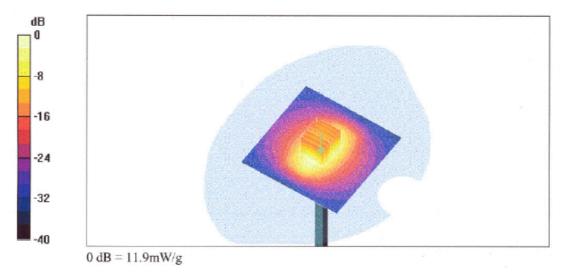


Page 1 of 1 Date/Time: 02/09/04 15:58:45

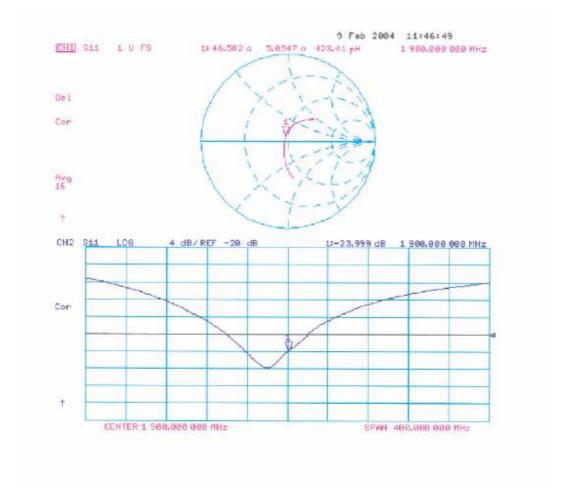
Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz;  $\sigma = 1.58$  mho/m;  $\epsilon_r = 52.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dBMaximum value of SAR (measured) = 11.9 mW/gPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g









|                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                           | FIBRATE S SV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ervizio svizzero di taratura<br>wiss Calibration Service                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accredited by the Swiss Federal<br>The Swiss Accreditation Servic<br>Multilateral Agreement for the I                                                                                                                                                                                                                                                                                                 | e is one of the signatori                                                                                                                                                                                                                                                                                                                                                                 | ies to the EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : SCS 108                                                                                                                                                                                                      |
| Client Sporton (Aude                                                                                                                                                                                                                                                                                                                                                                                  | en)                                                                                                                                                                                                                                                                                                                                                                                       | Certificate No: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T3-1788_Sep04                                                                                                                                                                                                  |
| CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                           | CERTIFICAT                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |
| Object                                                                                                                                                                                                                                                                                                                                                                                                | ET3DV6 - SN:1                                                                                                                                                                                                                                                                                                                                                                             | 788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NG PARTICIPACIÓN                                                                                                                                                                                               |
| Calibration procedure(s)                                                                                                                                                                                                                                                                                                                                                                              | QA CAL-01.v5<br>Calibration proc                                                                                                                                                                                                                                                                                                                                                          | edure for dosimetric E-field probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |
| Calibration date:                                                                                                                                                                                                                                                                                                                                                                                     | September 30, 2                                                                                                                                                                                                                                                                                                                                                                           | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                |
| Condition of the calibrated item                                                                                                                                                                                                                                                                                                                                                                      | In Tolerance                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                |
| The measurements and the unc                                                                                                                                                                                                                                                                                                                                                                          | ertainties with confidence                                                                                                                                                                                                                                                                                                                                                                | ational standards, which realize the physical units of probability are given on the following pages and are corry facility: environment temperature $(22\pm3)^{\circ}$ C and                                                                                                                                                                                                                                                                                                                                                                                                                       | e part of the certificate.                                                                                                                                                                                     |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8                                                                                                                                                                                                                                                                                                    | ertainties with confidence<br>ucted in the closed laborat<br>TE critical for calibration)                                                                                                                                                                                                                                                                                                 | probability are given on the following pages and arr tory facility: environment temperature $(22\pm3)^{\circ}$ C and                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e part of the certificate.<br>d humidity < 70%.                                                                                                                                                                |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards                                                                                                                                                                                                                                                                               | ertainties with confidence<br>ucted in the closed laborat<br>TE critical for calibration)                                                                                                                                                                                                                                                                                                 | probability are given on the following pages and arr<br>ory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                                                                                                                                                                          | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration                                                                                                                                       |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter E4419B                                                                                                                                                                                                                                                         | ertainties with confidence<br>ucted in the closed laborat<br>TE critical for calibration)<br>ID #<br>GB41293874                                                                                                                                                                                                                                                                           | probability are given on the following pages and arr<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)                                                                                                                                                                                                                                                                                                                                                                                                      | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05                                                                                                                             |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter E4419B<br>Power sensor E4412A                                                                                                                                                                                                                                  | ertainties with confidence<br>ucted in the closed laborat<br>TE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277                                                                                                                                                                                                                                                             | probability are given on the following pages and arr<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>5-May-04 (METAS, No. 251-00388)                                                                                                                                                                                                                                                                                                                                                                   | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05                                                                                                                   |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator                                                                                                                                                                                                     | ertainties with confidence<br>acted in the closed laborat<br>ATE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)                                                                                                                                                                                                                                          | probability are given on the following pages and arr<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)                                                                                                                                                                                                                                                                                                                                                                   | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05                                                                                                         |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                                                                       | ertainties with confidence<br>acted in the closed laborat<br>ATE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5086 (20b)                                                                                                                                                                                                                       | probability are given on the following pages and are<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00389)                                                                                                                                                                                                                                                                                                                                | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05<br>May-05                                                                                               |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator                                                                                                                                                                                                     | ertainties with confidence<br>acted in the closed laborat<br>ATE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)                                                                                                                                                                                                                                          | probability are given on the following pages and are<br>cory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-Apr-03 (METAS, No. 251-00404)                                                                                                                                                                                                                                                                                             | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05                                                                                                         |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2                                                                                                               | ertainties with confidence<br>inteed in the closed laborat<br>interaction for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)                                                                                                                                                                                                    | probability are given on the following pages and are<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00389)                                                                                                                                                                                                                                                                                                                                | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05<br>Aug-05<br>Aug-05                                                                                     |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4                                                                                                       | ertainties with confidence<br>interaction in the closed laborat<br>interaction for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN:3013                                                                                                                                                                  | probability are given on the following pages and are<br>cory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00403)<br>3-Apr-03 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. ES3-3013_Jan04)                                                                                                                                                                                                                                                     | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05<br>Aug-05<br>Jan-05                                                                                     |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards                                                                                 | ertainties with confidence<br>included in the closed laborat<br>intE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN:3013<br>SN: 617                                                                                                                                                        | probability are given on the following pages and are<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00389)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-Apr-03 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. ES3-3013_Jan04)<br>26-May-04 (SPEAG, No. DAE4-617_May04)                                                                                                                                                                                                            | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>Aug-05<br>Aug-05<br>Aug-05<br>Jan-05<br>May-05                                                                           |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards<br>Power sonsor HP 8481A                                                       | ertainties with confidence<br>inced in the closed laborat<br>TE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: S5129<br>SN: 617<br>ID #                                                                                                                                                                     | probability are given on the following pages and are<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. ES3-3013_Jan04)<br>26-May-04 (SPEAG, No. DAE4-617_May04)<br>Check Date (in house)                                                                                                                                                                                   | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>May-05<br>Aug-05<br>Jan-05<br>May-05<br>May-05<br>Scheduled Check                                              |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator HP 8648C                              | ertainties with confidence<br>ucted in the closed laborat<br>TE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: S013<br>SN: 617<br>ID #<br>MY41092180                                                                                                                                                        | probability are given on the following pages and are<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00404)<br>8-Jan-04 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. DAE4-617_May04)<br>26-May-04 (SPEAG, No. DAE4-617_May04)<br>Check Date (in house)<br>18-Sop-02 (SPEAG, in house check Oct-03)                                                                                                    | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>May-05<br>May-05<br>Jan-05<br>May-05<br>Scheduled Check<br>In house check: Oct 05                              |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter E4419B<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 30 dB Attenuator                                                                                                                                                                       | ertainties with confidence<br>ucted in the closed laborat<br>TE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 617<br>ID #<br>MY41092180<br>US3642U01700                                                                                                                                        | probability are given on the following pages and are<br>bory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>3-May-04 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00404)<br>8-Jan-04 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. DAE4-617_May04)<br>26-May-04 (SPEAG, No. DAE4-617_May04)<br>Check Date (in house)<br>18-Sep-02 (SPEAG, in house check Oct-03)<br>4-Aug-99 (SPEAG, in house check Dec-03)                                                         | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05<br>Aug-05<br>Jan-05<br>May-05<br>Scheduled Check<br>In house check: Dec-05                              |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference 20 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator HP 8648C                              | ertainties with confidence<br>incted in the closed laborat<br>interaction of the closed laborat<br>interaction of the calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5054 (3c)<br>SN: S5054 (3c)<br>SN: S5058 (20b)<br>SN: S5129 (30b)<br>SN: S5129 (30b)<br>SN: S5129 (30b)<br>SN: S129 (30b)<br>SN: S17<br>ID #<br>MY41092180<br>US3642U01700<br>US37390585 | probability are given on the following pages and are<br>cory facility: environment temperature (22 ± 3)°C and<br>5-May-04 (METAS, No. 251-00388)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00403)<br>3-Apr-03 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. ES3-3013_Jan04)<br>26-May-04 (SPEAG, No. DAE4-617_May04)<br>Check Date (in house)<br>18-Sop-02 (SPEAG, in house check Oct-03)<br>4-Aug-99 (SPEAG, in house check Dec-03)<br>18-Oct-01 (SPEAG, in house check Nov-03)                                                          | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05<br>May-05<br>Jan-05<br>Jan-05<br>Scheduled Check<br>In house check: Dec-05<br>In house check: Nov 04    |
| The measurements and the unc<br>All calibrations have been condu<br>Calibration Equipment used (M8<br>Primary Standards<br>Power meter E44198<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference 30 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4<br>Secondary Standards<br>Power sensor HP 8481A<br>RF generator HP 8648C<br>Network Analyzer HP 8753E | ertainties with confidence<br>incled in the closed laborat<br>ATE critical for calibration)<br>ID #<br>GB41293874<br>MY41495277<br>SN: S5054 (3c)<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: 3013<br>SN: 617<br>ID #<br>MY41092180<br>US3642U01700<br>US37390585<br>Name                                                                                              | probability are given on the following pages and are<br>cory facility: environment temperature (22 ± 3)°C and<br>Cal Date (Calibrated by, Certificate No.)<br>5-May-04 (METAS, No. 251-00388)<br>5-May-04 (METAS, No. 251-00388)<br>3-Apr-03 (METAS, No. 251-00403)<br>3-May-04 (METAS, No. 251-00404)<br>8-Jan-04 (METAS, No. 251-00404)<br>8-Jan-04 (SPEAG, No. ES3-3013_Jan04)<br>26-May-04 (SPEAG, No. DAE4-617_May04)<br>Check Date (in house)<br>18-Sop-02 (SPEAG, in house check Oct-03)<br>4-Aug-99 (SPEAG, in house check Nor-03)<br>18-Oct-01 (SPEAG, in house check Nor-03)<br>Function | e part of the certificate.<br>d humidity < 70%.<br>Scheduled Calibration<br>May-05<br>May-05<br>Aug-05<br>Jan-05<br>Jan-05<br>Scheduled Check<br>In house check: Dec-05<br>In house check: Nov 04<br>Signature |

Certificate No: ET3-1788\_Sep04

Page 1 of 9



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL                 | tissue simulating liquid                                                |
|---------------------|-------------------------------------------------------------------------|
| NORMx,y,z           | sensitivity in free space                                               |
| ConF                | sensitivity in TSL / NORMx,y,z                                          |
| DCP                 | diode compression point                                                 |
| Polarization $\phi$ | φ rotation around probe axis                                            |
| Polarization 9      | 9 rotation around an axis that is in the plane normal to probe axis (at |
|                     | measurement center), i.e., $9 = 0$ is normal to probe axis              |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
  the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* \* *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788\_Sep04

Page 2 of 9



ET3DV6 SN:1788

September 30, 2004

# Probe ET3DV6

# SN:1788

Manufactured: Last calibrated: Recalibrated: May 28, 2003 August 29, 2003 September 30, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788\_Sep04

Page 3 of 9

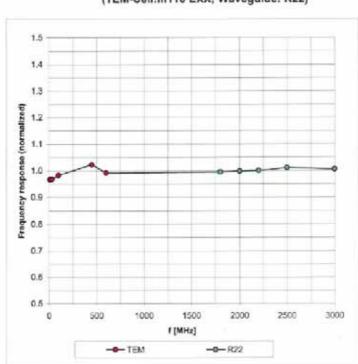
©2005 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.



September 30, 2004

## DASY - Parameters of Probe: ET3DV6 SN:1788

| e Space <sup>A</sup>   |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                               | Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.68 ± 9.9%            | $\mu V/(V/m)^2$                                                                                                                                                                                                                                               | DCP X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.70 ± 9.9%            |                                                                                                                                                                                                                                                               | DCP Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.74 ± 9.9%            | μV/(V/m) <sup>2</sup>                                                                                                                                                                                                                                         | DCP Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sue Simulating L       | iquid (Conversi                                                                                                                                                                                                                                               | ion Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 00 MHz Typical S       | AR gradient: 5 % pe                                                                                                                                                                                                                                           | er mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| r to Phantom Surface D | Distance                                                                                                                                                                                                                                                      | 3.7 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Without Correction .   | Algorithm                                                                                                                                                                                                                                                     | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| With Correction Alg    | orithm                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 MHz Typical S       | AR gradient: 10 % p                                                                                                                                                                                                                                           | er mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| r to Phantom Surface D | Distance                                                                                                                                                                                                                                                      | 3.7 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Without Correction     | Algorithm                                                                                                                                                                                                                                                     | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| With Correction Alg    | orithm                                                                                                                                                                                                                                                        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ensor Center           |                                                                                                                                                                                                                                                               | 2.7 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tainty of measurem     | ient is stated as th                                                                                                                                                                                                                                          | e standard i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uncertainty of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | ge factor k=2, whi<br>of approximately                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mal distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | 1.70 ± 9.9%<br>1.74 ± 9.9%<br>sue Simulating L<br>00 MHz Typical S<br>r to Phantom Surface D<br>Without Correction Alg<br>10 MHz Typical S<br>r to Phantom Surface D<br>Without Correction Alg<br>Sensor Center<br>tainty of measurem<br>iplied by the covera | 1.70 ± 9.9%       μV/(V/m) <sup>2</sup> 1.74 ± 9.9%       μV/(V/m) <sup>2</sup> sue Simulating Liquid (Conversion         00 MHz       Typical SAR gradient: 5 % per         10 MHz       Typical SAR gradient: 5 % per         10 MHz       Typical SAR gradient: 10 % per         to Phantom Surface Distance       Without Correction Algorithm         Without Correction Algorithm       With Correction Algorithm         without Correction Algorithm       With Correction Algorithm         tainty of measurement is stated as the iplied by the coverage factor k=2, white | 1.70 ± 9.9%       μV/(V/m)²       DCP Y         1.74 ± 9.9%       μV/(V/m)²       DCP Z         sue Simulating Liquid (Conversion Factors         00 MHz       Typical SAR gradient: 5 % per mm         r to Phantom Surface Distance       3.7 mm         Without Correction Algorithm       8.1         With Correction Algorithm       0.7         10 MHz       Typical SAR gradient: 10 % per mm         r to Phantom Surface Distance       3.7 mm         With Correction Algorithm       0.7         10 MHz       Typical SAR gradient: 10 % per mm         r to Phantom Surface Distance       3.7 mm         Without Correction Algorithm       12.0         With Correction Algorithm       0.9         Sensor Center       2.7 mm |


Certificate No: ET3-1788\_Sep04

Page 4 of 9



#### ET3DV6 SN:1788

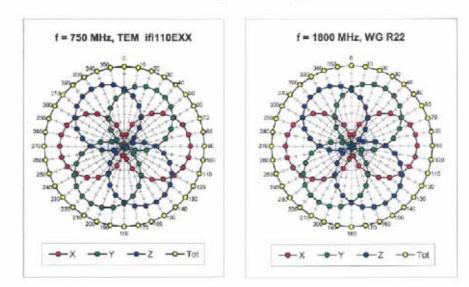
September 30, 2004



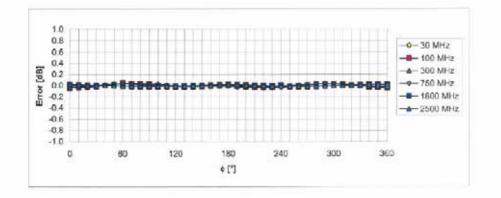
# Frequency Response of E-Field

(TEM-Cell:Ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1788\_Sep04

Page 5 of 9






September 30, 2004



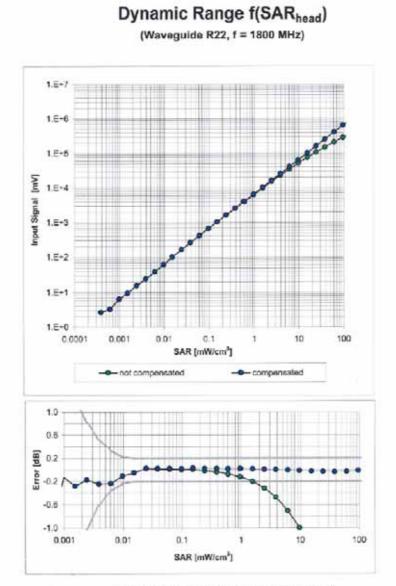
# Receiving Pattern ( $\phi$ ), $\vartheta$ = 0°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788\_Sep04

Page 6 of 9


©2005 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton.

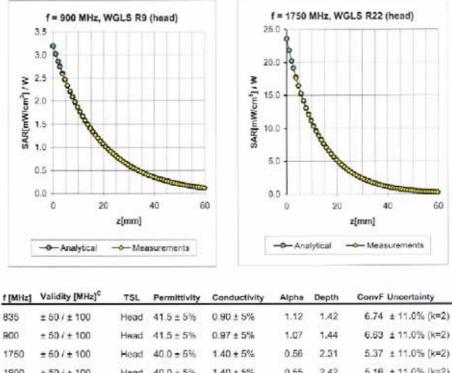


Test Report No 👘 FA592703-1-2-02

September 30, 2004



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No. ET3-1788\_Sep04

Page 7 of 9

©2005 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.



#### September 30, 2004

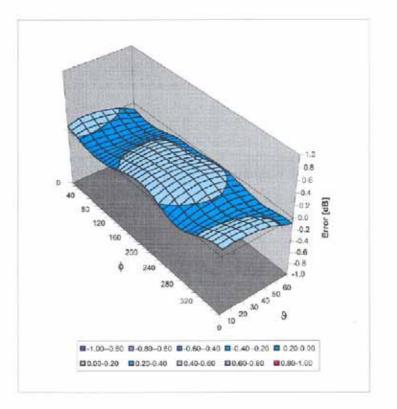


#### **Conversion Factor Assessment**

| 1900 | $\pm 50 / \pm 100$ | Head | 40.0 ± 5%      | 1.40 ± 5%      | 0.55 | 2.42 | 5.16 ± 11.0% (k=2) |
|------|--------------------|------|----------------|----------------|------|------|--------------------|
| 2000 | ± 50 / ± 100       | Head | $40.0\pm5\%$   | 1.40 ± 5%      | 0.54 | 2.59 | 4.88 ± 11.0% (k=2) |
| 2450 | ± 50 / ± 100       | Head | $39.2\pm5\%$   | 1.80 ± 5%      | 0.65 | 2 22 | 4.56 ± 11.8% (k=2) |
|      |                    |      |                |                |      |      |                    |
| 835  | ± 50 / ± 100       | Body | 55.2 ± 5%      | 0.97 ± 5%      | 1.04 | 1.52 | 6.53 ± 11.0% (k=2) |
| 900  | ± 50/±100          | Body | $55.0\pm5\%$   | 1.05 ± 5%      | 0.99 | 1.55 | 6.17 ± 11.0% (k=2) |
| 1750 | ± 50 / ± 100       | Body | $53.3\pm5\%$   | 1.52 ± 5%      | 0.53 | 2.74 | 4.73 ± 11.0% (k=2) |
| 1900 | ± 50 / ± 100       | Body | $53.3 \pm 5\%$ | 1.52 ± 5%      | 0.55 | 2.82 | 4.56 ± 11.0% (k=2) |
| 2000 | ± 50 / ± 100       | Body | 53.3 ± 5%      | $1.52 \pm 5\%$ | 0.54 | 2.98 | 4.43 ± 11.0% (k=2) |
| 2450 | ± 50 / ± 100       | Body | $52.7\pm5\%$   | 1.95 ± 5%      | 0.72 | 2.00 | 4.26 ± 11.8% (k=2) |
|      |                    |      |                |                |      |      |                    |

<sup>6</sup> The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1788\_Sep04


Page 8 of 9



ET3DV6 SN:1788

September 30, 2004

### Deviation from Isotropy in HSL Error (\u00f3, 3), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1758\_Sep04

Page 9 of 9

©2005 SPORTON International Inc..SAR Testing Lab This report shall not be reproduced except in full, without the written approval of Sporton.



| Engineering AG<br>oughausstrasse 43, 8004 Zurich,                                                                                                                               | Of<br>Switzerland                                                                                            |                                                                                                                                                                                                                                   | (Q ( Z) C Service sulsse d'étalonnage<br>Servizio svizzero di taratura                                                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ccredited by the Swiss Federal Off<br>he Swiss Accreditation Service i<br>Iultilateral Agreement for the rec                                                                    | s one of the signatories                                                                                     | to the EA                                                                                                                                                                                                                         | No.: SCS 108                                                                                                                                                                                                       |  |  |
| Sporton (Auden)                                                                                                                                                                 | )                                                                                                            | Certificate No                                                                                                                                                                                                                    | : DAE3-577_Nov04                                                                                                                                                                                                   |  |  |
| CALIBRATION CI                                                                                                                                                                  | ERTIFICATE                                                                                                   |                                                                                                                                                                                                                                   | A CARLES AND A CARLES                                                                                                                                                                                              |  |  |
| Object                                                                                                                                                                          | DAE3 - SD 000 D                                                                                              | 03 AA - SN: 577                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |  |  |
| Calibration procedure(s)                                                                                                                                                        | QA CAL-06.v10<br>Calibration proces                                                                          | lure for the data acquisition unit                                                                                                                                                                                                | (DAE)                                                                                                                                                                                                              |  |  |
| Calibration date:                                                                                                                                                               | November 17, 200                                                                                             | 04                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |  |  |
| Condition of the calibrated item                                                                                                                                                | In Tolerance                                                                                                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                 |                                                                                                              | sbability are given on the following pages an<br>facility: environment temperature (22 ± 3)*                                                                                                                                      |                                                                                                                                                                                                                    |  |  |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE                                                                                                         | d in the closed laboratory                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                    |  |  |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards                                                                                    | d in the closed laboratory<br>critical for calibration)                                                      | facility: environment temperature (22 $\pm$ 3) $^{\circ}$                                                                                                                                                                         | C and humidity < 70%.                                                                                                                                                                                              |  |  |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Fluke Process Calibrator Type 702                                               | d in the closed laboratory<br>critical for calibration)                                                      | facility: environment temperature (22 ± 3)*<br>Cal Date (Calibrated by, Certificate No.)                                                                                                                                          | C and humidity < 70%.<br>Scheduled Calibration                                                                                                                                                                     |  |  |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Fluke Process Calibrator Type 702<br>Secondary Standards                        | d in the closed laboratory<br>critical for calibration)<br>ID #<br>ID #                                      | facility: environment temperature (22 ± 3)*<br>Cal Date (Calibrated by, Cartificate No.)<br>7-Sop-04 (Sintrol, No.E-040073)                                                                                                       | C and humidity < 70%.<br>Scheduled Calibration<br>Sep-05                                                                                                                                                           |  |  |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Fluke Process Calibrator Type 702<br>Secondary Standards                        | ID #<br>SE UMS 006 AB 1002                                                                                   | facility: environment temperature (22 ± 3)*<br>Cal Date (Calibrated by, Cartificate No.)<br>7-Sop-04 (Sintrol, No.E-040073)<br>Check Date (in house)<br>16-Jul-04 (SPEAG, in house check)                                         | C and humidity < 70%.<br>Scheduled Calibration<br>Sep-05<br>Scheduled Check<br>In house check Jul-05                                                                                                               |  |  |
| All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Pluke Process Calibrator Type 702<br>Secondary Standards<br>Calibrator Box V1.1 | d in the closed laboratory<br>critical for calibration)<br>ID #<br>ID #                                      | facility: environment temperature (22 ± 3)*<br>Cal Date (Calibrated by, Cartificate No.)<br>7-Sop-04 (Sintrol, No.E-040073)<br>Check Date (In house)                                                                              | C and humidity < 70%.<br>Scheduled Calibration<br>Sep-05<br>Scheduled Check                                                                                                                                        |  |  |
| All calibrations have been conducts<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Ruke Process Calibrator Type 702<br>Secondary Standards<br>Calibrator Box V1.1  | d in the closed laboratory<br>critical for calibration)<br>ID #<br>SN: 6295803<br>ID #<br>SE UMS 006 AB 1002 | facility: environment temperature (22 ± 3)*<br><u>Cal Date (Calibrated by, Certificate No.)</u><br>7-Sop-04 (Sintrel, No.E-040073)<br><u>Check Date (in house)</u><br>16-Jul-04 (SPEAG, in house check)<br>Function               | C and humidity < 70%.<br>Scheduled Calibration<br>Sep-05<br>Scheduled Check<br>In house check Jul-05                                                                                                               |  |  |
| All calibrations have been conducte<br>Calibration Equipment used (M&TE<br>Primary Standards<br>Fluke Process Calibrator Type 702<br>Secondary Standards<br>Calibrator Box V1.1 | ID #<br>SN: 6295803<br>ID #<br>SE UMS 006 AB 1002<br>Name<br>Eric Hainfeld<br>Fin Bomholt                    | facility: environment temperature (22 ± 3)*<br><u>Cai Date (Calibrated by, Cartificate No.)</u><br>7-Sop-04 (Sintrel, No.E-040073)<br><u>Check Date (in house)</u><br>16-Jul-04 (SPEAG, in house check)<br>Function<br>Technician | C and humidity < 70%. <table>         Schaduled Calibration         Sep-05         Schaduled Chack         In house check Jul-05         Signature         IV. On. Jalax         Issued: November 17, 2004</table> |  |  |



Calibration Laboratory of Schmid & Partner Engineering AG Zeugheusstrasse 43, 8004 Zurich, Switzerland



s

с

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation. The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates

#### Glossary

DAE digital acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

#### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577\_Nov04

Page 2 of 5



#### DC Voltage Measurement

| A/D - Converter Reso | lution nominal  |                |                  |             |
|----------------------|-----------------|----------------|------------------|-------------|
| High Range:          | 1LSB =          | 6.1µV,         | full range =     | -100+300 mV |
| Low Range:           | 1LSB =          | 61nV ,         | full range =     | -1+3mV      |
| DASY measurement     | parameters: Aut | o Zero Time: 3 | sec; Measuring t | time: 3 sec |

| Calibration Factors | x                    | Y                           | z                         |
|---------------------|----------------------|-----------------------------|---------------------------|
| High Range          | 404.437 ± 0.1% (k=2) | $403.891 \pm 0.1\% \ (k=2)$ | $404.359 \pm 0.1\%$ (k=2) |
| Low Range           | 3.94121 ± 0.7% (k=2) | 3.89867 ± 0.7% (k=2)        | 3.95408 ± 0.7% (k=2)      |

#### **Connector Angle**

| Connector Angle to be used in DASY system | 127 ° ± 1 ° |
|-------------------------------------------|-------------|
|-------------------------------------------|-------------|

Certificate No: DAE3-577\_Nov04

Page 3 of 5



#### Appendix

#### 1. DC Voltage Linearity

| High Range        | Input (µV) | Reading (µV) | Error (%) |
|-------------------|------------|--------------|-----------|
| Channel X + Input | 200000     | 200000.6     | 0.00      |
| Channel X + Input | 20000      | 20001.77     | 0.01      |
| Channel X • Input | 20000      | -19991.81    | -0.04     |
| Channel Y + Input | 200000     | 199999.7     | 0.00      |
| Channel Y + Input | 20000      | 19999.20     | 0.00      |
| Channel Y - Input | 20000      | -19994.82    | -0.03     |
| Channel Z + Input | 200000     | 200000.2     | 0.00      |
| Channel Z + Input | 20000      | 19996.22     | -0.02     |
| Channel Z - Input | 20000      | -19996.74    | -0.02     |

| Low Range |         | Input (µV) | Reading (µV) | Error (%) |
|-----------|---------|------------|--------------|-----------|
| Channel X | + Input | 2000       | 2000         | 0.00      |
| Channel X | + Input | 200        | 200.05       | 0.03      |
| Channel X | - Input | 200        | -200.88      | 0.44      |
| Channel Y | + Input | 2000       | 1999.9       | 0.00      |
| Channel Y | + Input | 200        | 199.73       | -0.13     |
| Channel Y | - Input | 200        | -200.53      | 0.27      |
| Channel Z | + Input | 2000       | 2000.1       | 0.00      |
| Channel Z | + Input | 200        | 199.25       | -0.38     |
| Channel Z | - Input | 200        | -201.42      | 0.71      |

#### 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (µV) | Low Range<br>Average Reading (µV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 13.15                              | 12.30                             |
|           | - 200                             | -12.61                             | -12.86                            |
| Channel Y | 200                               | -7.43                              | -7.53                             |
|           | - 200                             | 6.30                               | 6.52                              |
| Channel Z | 200                               | -0.16                              | 0.31                              |
|           | - 200                             | -1.51                              | -1.48                             |
|           |                                   |                                    |                                   |

#### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | · · ·          | 1.90           | -0.22          |
| Channel Y | 200                | 1.47           |                | 4.60           |
| Channel Z | 200                | -1.40          | -0.08          |                |

Certificate No: DAE3-577\_Nov04

Page 4 of 5

This report shall not be reproduced except in full, without the written approval of Sporton.



#### 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15948            | 15814           |
| Channel Y | 15960            | 16073           |
| Channel Z | 16236            | 16172           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input  $10 M \Omega$ 

|           | Average (µV) | min. Offset (µV) | max. Offset (µV) | Std. Deviation<br>(µV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.03         | -3.07            | 1.24             | 0.58                   |
| Channel Y | -0.66        | -2.19            | 1.96             | 0.55                   |
| Channel Z | -0.91        | -2.82            | 0.42             | 0.39                   |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

#### 7. Input Resistance

|           | Zeroing (MOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 0.2000         | 199.3            |
| Channel Y | 0.2000         | 200.4            |
| Channel Z | 0.2001         | 199.5            |

#### 8. Low Battery Alarm Voltage (verified during pre test)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

#### 9. Power Consumption (verified during pre-test)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.0              | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

#### 10. Common Mode Bit Generation (verified during pre test)

| Typical values  | Bit set to High at Common Mode Error (VDC) |
|-----------------|--------------------------------------------|
| Channel X, Y, Z | +1.25                                      |

Certificate No: DAE3-577\_Nov04

Page 5 of 5