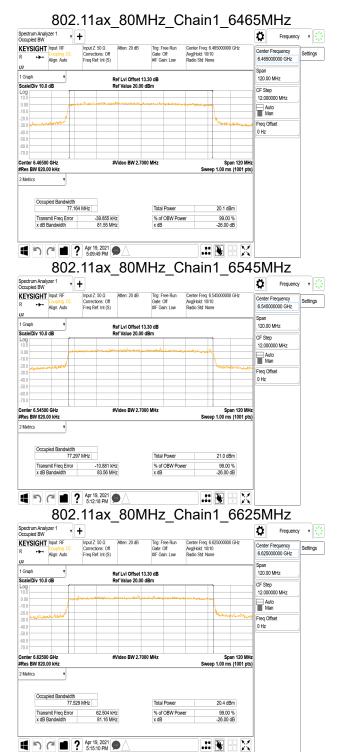
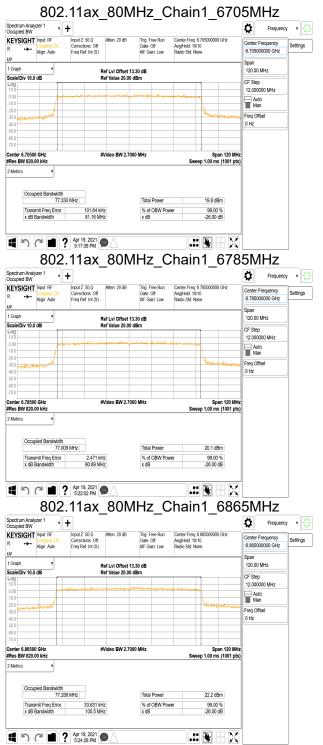


Report No.: ER/2021/20015 Page: 41 of 274


Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份復製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnifi-cation and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Second the second terms and be appended to the fullest extent of the law.

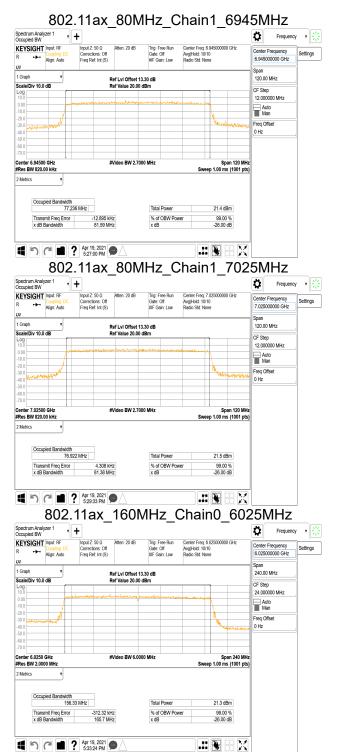

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工

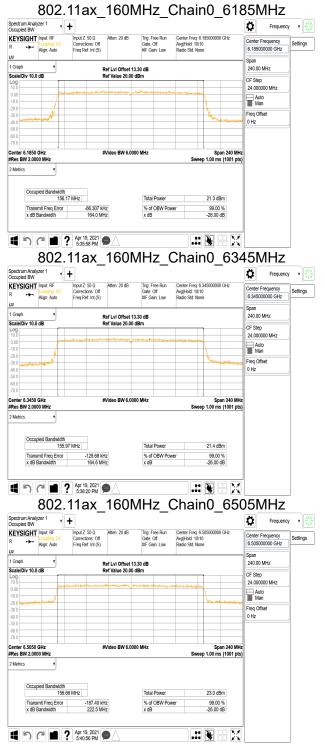
路134號

Report No.: ER/2021/20015 Page: 42 of 274

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份復製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnifi-cation and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Second the second terms and be appended to the fullest extent of the law.

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工


路134號


台灣檢驗科技股份有限公司 t (886-2) 2299-3279

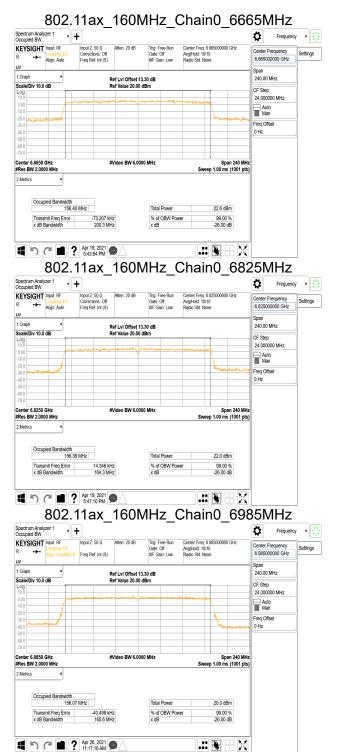
🖹 🗄 🗶

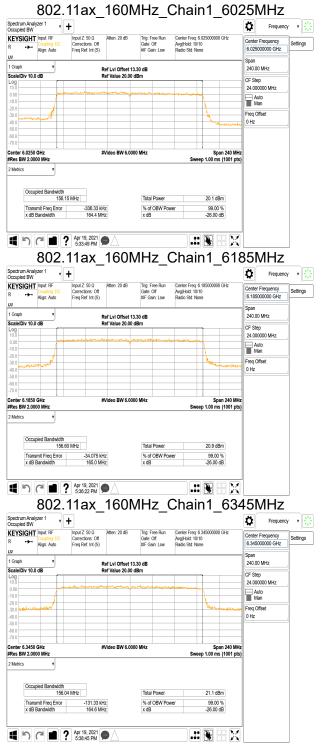
Report No.: ER/2021/20015 Page: 43 of 274

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份復製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnifi-cation and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Second the second terms and be appended to the fullest extent of the law.

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工

路134號


台灣檢驗科技股份有限公司 t (886-2) 2299-3279


f (886-2) 2298-0488 www.sgs.com.tw

Member of SGS Group

Report No.: ER/2021/20015 Page: 44 of 274

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份復製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnifi-cation and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Second the second terms and be appended to the fullest extent of the law.

SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工

路134號

台灣檢驗科技股份有限公司 t (886-2) 2299-3279

Report No.: ER/2021/20015 Page: 45 of 274

ectrum Ana cupied BW	vi '	+					Ö	Frequenc	, ,	10
YSIGH •	T Input: RF Coupling: DC Align: Auto	Input Z: 50 Q Corrections: Freq Ref: Int	Off	B Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 6 Avg[Hold: 10/ Radio Std: No			Frequency 000000 GHz	Settin	gs
raph	•		Ref Lvi Offs	et 13.30 dB			Span 240.0) MHz		
le/Div 10).0 dB		Ref Value 2	0.00 dBm			CF Ste	p DOOD MHz		
0		an the second second	ر وهمامرومون قامرتمو	- por management	mplosennes	1	24.00	ıto		
0 0	understand .					Monda with any we	Freq O			
0							0 Hz		-	
0										
ter 6.505 Is BW 2.0	50 GHz 1000 MHz		#Video BW	6.0000 MHz	Swe	Span 240 MH ep 1.00 ms (1001 pts				
x dE	nsmit Freq Error B Bandwidth	-146. 232	6 MHz	% of OBW P x dB	ower	99.00 % -26.00 dB				
ctrum Ana	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz M	x dB DMHz_	Chair Chair Center Freq. (AvgHold: 10'	-26.00 dB	Center	Frequenc Frequency	y , Settin	gs (
trum Ana upied BW YSIGH	B Bandwidth	232. Apr 19, 203 5:41:21 Pi 11ax + Input Z: 50 0	6 MHz M	x dB)MHz_	Chair Chair	-26.00 dB	Center	Frequenc]	-
trum Ana upied BW YSIGH ↔	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz 21 21 21 21 21 21 21 21	x dB DMHz B Trig: Free Run Gate: Of #IF Gan: Low et 13.30 dB	Chair Chair Center Freq. (AvgHold: 10'	-26.00 dB	Center 6.6650 Span 240.00	Frequency D00000 GHz]	-
trum Ana upied BW YSIGH ↔ raph	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz 21 21 21 21 21 21 21 21	x dB DMHz B Trig: Free Run Gate: Of #IF Gan: Low et 13.30 dB	Chair Chair Center Freq. (AvgHold: 10'	-26.00 dB	Center 6.6650 Span 240.00 CF Ste	Frequency D00000 GHz]	-
sctrum Ana aupied BW YSIGH ••• raph Ne/Div 10	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz 21 21 21 21 21 21 21 21	x dB DMHz B Trig: Free Run Gate: Of #IF Gan: Low et 13.30 dB	Chair Chair Center Freq. (AvgHold: 10'	-26.00 dB	Center 6.6650 Span 240.00 CF Ste	Frequency 500000 GHz 0 MHz 0 000 MHz 10 000 MHz 10 000 MHz]	-
sctrum Ana aupied BW YSIGH ++-	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz 21 21 21 21 21 21 21 21	x dB DMHz B Trig: Free Run Gate: Of #IF Gan: Low et 13.30 dB	Chair Chair Center Freq. (AvgHold: 10'	-26.00 dB	Center 6.665 Span 240.00 CF Ste 24.001 At M Freq O	Frequency Frequency 000000 GHz 0 MHz P 0000 MHz uto an]	-
ctrum Ana	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz 21 21 21 21 21 21 21 21	x dB DMHz B Trig: Free Run Gate: Of #IF Gan: Low et 13.30 dB	Chair Chair Center Freq. (AvgHold: 10'	-26.00 dB	Center 6.665 Span 240.01 CF Ste 24.001	Frequency Frequency 000000 GHz 0 MHz P 0000 MHz uto an]	-
ctrum Ana upied BW YSIGH ie/Div 10	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	6 MHz 21 21 21 21 21 21 21 21	x dB	Chail Chail Center Freq Angl+loid 10° Radio Sid No	26:00 dB	Center 6.6651 Span 240.01 CF Ste 24.001 AM Freq C 0 Hz	Frequency Frequency 000000 GHz 0 MHz P 0000 MHz uto an]	-
strum Ana strum Ana strum Ana struppled BW YSIGH +→ raph le/Div 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B Bandwidth	232. Apr 19, 203 5:41:21 Pl 11ax + Input Z: 50 Q Corrections:	0 MHz 21 21 21 21 21 21 21 21 21 21 21 21 21	x dB	Chail Chail Center Freq Angl+loid 10° Radio Sid No	2650000 GHz	Center 6.6651 Span 240.01 CF Ste 24.001 AM Freq C 0 Hz	Frequency Frequency 000000 GHz 0 MHz P 0000 MHz uto an]	-

ccupied BVV	+			Frequency •
EYSIGHT Input: RF Coupling: DC Align: Auto	Input Z: 50 Q Atten: 2 Corrections: Off Freq Ref: Int (S)	10 dB Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 6.825000000 GHz Avg Hold: 10/10 Radio Std: None	Center Frequency 6.82500000 GHz
Graph v cale/Div 10.0 dB		offset 13.30 dB ≥ 20.00 dBm		Span 240.00 MHz
	Rei Value	20.00 UBIN		CF Step 24.000000 MHz
1.00	محجله والمحاصة والمحمد وستعدو ستسبو	maymour	ange and the second program	24.00000 MH2
20.0			Lauren	Man Man
30.0				Freq Offset 0 Hz
50.0				
0.0				
enter 6.8250 GHz Res BW 2.0000 MHz	#Video B	W 6.0000 MHz	Span 240 Sweep 1.00 ms (100	
Metrics v			· · ·	
Occupied Bandwidth				
156.	36 MHz	Total Power	22.5 dBm	
Transmit Freq Error x dB Bandwidth	127.23 kHz 202.5 MHz	% of OBW P x dB		
	Apr 19, 2021		6	
802. Dectrum Analyzer 1 EYSIGHT Input: RF Coupling: DC Aign: AutoNo F	P Apr 19, 2021 5:47:34 PM 11ax_16 + Input Z: 50 Ω Atten: 2	0MHz_	∷ № 8 Chain1_6	985MHz Frequency Center Frequency 6.98500000 GHz Settin
802. pectrum Analyzer 1 coupled BW EYSIGHT Input: RF Coupling: DC Align: AutoNo F g Graph	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz
802. ipectrum Analyzer 1 verset analyzer 1 vers	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 OMHZ 10 dB Trig: Free Run Gate: Off #IF Gain: Low	Chain1_6	985MHz Center Frequency 6.3550000 GHz 240.00 MHz CF Step
802.	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz Center Frequency 6.86500000 GHz Spain 24.000 MHz CF Step 24.00000 MHz
802. pectrum Analyzer 1 (EYSIGHT Input: RF Coping, DC are coping, DC are	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz Center Frequency 6.38500000 GHz 240.00 MHz CF Step
802. pectrum Analyzer 1 (EVSIGHT Input IR Argn AutoNo F W Graph 00 00 00 00 00 00 00 00 00 0	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz requency requency Center Frequency G.98500000 GHz Span 240.00 MHz Cf Step 24.0000000 MHz Auto Auto Freq Offset
802.	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz requency requency
8002. peditum Atalyses 1	Apr 19, 2021 5-47:34 PM 11ax_16 + Imput Z 50 0 Attern 2 Freq Ref. Int (5) Ref Lvi 0	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz requency requency Center Frequency G.98500000 GHz Span 240.00 MHz Cf Step 24.0000000 MHz Auto Auto Freq Offset
8002. vectrum Analyzer 1 vectrum Analyzer 1 EYSIGHT Input IP Graph → Napr. AddNo F graph grap	Apr 19, 2021 5-4734 PM 5-4734 PM 11ax_16 + Imput Z 50 0 Finge Red: Int (5) Ref Lvido Ref Lvido	0 dB Trig: Free Run Gale: Off #IF Gain. Low	Chain1_6	985MHz requency requency
802. peditum Ansilyter 1 (Copies BW) (Copies BC) (Copies BC) (Co	Apr 19, 2021 5-4734 PM 5-4734 PM 11ax_16 + Imput Z 50 0 Finge Red: Int (5) Ref Lvido Ref Lvido	0 dB Trip Free Fun Gate Off Fare San Low Meet 13.30 dB 22.000 dB	Chain1_6	985MHz requency requency
8002. peditum Analyzer 1 Coupled BW LEYSIGHT Intol. FF → Coupling DC → Mgn. Acadle F g Graph 	Apr 19, 2021 5-4734 FM 11ax_16 + Imput 2 50 0 Alten 2 Freq Ref. Int (S) Ref Lvi 0 Ref Volue styles B	0 dB Trip Free Fun Gate Off Fare San Low Meet 13.30 dB 22.000 dB	Chain1_6	985MHz requency requency
BOC2. peditum Artalyzer 1 (Corporation of the Corporation of the Cor	Apr 19, 2021	0 dB Trip Free Fun Gate Off Fare San Low Meet 13.30 dB 22.000 dB	Center Freq: 698500000 GHz Augled 1010 Radio Stri None	985MHz requency requency
BOC2.	Apr 19, 2021 5-4734 FM 11ax_16 + Imput 2 50 0 Alten 2 Freq Ref. Int (S) Ref Lvi 0 Ref Volue styles B	OMHZ_ 10 dB Trig. Free Run Cate: Off #F Can. Low Wfset 13.30 dB 20.00 dBm W 6.0000 MHz	Chain1_6	985MHz requency requency

GS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工

9 MAXIMUM OUTPUT POWER

9.1 Standard Applicable

§15.407(a)

- (4) For a standard power access point and fixed client device operating in the 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 23 dBm e.i.r.p in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 36 dBm. For outdoor devices, the maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p. in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm.
- (6) For a subordinate device operating under the control of an indoor access point in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm.
- (7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1- megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.
- (8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed −1 dBm e.i.r.p. in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions is intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. sGS TaiwanLtd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新:<a href="https://mawnlift.thattps://thatt

EUT CATEGORY	Equipment Class	Limit
□ Standard Access Point	6SD	EIRP < 36dbm and antenna angle above 30 degrees < 21dbm EIRP for outdoor use
indoor Access Point	6ID	EIRP < 30dbm
Subordinate Device	6PP	EIRP < 30dbm
□ Fixed Client	6FC	EIRP < 36dbm and antenna angle above 30 degrees < 21dbm EIRP for outdoor use
Indoor Client	6XD	EIRP < 24dbm
□ Standard Client	6FX	EIRP < 30dbm
Dual Client	6CD	Compliance both indoor clinet and stand- ard client limit

Note:

As per section F. 2). e). (ii) of FCC KDB 662911 D01

If antenna gains are not equal and each transmit antenna is driven by only one spatial stream, directional gain may be calculated by either of the following formulas.

• DirectionalGain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

NSS = the number of independent spatial streams of data;

NANT = the total number of antennas

 $g_{j,k} = 10^{Gk/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not; G_k is the gain in dBi of the kth antenna.

The antenna gain is not greater than 6 dBi. Therefore, reduction of power is not required.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. <mark>iGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業</mark>

9.2 **Measurement Procedure**

- 1. Place the EUT on the table and set it in transmitting mode.
- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New 2. Rules .
- Remove the antenna from the EUT and then connect a low loss RF cable from the 3. antenna port to the power meter
- 4. Power Meter is used as the auxiliary test equipment to conduct the output power measurement.
- 5. Record the max. reading and add 10 log(1/duty cycle).
- Repeat above procedures until all frequency (low, middle, and high channel) meas-6. ured were complete.

	Conducted	Emission Test S	ite: Conducted	2	
EQUIPMENT TYPE	MFR/BRAND	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Power Meter	Anritsu	ML2496A	1242004	11/06/2020	11/05/2021
Power Sensor	Anritsu	MA2411B	1207365	11/06/2020	11/05/2021
Power Sensor	Anritsu	MA2411B	1207368	11/06/2020	11/05/2021
Attenuator	Mini-Circuit	BW-S10W2+	2	12/16/2020	12/15/2021
Attenuator	Mini-Circuit	BW-S10W2+	8	12/16/2020	12/15/2021

9.3 Measurement Equipment Used

9.4 Test Set-up

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

GS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

9.5 **Measurement Result**

9.5.1 Conducted output power (FCC)

802.11ax_20_Ch0

сн	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
		full	5.34	-0.32	5.02	24	PASS
4	EOEE	26/0	-2.89	-0.32	-3.21	24	PASS
1	5955	52/37	-0.85	-0.32	-1.17	24	PASS
		106/53	2.82	-0.32	2.50	24	PASS
45	6175	full	5.57	-0.32	5.25	24	PASS
		full	5.36	-0.32	5.04	24	PASS
93	6415	26/8	-3.82	-0.32	-4.14	24	PASS
93	0415	52/40	-1.37	-0.32	-1.69	24	PASS
		106/54	2.46	-0.32	2.14	24	PASS
		full	7.56	-3.91	3.65	24	PASS
07	6405	26/0	-0.76	-3.91	-4.67	24	PASS
97	6435	52/37	1.68	-3.91	-2.23	24	PASS
		106/53	4.84	-3.91	0.93	24	PASS
105	6475	full	7.64	-3.91	3.73	24	PASS
		full	8.38	-3.91	4.47	24	PASS
110	0545	26/8	0.48	-3.91	-3.43	24	PASS
113	6515	52/40	2.61	-3.91	-1.30	24	PASS
		106/54	5.39	-3.91	1.48	24	PASS
		full	8.38	-4	4.38	24	PASS
447	6505	26/0	0.32	-4	-3.68	24	PASS
117	6535	52/37	2.67	-4	-1.33	24	PASS
		106/53	5.45	-4	1.45	24	PASS
149	6695	full	8.17	-4	4.17	24	PASS
		full	7.97	-4	3.97	24	PASS
101	0055	26/8	0.28	-4	-3.72	24	PASS
181	6855	52/40	2.95	-4	-1.05	24	PASS
		106/54	5.24	-4	1.24	24	PASS
185	6875(U-NII 7)	full	5.97	-4	1.97	24	PASS
185	6875(U-NII 8)	full	5.97	-5.1	0.87	24	PASS
		full	8.97	-5.1	3.87	24	PASS
100	6905	26/0	0.09	-5.1	-5.01	24	PASS
189	6895	52/37	3.61	-5.1	-1.49	24	PASS
		106/53	6.29	-5.1	1.19	24	PASS
209	6995	full	8.62	-5.1	3.52	24	PASS
		full	-6.58	-5.1	-11.68	24	PASS
000	7445	26/8	-15.89	-5.1	-20.99	24	PASS
233	7115	52/40	-12.89	-5.1	-17.99	24	PASS
		106/54	-11.70	-5.1	-16.80	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format document subject to Terms and Conditions of the document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document approval of the Company. Any unauthorized alteration, forgery or falsification of the co GS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

Report No.: ER/2021/20015 Page: 50 of 274

802.11ax_20_Ch1

сн	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
		full	4.98	-2.01	2.97	24	PASS
1	5955	26/0	-3.12	-2.01	-5.13	24	PASS
1	5955	52/37	-0.88	-2.01	-2.89	24	PASS
		106/53	2.74	-2.01	0.73	24	PASS
45	6175	full	5.15	-2.01	3.14	24	PASS
		full	4.58	-2.01	2.57	24	PASS
93	6445	26/8	-1.14	-2.01	-3.15	24	PASS
93	6415	52/40	-1.68	-2.01	-3.69	24	PASS
		106/54	1.28	-2.01	-0.73	24	PASS
		full	6.76	-3.49	3.27	24	PASS
97	6405	26/0	-0.82	-3.49	-4.31	24	PASS
97	6435	52/37	0.96	-3.49	-2.53	24	PASS
		106/53	4.23	-3.49	0.74	24	PASS
105	6475	full	7.53	-3.49	4.04	24	PASS
		full	7.51	-3.49	4.02	24	PASS
440	0545	26/8	-1.95	-3.49	-5.44	24	PASS
113	6515	52/40	1.52	-3.49	-1.97	24	PASS
		106/54	4.54	-3.49	1.05	24	PASS
		full	7.38	-3.9	3.48	24	PASS
447	0505	26/0	-2.14	-3.9	-6.04	24	PASS
117	6535	52/37	1.32	-3.9	-2.58	24	PASS
		106/53	4.59	-3.9	0.69	24	PASS
149	6695	full	7.83	-3.9	3.93	24	PASS
		full	7.76	-3.9	3.86	24	PASS
404	0055	26/8	-0.87	-3.9	-4.77	24	PASS
181	6855	52/40	2.82	-3.9	-1.08	24	PASS
		106/54	4.95	-3.9	1.05	24	PASS
185	6875(U-NII 7)	full	5.86	-3.9	1.96	24	PASS
185	6875(U-NII 8)	full	5.86	-4.65	1.21	24	PASS
-		full	8.73	-4.65	4.08	24	PASS
400	0005	26/0	-0.57	-4.65	-5.22	24	PASS
189	6895	52/37	3.48	-4.65	-1.17	24	PASS
		106/53	6.17	-4.65	1.52	24	PASS
209	6995	full	8.49	-4.65	3.84	24	PASS
		full	-8.20	-4.65	-12.85	24	PASS
000	7445	26/8	-17.15	-4.65	-21.80	24	PASS
233	7115	52/40	-14.66	-4.65	-19.31	24	PASS
		106/54	-13.22	-4.65	-17.87	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

台灣檢驗科技股份有限公司 t (886-2) 2299-3279

f (886-2) 2298-0488

Report No.: ER/2021/20015 Page: 51 of 274

802.11ax_20_MIMO

СН	Frequency	RU config.		E POWER 3m)	TOTAL POWER	Antenna Gain	EIRP	REQUIRED EIRP LIMIT	RESULT
	(MHz)		CH 0	CH 1	+Factor (dBm)	(dBi)	(dBm)	(dBm)	
		full	5.05	4.92	8.00	1.89	9.89	24	PASS
1	5955	26/0	-3.04	-3.16	-0.09	1.89	1.80	24	PASS
1	5955	52/37	-0.72	-0.82	2.24	1.89	4.13	24	PASS
		106/53	2.83	2.68	5.77	1.89	7.66	24	PASS
45	6175	full	5.26	5.13	8.21	1.89	10.10	24	PASS
		full	5.31	4.27	7.83	1.89	9.72	24	PASS
93	6415	26/8	-3.69	-4.31	-0.98	1.89	0.91	24	PASS
93	0415	52/40	-1.18	-1.69	1.58	1.89	3.47	24	PASS
		106/54	2.03	1.73	4.89	1.89	6.78	24	PASS
		full	7.42	6.84	10.15	-0.69	9.46	24	PASS
97	6435	26/0	-0.69	-1.21	2.07	-0.69	1.38	24	PASS
51	0433	52/37	1.70	1.42	4.57	-0.69	3.88	24	PASS
		106/53	4.64	4.13	7.40	-0.69	6.71	24	PASS
105	6475	full	7.57	7.35	10.47	-0.69	9.78	24	PASS
		full	8.38	7.47	10.96	-0.69	10.27	24	PASS
113	6515	26/8	1.02	-1.88	2.82	-0.69	2.13	24	PASS
115	0515	52/40	2.31	2.05	5.19	-0.69	4.50	24	PASS
		106/54	5.36	4.52	7.97	-0.69	7.28	24	PASS
		full	8.32	7.34	10.87	-0.94	9.93	24	PASS
117	6535	26/0	0.79	-1.84	2.68	-0.94	1.74	24	PASS
117	0000	52/37	3.24	1.02	5.28	-0.94	4.34	24	PASS
		106/53	5.51	4.34	7.97	-0.94	7.03	24	PASS
149	6695	full	8.31	7.94	11.14	-0.94	10.20	24	PASS
		full	8.04	7.73	10.90	-0.94	9.96	24	PASS
181	6855	26/8	0.48	-0.94	2.84	-0.94	1.90	24	PASS
101	0000	52/40	3.29	3.15	6.23	-0.94	5.29	24	PASS
		106/54	5.54	5.32	8.44	-0.94	7.50	24	PASS
185	6875(U-NII 7)	full	5.77	5.29	8.55	-0.94	7.61	24	PASS
185	6875(U-NII 8)	full	2.76	5.29	7.22	-1.86	5.36	24	PASS
		full	9.14	8.80	11.98	-1.86	10.12	24	PASS
189	6895	26/0	0.69	-0.14	3.31	-1.86	1.45	24	PASS
109	0090	52/37	3.82	3.63	6.74	-1.86	4.88	24	PASS
		106/53	6.59	6.22	9.42	-1.86	7.56	24	PASS
209	6995	full	9.26	8.60	11.95	-1.86	10.09	24	PASS
		full	-6.55	-8.16	-4.27	-1.86	-6.13	24	PASS
233	7115	26/8	-15.83	-16.94	-13.34	-1.86	-15.20	24	PASS
200	7115	52/40	-12.98	-14.64	-10.72	-1.86	-12.58	24	PASS
		106/54	-11.65	-13.21	-9.35	-1.86	-11.21	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

台灣檢驗科技股份有限公司 t (886-2) 2299-3279

Report No.: ER/2021/20015 Page: 52 of 274

802.11ax_40_Ch0

сн	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
3	5965	full	8.13	-0.32	7.810	24	PASS
5	5905	242/61	6.58	-0.32	6.260	24	PASS
43	6165	full	8.78	-0.32	8.460	24	PASS
91	6405	full	8.48	-0.32	8.160	24	PASS
91	0405	242/62	5.93	-0.32	5.610	24	PASS
00	CAAE	full	8.97	-3.91	5.060	24	PASS
99	6445	242/61	8.76	-3.91	4.850	24	PASS
107	6485	full	8.59	-3.91	4.680	24	PASS
107	0460	242/62	8.20	-3.91	4.290	24	PASS
115	6525(U-NII 6)	full	5.96	-3.91	2.050	24	PASS
115	6525(U-NII 7)	full	5.96	-4	1.960	24	PASS
100	GEGE	full	8.99	-4	4.990	24	PASS
123	6565	242/61	8.89	-4	4.890	24	PASS
147	6685	full	8.76	-4	4.760	24	PASS
470	0045	full	8.89	-4	4.890	24	PASS
179	6845	242/62	8.66	-4	4.660	24	PASS
187	6885(U-NII 7)	full	2.60	-4	-1.405	24	PASS
187	6885(U-NII 8)	full	7.72	-5.1	2.615	24	PASS
405	0005	full	8.95	-5.1	3.850	24	PASS
195	6925	242/61	8.86	-5.1	3.760	24	PASS
211	7005	full	8.92	-5.1	3.820	24	PASS
007	7005	full	8.77	-5.1	3.670	24	PASS
227	7085	242/62	8.91	-5.1	3.810	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

802.11ax_40_Ch1

СН	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
3	5965	full	7.44	-2.01	5.43	24	PASS
5	5905	242/61	6.42	-2.01	4.41	24	PASS
43	6165	full	7.67	-2.01	5.66	24	PASS
91	6405	full	7.51	-2.01	5.50	24	PASS
91	0405	242/62	4.84	-2.01	2.83	24	PASS
99	6445	full	8.24	-3.49	4.75	24	PASS
99	0440	242/61	8.06	-3.49	4.57	24	PASS
107	6485	full	8.13	-3.49	4.64	24	PASS
107	0400	242/62	8.12	-3.49	4.63	24	PASS
115	6525(U-NII 6)	full	5.22	-3.49	1.73	24	PASS
115	6525(U-NII 7)	full	5.22	-3.9	1.32	24	PASS
123	6565	full	8.26	-3.9	4.36	24	PASS
123	6000	242/61	8.23	-3.9	4.33	24	PASS
147	6685	full	8.48	-3.9	4.58	24	PASS
170	6945	full	8.75	-3.9	4.85	24	PASS
179	6845	242/62	8.56	-3.9	4.66	24	PASS
187	6885(U-NII 7)	full	2.52	-3.9	-1.38	24	PASS
187	6885(U-NII 8)	full	7.65	-4.65	3.00	24	PASS
105	6005	full	8.68	-4.65	4.03	24	PASS
195	6925	242/61	8.31	-4.65	3.66	24	PASS
211	7005	full	8.78	-4.65	4.13	24	PASS
007	7005	full	8.43	-4.65	3.78	24	PASS
227	7085	242/62	8.58	-4.65	3.93	24	PASS

802.11ax_40_MIMO

СН	Frequency	RU config.	-	E POWER Bm)	TOTAL POWER	Antenna Gain	EIRP	REQUIRED EIRP LIMIT	RESULT
on	(MHz)	Ro comig.	CH 0	CH 1	+Factor (dBm)	(dBi)	(dBm)	(dBm)	RESOLT
3	5965	full	7.90	7.56	10.74	1.89	12.63	24	PASS
5	3903	242/61	6.63	6.18	9.42	1.89	11.31	24	PASS
43	6165	full	8.41	7.71	11.08	1.89	12.97	24	PASS
91	6405	full	8.23	7.37	10.83	1.89	12.72	24	PASS
51	0405	242/62	5.76	5.16	8.48	1.89	10.37	24	PASS
99	6445	full	8.99	8.38	11.71	-0.69	11.02	24	PASS
99	0445	242/61	8.62	8.06	11.36	-0.69	10.67	24	PASS
107	6485	full	8.72	8.48	11.61	-0.69	10.92	24	PASS
107	0400	242/62	8.14	7.96	11.06	-0.69	10.37	24	PASS
115	6525(U-NII 6)	full	6.39	5.00	8.76	-0.69	8.07	24	PASS
115	6525(U-NII 7)	full	3.38	5.00	7.27	-0.94	6.33	24	PASS
123	6565	full	9.21	8.11	11.71	-0.94	10.77	24	PASS
125	6060	242/61	9.13	8.16	11.68	-0.94	10.74	24	PASS
147	6685	full	8.80	8.57	11.70	-0.94	10.76	24	PASS
179	6845	full	8.93	8.87	11.91	-0.94	10.97	24	PASS
179	0040	242/62	8.69	8.61	11.66	-0.94	10.72	24	PASS
187	6885(U-NII 7)	full	2.79	2.58	5.70	-0.94	4.76	24	PASS
187	6885(U-NII 8)	full	1.62	7.71	8.66	-1.86	6.80	24	PASS
195	6925	full	9.17	8.75	11.98	-1.86	10.12	24	PASS
195	0925	242/61	8.91	8.37	11.66	-1.86	9.80	24	PASS
211	7005	full	9.08	8.82	11.96	-1.86	10.10	24	PASS
227	7085	full	8.82	8.36	11.61	-1.86	9.75	24	PASS
221	7000	242/62	9.02	8.51	11.78	-1.86	9.92	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

Report No.: ER/2021/20015 Page: 54 of 274

802.11ax_80_Ch0

сн	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
7	5985	full	8.66	-0.32	8.340	24	PASS
'	0900	484/65	8.49	-0.32	8.170	24	PASS
39	6145	full	8.91	-0.32	8.590	24	PASS
87	6385	full	8.95	-0.32	8.630	24	PASS
07	0305	484/66	8.61	-0.32	8.290	24	PASS
		full	8.97	-3.91	5.060	24	PASS
103	6465	484/65	8.99	-3.91	5.080	24	PASS
		484/66	8.91	-3.91	5.000	24	PASS
119	6545(U-NII 6)	full	2.81	-3.91	-1.101	24	PASS
119	6545(U-NII 7)	full	7.78	-4	3.780	24	PASS
135	6625	full	8.56	-4	4.560	24	PASS
155	0025	484/65	8.77	-4	4.770	24	PASS
151	6705	full	8.89	-4	4.890	24	PASS
167	6705	full	8.73	-4	4.730	24	PASS
167	6785	484/66	8.89	-4	4.890	24	PASS
183	6865	full	8.77	-4	4.770	24	PASS
183	6865(U-NII 7)	full	6.76	-4	2.761	24	PASS
183	6865(U-NII 8)	full	4.46	-5.1	-0.644	24	PASS
199	6045	full	8.82	-5.1	3.720	24	PASS
199	6945	484/65	8.79	-5.1	3.690	24	PASS
015	7005	full	8.68	-5.1	3.580	24	PASS
215	7025	484/66	8.75	-5.1	3.650	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

Report No.: ER/2021/20015 Page: 55 of 274

802.11ax_80_Ch1

СН	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
7	5985	full	8.68	-2.01	6.67	24	PASS
'	5965	484/65	8.64	-2.01	6.63	24	PASS
39	6145	full	8.33	-2.01	6.32	24	PASS
87	6385	full	8.67	-2.01	6.66	24	PASS
07	0305	484/66	8.03	-2.01	6.02	24	PASS
		full	8.51	-3.49	5.02	24	PASS
103	6465	484/65	8.49	-3.49	5.00	24	PASS
		484/66	8.65	-3.49	5.16	24	PASS
119	6545(U-NII 6)	full	1.88	-3.49	-1.61	24	PASS
119	6545(U-NII 7)	full	6.86	-3.9	2.96	24	PASS
105	CCOF	full	8.53	-3.9	4.63	24	PASS
135	6625	484/65	8.74	-3.9	4.84	24	PASS
151	6705	full	8.58	-3.9	4.68	24	PASS
167	6785	full	8.43	-3.9	4.53	24	PASS
107	0700	484/66	8.48	-3.9	4.58	24	PASS
183	6865	full	8.26	-3.9	4.36	24	PASS
183	6865(U-NII 7)	full	6.25	-3.9	2.35	24	PASS
183	6865(U-NII 8)	full	3.95	-4.65	-0.70	24	PASS
199	6945	full	8.21	-4.65	3.56	24	PASS
199	0940	484/65	8.46	-4.65	3.81	24	PASS
215	7025	full	8.59	-4.65	3.94	24	PASS
215	7025	484/66	8.67	-4.65	4.02	24	PASS

802.11ax_80_MIMO

СН	Frequency	RU config.	AVERAGI (dE	E POWER 3m)	TOTAL POWER	Antenna Gain	EIRP	REQUIRED EIRP LIMIT	RESULT
011	(MHz)	Ro ooning.	CH 0	CH 1	+Factor (dBm)	(dBi)	(dBm)	(dBm)	MLOOL!
7	5985	full	8.69	8.63	11.67	1.89	13.56	24	PASS
'	3903	484/65	8.54	8.78	11.67	1.89	13.56	24	PASS
39	6145	full	8.99	8.26	11.65	1.89	13.54	24	PASS
87	6385	full	9.04	8.71	11.89	1.89	13.78	24	PASS
07	0305	484/66	8.55	7.78	11.19	1.89	13.08	24	PASS
		full	9.11	8.55	11.85	-0.69	11.16	24	PASS
103	6465	484/65	9.37	8.53	11.98	-0.69	11.29	24	PASS
		484/66	9.04	8.71	11.89	-0.69	11.20	24	PASS
119	6545(U-NII 6)	full	3.22	1.93	5.63	-0.69	4.94	24	PASS
119	6545(U-NII 7)	full	2.02	6.91	8.13	-0.94	7.19	24	PASS
135	6625	full	8.61	8.56	11.60	-0.94	10.66	24	PASS
155	0025	484/65	8.82	8.78	11.81	-0.94	10.87	24	PASS
151	6705	full	8.94	8.64	11.80	-0.94	10.86	24	PASS
167	6785	full	8.78	8.45	11.63	-0.94	10.69	24	PASS
107	0765	484/66	8.95	8.57	11.77	-0.94	10.83	24	PASS
183	6865	full	8.82	8.29	11.57	-0.94	10.63	24	PASS
183	6865(U-NII 7)	full	6.81	6.28	9.56	-0.94	8.62	24	PASS
183	6865(U-NII 8)	full	2.50	3.98	6.31	-1.86	4.45	24	PASS
199	6945	full	8.89	8.31	11.62	-1.86	9.76	24	PASS
199	0940	484/65	8.89	8.50	11.71	-1.86	9.85	24	PASS
215	7025	full	8.73	8.68	11.72	-1.86	9.86	24	PASS
215	1025	484/66	8.84	8.73	11.80	-1.86	9.94	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions is intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document on the company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

圜區五工路 134 號

f (886-2) 2298-0488

802.11ax_160_Ch0

СН	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
15	6025	full	8.91	-0.32	8.590	24	PASS
15	0025	996/67	8.86	-0.32	8.540	24	PASS
47	6185	full	8.84	-0.32	8.520	24	PASS
79	6345	full	8.73	-0.32	8.410	24	PASS
79	0345	996/S67	8.68	-0.32	8.360	24	PASS
111	6505(U-NII 6)	full	6.91	-3.91	2.997	24	PASS
111	6505(U-NII 7)	full	4.64	-4	0.639	24	PASS
		full	8.82	-4	4.820	24	PASS
143	6665	996/67	8.68	-4	4.680	24	PASS
		996/S67	8.59	-4	4.590	24	PASS
175	6825	full	8.73	-4	4.730	24	PASS
175	6825(U-NII 7)	full	7.87	-4	3.867	24	PASS
175	6825(U-NII 8)	full	1.29	-5.1	-3.811	24	PASS
		full	8.88	-5.1	3.780	24	PASS
207	6985	996/67	8.86	-5.1	3.760	24	PASS
		996/S67	8.78	-5.1	3.680	24	PASS
802.11a	x_160_Ch1						
СН	Frequency (MHz)	RU config.	Average POWER +Factor (dBm)	Antenna Gain (dBi)	EIRP (dBm)	REQUIRED EIRP LIMIT (dBm)	RESULT
15	6025	full	8.74	-2.01	6.73	24	PASS
15	0025	996/67	8.31	-2.01	6.30	24	PASS
47	6185	full	8.68	-2.01	6.67	24	PASS
79	6345	full	8.62	-2.01	6.61	24	PASS
19	0345	996/S67	8.38	-2.01	6.37	24	PASS
111	6505(U-NII 6)	full	6.50	-3.49	3.01	24	PASS
111	6505(U-NII 7)	full	4.23	-3.9	0.33	24	PASS
		full	8.65	-3.9	4.75	24	PASS
143	6665	996/67	8.59	-3.9	4.69	24	PASS
1			0.04	0.0	4 4 4	01	

8.34

8.61

7.75

1.17

8.36

8.31

8.21

996/S67

full

full

full

full

996/67

996/S67

-3.9

-3.9

-3.9

-4.65

-4.65

-4.65

-4.65

4.44

4.71

3.85

-3.48

3.71

3.66

3.56

24

24

24

24

24

24

24

PASS

PASS

PASS

PASS

PASS

PASS

PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未緩本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic Documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic documents, subject to Terms and Conditions of Service of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document or appearance of this document cannot be reproduced except in full, without prio

No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

圜區五工路 134 號

175

175

175

207

6825

6825(U-NII 7)

6825(U-NII 8)

6985

Report No.: ER/2021/20015 Page: 57 of 274

802.11ax_160_MIMO

СН	Frequency	RU config.		E POWER 3m)	TOTAL POWER	Antenna Gain	EIRP	REQUIRED	RESULT
011	(MHz)	Ro ooning.	CH 0	CH 1	+Factor (dBm)	(dBi)	(dBm)	(dBm)	MLOOL I
15	6025	full	9.11	8.72	11.93	1.89	13.82	24	PASS
15	0025	996/67	8.91	8.25	11.60	1.89	13.49	24	PASS
47	6185	full	9.04	8.71	11.89	1.89	13.78	24	PASS
79	6345	full	8.78	8.57	11.69	1.89	13.58	24	PASS
19	0343	996/S67	8.70	8.41	11.57	1.89	13.46	24	PASS
111	6505(U-NII 6)	full	7.38	6.46	9.95	-0.69	9.26	24	PASS
111	6505(U-NII 7)	full	3.09	4.19	6.69	-0.94	5.75	24	PASS
		full	8.86	8.69	11.79	-0.94	10.85	24	PASS
143	6665	996/67	8.72	8.62	11.68	-0.94	10.74	24	PASS
		996/S67	8.61	8.40	11.52	-0.94	10.58	24	PASS
175	6825	full	8.78	8.58	11.69	-0.94	10.75	24	PASS

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

台灣檢驗科技股份有限公司 t (886-2) 2299-3279

10 MAXIMUM POWER SPECTRAL DENSITY

10.1 Standard Applicable

- §15.407(a)
 - (4) For a standard power access point and fixed client device operating in the 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 23 dBm e.i.r.p in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 36 dBm. For outdoor devices, the maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p. in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm.
 - (6) For a subordinate device operating under the control of an indoor access point in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm.
 - (7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1- megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.
 - (8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed -1 dBm e.i.r.p. in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. GS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

EUT CATEGORY	Equipment Class	Limit
□ Standard Access Point	6SD	EIRP < 23dbm/MHz
indoor Access Point	6ID	EIRP < 5dbm/MHz
Subordinate Device	6PP	EIRP < 5dbm/MHz
□ Fixed Client	6FC	EIRP < 23dbm/MHz
☑ Indoor Client	6XD	EIRP < -1dbm/MHz
□ Standard Client	6FX	EIRP < 17dbm/MHz
Dual Client	6CD	Compliance both indoor clinet and standard client limits

Note:

As per section F. 2). e). (ii) of FCC KDB 662911 D01

If antenna gains are not equal and each transmit antenna is driven by only one spatial stream, directional gain may be calculated by either of the following formulas.

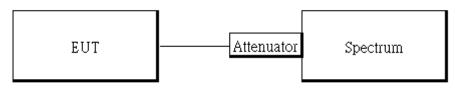
• DirectionalGain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream; NSS = the number of independent spatial streams of data; NANT = the total number of antennas $g_{j,k} = /20$ 10Gk if the kth antenna is being fed by spatial stream j, or zero if it is not; \tilde{G}_k is the gain in dBi of the kth antenna.

GS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

10.2 Measurement Procedure


- 1. Place the EUT on the table and set it in transmitting mode.
- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules.
- 3. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 4. Set RBW=1MHz, VBW=3MHz, where span is enough to capture the entire bandwidth, Sweep time = Auto (601 pts), detector = sample, traces 100 sweeps of video averaging. (SA-2 with the omission of procedure x, the integration with 26dB EBW bandwidth)
- 5. User the cursor on spectrum to peak search the highest level of trace
- 6. Record the max. reading and add 10 log(1/duty cycle).
- Repeat above procedures until all default test channel (low, middle, and high) was complete.
- 8. MIMO mode: offset is set following "measure and add 10 Log (N)" on spectrum to measure the PSD for MIMO mode. Offset = cable loss + 10 log (N), where N is number of transmitting antenna.

Note: For the test of PSD at MIMO mode, the highest emission of worst case employing Measure and add 10 log (N) technical is reported after the comparison between Main Antenna at single transmitting mode and Aux that yields the higher value. The MIMO transmitting mode produces higher value of outcome.

Measurement Equipment Used 10.3

	Conducted	Emission Test S	ite: Conducted	2	
EQUIPMENT TYPE	MFR/BRAND	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
EXA Spectrum Analyzer	KEYSIGHT	N9010B	MY59071571	06/27/2020	06/26/2021
DC Block	Mini-Circuits	BLK-18-S+	1	12/16/2020	12/15/2021

Test Set-up 10.4

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Term and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. GS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

10.5 Measurement Result

10.5.1 Power spectral density

			Р	OWER DENS	ITY 802.11ax HE20 M	ODE			
		PSD (de	Bm/MHz)	Duty					
Frequency (MHz)	RU config.	ch0 meas	ch1 meas	Factor (dB)	Total Corr'd PSD(dBm/MHz)	Directional Gain(dBi)	EIRP PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	full	-6.642	-6.289	0.00	-3.45	1.89	-1.56	-1.00	-0.56
5955	26/0	-6.054	-6.609	0.00	-3.31	1.89	-1.42	-1.00	-0.42
5955	52/37	-6.917	-6.666	0.00	-3.78	1.89	-1.89	-1.00	-0.89
	106/53	-6.304	-6.162	0.00	-3.22	1.89	-1.33	-1.00	-0.33
6175	full	-6.070	-6.710	0.00	-3.37	1.89	-1.48	-1.00	-0.48
	full	-6.931	-5.958	0.00	-3.41	1.89	-1.52	-1.00	-0.52
6415	26/8	-6.552	-7.031	0.00	-3.77	1.89	-1.88	-1.00	-0.88
0415	52/40	-6.594	-6.892	0.00	-3.73	1.89	-1.84	-1.00	-0.84
	106/54	-7.356	-5.716	0.00	-3.45	1.89	-1.56	-1.00	-0.56
	full	-4.270	-3.676	0.00	-0.95	-0.69	-1.64	-1.00	-0.64
6435	26/0	-3.354	-3.731	0.00	-0.53	-0.69	-1.22	-1.00	-0.22
0400	52/37	-4.344	-3.907	0.00	-1.11	-0.69	-1.80	-1.00	-0.80
	106/53	-4.226	-3.978	0.00	-1.09	-0.69	-1.78	-1.00	-0.78
6475	full	-3.647	-3.472	0.00	-0.55	-0.69	-1.24	-1.00	-0.24
	full	-3.177	-4.032	0.00	-0.57	-0.69	-1.26	-1.00	-0.26
6515	26/8	-2.460	-4.812	0.00	-0.47	-0.69	-1.16	-1.00	-0.16
0010	52/40	-4.158	-4.267	0.00	-1.20	-0.69	-1.89	-1.00	-0.89
	106/54	-3.521	-4.269	0.00	-0.87	-0.69	-1.56	-1.00	-0.56
	full	-2.768	-4.046	0.00	-0.35	-0.94	-1.29	-1.00	-0.29
6535	26/0	-2.334	-4.718	0.00	-0.35	-0.94	-1.29	-1.00	-0.29
	52/37	-3.038	-5.048	0.00	-0.92	-0.94	-1.86	-1.00	-0.86
	106/53	-3.118	-4.543	0.00	-0.76	-0.94	-1.70	-1.00	-0.70
6695	full	-3.422	-3.416	0.00	-0.41	-0.94	-1.35	-1.00	-0.35
	full	-3.489	-4.063	0.00	-0.76	-0.94	-1.70	-1.00	-0.70
6855	26/8	-2.979	-4.618	0.00	-0.71	-0.94	-1.65	-1.00	-0.65
0000	52/40	-3.656	-2.866	0.00	-0.23	-0.94	-1.17	-1.00	-0.17
	106/54	-4.046	-3.651	0.00	-0.83	-0.94	-1.77	-1.00	-0.77
6875(U-NII 7)	full	-5.335	-6.064	0.00	-2.67	-0.94	-3.61	-1.00	-2.61
6875(U-NII 8)	full	-5.335	-6.064	0.00	-2.67	-1.86	-4.53	-1.00	-3.53
	full	-2.983	-2.382	0.00	0.34	-1.86	-1.52	-1.00	-0.52
6895	26/0	-2.659	-3.466	0.00	-0.03	-1.86	-1.89	-1.00	-0.89
0000	52/37	-3.003	-2.773	0.00	0.12	-1.86	-1.74	-1.00	-0.74
	106/53	-2.795	-2.207	0.00	0.52	-1.86	-1.34	-1.00	-0.34
6995	full	-2.811	-2.500	0.00	0.36	-1.86	-1.50	-1.00	-0.50
	full	-18.114	-20.005	0.00	-15.95	-1.86	-17.81	-1.00	-16.81
7115	26/8	-19.229	-21.157	0.00	-17.08	-1.86	-18.94	-1.00	-17.94
1110	52/40	-18.552	-20.572	0.00	-16.44	-1.86	-18.30	-1.00	-17.30
	106/54	-20.038	-21.871	0.00	-17.85	-1.86	-19.71	-1.00	-18.71

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document parties to a transaction for exercising all their rights and obligations under the transaction documents. This document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku

圜區五工路 134 號

Report No.: ER/2021/20015 Page: 62 of 274

			P	OWER DENS	ITY 802.11ax HE40 N	IODE			
		PSD (dE	8m/MHz)	Duty					
Frequency (MHz)	RU config.	ch0 meas	ch1 meas	Factor (dB)	Total Corr'd PSD(dBm/MHz)	Directional Gain(dBi)	EIRP PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
5005	full	-6.836	-6.664	0.00	-3.74	1.89	-1.85	-1.00	-0.85
5965	242/61	-6.176	-6.117	0.00	-3.14	1.89	-1.25	-1.00	-0.25
6165	full	-6.206	-6.253	0.00	-3.22	1.89	-1.33	-1.00	-0.33
0.405	full	-6.472	-5.912	0.00	-3.17	1.89	-1.28	-1.00	-0.28
6405	242/62	-7.118	-6.016	0.00	-3.52	1.89	-1.63	-1.00	-0.63
6445	full	-4.549	-4.347	0.00	-1.44	-0.69	-2.13	-1.00	-1.13
6445	242/61	-3.690	-3.200	0.00	-0.43	-0.69	-1.12	-1.00	-0.12
0.405	full	-5.051	-5.110	0.00	-2.07	-0.69	-2.76	-1.00	-1.76
6485	242/62	-4.171	-4.387	0.00	-1.27	-0.69	-1.96	-1.00	-0.96
6525(U-NII 6)	full	-7.751	-9.238	0.00	-5.42	-0.69	-6.11	-1.00	-5.11
6525(U-NII 7)	full	-7.751	-9.238	0.00	-5.42	-0.94	-6.36	-1.00	-5.36
6565	full	-4.823	-5.941	0.00	-2.34	-0.94	-3.28	-1.00	-2.28
6060	242/61	-3.057	-3.679	0.00	-0.35	-0.94	-1.29	-1.00	-0.29
6685	full	-5.579	-5.763	0.00	-2.66	-0.94	-3.60	-1.00	-2.60
6845	full	-5.146	-5.471	0.00	-2.30	-0.94	-3.24	-1.00	-2.24
0040	242/62	-3.690	-3.171	0.00	-0.41	-0.94	-1.35	-1.00	-0.35
6885(U-NII 7)	full	-10.878	-11.908	0.00	-8.35	-0.94	-9.29	-1.00	-8.29
6885(U-NII 8)	full	-5.758	-6.786	0.00	-3.23	-1.86	-5.09	-1.00	-4.09
0005	full	-5.454	-4.975	0.00	-2.20	-1.86	-4.06	-1.00	-3.06
6925	242/61	-3.441	-3.514	0.00	-0.47	-1.86	-2.33	-1.00	-1.33
7005	full	-5.021	-5.174	0.00	-2.09	-1.86	-3.95	-1.00	-2.95
7005	full	-5.372	-5.321	0.00	-2.34	-1.86	-4.20	-1.00	-3.20
7085	242/62	-2.855	-2.535	0.00	0.32	-1.86	-1.54	-1.00	-0.54

			P	OWER DENS	ITY 802.11ax HE80 M	IODE			
		PSD (dE	Bm/MHz)	Duty					
Frequency (MHz)	RU config.	ch0 meas	ch1 meas	Factor (dB)	Total Corr'd PSD(dBm/MHz)	Directional Gain(dBi)	EIRP PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
5985	full	-8.521	-8.247	0.00	-5.37	1.89	-3.48	-1.00	-2.48
2902	484/65	-6.582	-6.400	0.00	-3.48	1.89	-1.59	-1.00	-0.59
6145	full	-9.039	-8.117	0.00	-5.54	1.89	-3.65	-1.00	-2.65
6385	full	-7.156	-7.495	0.00	-4.31	1.89	-2.42	-1.00	-1.42
6385	484/66	-6.555	-7.145	0.00	-3.83	1.89	-1.94	-1.00	-0.94
	full	-7.798	-7.274	0.00	-4.52	-0.69	-5.21	-1.00	-4.21
6465	484/65	-4.905	-4.035	0.00	-1.44	-0.69	-2.13	-1.00	-1.13
	484/66	-5.143	-4.652	0.00	-1.88	-0.69	-2.57	-1.00	-1.57
6545(U-NII 6)	full	-13.843	-15.533	0.00	-11.60	-0.69	-12.29	-1.00	-11.29
6545(U-NII 7)	full	-8.872	-10.557	0.00	-6.62	-0.94	-7.56	-1.00	-6.56
6625	full	-8.592	-9.022	0.00	-5.79	-0.94	-6.73	-1.00	-5.73
0020	484/65	-5.281	-6.006	0.00	-2.62	-0.94	-3.56	-1.00	-2.56
6705	full	-8.639	-8.321	0.00	-5.47	-0.94	-6.41	-1.00	-5.41
6785	full	-8.634	-8.331	0.00	-5.47	-0.94	-6.41	-1.00	-5.41
0765	484/66	-5.935	-5.952	0.00	-2.93	-0.94	-3.87	-1.00	-2.87
6865(U-NII 7)	full	-10.949	-10.696	0.00	-7.81	-0.94	-8.75	-1.00	-7.75
6865(U-NII 8)	full	-13.254	-12.997	0.00	-10.11	-1.86	-11.97	-1.00	-10.97
6945	full	-8.600	-8.630	0.00	-5.60	-1.86	-7.46	-1.00	-6.46
0945	484/65	-5.853	-5.672	0.00	-2.75	-1.86	-4.61	-1.00	-3.61
7025	full	-8.048	-8.139	0.00	-5.08	-1.86	-6.94	-1.00	-5.94
7025	484/66	-5.565	-5.620	0.00	-2.58	-1.86	-4.44	-1.00	-3.44

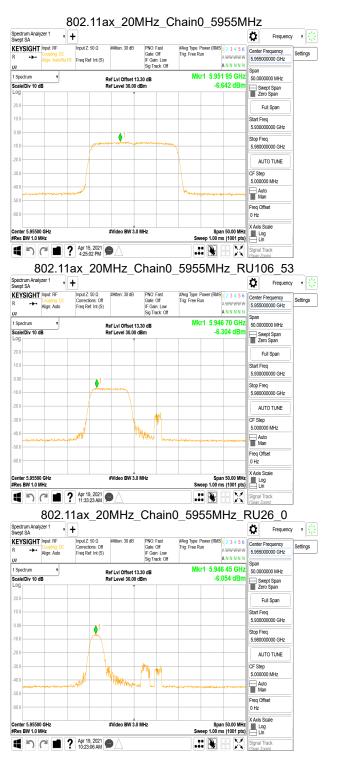
Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions is intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document on the company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業

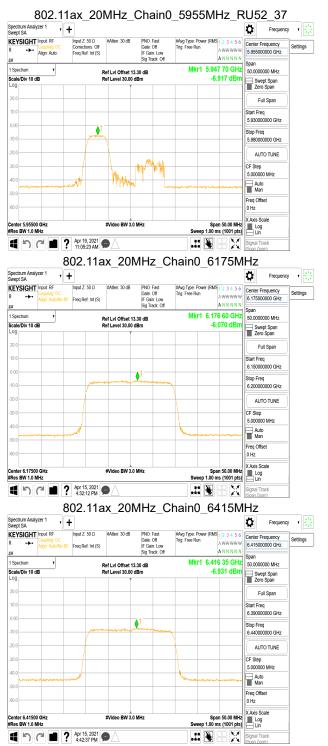
圜區五工路 134 號

台灣檢驗科技股份有限公司 t (886-2) 2299-3279

Report No.: ER/2021/20015 Page: 63 of 274

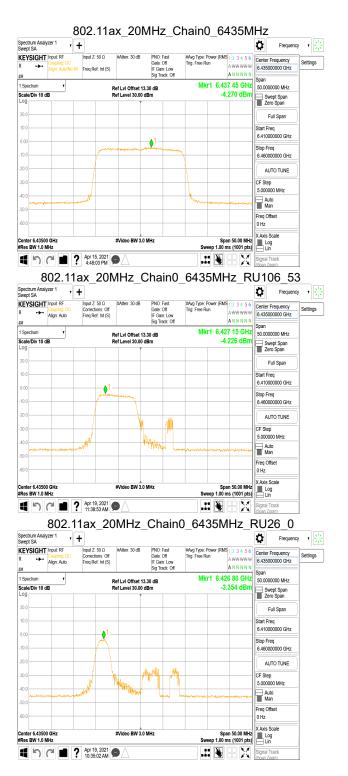
			PC	WER DENSI	TY 802.11ax HE160 M	NODE			
		PSD (de	3m/MHz)	Duti					
Frequency (MHz)	RU config.	ch0 meas	ch1 meas	Duty Factor (dB)	Total Corr'd PSD(dBm/MHz)	Directional Gain(dBi)	EIRP PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
6025	full	-10.911	-11.345	0.00	-8.11	1.89	-6.22	-1.00	-5.22
6025	996/67	-8.237	-8.969	0.00	-5.58	1.89	-3.69	-1.00	-2.69
6185	full	-11.349	-10.926	0.00	-8.12	1.89	-6.23	-1.00	-5.23
0045	full	-10.903	-10.698	0.00	-7.79	1.89	-5.90	-1.00	-4.90
6345	996/S67	-8.251	-9.080	0.00	-5.64	1.89	-3.75	-1.00	-2.75
6505(U-NII 6)	full	-12.235	-13.165	0.00	-9.66	-0.69	-10.35	-1.00	-9.35
6505(U-NII 7)	full	-14.503	-15.427	0.00	-11.93	-0.94	-12.87	-1.00	-11.87
	full	-11.561	-11.662	0.00	-8.60	-0.94	-9.54	-1.00	-8.54
6665	996/67	-8.600	-9.020	0.00	-5.79	-0.94	-6.73	-1.00	-5.73
	996/S67	-8.590	-8.876	0.00	-5.72	-0.94	-6.66	-1.00	-5.66
6825(U-NII 7)	full	-12.258	-12.722	0.00	-9.47	-0.94	-10.41	-1.00	-9.41
6825(U-NII 8)	full	-18.836	-19.301	0.00	-16.05	-1.86	-17.91	-1.00	-16.91
	full	-11.452	-11.356	0.00	-8.39	-1.86	-10.25	-1.00	-9.25
6985	996/67	-9.275	-8.723	0.00	-5.98	-1.86	-7.84	-1.00	-6.84
	996/S67	-9.700	-8.867	0.00	-6.25	-1.86	-8.11	-1.00	-7.11


Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions is intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document on the company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. SCS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業


圜區五工路 134 號

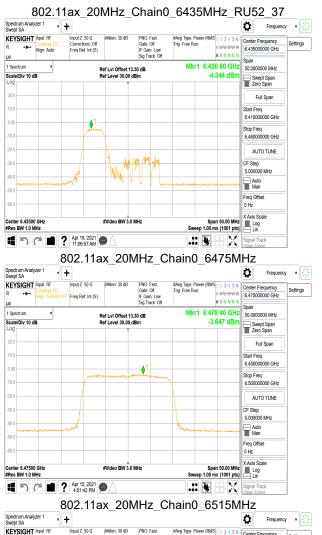
台灣檢驗科技股份有限公司 t (886-2) 2299-3279

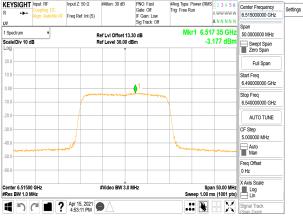
f (886-2) 2298-0488

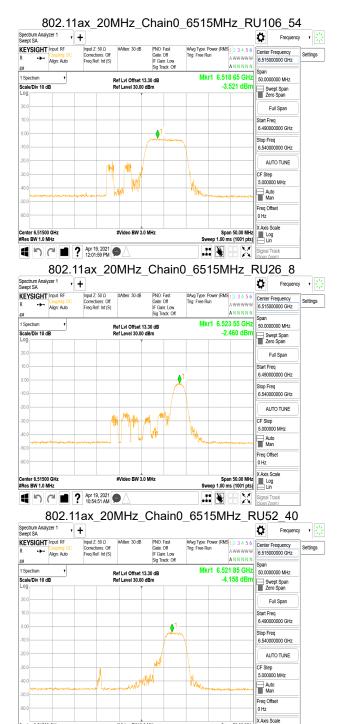

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

園區五工路 134 號

Report No.: ER/2021/20015 Page: 65 of 274




ectrum Ana ept SA	lyzer 1 🕴	+					Frequen	cy y 🕄
EYSIGH		Corrections: Off	#Atten: 30 dB	PNO: Fast Gate: Off	#Avg Type: Power (Trig: Free Run		Center Frequency	Settings
	Align: Auto	Freq Ref: Int (S)		IF Gain: Low Sig Track: Off		A WW WW W A N N N N N	6.415000000 GHz	-
ipectrum	•		f Lvi Offset 13.	30 dB		420 65 GHz	Span 50.0000000 MHz	
ale/Div 10	dB		f Level 30.00 d			-7.356 dBm	Swept Span Zero Span	_
								1
							Full Span Start Freq	기
00							6.390000000 GHz	
.0				1			Stop Freq	=
			1				6.440000000 GHz	-
.0							AUTO TUNE	
.0			1				CF Step 5.000000 MHz	
.0		and the second	ANN MAR		Manan	- solo la managen	Auto	-
.0	+				+		Freq Offset	-
.0							0 Hz	
nter 6.4150	00 GHz	#	Video BW 3.0	MHz		Span 50.00 MHz	X Axis Scale Log	-
es BW 1.0	MHz				Sweep 1.	00 ms (1001 pts)	Lin	
5	(* 🔳 ?	Apr 19, 2021 12:00:09 PM					Signal Track (Span Zoom)	
	802.1	1ax 20I	MHz	Chain	0 6415	MHz F	RU26 8	
ectrum Ana		+					Frequen	cy y
rept SA E YSIGH T		- Input Ζ: 50 Ω	#Atten: 30 dB	PNO: Fast	#Avg Type: Power (RMS 1 2 3 4 5 6	Center Frequency	
· + ·	Coupling: DC Align: Auto	Corrections: Off Freq Ref: Int (S)		Gate: Off IF Gain: Low	Trig: Free Run	A WWWWW A N N N N N	6.415000000 GHz	Settings
Spectrum	,			Sig Track: Off	Mkr1 6	423 45 GHz	Span	-
ale/Div 10			f Lvi Offset 13. f Level 30.00 d		anti 1 0.	-6.552 dBm	50.0000000 MHz Swept Span	-
og			ľ				Zero Span	_
0.0							Full Span	J
0.0	+						Start Freq 6.39000000 GHz	
00				- 6	1		5.39000000 GHZ Stop Freq	=
0.0				— / [*]		_	6.440000000 GHz	
0.0						_	AUTO TUNE	Ĩ
0.0		1 Bu,	J.L.			_	CF Step	-
0.0		, M		week W	hu		5.000000 MHz	-
0.0		maneners bread	however filled	N-N	. Alexandre	*****	Man	
0.0							Freq Offset 0 Hz	
							X Axis Scale	=
enter 6.4150 tes BW 1.0		*	Video BW 3.0	MHz	Sweep 1.	Span 50.00 MHz 00 ms (1001 pts)	Log	
1	۲ 🖬 ?	Apr 19, 2021 10:51:54 AM					Signal Track	1
		101011011101	<u></u>					
ectrum Ana	herer 1	ax_20N	/IHZ_(nainu	0415	/IHZ_R		
vept SA		+		510.5	04 - T - T	20.00	Frequen	¢y v <mark>≷</mark> ,
EYSIGHT	Input: RF Coupling: DC Alian: Auto	Input Z: 50 Q Corrections: Off Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low	#Avg Type: Power (Trig: Free Run	RMS 1 2 3 4 5 6 A WW WW W	Center Frequency 6.415000000 GHz	Settings
	Augit, AUIO	a reginer. IIIt (3)		l⊩ Gain: Low Sig Track: Off		ANNNN	Span	-
Spectrum	dB.		f Lvi Offset 13. f Level 30.00 d		Mkr1 6	421 35 GHz -6.594 dBm	50.0000000 MHz	_
og		ĸe	. Level 30.00 0	ent		5.004 UDII	Swept Span Zero Span	
0.0						_	Full Span	1
0.0						_	Start Freq	-
00				_ 1-			6.390000000 GHz	_
0.0				<u></u>	v		Stop Freq 6.440000000 GHz	
0.0								=
0.0			Jon.				AUTO TUNE CF Step	-
				udi			CF Step 5.000000 MHz	
0.0	and a second second	- and the second	m h	M.,	Manufacture and		Auto Man	
-							Freq Offset	-
0.0								
- marine							0 Hz	=
0.0			Video BW 3.0	MHz		Span 50.00 MHz 10 ms (1001 pts)	0 Hz X Axis Scale	=

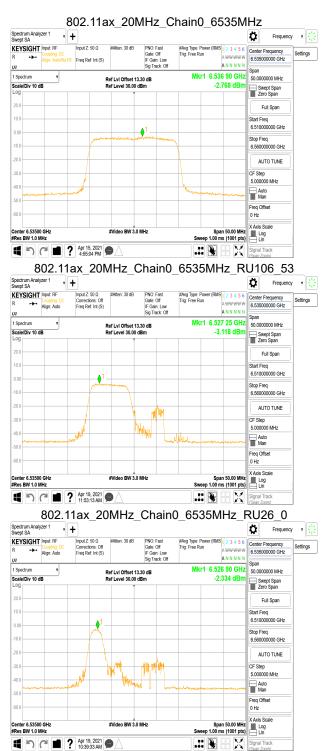


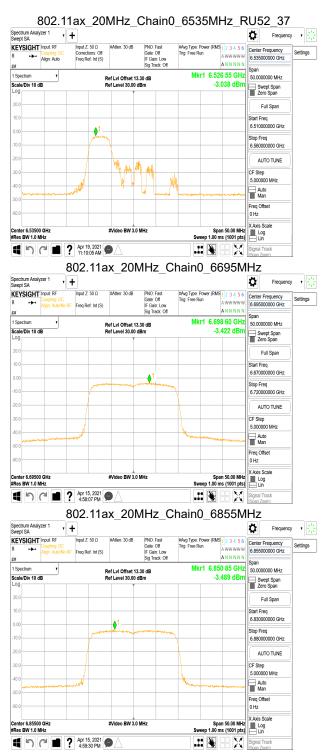
Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

Center 6.51500 GHz #Res BW 1.0 MHz

4 5 C 1 2 Apr 19, 2021

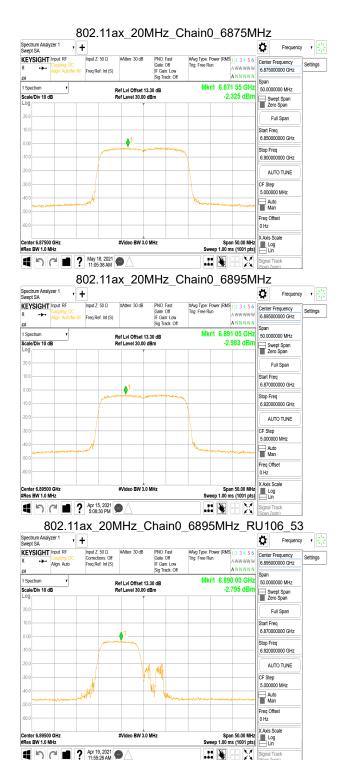

Video BW 3.0 MH


Span 50.00 MHz Sweep 1.00 ms (1001 pts)

 \mathbb{N}

.# 😽

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

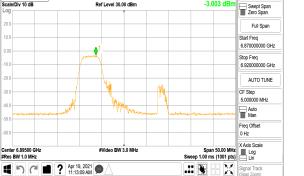

台灣檢驗科技股份有限公司 t (886-2) 2299-3279

Report No.: ER/2021/20015 Page: 68 of 274

ectrum Analyz vept SA	zer 1 📊	+			6855N		Ø	Frequency	1 1
EYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power Trig: Free Run	(RMS 1 2 3 4 5 6 A WWWWW A N N N N N	6.855	r Frequency 000000 GHz	Settings
Spectrum	۲	F	Ref Lvi Offset 13	.30 dB	Mkr1 (6.861 70 GHz	Span .50.00	00000 MHz	
cale/Div 10 dE	в	F	Ref Level 30.00 c	dBm		-4.046 dBm	E S	wept Span ero Span	
0.0							_		
								Full Span	
0.0							Start F	Freq 1000000 GHz	
.00				↓ 1			Stop F		
0.0			1					000000 GHz	
0.0			- u /				A	UTO TUNE	
10.0			M				CF Ste	ep	
10.0			y#		hu.			000 MHz	
i0.0	annonen ma	man man	and the second		and have a series		Ē	uto 1an	
							Freq C	Offset	
10.0							0 Hz		
enter 6.85500			#Video BW 3.0	MHz		Span 50.00 MHz	X Axis	Scale	
Res BW 1.0 M									
()	2 🔳 ?			Chain		5MHz_F	Signal (Span)	in Track Zoom)	
ectrum Analyz wept SA EYSIGHT	■ ? 802.1 zer 1	12:03:41 PM		PNO: Fast Gate: Off IF Gain: Low	. #)_6855	1.00 ms (1001 pts)		in Track Zoom)	Settings
EYSIGHT →	802.1	12:03:41 PM 1ax_2C + Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	MHz_	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Signal (Span) Span	in Track Zoomi 26 8 Frequency r Frequency i000000 GHz	
EYSIGHT Spectrum Spectrum Spectrum Cale/Div 10 dE	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1)MHz_	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Signal Soan RU Center 6.855 Span 50.00	in Track Zoomi 26 8 Frequency r Frequency i000000 GHz 1000000 MHz	
EYSIGHT	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00	in Track Zoomi 26 8 Frequency r Frequency i000000 GHz	
ectrum Analyz vept SA EYSIGHT 	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00	in Track Zoom) 26_8 Frequency Frequency 1000000 GHz 1000000 MHz wept Span	
Lectrum Analyz wept SA EYSIGHT # Spectrum cale/Div 10 dE 09	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center Sono Span Sono Span Start F	in Track Zoom) 26_8 Frequency 000000 GHz 000000 MHz wept Span Frul Span Frul Span Fru	
Spectrum cale/Div 10 dE og 0.0	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 50.00 Start F 6.830	in Track Zoom) 26_8 Frequency 0000000 GHz 000000 MHz wept Span ero Span Freq 000000 GHz	
Spectrum Spectrum Sectrum cale/Div 10 dE g	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00 Start F 6.830 Start F	in Track Zoom) 26_8 Frequency 0000000 GHz 000000 MHz wept Span ero Span Freq 000000 GHz	
Spectrum Cale/Div 10 dE	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00 Start F 6.880 Stop F 6.880	Ini Track Coomi 26_8 Frequency in Frequency in Freq in Freq	
	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00 Start F 6.880 Stor F 6.880 A	Ini Track Coomi 26_8 Frequency 000000 GHz 000000 GHz Full Span Full Span Freq 000000 GHz Freq 000000 GHz Treq 000000 GHz Treq 100000 GHz 1000 Hz	
Spectrum Analyzevept SA EYSIGHT SA Spectrum caterDiv 10 dE 00 00 00 00 00 00 00 00 00 00 00 00 00	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00 Start F 6.830 Stop F 6.880 A CF Ste	Ini Track Coomi 26_8 Frequency 000000 GHz 000000 GHz Full Span Full Span Freq 000000 GHz Freq 000000 GHz Treq 000000 GHz Treq 100000 GHz 1000 Hz	
Construct Analyze Construct Analyze	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.850 Stop F 6.880 Stop F 6.880 A CF Sto 5.000 A CF Sto	Ini Track Coomi 26_8 Frequency Frequency 000000 GHz wept Span Full Span Freq 000000 GHz Treq 000000 GHz Treq 000000 GHz UTO TUNE Sp 00000 MHz uto	
Comparison C	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 5000 5000 5000 5000 5000 5000 5000 5000 5000 100 1	Ini Track Coomi 26_8 Frequency 000000 GHz 000000 GHz 000000 GHz Full Span Freq 000000 GHz IUTO TUNE ep 00000 GHz uto TUNE ep 0000 MHz uto TUNE	
Control	C C C C C C C C C C C C C C C C C C C	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.850 Stop F 6.880 Stop F 6.880 A CF Sto 5.000 A CF Sto	Ini Track Coomi 26_8 Frequency 000000 GHz 000000 GHz 000000 GHz Full Span Freq 000000 GHz IUTO TUNE ep 00000 GHz uto TUNE ep 0000 MHz uto TUNE	
ectrum Analyz wept SA EYSIGHT	BO2.1 Zer 1 Input RF Coupling DC Align Auto	12:03:41 PM 1ax_2C 1	#Atten: 30 dB	PNO Fast Gate Of IF Gan Low Sig Track Off JBm	Awg Type: Power Trig: Free Run	1.00 ms (1001 pts)	Center 6.855 Span 50.00 Start F 6.830 Stop F 6.830 CF Sta 5.000 A CF Sta 5.000 A Freq C 0 Hz	Ini Track Coomi 26_8 Frequency 000000 GHz 000000 GHz 000000 GHz Freq 000000 GHz Freq 000000 GHz UTO TUNE ep 000000 GHz UTO TUNE ep 00000 GHZ UTO TUNE ep	

802.11ax 20MHz Chain0 6855MHz RU52 40 Spectrum Analyzer 1 Swept SA Ö - 23 · + Frequency KEYSIGHT Input: RF Input Z: 50 Ω Corrections: Off Freq Ref: Int (S) PNO: Fast Gate: Off IF Gain: Low Sig Track: Off tten: 30 dB Center Frequency 6.855000000 GHz Settings Align: Auto ANNNN L)0 Span 50.0000000 MHz 1 Spectrum Mkr1 6.863 20 GHz Ref Lvi Offset 13.30 dB Ref Level 30.00 dBm Scale/Div 10 dB -3.656 dB Swept Span Zero Span Full Span 10.0 Start Freq 6.830000000 GHz 0.00 • Stop Freg 10.0 6.880000000 GHz AUTO TUNE 1 30.0 CF Step 5.000000 MHz Maria Auto Man Freg Offset 0 Hz X Axis Scal Span 50.00 MHz Sweep 1.00 ms (1001 pts) #Video BW 3.0 MH Center 6.85500 GHz #Res BW 1.0 MHz 4 つ C ■ ? Apr 19, 2021 Signal Trac

Signal Track


Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

4pr 19, 2021

Report No.: ER/2021/20015 Page: 69 of 274

802.11ax 20MHz Chain0 6995MHz Spectrum Analyzer 1 Swept SA Frequency T · + Ö KEYSIGHT Input: RF PNO: Fast Gate: Off IF Gain: Low Sig Track: Off ten: 30 dB Center Frequency 6.995000000 GHz Settings + Freq Ref: Int (S) ANNNN L)0 Span 50.0000000 MHz 1 Spectrum Mkr1 7.000 90 GHz Ref Lvi Offset 13.30 dB Ref Level 30.00 dBm Scale/Div 10 dB -2.811 dB Swept Span Zero Span Full Spar 10.0 Start Freq 6.970000000 GHz 0.00 ٢ Stop Freq 7.020000000 GHz AUTO TUNE 30.0 CF Step 5.000000 MHz Auto Man Freg Offset 0 Hz X Axis Scal Span 50.00 MHz Sweep 1.00 ms (1001 pts) #Video BW 3.0 MH Center 6.99500 GHz #Res BW 1.0 MHz 4pr 15, 2021 Signal Track

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業 GS Taiwan Ltd.

4 5 C 1 26, 2021

Signal Track

 \mathbb{N}

.# 😽