                                     | 19.32                                     | 19.12                                      | 1                   |
|            |            | 1           | 49            | 19.31                                     | 19.21                                     | 19.01                                      | 1                   |
|            | 16QAM      | 25          | 0             | 17.60                                     | 17.56                                     | 17.52                                      | 2                   |
|            |            | 25          | 12            | 18.49                                     | 18.49                                     | 18.39                                      | 2                   |
|            |            | 25          | 25            | 17.82                                     | 17.72                                     | 17.52                                      | 2                   |
|            |            | 50          | 0             | 17.77                                     | 17.67                                     | 17.51                                      | 2                   |

 Report Format Version 5.0.0
 Page No.
 : 46 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



### <WLAN 2.4G>

| Mode                      |          | 802.11b        |           |  |  |  |  |
|---------------------------|----------|----------------|-----------|--|--|--|--|
| Channel / Frequency (MHz) | 1 (2412) | 6 (2437)       | 11 (2462) |  |  |  |  |
| Average Power             | 13.35    | 13.20          | 13.05     |  |  |  |  |
| Mode                      | 802.11g  |                |           |  |  |  |  |
| Channel / Frequency (MHz) | 1 (2412) | 6 (2437)       | 11 (2462) |  |  |  |  |
| Average Power             | 13.07    | 13.53          | 13.68     |  |  |  |  |
| Mode                      |          | 802.11n (HT20) |           |  |  |  |  |
| Channel / Frequency (MHz) | 1 (2412) | 6 (2437)       | 11 (2462) |  |  |  |  |
| Average Power             | 12.10    | 11.86          | 11.96     |  |  |  |  |

### <WLAN 5.2G>

| Mode                      | 802.11a        |           |           |           |  |  |  |
|---------------------------|----------------|-----------|-----------|-----------|--|--|--|
| Channel / Frequency (MHz) | 36 (5180)      | 40 (5200) | 44 (5220) | 48 (5240) |  |  |  |
| Average Power             | 10.22          | 10.24     | 10.27     | 10.32     |  |  |  |
| Mode                      | 802.11n (HT20) |           |           |           |  |  |  |
| Channel / Frequency (MHz) | 36 (5180)      | 40 (5200) | 44 (5220) | 48 (5240) |  |  |  |
| Average Power             | 11.18          | 11.18     | 11.22     | 11.36     |  |  |  |
| Mode                      |                | 802.11n   | (HT40)    |           |  |  |  |
| Channel / Frequency (MHz) | 38 (5          | 5190)     | 46 (5230) |           |  |  |  |
| Average Power             | 10             | .29       | 10        | .16       |  |  |  |

### <WLAN 5.8G>

| Mode                      | 802.11a            |            |            |            |  |  |  |  |  |
|---------------------------|--------------------|------------|------------|------------|--|--|--|--|--|
| Channel / Frequency (MHz) | 149 (5745)         | 153 (5765) | 157 (5785) | 161 (5805) |  |  |  |  |  |
| Average Power             | 9.98               | 10.27      | 10.24      | 10.12      |  |  |  |  |  |
| Mode                      | 802.11n (HT20)     |            |            |            |  |  |  |  |  |
| Channel / Frequency (MHz) | 149 (5745)         | 153 (5765) | 157 (5785) | 161 (5805) |  |  |  |  |  |
| Average Power             | 10.97              | 10.98      | 10.85      | 10.81      |  |  |  |  |  |
| Mode                      |                    | 802.11r    | n (HT40)   |            |  |  |  |  |  |
| Channel / Frequency (MHz) | 151 (              | 5755)      | 159 (      | 5795)      |  |  |  |  |  |
| Average Power             | <b>10.28</b> 10.13 |            |            |            |  |  |  |  |  |

 Report Format Version 5.0.0
 Page No.
 : 47 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



# 4.7 SAR Testing Results

### 4.7.1 SAR Results for Body

| Plot | Band     | Mode     | Test       | Separation<br>Distance | Ch.  | Power     | Max.<br>Tune-up | Measured<br>Conducted | Scaling | Power<br>Drift | Measured<br>SAR-1g | Scaled<br>SAR-1g  |
|------|----------|----------|------------|------------------------|------|-----------|-----------------|-----------------------|---------|----------------|--------------------|-------------------|
| No.  |          |          | Position   | (mm)                   |      | Reduction | Power<br>(dBm)  | Power<br>(dBm)        | Factor  | (dB)           | (W/kg)             | (W/kg)            |
|      | GSM850   | GPRS10   | Rear Face  | 0                      | 251  | w/        | 25.5            | 25.44                 | 1.01    | 0.09           | 0.791              | 0.80              |
|      | GSM850   | GPRS10   | Rear Face  | 14                     | 251  | w/o       | 32.0            | 31.81                 | 1.04    | -0.07          | 0.476              | 0.50              |
|      | GSM850   | GPRS10   | Right Side | 0                      | 251  | w/o       | 32.0            | 31.81                 | 1.04    | -0.06          | 0.205              | 0.21              |
|      | GSM850   | GPRS10   | Top Side   | 0                      | 251  | w/        | 25.5            | 25.44                 | 1.01    | -0.06          | 0.471              | 0.48              |
|      | GSM850   | GPRS10   | Top Side   | 17                     | 251  | w/o       | 32.0            | 31.81                 | 1.04    | -0.04          | 0.352              | 0.37              |
| 01   | GSM850   | GPRS10   | Rear Face  | 0                      | 128  | w/        | 25.5            | 25.29                 | 1.05    | 0.05           | 0.928              | <mark>0.97</mark> |
|      | GSM850   | GPRS10   | Rear Face  | 0                      | 189  | w/        | 25.5            | 25.43                 | 1.02    | 0.09           | 0.871              | 0.89              |
|      | GSM850   | GPRS10   | Rear Face  | 0                      | 128  | w/        | 25.5            | 25.29                 | 1.05    | 0.12           | 0.889              | 0.93              |
|      | GSM1900  | GPRS10   | Rear Face  | 0                      | 810  | w/        | 24.2            | 24.18                 | 1.00    | 0.01           | 0.985              | 0.99              |
|      | GSM1900  | GPRS10   | Rear Face  | 14                     | 810  | w/o       | 30.0            | 29.91                 | 1.02    | 0.04           | 0.694              | 0.71              |
|      | GSM1900  | GPRS10   | Right Side | 0                      | 810  | w/o       | 30.0            | 29.91                 | 1.02    | -0.01          | 0.056              | 0.06              |
|      | GSM1900  | GPRS10   | Top Side   | 0                      | 810  | w/        | 24.2            | 24.18                 | 1.00    | -0.09          | 0.806              | 0.81              |
|      | GSM1900  | GPRS10   | Top Side   | 17                     | 810  | w/o       | 30.0            | 29.91                 | 1.02    | -0.17          | 0.958              | 0.98              |
|      | GSM1900  | GPRS10   | Rear Face  | 0                      | 512  | w/        | 24.2            | 24.17                 | 1.01    | -0.04          | 1.15               | 1.16              |
|      | GSM1900  | GPRS10   | Rear Face  | 0                      | 661  | w/        | 24.2            | 24.15                 | 1.01    | 0.05           | 1.03               | 1.04              |
| 02   | GSM1900  | GPRS10   | Top Side   | 0                      | 512  | w/        | 24.2            | 24.17                 | 1.01    | -0.02          | 1.22               | <mark>1.23</mark> |
|      | GSM1900  | GPRS10   | Top Side   | 0                      | 661  | w/        | 24.2            | 24.15                 | 1.01    | 0.01           | 0.967              | 0.98              |
|      | GSM1900  | GPRS10   | Top Side   | 17                     | 512  | w/o       | 30.0            | 29.66                 | 1.08    | -0.01          | 1.09               | 1.18              |
|      | GSM1900  | GPRS10   | Top Side   | 17                     | 661  | w/o       | 30.0            | 29.82                 | 1.04    | -0.08          | 1.12               | 1.17              |
|      | GSM1900  | GPRS10   | Top Side   | 0                      | 512  | w/        | 24.2            | 24.17                 | 1.01    | 0.01           | 1.21               | 1.22              |
| 03   | WCDMA II | RMC12.2K | Rear Face  | 0                      | 9400 | w/        | 17.0            | 16.70                 | 1.07    | 0.08           | 1.21               | <mark>1.30</mark> |
|      | WCDMA II | RMC12.2K | Rear Face  | 14                     | 9400 | w/o       | 23.0            | 22.97                 | 1.01    | -0.08          | 0.975              | 0.98              |
|      | WCDMA II | RMC12.2K | Right Side | 0                      | 9400 | w/o       | 23.0            | 22.97                 | 1.01    | -0.19          | 0.081              | 0.08              |
|      | WCDMA II | RMC12.2K | Top Side   | 0                      | 9400 | w/        | 17.0            | 16.70                 | 1.07    | 0.06           | 0.876              | 0.94              |
|      | WCDMA II | RMC12.2K | Top Side   | 17                     | 9400 | w/o       | 23.0            | 22.97                 | 1.01    | -0.18          | 1.28               | 1.29              |
|      | WCDMA II | RMC12.2K | Rear Face  | 0                      | 9262 | w/        | 17.0            | 16.65                 | 1.08    | -0.06          | 1.06               | 1.15              |
|      | WCDMA II | RMC12.2K | Rear Face  | 0                      | 9538 | w/        | 17.0            | 16.64                 | 1.09    | -0.17          | 1.1                | 1.20              |
|      | WCDMA II | RMC12.2K | Rear Face  | 14                     | 9262 | w/o       | 23.0            | 22.83                 | 1.04    | -0.11          | 0.739              | 0.77              |
|      | WCDMA II | RMC12.2K | Rear Face  | 14                     | 9538 | w/o       | 23.0            | 22.65                 | 1.08    | -0.17          | 0.793              | 0.86              |
|      | WCDMA II | RMC12.2K | Top Side   | 0                      | 9262 | w/        | 17.0            | 16.65                 | 1.08    | -0.01          | 0.912              | 0.99              |
|      | WCDMA II | RMC12.2K | Top Side   | 0                      | 9538 | w/        | 17.0            | 16.64                 | 1.09    | 0.02           | 0.676              | 0.73              |
|      | WCDMA II | RMC12.2K | Top Side   | 17                     | 9262 | w/o       | 23.0            | 22.83                 | 1.04    | 0.04           | 0.818              | 0.85              |
|      | WCDMA II | RMC12.2K | Top Side   | 17                     | 9538 | w/o       | 23.0            | 22.65                 | 1.08    | -0.08          | 1.06               | 1.15              |
|      | WCDMA II | RMC12.2K | Top Side   | 17                     | 9400 | w/o       | 23.0            | 22.97                 | 1.01    | -0.07          | 1.24               | 1.25              |
| 04   | WCDMA V  | RMC12.2K | Rear Face  | 0                      | 4182 | w/        | 19.0            | 18.83                 | 1.04    | 0.04           | 0.971              | 1.01              |
|      | WCDMA V  | RMC12.2K | Rear Face  | 14                     | 4132 | w/o       | 23.5            | 23.41                 | 1.02    | -0.08          | 0.428              | 0.44              |
|      | WCDMA V  | RMC12.2K | Right Side | 0                      | 4132 | w/o       | 23.5            | 23.41                 | 1.02    | -0.03          | 0.218              | 0.22              |
|      | WCDMA V  | RMC12.2K | Top Side   | 0                      | 4182 | w/        | 19.0            | 18.83                 | 1.04    | -0.11          | 0.638              | 0.66              |
|      | WCDMA V  | RMC12.2K | Top Side   | 17                     | 4132 | w/o       | 23.5            | 23.41                 | 1.02    | -0.07          | 0.312              | 0.32              |
|      | WCDMA V  | RMC12.2K | Rear Face  | 0                      | 4132 | w/        | 19.0            | 18.79                 | 1.05    | 0.08           | 0.943              | 0.99              |
|      | WCDMA V  | RMC12.2K | Rear Face  | 0                      | 4233 | w/        | 19.0            | 18.76                 | 1.06    | 0.04           | 0.901              | 0.95              |
|      | WCDMA V  | RMC12.2K | Rear Face  | 0                      | 4182 | w/        | 19.0            | 18.83                 | 1.04    | 0.08           | 0.937              | 0.97              |

### Note:

1. SAR is performed on the highest power channel. When the reported SAR value of highest power channel is <= 0.8 W/kg, SAR testing for optional channel is not required.

Report Format Version 5.0.0 Page No. : 48 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



| Plot<br>No. | Band  | Mode     | Test<br>Position | Separation<br>Distance<br>(mm) | Ch.   | RB# | RB<br>Offset | Power<br>Reduction | Max.<br>Tune-up<br>Power<br>(dBm) | Measured<br>Conducted<br>Power<br>(dBm) | Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>SAR-1g<br>(W/kg) | Scaled<br>SAR-1g<br>(W/kg) |
|-------------|-------|----------|------------------|--------------------------------|-------|-----|--------------|--------------------|-----------------------------------|-----------------------------------------|-------------------|------------------------|------------------------------|----------------------------|
|             | LTE 2 | QPSK_20M | Rear Face        | 0                              | 19100 | 1   | 0            | w/                 | 16.5                              | 16.44                                   | 1.01              | 0.17                   | 0.996                        | 1.01                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 14                             | 19100 | 1   | 99           | w/o                | 23.6                              | 23.58                                   | 1.00              | -0.03                  | 0.817                        | 0.82                       |
|             | LTE 2 | QPSK_20M | Right Side       | 0                              | 19100 | 1   | 99           | w/o                | 23.6                              | 23.58                                   | 1.00              | -0.13                  | 0.06                         | 0.06                       |
|             | LTE 2 | QPSK_20M | Top Side         | 0                              | 19100 | 1   | 0            | w/                 | 16.5                              | 16.44                                   | 1.01              | -0.09                  | 0.983                        | 1.00                       |
|             | LTE 2 | QPSK_20M | Top Side         | 17                             | 19100 | 1   | 99           | w/o                | 23.6                              | 23.58                                   | 1.00              | -0.19                  | 1.1                          | 1.11                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 0                              | 18700 | 1   | 0            | w/                 | 16.5                              | 15.83                                   | 1.17              | 0.07                   | 0.724                        | 0.84                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 0                              | 18900 | 1   | 0            | w/                 | 16.5                              | 15.58                                   | 1.24              | 0.04                   | 0.837                        | 1.03                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 14                             | 18700 | 1   | 99           | w/o                | 23.6                              | 23.29                                   | 1.07              | -0.15                  | 0.895                        | 0.96                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 14                             | 18900 | 1   | 99           | w/o                | 23.6                              | 23.55                                   | 1.01              | -0.17                  | 0.964                        | 0.98                       |
|             | LTE 2 | QPSK_20M | Top Side         | 0                              | 18700 | 1   | 0            | w/                 | 16.5                              | 15.83                                   | 1.17              | 0.06                   | 0.726                        | 0.85                       |
|             | LTE 2 | QPSK_20M | Top Side         | 0                              | 18900 | 1   | 0            | w/                 | 16.5                              | 15.58                                   | 1.24              | 0.01                   | 0.734                        | 0.91                       |
|             | LTE 2 | QPSK_20M | Top Side         | 17                             | 18700 | 1   | 99           | w/o                | 23.6                              | 23.29                                   | 1.07              | -0.06                  | 0.979                        | 1.05                       |
|             | LTE 2 | QPSK_20M | Top Side         | 17                             | 18900 | 1   | 99           | w/o                | 23.6                              | 23.55                                   | 1.01              | -0.12                  | 1.33                         | 1.35                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 0                              | 19100 | 50  | 0            | w/                 | 15.5                              | 15.42                                   | 1.02              | 0.13                   | 0.841                        | 0.86                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 14                             | 19100 | 50  | 0            | w/o                | 22.6                              | 22.02                                   | 1.14              | -0.12                  | 0.708                        | 0.81                       |
|             | LTE 2 | QPSK_20M | Right Side       | 0                              | 19100 | 50  | 0            | w/o                | 22.6                              | 22.02                                   | 1.14              | 0.08                   | 0.046                        | 0.05                       |
|             | LTE 2 | QPSK_20M | Top Side         | 0                              | 19100 | 50  | 0            | w/                 | 15.5                              | 15.42                                   | 1.02              | 0.06                   | 0.73                         | 0.74                       |
|             | LTE 2 | QPSK_20M | Top Side         | 17                             | 19100 | 50  | 0            | w/o                | 22.6                              | 22.02                                   | 1.14              | -0.17                  | 0.854                        | 0.98                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 0                              | 18700 | 50  | 0            | w/                 | 15.5                              | 15.06                                   | 1.11              | 0.07                   | 0.775                        | 0.86                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 0                              | 18900 | 50  | 0            | w/                 | 15.5                              | 14.75                                   | 1.19              | 0.15                   | 0.81                         | 0.96                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 14                             | 18700 | 50  | 0            | w/o                | 22.6                              | 21.73                                   | 1.22              | 0.14                   | 0.565                        | 0.69                       |
|             | LTE 2 | QPSK_20M | Rear Face        | 14                             | 18900 | 50  | 0            | w/o                | 22.6                              | 21.99                                   | 1.15              | 0.18                   | 0.723                        | 0.83                       |
|             | LTE 2 | QPSK_20M | Top Side         | 17                             | 18700 | 50  | 0            | w/o                | 22.6                              | 21.73                                   | 1.22              | 0.13                   | 0.63                         | 0.77                       |
|             | LTE 2 | QPSK_20M | Top Side         | 17                             | 18900 | 50  | 0            | w/o                | 22.6                              | 21.99                                   | 1.15              | 0.02                   | 0.931                        | 1.07                       |
| 05          | LTE 2 | QPSK_20M | Top Side         | 17                             | 18900 | 1   | 99           | w/o                | 23.6                              | 23.55                                   | 1.01              | 0.15                   | 1.34                         | <mark>1.36</mark>          |
|             | LTE 4 | QPSK_20M | Rear Face        | 0                              | 20300 | 1   | 50           | w/                 | 16.6                              | 16.59                                   | 1.00              | 0.07                   | 0.932                        | 0.93                       |
|             | LTE 4 | QPSK_20M | Rear Face        | 14                             | 20300 | 1   | 0            | w/o                | 23.3                              | 23.21                                   | 1.02              | 0.12                   | 0.71                         | 0.72                       |
|             | LTE 4 | QPSK_20M | Right Side       | 0                              | 20300 | 1   | 0            | w/o                | 23.3                              | 23.21                                   | 1.02              | -0.18                  | 0.15                         | 0.15                       |
|             | LTE 4 | QPSK_20M | Top Side         | 0                              | 20300 | 1   | 50           | w/                 | 16.6                              | 16.59                                   | 1.00              | 0.11                   | 0.651                        | 0.65                       |
|             | LTE 4 | QPSK_20M | Top Side         | 17                             | 20300 | 1   | 0            | w/o                | 23.3                              | 23.21                                   | 1.02              | 0.03                   | 0.552                        | 0.56                       |
|             | LTE 4 | QPSK_20M | Rear Face        | 0                              | 20050 | 1   | 50           | w/                 | 16.6                              | 16.19                                   | 1.10              | 0.14                   | 0.953                        | 1.05                       |
|             | LTE 4 | QPSK_20M | Rear Face        | 0                              | 20175 | 1   | 50           | w/                 | 16.6                              | 16.50                                   | 1.02              | 0.06                   | 0.841                        | 0.86                       |
|             | LTE 4 | QPSK_20M | Rear Face        | 0                              | 20300 | 50  | 25           | w/                 | 15.6                              | 15.58                                   | 1.00              | 0.04                   | 0.772                        | 0.78                       |
|             | LTE 4 | QPSK_20M | Rear Face        | 14                             | 20300 | 50  | 0            | w/o                | 22.3                              | 22.15                                   | 1.04              | 0.16                   | 0.529                        | 0.55                       |
|             | LTE 4 | QPSK_20M | Right Side       | 0                              | 20300 | 50  | 0            | w/o                | 22.3                              | 22.15                                   | 1.04              | 0.12                   | 0.104                        | 0.11                       |
|             | LTE 4 | QPSK_20M | Top Side         | 0                              | 20300 | 50  | 25           | w/                 | 15.6                              | 15.58                                   | 1.00              | 0.10                   | 0.54                         | 0.54                       |
|             | LTE 4 | QPSK_20M | Top Side         | 17                             | 20300 | 50  | 0            | w/o                | 22.3                              | 22.15                                   | 1.04              | -0.10                  | 0.431                        | 0.45                       |
| 06          | LTE 4 | QPSK_20M | Rear Face        | 0                              | 20050 | 1   | 50           | w/                 | 16.6                              | 16.19                                   | 1.10              | 0.16                   | 0.955                        | 1.05                       |

#### Note:

- 1. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 1RB configuration is less than 0.8 W/kg.
- 2. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 50% RB configuration is less than 0.8 W/kg.
- 3. According to KDB 941225, LTE SAR testing for 100% RB is not required when the maximum power of 100% RB is less than the maximum power of 1RB and 50% RB, and the highest reported SAR for 1RB and 50% RB is less than 0.8 W/kg.
- 4. According to KDB 941225, LTE SAR testing for 16QAM is not required when the maximum power of 16QAM is less 1/2 dB higher than QPSK, and the highest reported SAR of QPSK is less than 1.45 W/kg.
- 5. According to KDB 941225, LTE SAR testing for smaller channel bandwidth is not required when the maximum power of smaller channel bandwidth is less 1/2 dB higher than largest channel bandwidth, and the highest reported SAR of largest channel bandwidth is less than 1.45 W/kg.

 Report Format Version 5.0.0
 Page No.
 : 49 of 85

 Report No. : SA130326C14
 Issued Date
 : May 09, 2013



| Plot<br>No. | Band   | Mode     | Test<br>Position | Separation<br>Distance<br>(mm) | Ch.   | RB# | RB<br>Offset | Power<br>Reduction | Max.<br>Tune-up<br>Power<br>(dBm) | Measured<br>Conducted<br>Power<br>(dBm) | Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>SAR-1g<br>(W/kg) | Scaled<br>SAR-1g<br>(W/kg) |
|-------------|--------|----------|------------------|--------------------------------|-------|-----|--------------|--------------------|-----------------------------------|-----------------------------------------|-------------------|------------------------|------------------------------|----------------------------|
| 07          | LTE 5  | QPSK_10M | Rear Face        | 0                              | 20525 | 1   | 24           | w/                 | 18.6                              | 18.56                                   | 1.01              | 0.10                   | 0.755                        | <mark>0.76</mark>          |
|             | LTE 5  | QPSK_10M | Rear Face        | 14                             | 20525 | 1   | 24           | w/o                | 23.7                              | 23.63                                   | 1.02              | -0.18                  | 0.463                        | 0.47                       |
|             | LTE 5  | QPSK_10M | Right Side       | 0                              | 20525 | 1   | 24           | w/o                | 23.7                              | 23.63                                   | 1.02              | 0.04                   | 0.211                        | 0.21                       |
|             | LTE 5  | QPSK_10M | Top Side         | 0                              | 20525 | 1   | 24           | w/                 | 18.6                              | 18.56                                   | 1.01              | 0.00                   | 0.398                        | 0.40                       |
|             | LTE 5  | QPSK_10M | Top Side         | 17                             | 20525 | 1   | 24           | w/o                | 23.7                              | 23.63                                   | 1.02              | 0.07                   | 0.228                        | 0.23                       |
|             | LTE 5  | QPSK_10M | Rear Face        | 0                              | 20525 | 25  | 12           | w/                 | 17.6                              | 17.54                                   | 1.01              | -0.10                  | 0.615                        | 0.62                       |
|             | LTE 5  | QPSK_10M | Rear Face        | 14                             | 20600 | 25  | 12           | w/o                | 22.7                              | 22.61                                   | 1.02              | 0.06                   | 0.341                        | 0.35                       |
|             | LTE 5  | QPSK_10M | Right Side       | 0                              | 20600 | 25  | 12           | w/o                | 22.7                              | 22.61                                   | 1.02              | -0.05                  | 0.139                        | 0.14                       |
|             | LTE 5  | QPSK_10M | Top Side         | 0                              | 20525 | 25  | 12           | w/                 | 17.6                              | 17.54                                   | 1.01              | 0.06                   | 0.426                        | 0.43                       |
|             | LTE 5  | QPSK_10M | Top Side         | 17                             | 20600 | 25  | 12           | w/o                | 22.7                              | 22.61                                   | 1.02              | -0.04                  | 0.163                        | 0.17                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23780 | 1   | 24           | w/                 | 20.5                              | 20.48                                   | 1.00              | 0.08                   | 1.15                         | 1.16                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 14                             | 23780 | 1   | 49           | w/o                | 23.7                              | 23.65                                   | 1.01              | -0.01                  | 0.334                        | 0.34                       |
|             | LTE 17 | QPSK_10M | Right Side       | 0                              | 23780 | 1   | 49           | w/o                | 23.7                              | 23.65                                   | 1.01              | -0.06                  | 0.198                        | 0.20                       |
|             | LTE 17 | QPSK_10M | Top Side         | 0                              | 23780 | 1   | 24           | w/                 | 20.5                              | 20.48                                   | 1.00              | 0.02                   | 0.449                        | 0.45                       |
|             | LTE 17 | QPSK_10M | Top Side         | 17                             | 23780 | 1   | 49           | w/o                | 23.7                              | 23.65                                   | 1.01              | 0.07                   | 0.109                        | 0.11                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23790 | 1   | 24           | w/                 | 20.5                              | 20.38                                   | 1.03              | 0.02                   | 1.16                         | 1.19                       |
| 80          | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23800 | 1   | 24           | w/                 | 20.5                              | 20.18                                   | 1.08              | 0.09                   | 1.16                         | 1.25                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23780 | 25  | 12           | w/                 | 19.5                              | 19.46                                   | 1.01              | 0.06                   | 0.883                        | 0.89                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 14                             | 23780 | 25  | 25           | w/o                | 22.7                              | 22.40                                   | 1.07              | 0.02                   | 0.266                        | 0.29                       |
|             | LTE 17 | QPSK_10M | Right Side       | 0                              | 23780 | 25  | 25           | w/o                | 22.7                              | 22.40                                   | 1.07              | 0.03                   | 0.164                        | 0.18                       |
|             | LTE 17 | QPSK_10M | Top Side         | 0                              | 23780 | 25  | 12           | w/                 | 19.5                              | 19.46                                   | 1.01              | 0.03                   | 0.348                        | 0.35                       |
|             | LTE 17 | QPSK_10M | Top Side         | 17                             | 23780 | 25  | 25           | w/o                | 22.7                              | 22.40                                   | 1.07              | 0.02                   | 0.088                        | 0.09                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23790 | 25  | 12           | w/                 | 19.5                              | 19.36                                   | 1.03              | 0.06                   | 0.964                        | 1.00                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23800 | 25  | 12           | w/                 | 19.5                              | 19.16                                   | 1.08              | 0.07                   | 0.897                        | 0.97                       |
|             | LTE 17 | QPSK_10M | Rear Face        | 0                              | 23800 | 1   | 24           | w/                 | 20.5                              | 20.18                                   | 1.08              | 0.13                   | 1.14                         | 1.23                       |

#### Note:

- 1. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 1RB configuration is less than 0.8 W/kg.
- 2. According to KDB 941225, LTE SAR testing for remaining RB offset configurations and required test channels is not required when the reported SAR of highest power 50% RB configuration is less than 0.8 W/kg.
- 3. According to KDB 941225, LTE SAR testing for 100% RB is not required when the maximum power of 100% RB is less than the maximum power of 1RB and 50% RB, and the highest reported SAR for 1RB and 50% RB is less than 0.8 W/kg.
- 4. According to KDB 941225, LTE SAR testing for 16QAM is not required when the maximum power of 16QAM is less 1/2 dB higher than QPSK, and the highest reported SAR of QPSK is less than 1.45 W/kg.
- 5. According to KDB 941225, LTE SAR testing for smaller channel bandwidth is not required when the maximum power of smaller channel bandwidth is less 1/2 dB higher than largest channel bandwidth, and the highest reported SAR of largest channel bandwidth is less than 1.45 W/kg.

Report Format Version 5.0.0 Page No. : 50 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



| Plot<br>No. | Band    | Test<br>Position | Separation<br>Distance<br>(mm) | Ch. | Max.<br>Tune-up<br>Power<br>(dBm) | Measured<br>Conducted<br>Power<br>(dBm) | Scaling<br>Factor | Power<br>Drift<br>(dB) | Measured<br>SAR-1g<br>(W/kg) | Scaled<br>SAR-1g<br>(W/kg) |
|-------------|---------|------------------|--------------------------------|-----|-----------------------------------|-----------------------------------------|-------------------|------------------------|------------------------------|----------------------------|
|             | 802.11b | Rear Face        | 0                              | 1   | 13.5                              | 13.35                                   | 1.04              | 0.00                   | 0.782                        | 0.81                       |
|             | 802.11b | Left Side        | 0                              | 1   | 13.5                              | 13.35                                   | 1.04              | 0.07                   | 0.1                          | 0.10                       |
|             | 802.11b | Top Side         | 0                              | 1   | 13.5                              | 13.35                                   | 1.04              | -0.08                  | 0.396                        | 0.41                       |
|             | 802.11b | Rear Face        | 0                              | 6   | 13.5                              | 13.20                                   | 1.07              | 0.00                   | 0.67                         | 0.72                       |
|             | 802.11b | Rear Face        | 0                              | 11  | 13.5                              | 13.05                                   | 1.11              | 0.00                   | 0.97                         | 1.08                       |
| 09          | 802.11b | Rear Face        | 0                              | 11  | 13.5                              | 13.05                                   | 1.11              | 0.00                   | 1                            | 1.11                       |
| 10          | 802.11a | Rear Face        | 0                              | 48  | 11.5                              | 10.32                                   | 1.31              | 0.02                   | 0.527                        | <mark>0.69</mark>          |
|             | 802.11a | Left Side        | 0                              | 48  | 11.5                              | 10.32                                   | 1.31              | -0.03                  | 0.108                        | 0.14                       |
|             | 802.11a | Top Side         | 0                              | 48  | 11.5                              | 10.32                                   | 1.31              | 0.17                   | 0.358                        | 0.47                       |
|             | 802.11a | Rear Face        | 0                              | 153 | 11.0                              | 10.27                                   | 1.18              | 0.14                   | 0.842                        | 1.00                       |
|             | 802.11a | Left Side        | 0                              | 153 | 11.0                              | 10.27                                   | 1.18              | 0.14                   | 0.256                        | 0.30                       |
| 11          | 802.11a | Top Side         | 0                              | 153 | 11.0                              | 10.27                                   | 1.18              | 0.07                   | 1.01                         | <mark>1.19</mark>          |
|             | 802.11a | Rear Face        | 0                              | 157 | 11.0                              | 10.24                                   | 1.19              | 0.08                   | 0.841                        | 1.00                       |
|             | 802.11a | Top Side         | 0                              | 157 | 11.0                              | 10.24                                   | 1.19              | 0.12                   | 0.989                        | 1.18                       |
|             | 802.11a | Top Side         | 0                              | 153 | 11.0                              | 10.27                                   | 1.18              | 0.05                   | 0.998                        | 1.18                       |

### Note:

- 1. According to KDB 248227 D01, when the extrapolated maximum peak SAR for the maximum output power channel is <= 1.6 W/kg and the 1g averaged SAR is <= 0.8 W/kg, WLAN SAR testing for other channels is not required.
- 2. SAR testing for 802.11g/n is not required when its maximum power is less than 1/4 dB higher than 802.11b.
- $3. \ \ \mathsf{SAR} \ \mathsf{testing} \ \mathsf{for} \ \mathsf{802.11n} \ \mathsf{is} \ \mathsf{not} \ \mathsf{required} \ \mathsf{when} \ \mathsf{its} \ \mathsf{maximum} \ \mathsf{power} \ \mathsf{is} \ \mathsf{less} \ \mathsf{than} \ \mathsf{1/4} \ \mathsf{dB} \ \mathsf{higher} \ \mathsf{than} \ \mathsf{802.11a}.$

Report Format Version 5.0.0 Page No. : 51 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 4.7.2 SAR Measurement Variability

According to KDB 865664 D01v01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are  $\leq 1.45$  W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is  $\leq 1.10$ , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

### SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

| Band     | Mode                  | Test<br>Position | Separation<br>Distance<br>(mm) | Ch.   | Original<br>Measured<br>SAR-1g<br>(W/kg) | 1st<br>Repeated<br>SAR-1g<br>(W/kg) | L/S<br>Ratio | 2nd<br>Repeated<br>SAR-1g<br>(W/kg) | L/S<br>Ratio | 3rd<br>Repeated<br>SAR-1g<br>(W/kg) | L/S<br>Ratio |
|----------|-----------------------|------------------|--------------------------------|-------|------------------------------------------|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|--------------|
| GSM850   | GPRS10                | Rear Face        | 0                              | 128   | 0.928                                    | 0.889                               | 1.04         | N/A                                 | N/A          | N/A                                 | N/A          |
| GSM1900  | GPRS10                | Top Side         | 0                              | 512   | 1.22                                     | 1.21                                | 1.01         | N/A                                 | N/A          | N/A                                 | N/A          |
| WCDMA II | RMC12.2K              | Top Side         | 17                             | 9400  | 1.28                                     | 1.24                                | 1.03         | N/A                                 | N/A          | N/A                                 | N/A          |
| WCDMA V  | RMC12.2K              | Rear Face        | 0                              | 4182  | 0.971                                    | 0.937                               | 1.04         | N/A                                 | N/A          | N/A                                 | N/A          |
| LTE 2    | QPSK_20M<br>RB1, OS99 | Top Side         | 17                             | 18900 | 1.33                                     | 1.34                                | 1.01         | N/A                                 | N/A          | N/A                                 | N/A          |
| LTE 4    | QPSK_20M<br>RB1, OS50 | Rear Face        | 0                              | 20050 | 0.953                                    | 0.955                               | 1.00         | N/A                                 | N/A          | N/A                                 | N/A          |
| LTE 17   | QPSK_10M<br>RB1, OS24 | Rear Face        | 0                              | 23800 | 1.16                                     | 1.14                                | 1.02         | N/A                                 | N/A          | N/A                                 | N/A          |
| 802.11b  | -                     | Rear Face        | 0                              | 11    | 0.97                                     | 1                                   | 1.03         | N/A                                 | N/A          | N/A                                 | N/A          |
| 802.11a  | -                     | Top Side         | 0                              | 153   | 1.01                                     | 0.998                               | 1.01         | N/A                                 | N/A          | N/A                                 | N/A          |

Report Format Version 5.0.0 Page No. : 52 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### 4.7.3 Simultaneous Multi-band Transmission Evaluation

### <Estimated SAR Calculation>

According to KDB 447498 D01v05, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion.

$$\text{Estimated SAR} = \frac{\text{Max.Tune up Power}_{(mW)}}{\text{Min.Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

| Mode / Band     | Frequency<br>(GHz) | Max.<br>Tune-up<br>Power<br>(dBm)  | Test<br>Position         | Separation<br>Distance<br>(mm) | Estimated<br>SAR<br>(W/kg) |
|-----------------|--------------------|------------------------------------|--------------------------|--------------------------------|----------------------------|
| GSM850 (GPRS10) | 0.835              | 26.0<br>(Max Frame-Averaged Power) | Left Side / Bottom Side  | 0                              | 0.4                        |
| GSM850 (GPRS10) | 1.909              | 24.0<br>(Max Frame-Averaged Power) | Left Side / Bottom Side  | 0                              | 0.4                        |
| WCDMA II        | 1.907              | 23.0                               | Left Side / Bottom Side  | 0                              | 0.4                        |
| WCDMA V         | 0.846              | 23.5                               | Left Side / Bottom Side  | 0                              | 0.4                        |
| LTE 2           | 1.909              | 23.6                               | Left Side / Bottom Side  | 0                              | 0.4                        |
| LTE 4           | 1.754              | 23.3                               | Left Side / Bottom Side  | 0                              | 0.4                        |
| LTE 5           | 0.848              | 23.7                               | Left Side / Bottom Side  | 0                              | 0.4                        |
| LTE 17          | 0.713              | 23.7                               | Left Side / Bottom Side  | 0                              | 0.4                        |
| WLAN (DTS)      | 2.462              | 13.5                               | Right Side / Bottom Side | 0                              | 0.4                        |
| WLAN (DTS)      | 5.825              | 11.0                               | Right Side / Bottom Side | 0                              | 0.4                        |
| WLAN (NII)      | 5.7                | 11.5                               | Right Side / Bottom Side | 0                              | 0.4                        |
| BT (DSS)        | 2.48               | 6.5                                | Body                     | 0                              | 0.2                        |

### Note:

- 1. The separation distance is determined from the outer housing of the EUT to the user.
- 2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion.

Report Format Version 5.0.0 Page No. : 53 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



### <SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of  $SAR_{1g}$  of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit ( $SAR_{1g}$  1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of  $SAR_{1g}$  is greater than the SAR limit ( $SAR_{1g}$  1.6 W/kg), SAR test exclusion is determined by the SPLSR.

| No. | Conditions<br>(SAR1 + SAR2) | Exposure<br>Condition | Test<br>Position | Separation<br>(mm) | Max.<br>SAR1           | Max.<br>SAR2           | SAR<br>Summation       | SPLSR<br>Analysis            |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|-----|-----------------------------|-----------------------|------------------|--------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|------------------------------|--|--|----------|---|-----------|------|------|------------------------------|------|------------------------------|
|     | (Orace i Orace)             |                       | Rear Face        | 0                  | 0.97                   | 1.11                   | 2.08                   | Analyzed as below            |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Rear Face        | 14                 | 0.50                   | 1.11                   | 1.61                   | Analyzed as below            |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     | OCMOFO                      |                       | Left Side        | 0                  | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
| 1   | GSM850<br>+                 | Body                  | Right Side       | 0                  | 0.21                   | 0.4<br>(Estimated SAR) | 0.61                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     | WLAN (DTS)                  |                       | Top Side         | 0                  | 0.48                   | 1.19                   | 1.67                   | Analyzed as below            |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Top Side         | 17                 | 0.37                   | 1.19                   | 1.56                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Rear Face        | 0                  | 0.97                   | 0.69                   | 1.66                   | Analyzed<br>as below         |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Rear Face        | 14                 | 0.50                   | 0.69                   | 1.19                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     | GSM850                      | Body                  | Body             |                    | Left Side              | 0                      | 0.4<br>(Estimated SAR) | 0.14                         | 0.54                         | Σ SAR < 1.6,<br>Not required |  |  |          |   |           |      |      |                              |      |                              |
| 2   | +                           |                       |                  | Right Side         | 0                      | 0.21                   | 0.4<br>(Estimated SAR) | 0.61                         | Σ SAR < 1.6,<br>Not required |                              |  |  |          |   |           |      |      |                              |      |                              |
|     | WLAN (NII)                  |                       |                  |                    |                        |                        |                        |                              |                              |                              |  |  | Top Side | 0 | 0.48      | 0.47 | 0.95 | Σ SAR < 1.6,<br>Not required |      |                              |
|     |                             |                       | Top Side         | 17                 | 0.37                   | 0.47                   | 0.84                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Rear Face        | 0                  | 0.97                   | 0.2<br>(Estimated SAR) | 1.17                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       |                  | _                  |                        |                        |                        |                              |                              |                              |  |  | -        | _ | Rear Face | 14   | 0.50 | 0.2<br>(Estimated SAR)       | 0.70 | Σ SAR < 1.6,<br>Not required |
|     | CSMSEO                      |                       |                  |                    | Left Side              | 0                      | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR)       | 0.60                         | Σ SAR < 1.6,<br>Not required |  |  |          |   |           |      |      |                              |      |                              |
| 3   | GSM850<br>+<br>BT (DSS)     | Body                  | Right Side       | 0                  | 0.21                   | 0.2<br>(Estimated SAR) | 0.41                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Top Side         | 0                  | 0.48                   | 0.2<br>(Estimated SAR) | 0.68                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Top Side         | 17                 | 0.37                   | 0.2<br>(Estimated SAR) | 0.57                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |  |          |   |           |      |      |                              |      |                              |

 Report Format Version 5.0.0
 Page No. : 54 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



| No.  | Conditions    | Exposure  | Test        | Separation  | Max.                   | Max.                   | SAR                    | SPLSR                        |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|------|---------------|-----------|-------------|-------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|------------------------|----------|------|------------------------------|----------|-----------|-------------------|------------------------|------------------------|-------------------|------------------------------|
| 110. | (SAR1 + SAR2) | Condition | Position    | (mm)        | SAR1                   | SAR2                   | Summation              | Analysis                     |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Rear Face   | 0           | 1.16                   | 1.11                   | 2.27                   | Analyzed<br>as below         |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Rear Face   | 14          | 0.71                   | 1.11                   | 1.82                   | Analyzed as below            |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      | GSM1900       |           | Left Side   | 0           | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
| 4    | +             | Body      | Right Side  | 0           | 0.06                   | 0.4<br>(Estimated SAR) | 0.46                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      | WLAN (DTS)    |           | Top Side    | 0           | 1.23                   | 1.19                   | 2.42                   | Analyzed as below            |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Top Side    | 17          | 1.18                   | 1.19                   | 2.37                   | Analyzed as below            |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Bottom Side | 0           | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Rear Face   | 0           | 1.16                   | 0.69                   | 1.85                   | Analyzed as below            |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Rear Face   | 14          | 0.71                   | 0.69                   | 1.40                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               | Body      | Body        |             |                        |                        |                        | Left Side                    | 0                            | 0.4<br>(Estimated SAR) | 0.14     | 0.54 | Σ SAR < 1.6,<br>Not required |          |           |                   |                        |                        |                   |                              |
| 5    | GSM1900<br>+  |           |             | Right Side  | 0                      | 0.06                   | 0.4<br>(Estimated SAR) | 0.46                         | Σ SAR < 1.6,<br>Not required |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      | WLAN (NII)    |           |             |             |                        |                        |                        | -                            | -                            |                        | Top Side | 0    | 1.23                         | 0.47     | 1.70      | Analyzed as below |                        |                        |                   |                              |
|      |               |           |             |             |                        |                        |                        |                              |                              |                        |          |      |                              | Top Side | 17        | 1.18              | 0.47                   | 1.65                   | Analyzed as below |                              |
|      |               |           | Bottom Side | 0           | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Rear Face   | 0           | 1.16                   | 0.2<br>(Estimated SAR) | 1.36                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Rear Face   | 14          | 0.71                   | 0.2<br>(Estimated SAR) | 0.91                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      | 00044000      | Body      | Body        | Body        | Body                   | Body                   | Body                   | Body                         | Body                         | Body                   | Body     | Body | Body                         | Body     | Left Side | 0                 | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60              | Σ SAR < 1.6,<br>Not required |
| 6    | -             |           |             |             |                        |                        |                        |                              |                              |                        |          |      |                              |          | Body      | Body              | Body                   | Body                   | Body              | Body                         |
|      | BT (DSS)      |           |             | Top Side    | 0                      | 1.23                   | 0.2<br>(Estimated SAR) | 1.43                         | Σ SAR < 1.6,<br>Not required |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | Top Side    | 17          | 1.18                   | 0.2<br>(Estimated SAR) | 1.38                   | Σ SAR < 1.6,<br>Not required |                              |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |
|      |               |           | <u> </u>    | Bottom Side | 0                      | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                         | Σ SAR < 1.6,<br>Not required |                        |          |      |                              |          |           |                   |                        |                        |                   |                              |

 Report Format Version 5.0.0
 Page No.
 : 55 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| No. | Conditions<br>(SAR1 + SAR2) | Exposure<br>Condition | Test<br>Position | Separation<br>(mm) | Max.<br>SAR1           | Max.<br>SAR2           | SAR<br>Summation       | SPLSR<br>Analysis            |                              |      |          |           |      |                        |                        |                              |                              |
|-----|-----------------------------|-----------------------|------------------|--------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|------|----------|-----------|------|------------------------|------------------------|------------------------------|------------------------------|
|     | (3AK1 + 3AK2)               | Condition             | Rear Face        | 0                  | 1.30                   | 1.11                   | 2.41                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Rear Face        | 14                 | 0.98                   | 1.11                   | 2.09                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Left Side        | 0                  | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
| 7   | WCDMA II<br>+               | Body                  | Right Side       | 0                  | 0.08                   | 0.4<br>(Estimated SAR) | 0.48                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     | WLAN (DTS)                  |                       | Top Side         | 0                  | 0.99                   | 1.19                   | 2.18                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Top Side         | 17                 | 1.29                   | 1.19                   | 2.48                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Rear Face        | 0                  | 1.30                   | 0.69                   | 1.99                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Rear Face        | 14                 | 0.98                   | 0.69                   | 1.67                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     | WCDMA II                    | Body                  | Body             | Left Side          | 0                      | 0.4<br>(Estimated SAR) | 0.14                   | 0.54                         | Σ SAR < 1.6,<br>Not required |      |          |           |      |                        |                        |                              |                              |
| 8   | +                           |                       |                  | Right Side         | 0                      | 0.08                   | 0.4<br>(Estimated SAR) | 0.48                         | Σ SAR < 1.6,<br>Not required |      |          |           |      |                        |                        |                              |                              |
|     | WLAN (NII)                  |                       |                  |                    |                        |                        |                        |                              |                              |      | Top Side | 0         | 0.99 | 0.47                   | 1.46                   | Σ SAR < 1.6,<br>Not required |                              |
|     |                             |                       | Top Side         | 17                 | 1.29                   | 0.47                   | 1.76                   | Analyzed as below            |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Rear Face        | 0                  | 1.30                   | 0.2<br>(Estimated SAR) | 1.50                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Rear Face        | 14                 | 0.98                   | 0.2<br>(Estimated SAR) | 1.18                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     | WCDMAII                     | Body                  | Body             | Body               | Body                   | Body                   | Body                   | Body                         | Body                         | Body | Body     | Left Side | 0    | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                         | Σ SAR < 1.6,<br>Not required |
| 9   | 9 +<br>BT (DSS)             |                       |                  |                    |                        |                        |                        |                              |                              |      |          | Body      | Body | Right Side             | 0                      | 0.08                         | 0.2<br>(Estimated SAR)       |
|     |                             |                       | Top Side         | 0                  | 0.99                   | 0.2<br>(Estimated SAR) | 1.19                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Top Side         | 17                 | 1.29                   | 0.2<br>(Estimated SAR) | 1.49                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |      |          |           |      |                        |                        |                              |                              |

 Report Format Version 5.0.0
 Page No.
 : 56 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| No. | Conditions<br>(SAR1 + SAR2) | Exposure<br>Condition | Test<br>Position | Separation<br>(mm) | Max.<br>SAR1           | Max.<br>SAR2           | SAR<br>Summation       | SPLSR<br>Analysis            |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|-----|-----------------------------|-----------------------|------------------|--------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|------|-----------|------|------------------------|------------------------|----------|------------------------------|------|------------------------------|------|------------------------------|
|     | (Oracl Toracl)              | Condition             | Rear Face        | 0                  | 1.01                   | 1.11                   | 2.12                   | Analyzed as below            |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Rear Face        | 14                 | 0.44                   | 1.11                   | 1.55                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Left Side        | 0                  | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
| 10  | WCDMA V<br>+                | Body                  | Right Side       | 0                  | 0.22                   | 0.4<br>(Estimated SAR) | 0.62                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     | WLAN (DTS)                  |                       | Top Side         | 0                  | 0.66                   | 1.19                   | 1.85                   | Analyzed as below            |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Top Side         | 17                 | 0.32                   | 1.19                   | 1.51                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Rear Face        | 0                  | 1.01                   | 0.69                   | 1.70                   | Analyzed as below            |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Rear Face        | 14                 | 0.44                   | 0.69                   | 1.13                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     | WCDMA V                     | Body                  | Left Side        | 0                  | 0.4<br>(Estimated SAR) | 0.14                   | 0.54                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
| 11  | +                           |                       | Body             | Right Side         | 0                      | 0.22                   | 0.4<br>(Estimated SAR) | 0.62                         | Σ SAR < 1.6,<br>Not required |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     | WLAN (NII)                  |                       |                  |                    |                        |                        |                        |                              | -                            | -    |           |      | Top Side               | 0                      | 0.66     | 0.47                         | 1.13 | Σ SAR < 1.6,<br>Not required |      |                              |
|     |                             |                       |                  |                    |                        |                        |                        |                              |                              |      |           |      | <br>                   | -                      | Top Side | 17                           | 0.32 | 0.47                         | 0.79 | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Rear Face        | 0                  | 1.01                   | 0.2<br>(Estimated SAR) | 1.21                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Rear Face        | 14                 | 0.44                   | 0.2<br>(Estimated SAR) | 0.64                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     | MCDMA V                     | Body                  | Body             | Body               | Body                   | Body                   | Body                   | Body                         | Body                         | Body | Left Side | 0    | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60     | Σ SAR < 1.6,<br>Not required |      |                              |      |                              |
| 12  | WCDMA V + BT (DSS)          |                       |                  |                    |                        |                        |                        |                              |                              |      | Body      | Body | Body                   | Body                   | Body     | Body                         | Body | Body                         | Body | Body                         |
|     |                             |                       | Top Side         | 0                  | 0.66                   | 0.2<br>(Estimated SAR) | 0.86                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Top Side         | 17                 | 0.32                   | 0.2<br>(Estimated SAR) | 0.52                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |      |           |      |                        |                        |          |                              |      |                              |      |                              |

 Report Format Version 5.0.0
 Page No.
 : 57 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| No. | Conditions<br>(SAR1 + SAR2) | Exposure<br>Condition | Test<br>Position | Separation<br>(mm) | Max.<br>SAR1           | Max.<br>SAR2           | SAR<br>Summation       | SPLSR<br>Analysis            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|-----|-----------------------------|-----------------------|------------------|--------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|------------------------------|--|-------------|----------|------------------------|------------------------|------|------------------------------|----------------------|
| -   | (SART + SARZ)               | Condition             | Rear Face        | 0                  | 1.03                   | 1.11                   | 2.14                   | Analyzed as below            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Rear Face        | 14                 | 0.98                   | 1.11                   | 2.09                   | Analyzed as below            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     | 177.0                       |                       | Left Side        | 0                  | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
| 13  | LTE 2<br>+                  | Body                  | Right Side       | 0                  | 0.06                   | 0.4<br>(Estimated SAR) | 0.46                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     | WLAN (DTS)                  |                       | Top Side         | 0                  | 1.00                   | 1.19                   | 2.19                   | Analyzed as below            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Top Side         | 17                 | 1.36                   | 1.19                   | 2.55                   | Analyzed as below            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Rear Face        | 0                  | 1.03                   | 0.69                   | 1.72                   | Analyzed as below            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Rear Face        | 14                 | 0.98                   | 0.69                   | 1.67                   | Analyzed as below            |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     | LTE 2                       | Body                  | Body             |                    | Left Side              | 0                      | 0.4<br>(Estimated SAR) | 0.14                         | 0.54                         | Σ SAR < 1.6,<br>Not required |  |             |          |                        |                        |      |                              |                      |
| 14  | +                           |                       |                  | Right Side         | 0                      | 0.06                   | 0.4<br>(Estimated SAR) | 0.46                         | Σ SAR < 1.6,<br>Not required |                              |  |             |          |                        |                        |      |                              |                      |
|     | WLAN (NII)                  |                       |                  | -                  | -                      |                        |                        |                              |                              | -                            |  | Top Side    | 0        | 1.00                   | 0.47                   | 1.47 | Σ SAR < 1.6,<br>Not required |                      |
|     |                             |                       |                  |                    |                        |                        |                        |                              |                              |                              |  |             | Top Side | 17                     | 1.36                   | 0.47 | 1.83                         | Analyzed<br>as below |
|     |                             |                       |                  |                    |                        |                        |                        |                              |                              |                              |  | Bottom Side | 0        | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80 | Σ SAR < 1.6,<br>Not required |                      |
|     |                             |                       | Rear Face        | 0                  | 1.03                   | 0.2<br>(Estimated SAR) | 1.23                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Rear Face        | 14                 | 0.98                   | 0.2<br>(Estimated SAR) | 1.18                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     | LTE 2                       |                       | Left Side        | 0                  | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
| 15  | LTE 2<br>+<br>BT (DSS)      | Body                  | Body             | Body               | Right Side             | 0                      | 0.06                   | 0.2<br>(Estimated SAR)       | 0.26                         | Σ SAR < 1.6,<br>Not required |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Top Side         | 0                  | 1.00                   | 0.2<br>(Estimated SAR) | 1.20                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Top Side         | 17                 | 1.36                   | 0.2<br>(Estimated SAR) | 1.56                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |
|     |                             |                       | Bottom Side      | 0                  | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |                              |  |             |          |                        |                        |      |                              |                      |

 Report Format Version 5.0.0
 Page No. : 58 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



| No. | Conditions    | Exposure    | Test        | Separation | Max.                   | Max.                   | SAR                          | SPLSR                        |                              |      |      |                              |
|-----|---------------|-------------|-------------|------------|------------------------|------------------------|------------------------------|------------------------------|------------------------------|------|------|------------------------------|
|     | (SAR1 + SAR2) | Condition   | Position    | (mm)       | SAR1                   | SAR2                   | Summation                    | Analysis                     |                              |      |      |                              |
|     |               |             | Rear Face   | 0          | 1.05                   | 1.11                   | 2.16                         | Analyzed<br>as below         |                              |      |      |                              |
|     |               |             | Rear Face   | 14         | 0.72                   | 1.11                   | 1.83                         | Analyzed as below            |                              |      |      |                              |
|     | LTE 4         |             | Left Side   | 0          | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
| 16  | +             | Body        | Right Side  | 0          | 0.15                   | 0.4<br>(Estimated SAR) | 0.55                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | WLAN (DTS)    |             | Top Side    | 0          | 0.65                   | 1.19                   | 1.84                         | Analyzed as below            |                              |      |      |                              |
|     |               |             | Top Side    | 17         | 0.56                   | 1.19                   | 1.75                         | Analyzed as below            |                              |      |      |                              |
|     |               |             | Bottom Side | 0          | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |               |             | Rear Face   | 0          | 1.05                   | 0.69                   | 1.74                         | Analyzed as below            |                              |      |      |                              |
|     |               | Body        | Body        |            |                        |                        | Rear Face                    | 14                           | 0.72                         | 0.69 | 1.41 | Σ SAR < 1.6,<br>Not required |
|     | LTE 4         |             |             |            |                        |                        | Left Side                    | 0                            | 0.4<br>(Estimated SAR)       | 0.14 | 0.54 | Σ SAR < 1.6,<br>Not required |
| 17  | +             |             |             | Right Side | 0                      | 0.15                   | 0.4<br>(Estimated SAR)       | 0.55                         | Σ SAR < 1.6,<br>Not required |      |      |                              |
|     | WLAN (NII)    |             | Top Side    | 0          | 0.65                   | 0.47                   | 1.12                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |               |             | Top Side    | 17         | 0.56                   | 0.47                   | 1.03                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |               |             | Bottom Side | 0          | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |               |             | Rear Face   | 0          | 1.05                   | 0.2<br>(Estimated SAR) | 1.25                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |               |             | Rear Face   | 14         | 0.72                   | 0.2<br>(Estimated SAR) | 0.92                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | 1.75.4        |             | Left Side   | 0          | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
| 18  | LTE 4<br>+    | Body        | Right Side  | 0          | 0.15                   | 0.2<br>(Estimated SAR) | 0.35                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | BT (DSS)      | Body        | Top Side    | 0          | 0.65                   | 0.2<br>(Estimated SAR) | 0.85                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |               | Top Side 17 |             | 0.56       | 0.2<br>(Estimated SAR) | 0.76                   | Σ SAR < 1.6,<br>Not required |                              |                              |      |      |                              |
|     |               |             | Bottom Side | 0          | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                         | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |

 Report Format Version 5.0.0
 Page No.
 : 59 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| No. | Conditions<br>(SAR1 + SAR2) | Exposure<br>Condition | Test<br>Position   | Separation           | Max.<br>SAR1           | Max.<br>SAR2           | SAR<br>Summation       | SPLSR                        |                              |      |      |                              |
|-----|-----------------------------|-----------------------|--------------------|----------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|------|------|------------------------------|
|     | (SART + SARZ)               | Condition             | Rear Face          | <b>(mm)</b><br>0     | 0.76                   | 1.11                   | 1.87                   | Analysis Analyzed as below   |                              |      |      |                              |
|     |                             |                       | Rear Face          | 14                   | 0.47                   | 1.11                   | 1.58                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Left Side          | 0                    | 0.4<br>(Estimated SAR) | 0.30                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
| 19  | LTE 5<br>+                  | Body                  | Right Side         | 0                    | 0.21                   | 0.4<br>(Estimated SAR) | 0.61                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | WLAN (DTS)                  |                       | Top Side           | 0                    | 0.43                   | 1.19                   | 1.62                   | Analyzed as below            |                              |      |      |                              |
|     |                             |                       | Top Side           | 17                   | 0.23                   | 1.19                   | 1.42                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Bottom Side        | 0                    | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Rear Face          | 0                    | 0.76                   | 0.69                   | 1.45                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             | Body                  | Rear Face          | 14                   | 0.47                   | 0.69                   | 1.16                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | 1.75.5                      |                       | Body               |                      |                        |                        | Left Side              | 0                            | 0.4<br>(Estimated SAR)       | 0.14 | 0.54 | Σ SAR < 1.6,<br>Not required |
| 20  | LTE 5<br>+                  |                       |                    | Right Side           | 0                      | 0.21                   | 0.4<br>(Estimated SAR) | 0.61                         | Σ SAR < 1.6,<br>Not required |      |      |                              |
|     | WLAN (NII)                  |                       | Top Side           | 0                    | 0.43                   | 0.47                   | 0.90                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Top Side           | 17                   | 0.23                   | 0.47                   | 0.70                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Bottom Side        | 0                    | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR) | 0.80                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Rear Face          | 0                    | 0.76                   | 0.2<br>(Estimated SAR) | 0.96                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Rear Face          | 14                   | 0.47                   | 0.2<br>(Estimated SAR) | 0.67                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | 1.75.5                      |                       | Left Side          | 0                    | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
| 21  | LTE 5<br>+                  | Body                  | Right Side         | 0                    | 0.21                   | 0.2<br>(Estimated SAR) | 0.41                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     | BT (DSS)                    |                       | Top Side           | 0 0.43 <sub>(E</sub> |                        | 0.2<br>(Estimated SAR) | 0.63                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | Top Side           | 17                   | 0.23                   | 0.2<br>(Estimated SAR) | 0.43                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |
|     |                             |                       | I Rottom Side I () |                      | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR) | 0.60                   | Σ SAR < 1.6,<br>Not required |                              |      |      |                              |

 Report Format Version 5.0.0
 Page No.
 : 60 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013



| No. | Conditions<br>(SAR1 + SAR2) | Exposure<br>Condition | Test<br>Position   | Separation             | Max.<br>SAR1           | Max.<br>SAR2                 | SAR<br>Summation | SPLSR                        |
|-----|-----------------------------|-----------------------|--------------------|------------------------|------------------------|------------------------------|------------------|------------------------------|
|     | (SART + SARZ)               | Condition             | Rear Face          | <b>(mm)</b><br>0       | 1.25                   | 1.11                         | 2.36             | Analysis Analyzed as below   |
|     |                             |                       | Rear Face          | 14                     | 0.34                   | 1.11                         | 1.45             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Left Side          | 0                      | 0.4<br>(Estimated SAR) | 0.30                         | 0.70             | Σ SAR < 1.6,<br>Not required |
| 22  | LTE 17<br>+                 | Body                  | Right Side         | 0                      | 0.20                   | 0.4<br>(Estimated SAR)       | 0.60             | Σ SAR < 1.6,<br>Not required |
|     | WLAN (DTS)                  |                       | Top Side           | 0                      | 0.45                   | 1.19                         | 1.64             | Analyzed as below            |
|     |                             |                       | Top Side           | 17                     | 0.11                   | 1.19                         | 1.30             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Bottom Side        | 0                      | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR)       | 0.80             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Rear Face          | 0                      | 1.25                   | 0.69                         | 1.94             | Analyzed as below            |
|     |                             | Body                  | Rear Face          | 14                     | 0.34                   | 0.69                         | 1.03             | Σ SAR < 1.6,<br>Not required |
|     | LTC 47                      |                       | Left Side          | 0                      | 0.4<br>(Estimated SAR) | 0.14                         | 0.54             | Σ SAR < 1.6,<br>Not required |
| 23  | LTE 17<br>+                 |                       | Right Side         | 0                      | 0.20                   | 0.4<br>(Estimated SAR)       | 0.60             | Σ SAR < 1.6,<br>Not required |
|     | WLAN (NII)                  |                       | Top Side           | 0                      | 0.45                   | 0.47                         | 0.92             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Top Side           | 17                     | 0.11                   | 0.47                         | 0.58             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Bottom Side        | 0                      | 0.4<br>(Estimated SAR) | 0.4<br>(Estimated SAR)       | 0.80             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Rear Face          | 0                      | 1.25                   | 0.2<br>(Estimated SAR)       | 1.45             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | Rear Face          | 14                     | 0.34                   | 0.2<br>(Estimated SAR)       | 0.54             | Σ SAR < 1.6,<br>Not required |
|     | LTC 47                      |                       | Left Side          | 0                      | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR)       | 0.60             | Σ SAR < 1.6,<br>Not required |
| 24  | LTE 17<br>+                 | Body                  | Right Side         | 0                      | 0.20                   | 0.2<br>(Estimated SAR)       | 0.40             | Σ SAR < 1.6,<br>Not required |
|     | BT (DSS)                    | Top Side 0 0.45       |                    | 0.2<br>(Estimated SAR) | 0.65                   | Σ SAR < 1.6,<br>Not required |                  |                              |
|     |                             | Top Side 17           |                    | 17                     | 0.11                   | 0.2<br>(Estimated SAR)       | 0.31             | Σ SAR < 1.6,<br>Not required |
|     |                             |                       | I Bottom Side I () |                        | 0.4<br>(Estimated SAR) | 0.2<br>(Estimated SAR)       | 0.60             | Σ SAR < 1.6,<br>Not required |

 Report Format Version 5.0.0
 Page No. : 61 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013



### <SAR to Peak Location Separation Ratio Analysis>

The simultaneous transmitting antennas in each operating mode and exposure condition combination are considered one pair at a time to determine the SPLSR. When SAR is measured for both antennas in the pair, the peak location separation distance is computed by the following formula.

Peak Location Separation Distance = 
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Where  $(x_1, y_1, z_1)$  and  $(x_2, y_2, z_2)$  are the coordinates of the extrapolated peak SAR locations in the area or zoom scans.

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna. Due to curvatures on the SAM phantom, when SAR is estimated for one of the antennas in an antenna pair, the measured peak SAR location will be translated onto the test device to determine the peak location separation for the antenna pair.

The SPLSR is determined by the following formula.

$$SPLSR = \frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$$

Where SAR<sub>1</sub> and SAR<sub>2</sub> are the highest reported or estimated SAR for each antenna in the pair, and R<sub>i</sub> is the separation distance between the peak SAR locations for the antenna pair in mm.

When the SPLSR is <= 0.04, the simultaneous transmission SAR is not required. Otherwise, the enlarged zoom scan and volume scan post-processing procedures will be performed.

|                 |                       |                  | 045                    |      | Coordinates |        | Peak                                                        |       | O' Kanaa                                 |
|-----------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions      | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM850<br>Ch128 | <b>D</b> . 1          | D                | 0.97                   | 7.88 | 7.84        | -17.79 | 400.4                                                       | 0.040 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11 | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 166.1                                                       | 0.018 | Not required                             |
|                 |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                 |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                 |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                 |                       |                  |                        | •    | <del></del> | _      |                                                             |       |                                          |
|                 |                       |                  |                        |      |             | _      |                                                             |       |                                          |
|                 |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                 |                       |                  | 802.11b                |      | GSM         | 850    |                                                             |       |                                          |
|                 |                       | - У              |                        |      |             |        |                                                             |       |                                          |

Report Format Version 5.0.0 Report No. : SA130326C14

Revision: R01

Page No. : 62 of 85 Issued Date : May 09, 2013





|                 |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|-----------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions      | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM850<br>Ch251 | Dada                  | D                | 0.50                   | 8.32 | 7.92        | -17.93 | 166.9                                                       | 0.012 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11 | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 166.8                                                       | 0.012 | Not required                             |
|                 |                       |                  | 802.1                  |      | GSI         | M850   |                                                             |       |                                          |

|                  |                       |                  |                        |       | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|-------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x     | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM850<br>Ch251  | Dada                  | T Cid-           | 0.48                   | -0.42 | 7.36        | -17.99 | 475.0                                                       | 0.012 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153 | Body                  | Top Side         | 1.19                   | 0.15  | -10.15      | -17.67 | 175.2                                                       | 0.012 | Not required                             |
|                  |                       |                  | 2.11a                  |       |             | GSM85  |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 63 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                 |                       |                  |                        |      | Coordinates |        | Peak                                               |       |                                          |
|-----------------|-----------------------|------------------|------------------------|------|-------------|--------|----------------------------------------------------|-------|------------------------------------------|
| Conditions      | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location Separation Distance (R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM850<br>Ch128 | 5.1                   |                  | 0.97                   | 7.88 | 7.84        | -17.79 | 470                                                | 0.040 | SPLSR < 0.04                             |
| 802.11a<br>Ch48 | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65 | 179                                                | 0.012 | Not required                             |
|                 |                       |                  |                        |      |             |        |                                                    |       |                                          |
|                 | 1                     |                  |                        |      |             |        |                                                    | ı     |                                          |

|                  |                       |                  |                        |     | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|-----|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х   | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch512 | D-4.                  | D                | 1.16                   | 6.6 | 7.8         | -17.72 | 166.6                                                       | 0.021 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11  | Body                  | Rear Face        | 1.11                   | 8.4 | -8.76       | -17.66 | 166.6                                                       | 0.021 | Not required                             |
|                  |                       |                  | 02.116                 |     | QSM190      |        |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 64 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch810 | Pody                  | Rear Face        | 0.71                   | 8.15 | 7.49        | -17.88 | 162.5                                                       | 0.015 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11  | Body                  | Real Lace        | 1.11                   | 8.4  | -8.76       | -17.66 | 102.5                                                       | 0.013 | Not required                             |
|                  |                       |                  |                        |      | •           | •      |                                                             |       |                                          |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |

|                  |                       |                  |                        |       | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|-------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x     | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch512 | Date                  | To a Cida        | 1.23                   | -0.24 | 8           | -17.84 | 404.5                                                       | 0.021 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153 | Body                  | Top Side         | 1.19                   | 0.15  | -10.15      | -17.67 | 181.5                                                       | 0.021 | Not required                             |
|                  |                       |                  | 2.11a                  |       |             | GSMT96 |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No.
 : 65 of 85

 Report No. : SA130326C14
 Issued Date
 : May 09, 2013





|                  |                       |                  |                        |       | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|-------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x     | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch512 | 5.1                   | T. 011           | 1.18                   | -0.48 | 7.09        | -18.04 | 470.0                                                       | 0.004 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153 | Body                  | Top Side         | 1.19                   | 0.15  | -10.15      | -17.67 | 172.6                                                       | 0.021 | Not required                             |
|                  |                       |                  |                        |       |             |        |                                                             |       |                                          |
|                  |                       | 802.11a          |                        |       |             | GSM190 |                                                             | ı     |                                          |

|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch512 | 5.1                   | D                | 1.16                   | 6.6  | 7.8         | -17.72 | 470.5                                                       | 0.044 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48  | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65 | 179.5                                                       | 0.014 | Not required                             |
|                  |                       |                  | )2.11a                 | 5    |             | SM1900 |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 66 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                    |          |                        |       | Coordinates |        | Peak                                                        |       |                                          |
|------------------|--------------------|----------|------------------------|-------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Condition Position |          | SAR<br>Value<br>(W/kg) | x     | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch512 |                    | T 011    | 1.23                   | -0.24 | 8           | -17.84 | 470.5                                                       | 0.040 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48  | Body               | Top Side | 0.47                   | 0.15  | -9.95       | -17.85 | 179.5                                                       | 0.012 | Not required                             |
|                  | ı                  |          |                        |       |             |        |                                                             |       |                                          |

|                  |                       |                  |                        |       | Coordinates |         | Peak                                               |       |                                          |
|------------------|-----------------------|------------------|------------------------|-------|-------------|---------|----------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х     | у           | z       | Location Separation Distance (R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| GSM1900<br>Ch512 | 5.1                   | T. O. I.         | 1.18                   | -0.48 | 7.09        | -18.04  | 470.5                                              | 0.040 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48  | Body                  | Top Side         | 0.47                   | 0.15  | -9.95       | -17.85  | 170.5                                              | 0.012 | Not required                             |
|                  |                       | 802.11a          |                        |       |             | GSM1900 |                                                    |       |                                          |

 Report Format Version 5.0.0
 Page No. : 67 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                    |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9400 | 5.1                   | D 5              | 1.30                   | 7.36 | 7.52        | -17.76 | 400.4                                                       | 0.000 | SPLSR < 0.04                             |
| 802.11b<br>Ch11    | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 163.1                                                       | 0.023 | Not required                             |
|                    |                       |                  |                        |      |             | _      |                                                             |       |                                          |
|                    |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                    |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                    |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                    |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                    |                       |                  |                        |      | V           |        |                                                             |       |                                          |
|                    |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                    | -                     |                  | 802.11b                |      |             |        |                                                             |       |                                          |

|                    |                       |                  |                        |      | Coordinates |          | Peak                                                        |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|----------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z        | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9400 | 5.1                   | D                | 0.98                   | 8.24 | 7.52        | -17.89   | 460.0                                                       | 0.040 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11    | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66   | 162.8                                                       | 0.019 | Not required                             |
|                    |                       |                  | 80                     | 1 C  |             | VCDMA II |                                                             |       |                                          |
|                    |                       | 1                |                        |      |             |          |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No.
 : 68 of 85

 Report No. : SA130326C14
 Issued Date
 : May 09, 2013





|                    |                       |                  |                        |      | Coordinates |         | Peak                                                        |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|---------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z       | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9262 | 6 - 1                 | T. 011           | 0.99                   | -0.4 | 7.96        | -17.95  | 404.0                                                       | 0.040 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153   | Body                  | Top Side         | 1.19                   | 0.15 | -10.15      | -17.67  | 181.2                                                       | 0.018 | Not required                             |
|                    | ı                     | 802.             | Ita                    |      |             | - WCDMA |                                                             | l     |                                          |

|                    |                       |                  |                        |      | Coordinates |          | Peak                                                        |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|----------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z        | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9400 | Dodu                  | Top Cido         | 1.29                   | -0.2 | 7.2         | -18.04   | 172.6                                                       | 0.023 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153   | Body                  | Top Side         | 1.19                   | 0.15 | -10.15      | -17.67   | 173.6                                                       | 0.023 | Not required                             |
|                    |                       | 802.11a          |                        |      |             | WCDMA II |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 69 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                    |                       |                  |                        |      | Coordinates |          | Peak                                                        |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|----------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z        | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9400 |                       |                  | 1.30                   | 7.36 | 7.52        | -17.76   | 470                                                         | 0.046 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48    | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65   | 176                                                         | 0.016 | Not required                             |
|                    |                       |                  | 802.11a                |      |             | WCDMA II |                                                             |       |                                          |

|                    |                       |                  |                        |      | Coordinates |         | Peak                                               |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|---------|----------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z       | Location Separation Distance (R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9400 |                       | D                | 0.98                   | 8.24 | 7.52        | -17.89  | 475.7                                              | 0.040 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48    | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65  | 175.7                                              | 0.012 | Not required                             |
|                    |                       |                  | 502.4                  |      | ₩ c         | CDMA II |                                                    |       |                                          |

 Report Format Version 5.0.0
 Page No. : 70 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                    |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|--------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions         | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA II<br>Ch9400 | D. d.                 | T 0:4-           | 1.29                   | -0.2 | 7.2         | -18.04 | 474 5                                                       | 0.014 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48    | Body                  | Top Side         | 0.47                   | 0.15 | -9.95       | -17.85 | 171.5                                                       | 0.014 | Not required                             |
|                    |                       | 802.118          |                        | 9    |             | WCDMAI |                                                             |       |                                          |

|                   |                       |                  |                        |     | Coordinates |        | Peak                                                        |       |                                          |
|-------------------|-----------------------|------------------|------------------------|-----|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions        | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х   | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA V<br>Ch4182 | Dada                  | D                | 1.01                   | 7.8 | 7.68        | -17.74 | 464.5                                                       | 0.010 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11   | Body                  | Rear Face        | 1.11                   | 8.4 | -8.76       | -17.66 | 164.5                                                       | 0.019 | Not required                             |
|                   |                       |                  |                        |     |             |        |                                                             |       |                                          |
|                   |                       | -                |                        |     |             |        |                                                             |       |                                          |
|                   |                       | -                |                        |     |             | •      |                                                             |       |                                          |
|                   |                       |                  |                        |     |             |        |                                                             |       |                                          |
|                   |                       | -                |                        |     |             |        |                                                             |       |                                          |
|                   |                       |                  |                        |     |             |        |                                                             |       |                                          |
|                   |                       | ,                | 802.11b                |     | WCDM        |        |                                                             | A     |                                          |
|                   | Ĭ                     |                  |                        |     |             |        |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 71 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                   |                       |                  |                        |       | Coordinates |        | Peak                                               |       |                                          |
|-------------------|-----------------------|------------------|------------------------|-------|-------------|--------|----------------------------------------------------|-------|------------------------------------------|
| Conditions        | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x     | у           | z      | Location Separation Distance (R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA V<br>Ch4182 | D-+                   | T 0:4-           | 0.66                   | -0.32 | 7.5         | -17.95 | 176.6                                              | 0.014 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153  | Body                  | Top Side         | 1.19                   | 0.15  | -10.15      | -17.67 | 176.6                                              | 0.014 | Not required                             |
|                   |                       |                  |                        |       |             |        |                                                    |       | l.                                       |
|                   |                       |                  |                        |       |             |        |                                                    |       |                                          |
|                   |                       |                  |                        |       |             |        |                                                    |       |                                          |
|                   |                       |                  |                        |       |             |        |                                                    |       |                                          |
|                   |                       |                  |                        |       |             | 1 2 1  |                                                    |       |                                          |
|                   |                       | Nar              |                        |       |             |        |                                                    |       |                                          |

|                   |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|-------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions        | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| WCDMA V<br>Ch4182 |                       |                  | 1.01                   | 7.8  | 7.68        | -17.74 | 477.4                                                       | 0.040 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48   | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65 | 177.4                                                       | 0.012 | Not required                             |
|                   |                       |                  | 802.11                 |      |             | CDMA V |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 72 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 2<br>Ch18900 | Data                  | D F              | 1.03                   | 7.65 | 7.33        | -17.83 | 161.1                                                       | 0.019 | SPLSR < 0.04                             |
| 802.11b<br>Ch11  | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 101.1                                                       | 0.019 | Not required                             |
|                  | 1                     |                  |                        |      |             |        |                                                             | ı     |                                          |
|                  | ı                     |                  |                        |      |             |        |                                                             | ı     |                                          |

|                  |                       |                  |                        |     | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|-----|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х   | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 2<br>Ch18900 | D-+                   | D F              | 0.98                   | 8.1 | 7.32        | -17.89 | 160.0                                                       | 0.010 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11  | Body                  | Rear Face        | 1.11                   | 8.4 | -8.76       | -17.66 | 160.8                                                       | 0.019 | Not required                             |
|                  |                       |                  |                        |     |             | _      |                                                             |       |                                          |
|                  |                       |                  |                        |     |             |        |                                                             |       |                                          |
|                  |                       |                  |                        |     | • -         |        |                                                             |       |                                          |
|                  |                       |                  | 802.1                  | 16  |             | LTE 2  |                                                             |       |                                          |
|                  |                       | T**              |                        |     |             |        |                                                             |       |                                          |

Report Format Version 5.0.0 Page No.
Report No. : SA130326C14 Issued Da

Revision: R01

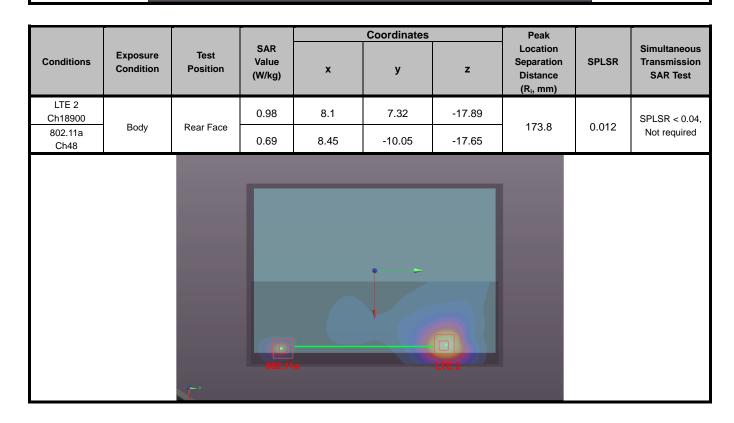
Page No. : 73 of 85 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 2<br>Ch19100 |                       | T 011            | 1.00                   | -0.5 | 7.64        | -17.99 | 470                                                         | 0.040 | SPLSR < 0.04                             |
| 802.11a<br>Ch153 | Body                  | Top Side         | 1.19                   | 0.15 | -10.15      | -17.67 | 178                                                         | 0.018 | Not required                             |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                  | ı                     | 602              | .11a                   |      |             | LITE 2 |                                                             | ı     |                                          |

|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 2<br>Ch18900 | 5.1                   | T 011            | 1.36                   | 0.06 | 7.4         | -18.03 | 475.5                                                       | 0.000 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153 | Body                  | Top Side         | 1.19                   | 0.15 | -10.15      | -17.67 | 175.5                                                       | 0.023 | Not required                             |
|                  |                       | 802.11a          |                        |      |             | LTE 2  |                                                             |       |                                          |


 Report Format Version 5.0.0
 Page No. : 74 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 2<br>Ch18900 |                       |                  | 1.03                   | 7.65 | 7.33        | -17.83 | 474                                                         | 0.040 | SPLSR < 0.04                             |
| 802.11a<br>Ch48  | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65 | 174                                                         | 0.013 | Not required                             |
|                  | ı                     |                  |                        |      |             | -      |                                                             | l     |                                          |



 Report Format Version 5.0.0
 Page No.
 : 75 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 2<br>Ch18900 |                       | T 011            | 1.36                   | 0.06 | 7.4         | -18.03 | 470.5                                                       | 0.044 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48  | Body                  | Top Side         | 0.47                   | 0.15 | -9.95       | -17.85 | 173.5                                                       | 0.014 | Not required                             |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                  |                       |                  |                        |      |             |        |                                                             |       |                                          |
|                  |                       | 802.             | ita .                  |      |             | LTE 2  |                                                             |       |                                          |
|                  |                       | 802.             | l1a                    |      |             | LTE 2  |                                                             | ı     |                                          |

|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 4<br>Ch20050 | Dody                  | Door Food        | 1.05                   | 7.05 | 7.83        | -17.79 | 166 E                                                       | 0.010 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11  | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 166.5                                                       | 0.019 | Not required                             |
|                  |                       |                  | 802.11b                |      |             | LTE 4  |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 76 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                               |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|----------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у           | z      | Location Separation Distance (R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 4<br>Ch20300 | Dada                  | D                | 0.72                   | 7.16 | 7.82        | -17.91 | 466.2                                              | 0.045 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11  | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 166.3                                              | 0.015 | Not required                             |
|                  |                       |                  | 802                    |      |             | D.TE 4 |                                                    |       |                                          |

| Conditions Exposure Condition Position Value (W/kg) X y Z Separation Distance (R <sub>i</sub> , mm) SPLSR Transmiss SAR Te                 |            |      |          |       |       | Coordinates |        | Peak                   |       |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------|-------|-------|-------------|--------|------------------------|-------|------------------------------------------|
| Ch20300         Body         Top Side         -0.26         7.35         -17.96         175.1         0.014         SPLSR < 0 Not required | Conditions |      |          | Value | x     | у           | z      | Separation<br>Distance | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| 1.19 0.15 -10.15 -17.67 Not required.                                                                                                      |            |      | - a      | 0.65  | -0.26 | 7.35        | -17.96 | 475.4                  | 0.044 | SPLSR < 0.04,                            |
|                                                                                                                                            |            | Body | Top Side | 1.19  | 0.15  | -10.15      | -17.67 | 1/5.1                  | 0.014 | Not required                             |
| lacksquare                                                                                                                                 |            |      |          |       |       |             |        |                        |       |                                          |

 Report Format Version 5.0.0
 Page No. : 77 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |       | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|-------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x     | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 4<br>Ch20300 |                       | - a              | 0.56                   | -0.24 | 6.28        | -18.04 | 404.4                                                       | 0.044 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153 | Body                  | Top Side         | 1.19                   | 0.15  | -10.15      | -17.67 | 164.4                                                       | 0.014 | Not required                             |
|                  | ı                     | 802.11a          |                        |       |             | LTE 4  |                                                             | ı     |                                          |
|                  | -                     |                  |                        |       |             |        |                                                             |       |                                          |

|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 4<br>Ch20050 |                       | D                | 1.05                   | 7.05 | 7.83        | -17.79 | 470.4                                                       | 0.040 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48  | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05      | -17.65 | 179.4                                                       | 0.013 | Not required                             |
|                  |                       | .y               | 802.11a                |      |             | LTE 4  |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No. : 78 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                  |                       |                  |                        |      | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|------------------|------------------------|------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | х    | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 5<br>Ch20525 | 6 .                   |                  | 0.76                   | 8.05 | 7.81        | -17.63 | 405.7                                                       | 0.045 | SPLSR < 0.04                             |
| 802.11b<br>Ch11  | Body                  | Rear Face        | 1.11                   | 8.4  | -8.76       | -17.66 | 165.7                                                       | 0.015 | Not required                             |
|                  |                       | L                |                        |      |             |        |                                                             |       |                                          |
|                  | -                     |                  |                        |      | •           |        |                                                             |       |                                          |

|                  |                       |          |      |       | Coordinates |        | Peak                                                        |       |                                          |
|------------------|-----------------------|----------|------|-------|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions       | Exposure<br>Condition |          |      | х     | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 5<br>Ch20525 |                       | - o: i   | 0.43 | -0.26 | 7.84        | -17.96 | 400                                                         | 0.044 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153 | Body                  | Top Side | 1.19 | 0.15  | -10.15      | -17.67 | 180                                                         | 0.011 | Not required                             |
|                  |                       | 802.11a  |      |       |             | LTE    | 5                                                           |       |                                          |

 Report Format Version 5.0.0
 Page No. : 79 of 85

 Report No. : SA130326C14
 Issued Date : May 09, 2013





|                   |                       |           |      |     | Coordinates |        | Peak                                                        |       |                                          |
|-------------------|-----------------------|-----------|------|-----|-------------|--------|-------------------------------------------------------------|-------|------------------------------------------|
|                   | Exposure<br>Condition |           |      | х   | у           | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 17<br>Ch23800 | 5.1                   | D 5       | 1.25 | 8.3 | 8.23        | -17.72 | 460.0                                                       | 0.004 | SPLSR < 0.04,                            |
| 802.11b<br>Ch11   | Body                  | Rear Face | 1.11 | 8.4 | -8.76       | -17.66 | 169.9                                                       | 0.021 | Not required                             |
|                   |                       | L         |      |     |             |        | п                                                           |       |                                          |
|                   |                       |           |      |     |             |        |                                                             |       |                                          |

|                   |                       | Test<br>Position |         | Coordinates |        |        | Peak                                                        |       |                                          |
|-------------------|-----------------------|------------------|---------|-------------|--------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions        | Exposure<br>Condition |                  | l Value |             | у      | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 17<br>Ch23780 | Dodu                  | Ton Cide         | 0.45    | -0.2        | 8.2    | -17.96 | 183.6                                                       | 0.011 | SPLSR < 0.04,                            |
| 802.11a<br>Ch153  | Body                  | Top Side         | 1.19    | 0.15        | -10.15 | -17.67 |                                                             | 0.011 | Not required                             |
|                   |                       | 802.11           |         |             |        | LTE 17 |                                                             |       |                                          |

 Report Format Version 5.0.0
 Page No.
 : 80 of 85

 Report No.: SA130326C14
 Issued Date
 : May 09, 2013

# FCC SAR Test Report

|                   |                       |                  |                        |      |        | Peak   |                                                             |       |                                          |
|-------------------|-----------------------|------------------|------------------------|------|--------|--------|-------------------------------------------------------------|-------|------------------------------------------|
| Conditions        | Exposure<br>Condition | Test<br>Position | SAR<br>Value<br>(W/kg) | x    | у      | z      | Location<br>Separation<br>Distance<br>(R <sub>i</sub> , mm) | SPLSR | Simultaneous<br>Transmission<br>SAR Test |
| LTE 17<br>Ch23800 | Dada                  | D F              | 1.25                   | 8.3  | 8.23   | -17.72 | 402.0                                                       | 0.015 | SPLSR < 0.04,                            |
| 802.11a<br>Ch48   | Body                  | Rear Face        | 0.69                   | 8.45 | -10.05 | -17.65 | 182.8                                                       | 0.015 | Not required                             |
| 802.11a           |                       |                  |                        |      |        |        |                                                             |       |                                          |

 $\textbf{Test Engineer:} \ \underline{Garen\ Chou}, \ and\ \underline{Mars\ Chang}$ 

Report Format Version 5.0.0 Report No. : SA130326C14

Revision: R01

Page No. : 81 of 85 Issued Date : May 09, 2013



# 5. Calibration of Test Equipment

| Equipment                    | Manufacturer | Model          | SN         | Cal. Date     | Cal. Interval |
|------------------------------|--------------|----------------|------------|---------------|---------------|
| System Validation Kit        | SPEAG        | D750V3         | 1013       | Apr. 25, 2012 | Annual        |
| System Validation Kit        | SPEAG        | D835V2         | 4d021      | Apr. 20, 2012 | Annual        |
| System Validation Kit        | SPEAG        | D1750V2        | 1055       | Aug. 23, 2012 | Annual        |
| System Validation Kit        | SPEAG        | D1900V2        | 5d036      | Jan. 21, 2013 | Annual        |
| System Validation Kit        | SPEAG        | D2450V2        | 737        | Jan. 21, 2013 | Annual        |
| System Validation Kit        | SPEAG        | D5GHzV2        | 1019       | Nov. 16, 2012 | Annual        |
| Dosimetric E-Field Probe     | SPEAG        | EX3DV4         | 3590       | Feb. 20, 2013 | Annual        |
| Dosimetric E-Field Probe     | SPEAG        | EX3DV4         | 3661       | Jan. 15, 2013 | Annual        |
| Dosimetric E-Field Probe     | SPEAG        | EX3DV4         | 3864       | Jul. 19, 2012 | Annual        |
| Data Acquisition Electronics | SPEAG        | DAE3           | 579        | Apr. 27, 2012 | Annual        |
| Data Acquisition Electronics | SPEAG        | DAE4           | 679        | Jan. 16, 2013 | Annual        |
| Data Acquisition Electronics | SPEAG        | DAE4           | 861        | Mar. 19, 2013 | Annual        |
| ELI Phantom                  | SPEAG        | QDOVA001B      | TP-1039    | N/A           | N/A           |
| ELI Phantom                  | SPEAG        | QDOVA001B      | TP-1043    | N/A           | N/A           |
| Radio Communication Tester   | Agilent      | E5515C         | MY50266628 | Nov. 22, 2012 | Biennial      |
| Radio Communication Analyzer | Anritsu      | MT8820C        | 6201010284 | Aug. 18, 2012 | Biennial      |
| ENA Series Network Analyzer  | Agilent      | E5071C         | MY46107999 | Mar. 25, 2013 | Annual        |
| MXG Analog Signal Generator  | Agilent      | N5181A         | MY49060347 | Jul. 24, 2012 | Annual        |
| Power Meter                  | Anritsu      | ML2495A        | 1232002    | Aug. 10, 2012 | Annual        |
| Power Sensor                 | Anritsu      | MA2411B        | 1207325    | Aug. 15, 2012 | Annual        |
| EXA Spectrum Analyzer        | Agilent      | N9010A         | MY52220207 | Sep. 12, 2012 | Annual        |
| Dielectric Probe Kit         | Agilent      | 85070D         | E2-020018  | May 14, 2012  | Annual        |
| Thermometer                  | YFE          | YF-160A        | 110600361  | Feb. 20, 2013 | Annual        |
| Directional Coupler          | Woken        | 0110A05602O-10 | 11122702   | Apr. 18, 2013 | Annual        |
| Power Amplifier              | AR           | 5S1G4          | 0339656    | Apr. 18, 2013 | Annual        |
| Power Amplifier              | Mini-Circuit | ZVE-8G         | 001000422  | Apr. 18, 2013 | Annual        |
| Attenuator                   | Woken        | 00800A1G01L-03 | N/A        | Apr. 18, 2013 | Annual        |

Report Format Version 5.0.0 Page No. : 82 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



# 6. Measurement Uncertainty

| Error Description            | Uncertainty<br>Value<br>(±%) | Probability<br>Distribution | Divisor | Ci<br>(1g) | Standard<br>Uncertainty<br>(1g) | Vi       |
|------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|----------|
| Measurement System           |                              |                             |         |            |                                 |          |
| Probe Calibration            | 6.0                          | Normal                      | 1       | 1          | ± 6.0 %                         | ∞        |
| Axial Isotropy               | 4.7                          | Rectangular                 | √3      | 0.7        | ± 1.9 %                         | ∞        |
| Hemispherical Isotropy       | 9.6                          | Rectangular                 | √3      | 0.7        | ± 3.9 %                         | ∞        |
| Boundary Effects             | 1.0                          | Rectangular                 | √3      | 1          | ± 0.6 %                         | $\infty$ |
| Linearity                    | 4.7                          | Rectangular                 | √3      | 1          | ± 2.7 %                         | ∞        |
| System Detection Limits      | 1.0                          | Rectangular                 | √3      | 1          | ± 0.6 %                         | ∞        |
| Readout Electronics          | 0.6                          | Normal                      | 1       | 1          | ± 0.6 %                         | ∞        |
| Response Time                | 0.0                          | Rectangular                 | √3      | 1          | ± 0.0 %                         | ∞        |
| Integration Time             | 1.7                          | Rectangular                 | √3      | 1          | ± 1.0 %                         | $\infty$ |
| RF Ambient Noise             | 3.0                          | Rectangular                 | √3      | 1          | ± 1.7 %                         | ∞        |
| RF Ambient Reflections       | 3.0                          | Rectangular                 | √3      | 1          | ± 1.7 %                         | ∞        |
| Probe Positioner             | 0.5                          | Rectangular                 | √3      | 1          | ± 0.3 %                         | ∞        |
| Probe Positioning            | 2.9                          | Rectangular                 | √3      | 1          | ± 1.7 %                         | $\infty$ |
| Max. SAR Eval.               | 2.3                          | Rectangular                 | √3      | 1          | ± 1.3 %                         | $\infty$ |
| Test Sample Related          |                              |                             |         |            |                                 |          |
| Device Positioning           | 3.9                          | Normal                      | 1       | 1          | ± 3.9 %                         | 31       |
| Device Holder                | 2.7                          | Normal                      | 1       | 1          | ± 2.7 %                         | 19       |
| Power Drift                  | 5.0                          | Rectangular                 | √3      | 1          | ± 2.9 %                         | ∞        |
| Phantom and Setup            |                              |                             |         |            |                                 |          |
| Phantom Uncertainty          | 4.0                          | Rectangular                 | √3      | 1          | ± 2.3 %                         | ∞        |
| Liquid Conductivity (Target) | 5.0                          | Rectangular                 | √3      | 0.64       | ± 1.8 %                         | ∞        |
| Liquid Conductivity (Meas.)  | 5.0                          | Normal                      | 1       | 0.64       | ± 3.2 %                         | 29       |
| Liquid Permittivity (Target) | 5.0                          | Rectangular                 | √3      | 0.6        | ± 1.7 %                         | ∞        |
| Liquid Permittivity (Meas.)  | 5.0                          | Normal                      | 1       | 0.6        | ± 3.0 %                         | 29       |
| Combined Standard Uncertain  | nty                          |                             |         |            | ± 11.7 %                        |          |
| Expanded Uncertainty (K=2)   |                              |                             |         |            | ± 23.4 %                        |          |

Uncertainty budget for frequency range 300 MHz to 3 GHz

Report Format Version 5.0.0 Page No. : 83 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



# **FCC SAR Test Report**

| Error Description            | Uncertainty<br>Value<br>(±%) | Probability<br>Distribution | Divisor | Ci<br>(1g) | Standard<br>Uncertainty<br>(1g) | Vi       |
|------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|----------|
| Measurement System           |                              |                             |         |            |                                 |          |
| Probe Calibration            | 6.55                         | Normal                      | 1       | 1          | ± 6.55 %                        | $\infty$ |
| Axial Isotropy               | 4.7                          | Rectangular                 | √3      | 0.7        | ± 1.9 %                         | $\infty$ |
| Hemispherical Isotropy       | 9.6                          | Rectangular                 | √3      | 0.7        | ± 3.9 %                         | $\infty$ |
| Boundary Effects             | 2.0                          | Rectangular                 | √3      | 1          | ± 1.2 %                         | $\infty$ |
| Linearity                    | 4.7                          | Rectangular                 | √3      | 1          | ± 2.7 %                         | ∞        |
| System Detection Limits      | 1.0                          | Rectangular                 | √3      | 1          | ± 0.6 %                         | $\infty$ |
| Readout Electronics          | 0.3                          | Normal                      | 1       | 1          | ± 0.3 %                         | ∞        |
| Response Time                | 0.8                          | Rectangular                 | √3      | 1          | ± 0.5 %                         | ∞        |
| Integration Time             | 2.6                          | Rectangular                 | √3      | 1          | ± 1.5 %                         | $\infty$ |
| RF Ambient Noise             | 3.0                          | Rectangular                 | √3      | 1          | ± 1.7 %                         | ∞        |
| RF Ambient Reflections       | 3.0                          | Rectangular                 | √3      | 1          | ± 1.7 %                         | ∞        |
| Probe Positioner             | 0.8                          | Rectangular                 | √3      | 1          | ± 0.5 %                         | $\infty$ |
| Probe Positioning            | 9.9                          | Rectangular                 | √3      | 1          | ± 5.7 %                         | $\infty$ |
| Max. SAR Eval.               | 4.0                          | Rectangular                 | √3      | 1          | ± 2.3 %                         | $\infty$ |
| Test Sample Related          |                              |                             |         |            |                                 |          |
| Device Positioning           | 3.9                          | Normal                      | 1       | 1          | ± 3.9 %                         | 31       |
| Device Holder                | 2.7                          | Normal                      | 1       | 1          | ± 2.7 %                         | 19       |
| Power Drift                  | 5.0                          | Rectangular                 | √3      | 1          | ± 2.9 %                         | ∞        |
| Phantom and Setup            |                              |                             |         |            |                                 |          |
| Phantom Uncertainty          | 4.0                          | Rectangular                 | √3      | 1          | ± 2.3 %                         | $\infty$ |
| Liquid Conductivity (Target) | 5.0                          | Rectangular                 | √3      | 0.64       | ± 1.8 %                         | $\infty$ |
| Liquid Conductivity (Meas.)  | 5.0                          | Normal                      | 1       | 0.64       | ± 3.2 %                         | 30       |
| Liquid Permittivity (Target) | 5.0                          | Rectangular                 | √3      | 0.6        | ± 1.7 %                         | $\infty$ |
| Liquid Permittivity (Meas.)  | 5.0                          | Normal                      | 1       | 0.6        | ± 3.0 %                         | 30       |
| Combined Standard Uncertai   | inty                         |                             |         |            | ± 13.4 %                        |          |
| Expanded Uncertainty (K=2)   |                              |                             |         |            | ± 26.8 %                        |          |

Uncertainty budget for frequency range 3 GHz to 6 GHz

Report Format Version 5.0.0 Page No. : 84 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



# 7. Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

#### Taiwan HwaYa EMC/RF/Safety/Telecom Lab:

Add: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-318-3232 Fax: 886-3-327-0892

#### Taiwan LinKo EMC/RF Lab:

Add: No. 47, 14th Ling, Chia Pau Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C.

Tel: 886-2-2605-2180 Fax: 886-2-2605-1924

#### Taiwan HsinChu EMC/RF Lab:

Add: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Vil., Chiung Lin Township, Hsinchu County 307, Taiwan, R.O.C.

Tel: 886-3-593-5343 Fax: 886-3-593-5342

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The road map of all our labs can be found in our web site also.

---END---

Report Format Version 5.0.0 Page No. : 85 of 85
Report No.: SA130326C14 Issued Date : May 09, 2013



# Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Report Format Version 5.0.0 Issued Date : May 09, 2013

Report No.: SA130326C14

# **System Check\_B750\_130413**

# **DUT: Dipole 750 MHz; Type: D750V3; SN: 1013**

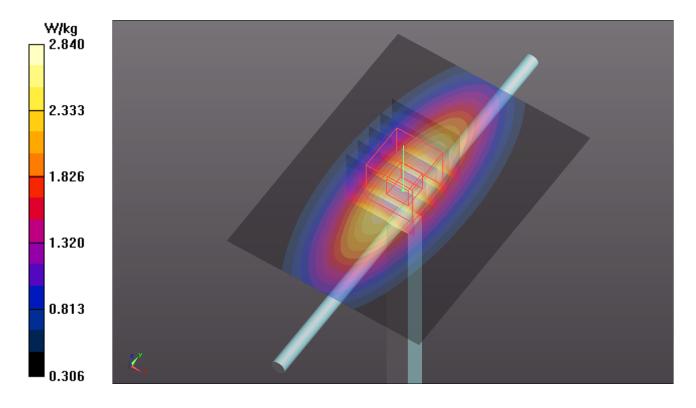
Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: B750\_0413 Medium parameters used: f = 750 MHz;  $\sigma = 0.971$  S/m;  $\varepsilon_r = 55.6$ ;  $\rho = 1000$ 

Date: 2013/04/13

 $kg/m^3$ 

Ambient Temperature: 21.7 °C; Liquid Temperature: 20.9 °C


# DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(10.6, 10.6, 10.6); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.80 W/kg

**Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.353 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 3.32 W/kg **SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.53 W/kg** 

SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.53 W/kgMaximum value of SAR (measured) = 2.84 W/kg



# System Check\_B835\_130404

# **DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021**

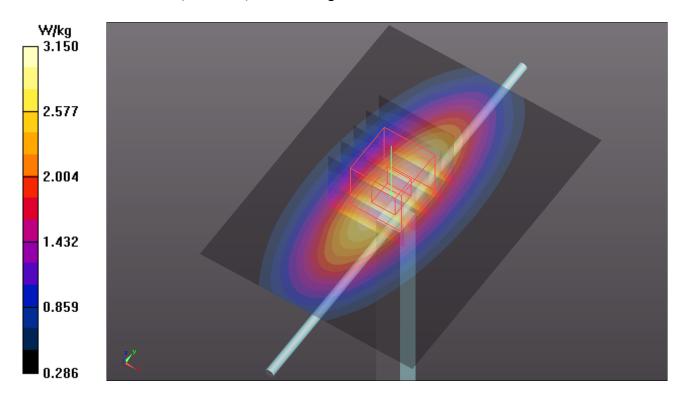
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: B835 0404 Medium parameters used: f = 835 MHz;  $\sigma = 0.979$  S/m;  $\varepsilon_r = 55.854$ ;  $\rho = 1000$ 

Date: 2013/04/04

 $kg/m^3$ 

Ambient Temperature: 22.1 °C; Liquid Temperature: 20.8 °C


# DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(9.94, 9.94, 9.94); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn679; Calibrated: 2013/01/16
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.12 W/kg

**Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.844 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.64 W/kgMaximum value of SAR (measured) = 3.15 W/kg



# **System Check\_B835\_130412**

# **DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021**

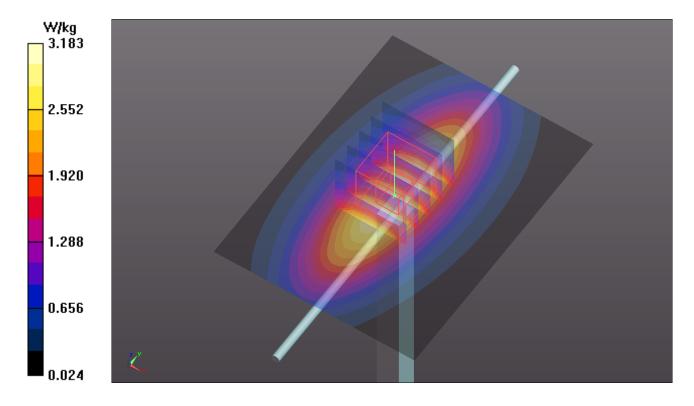
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: B835\_0411 Medium parameters used: f = 835 MHz;  $\sigma = 0.973$  S/m;  $\varepsilon_r = 55.201$ ;  $\rho = 1000$ 

Date: 2013/04/12

 $kg/m^3$ 

Ambient Temperature: 21.3 °C; Liquid Temperature: 20.6 °C


# DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.64, 9.64, 9.64); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.18 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.856 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.69 W/kg

SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.69 W/kg Maximum value of SAR (measured) = 3.21 W/kg



# System Check\_B1750\_130416

# **DUT: Dipole 1750 MHz; Type: D1750V2; SN: 1055**

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

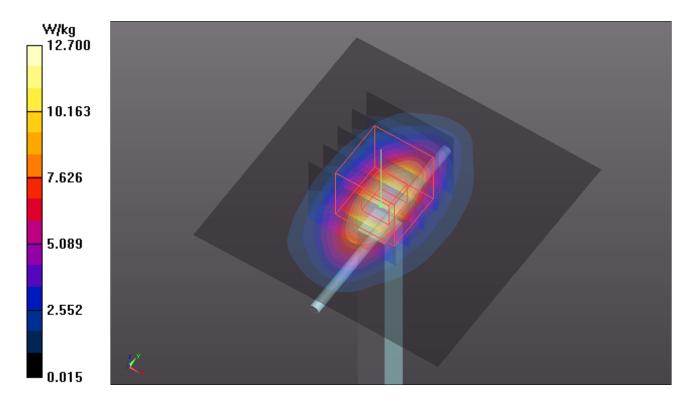
Medium: B1750\_0416 Medium parameters used: f = 1750 MHz;  $\sigma = 1.468$  S/m;  $\varepsilon_r = 53.825$ ;  $\rho =$ 

Date: 2013/04/16

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.8°C; Liquid Temperature: 20.4°C

# DASY5 Configuration:


- Probe: EX3DV4 SN3590; ConvF(8.63, 8.63, 8.63); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.7 W/kg

**Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 90.229 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 15.7 W/kg SAR(1 g) = 9 W/kg; SAR(10 g) = 4.82 W/kg

Maximum value of SAR (measured) = 12.6 W/kg



# System Check\_B1900\_130402

#### **DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036**

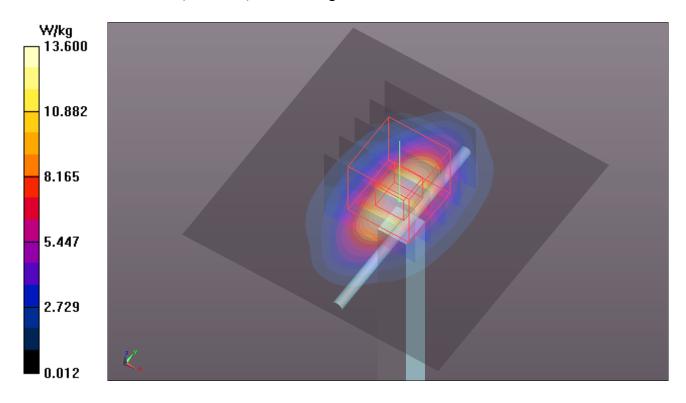
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B1900\_0402 Medium parameters used: f = 1900 MHz;  $\sigma = 1.551$  S/m;  $\varepsilon_r = 52.998$ ;  $\rho =$ 

Date: 2013/04/02

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.1 °C; Liquid Temperature: 20.1 °C


# DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(7.88, 7.88, 7.88); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn679; Calibrated: 2013/01/16
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.6 W/kg

**Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 95.472 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.53 W/kg; SAR(10 g) = 4.93 W/kgMaximum value of SAR (measured) = 13.6 W/kg



# System Check\_B1900\_130407

# **DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036**

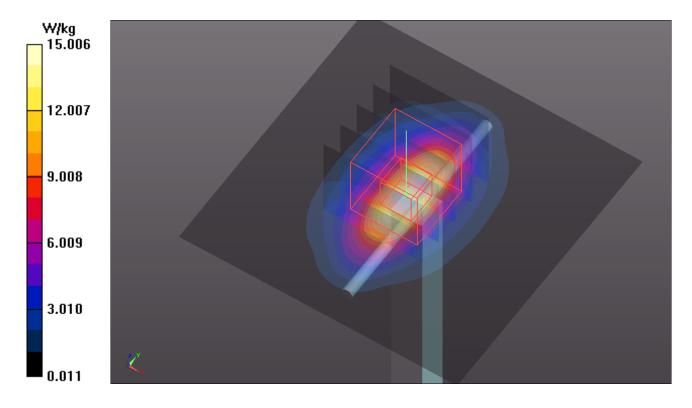
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B1900\_0407 Medium parameters used: f = 1900 MHz;  $\sigma = 1.551$  S/m;  $\varepsilon_r = 52.983$ ;  $\rho =$ 

Date: 2013/04/07

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.7 °C; Liquid Temperature: 20.5 °C


# DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.0 W/kg

**Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 99.784 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.41 W/kgMaximum value of SAR (measured) = 15.0 W/kg



# System Check\_B1900\_130414

#### **DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036**

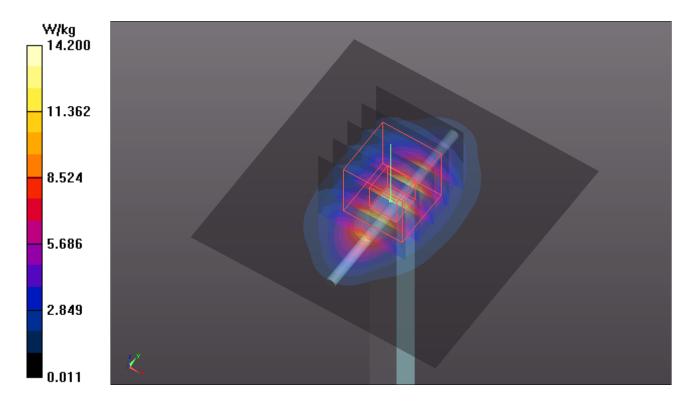
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B1900\_0414 Medium parameters used: f = 1900 MHz;  $\sigma = 1.55$  S/m;  $\varepsilon_r = 52.906$ ;  $\rho = 1000$ 

Date: 2013/04/14

kg/m<sup>3</sup>

Ambient Temperature : 21.3 °C; Liquid Temperature : 20.2 °C


#### DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.2 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.015 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.11 W/kg

Maximum value of SAR (measured) = 14.3 W/kg



# System Check\_B2450\_130418

**DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737** 

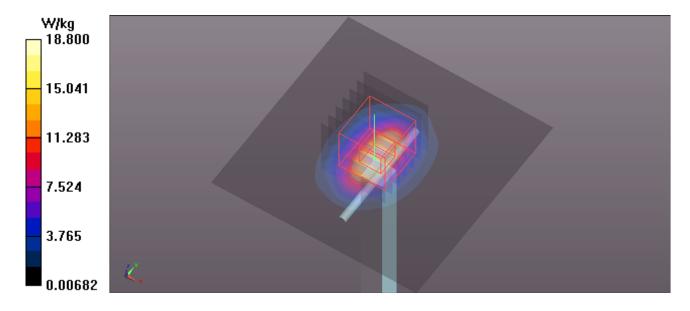
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: B2450\_0418 Medium parameters used: f = 2450 MHz;  $\sigma = 1.966$  S/m;  $\varepsilon_r = 54.662$ ;  $\rho =$ 

Date: 2013/04/18

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.9°C; Liquid Temperature: 20.9°C


# DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.35, 7.35, 7.35); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1039
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.8 W/kg

**Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.258 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 25.6 W/kg

**SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.53 W/kg** Maximum value of SAR (measured) = 18.7 W/kg



# System Check\_B5200\_130413

# DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

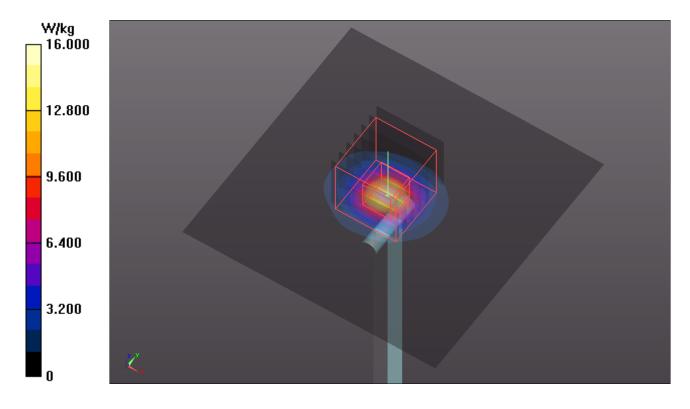
Medium: B5G\_0413 Medium parameters used: f = 5200 MHz;  $\sigma = 5.363$  S/m;  $\varepsilon_r = 47.683$ ;  $\rho = 1000$ 

Date: 2013/04/13

 $kg/m^3$ 

Ambient Temperature: 21.8 °C; Liquid Temperature: 20.7 °C

# DASY5 Configuration:


- Probe: EX3DV4 SN3661; ConvF(4.46, 4.46, 4.46); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=100mW/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.0 W/kg

**Pin=100mW/Zoom Scan (7x7x12)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 57.994 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.2 W/kgMaximum value of SAR (measured) = 16.2 W/kg



# System Check\_B5800\_130413

# DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

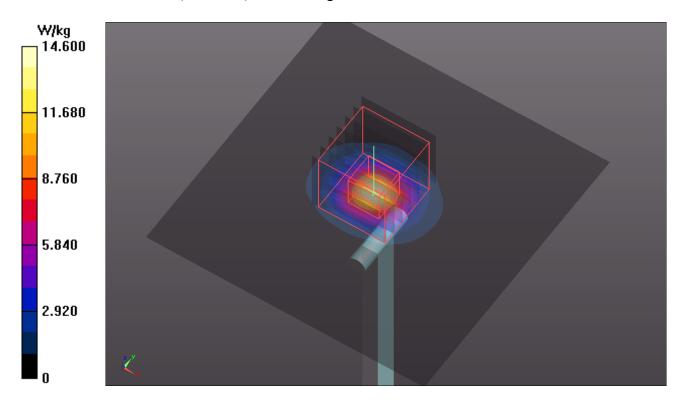
Medium: B5G\_0413 Medium parameters used: f = 5800 MHz;  $\sigma = 6.181$  S/m;  $\varepsilon_r = 46.386$ ;  $\rho = 1000$ 

Date: 2013/04/13

 $kg/m^3$ 

Ambient Temperature: 22.0 °C; Liquid Temperature: 20.9 °C

# DASY5 Configuration:


- Probe: EX3DV4 SN3590; ConvF(4.72, 4.72, 4.72); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Pin=100mW/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.8 W/kg

**Pin=100mW/Zoom Scan (7x7x12)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 51.576 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 6.8 W/kg; SAR(10 g) = 1.91 W/kgMaximum value of SAR (measured) = 14.6 W/kg





# **Appendix B. SAR Plots of SAR Measurement**

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Report Format Version 5.0.0 Issued Date : May 09, 2013

Report No.: SA130326C14

# P01 GSM850\_GPRS10\_Rear Face\_0cm\_Ch128\_w/ Power Reduction

#### DUT: 130326C14

Communication System: GPRS10; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: B835\_0404 Medium parameters used: f = 824.2 MHz; σ = 0.969 S/m;  $ε_r = 55.956$ ; ρ = 1000

Date: 2013/04/04

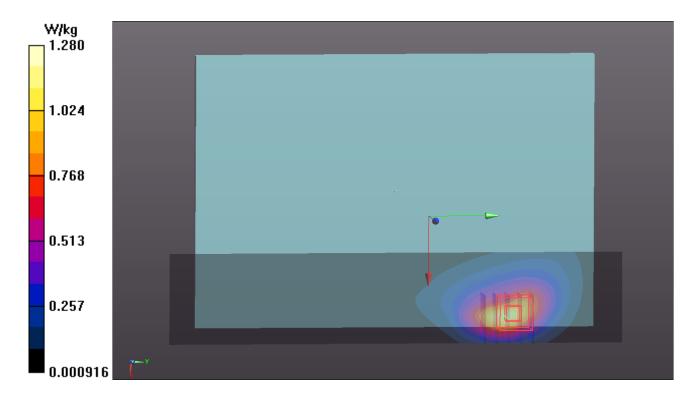
 $kg/m^3$ 

Ambient Temperature: 22.1 °C; Liquid Temperature: 20.8 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(9.94, 9.94, 9.94); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn679; Calibrated: 2013/01/16
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch128/Area Scan (41x201x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.21 W/kg


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.006 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.928 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 1.28 W/kg



# P02 GSM1900\_GPRS10\_Top Side\_0cm\_Ch512\_w/ Power Reduction

#### **DUT: 130326C14**

Communication System: GPRS10; Frequency: 1850.2 MHz; Duty Cycle: 1:4

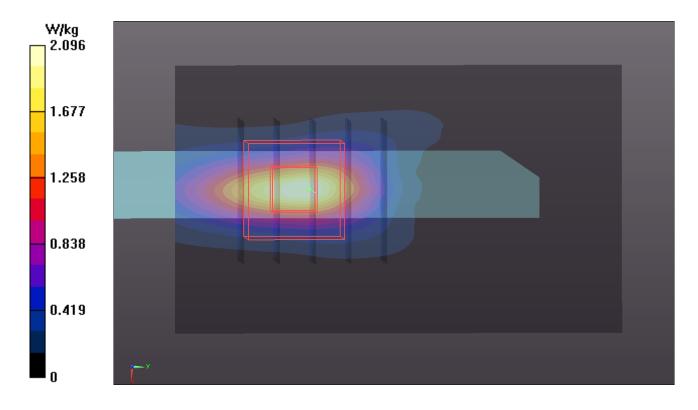
Medium: B1900\_0407 Medium parameters used: f = 1850.2 MHz;  $\sigma = 1.486$  S/m;  $\varepsilon_r = 53.194$ ;  $\rho =$ 

Date: 2013/04/07

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.7 °C; Liquid Temperature: 20.5 °C

# DASY5 Configuration:


- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch512/Area Scan (151x71x1):** Interpolated grid: dx=0.4000 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.10 W/kg

**Ch512/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.378 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.69 W/kg

SAR(1 g) = 1.22 W/kg; SAR(10 g) = 0.544 W/kgMaximum value of SAR (measured) = 1.95 W/kg



# P03 WCDMA II\_RMC12.2K\_Rear Face\_0cm\_Ch9400\_w/ Power Reduction

#### DUT: 130326C14

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: B1900\_0402 Medium parameters used: f = 1880 MHz; σ = 1.525 S/m;  $ε_r = 53.06$ ; ρ = 1000

Date: 2013/04/02

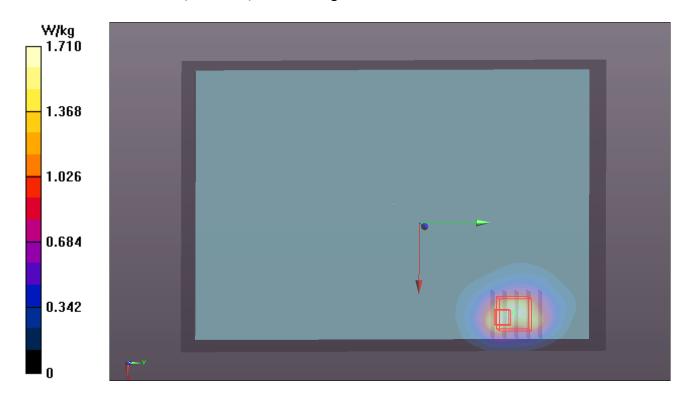
 $kg/m^3$ 

Ambient Temperature: 21.1 °C; Liquid Temperature: 20.1 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(7.88, 7.88, 7.88); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn679; Calibrated: 2013/01/16
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch9400/Area Scan (131x191x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.71 W/kg


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.324 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.36 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.651 W/kg

Maximum value of SAR (measured) = 1.71 W/kg



# P04 WCDMA V\_RMC12.2K\_Rear Face\_0cm\_Ch4182\_w/ Power Reduction

#### DUT: 130326C14

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: B835\_0404 Medium parameters used: f = 836.4 MHz;  $\sigma = 0.981$  S/m;  $\varepsilon_r = 55.84$ ;  $\rho = 1000$ 

Date: 2013/04/04

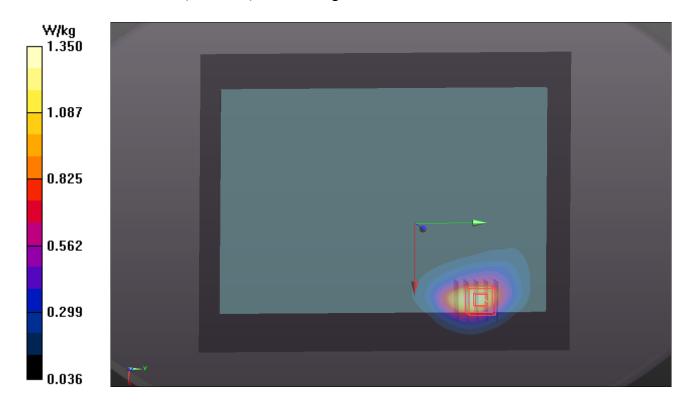
 $kg/m^3$ 

Ambient Temperature: 22.1 °C; Liquid Temperature: 20.8 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3864; ConvF(9.94, 9.94, 9.94); Calibrated: 2012/07/19;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn679; Calibrated: 2013/01/16
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch4182/Area Scan (161x201x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.34 W/kg


Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.315 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 0.971 W/kg; SAR(10 g) = 0.539 W/kg

Maximum value of SAR (measured) = 1.35 W/kg



# P05 LTE 2\_QPSK\_20M\_Top Side\_17mm\_Ch18900\_1RB\_OS99\_w/o Power Reduction

Date: 2013/04/14

#### **DUT: 130326C14**

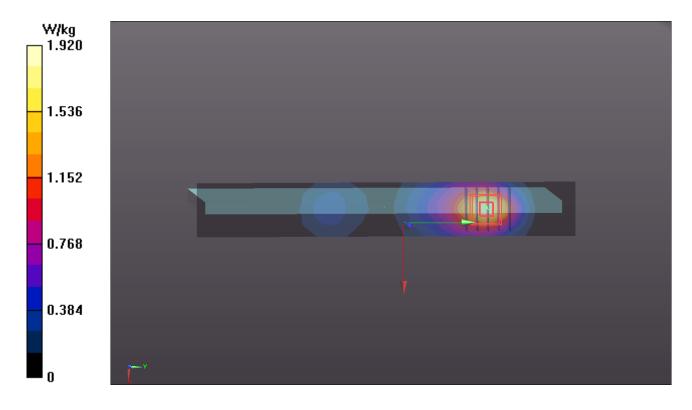
Communication System: LTE; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: B1900\_0414 Medium parameters used: f = 1880 MHz;  $\sigma = 1.525$  S/m;  $\varepsilon_r = 52.973$ ;  $\rho =$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.3 °C; Liquid Temperature: 20.2 °C

# DASY5 Configuration:


- Probe: EX3DV4 SN3590; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch18900/Area Scan (41x141x1):** Interpolated grid: dx=1.000 mm, dy=2.000 mm Maximum value of SAR (interpolated) = 1.92 W/kg

**Ch18900/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.627 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 2.16 W/kg

SAR(1 g) = 1.34 W/kg; SAR(10 g) = 0.782 W/kgMaximum value of SAR (measured) = 1.78 W/kg



# P06 LTE 4\_QPSK\_20M\_Rear Face\_0cm\_Ch20050\_1RB\_OS50\_w/ Power Reduction

Date: 2013/04/16

#### **DUT: 130326C14**

Communication System: LTE; Frequency: 1720 MHz; Duty Cycle: 1:1

Medium: B1750\_0416 Medium parameters used: f = 1720 MHz;  $\sigma = 1.437$  S/m;  $\varepsilon_r = 53.897$ ;  $\rho =$ 

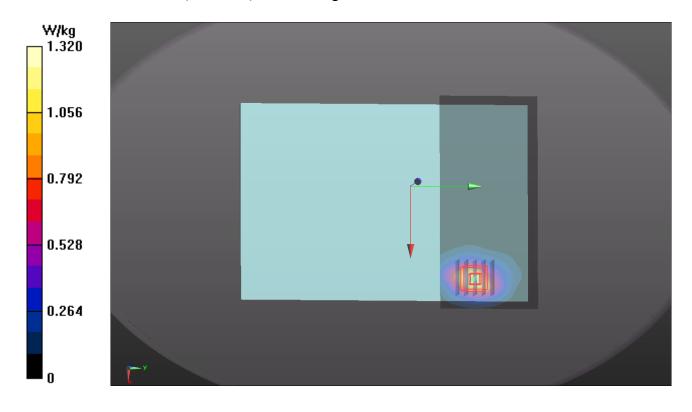
 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.8 °C; Liquid Temperature: 20.4 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(8.63, 8.63, 8.63); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch20050/Area Scan (131x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.32 W/kg


Ch20050/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.269 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 0.955 W/kg; SAR(10 g) = 0.539 W/kg

Maximum value of SAR (measured) = 1.34 W/kg



# P07 LTE 5\_QPSK\_10M\_Rear Face\_0cm\_Ch20525\_1RB\_OS24\_w/ Power Reduction

Date: 2013/04/12

#### **DUT: 130326C14**

Communication System: LTE; Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: B835\_0412 Medium parameters used: f = 836.5 MHz; σ = 0.982 S/m;  $ε_r = 55.817$ ; ρ = 1000

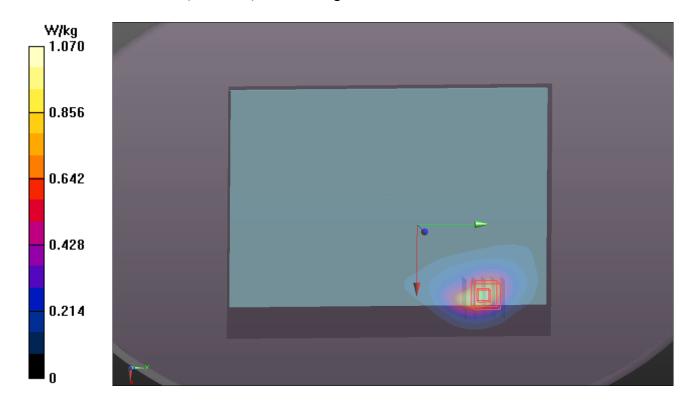
 $kg/m^3$ 

Ambient Temperature: 21.3 °C; Liquid Temperature: 20.6 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.64, 9.64, 9.64); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch20525/Area Scan (141x181x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.07 W/kg


Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.755 W/kg; SAR(10 g) = 0.418 W/kg

Maximum value of SAR (measured) = 1.09 W/kg



# P08 LTE 17\_QPSK\_10M\_Rear Face\_0cm\_Ch23800\_1RB\_OS24\_w/ Power Reduction

Date: 2013/04/13

#### **DUT: 130326C14**

Communication System: LTE; Frequency: 711 MHz; Duty Cycle: 1:1

Medium: B750\_0413 Medium parameters used: f = 711 MHz;  $\sigma = 0.937$  S/m;  $\varepsilon_r = 55.913$ ;  $\rho = 1000$ 

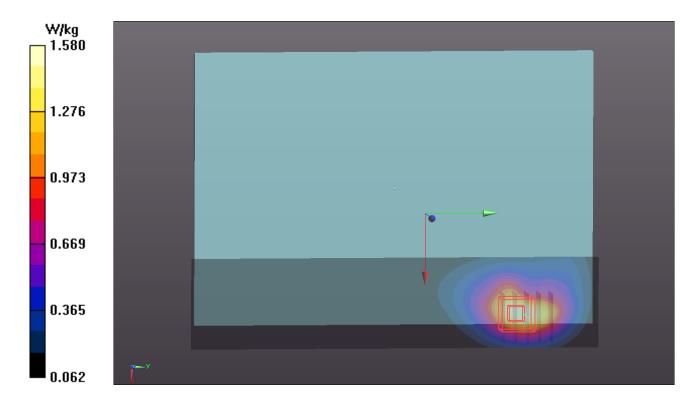
 $kg/m^3$ 

Ambient Temperature: 21.7 °C; Liquid Temperature: 20.9 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(10.6, 10.6, 10.6); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch23800/Area Scan (41x181x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.60 W/kg


Ch23800/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.736 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.669 W/kg

Maximum value of SAR (measured) = 1.58 W/kg



# P09 802.11b\_Rear Face\_0cm\_Ch11

#### **DUT: 130326C14**

Communication System: WLAN 2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450\_0418 Medium parameters used: f = 2462 MHz;  $\sigma = 1.982$  S/m;  $\varepsilon_r = 54.625$ ;  $\rho =$ 

Date: 2013/04/18

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 21.9°C; Liquid Temperature: 20.9°C

# DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.35, 7.35, 7.35); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1039
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch11/Area Scan (81x231x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.54 W/kg

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.77 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.428 W/kgMaximum value of SAR (measured) = 1.79 W/kg

1.537
1.229
0.922
0.615
0.307

# P10 802.11a\_Rear Face\_0cm\_Ch48

#### DUT: 130326C14

Communication System: WLAN 5G; Frequency: 5240 MHz; Duty Cycle: 1:1

Medium: B5G\_0413 Medium parameters used: f = 5240 MHz;  $\sigma = 5.437$  S/m;  $\varepsilon_r = 47.64$ ;  $\rho = 1000$ 

Date: 2013/04/13

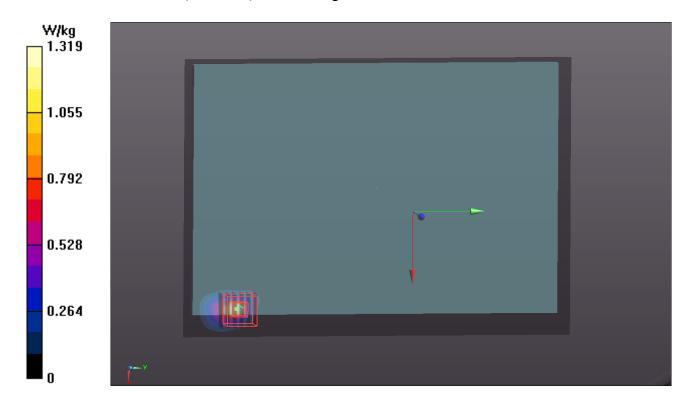
 $kg/m^3$ 

Ambient Temperature: 21.8°C; Liquid Temperature: 20.7°C

# DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(4.46, 4.46, 4.46); Calibrated: 2013/01/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2012/04/27
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

**Ch48/Area Scan (201x281x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.32 W/kg


Ch48/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 0.527 W/kg; SAR(10 g) = 0.128 W/kg

Maximum value of SAR (measured) = 1.13 W/kg



# P11 802.11a\_Top Side\_0cm\_Ch153

#### **DUT: 130326C14**

Communication System: WLAN\_5G; Frequency: 5765 MHz; Duty Cycle: 1:1

Medium: B5G\_0413 Medium parameters used: f = 5765 MHz;  $\sigma = 6.125$  S/m;  $\varepsilon_r = 46.407$ ;  $\rho = 1000$ 

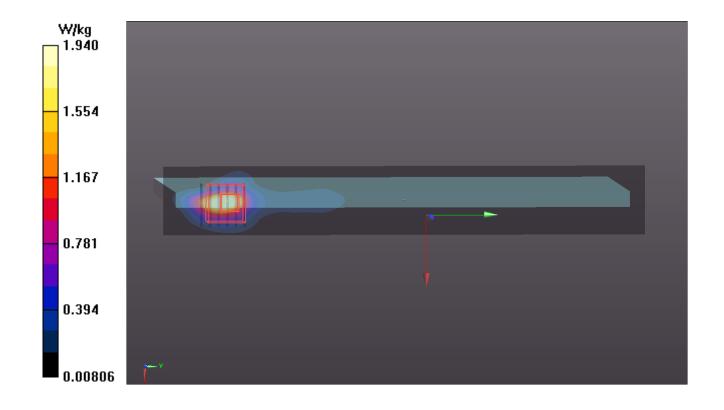
Date: 2013/04/13

 $kg/m^3$ 

Ambient Temperature: 22.0 °C; Liquid Temperature: 20.9 °C

# DASY5 Configuration:

- Probe: EX3DV4 SN3590; ConvF(4.72, 4.72, 4.72); Calibrated: 2013/02/20;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2013/03/19
- Phantom: ELI v4.0; Type: QDOVA001BA; Serial: TP:1043
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)


Ch153/Area Scan (161x281x1): Interpolated grid: dx=0.250 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.23 W/kg

Ch153/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 3.305 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 5.02 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.256 W/kgMaximum value of SAR (measured) = 1.94 W/kg

