#### DASY5 Configuration for Body Rear/Ch4233/Volume Scan:

Date: 2008/3/18

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body WCDMA Ch4233 Rear Face with 1.5cm Gap RMC12.2K EUT1+Battery2+Earphone Volume

DUT: 830315

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 847 MHz;  $\sigma = 0.987$  mho/m;  $\epsilon_c = 56.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- · Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Body Rear/Ch1/Volume Scan:

Date: 2008/3/19

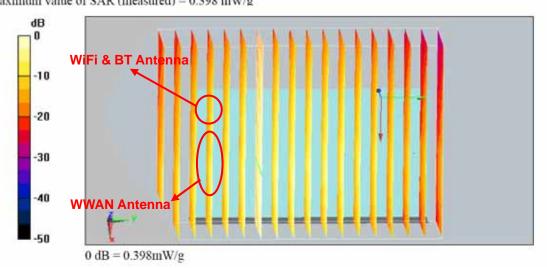
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body 802.11b Ch1 Rear Face with 1.5cm Gap EUT1+Battery2+Earphone Volume

DUT: 830315

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 53.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- · Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

#### SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.246 mW/gMaximum value of SAR (measured) = 0.398 mW/g



#### DASY5 Configuration for Body Rear/Ch4233/Volume Scan:

Date: 2008/3/18

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body WCDMA Ch4233 Rear Face with 1.5cm Gap RMC12.2K EUT1+Battery2+Earphone Volume

DUT: 830315

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL 850 Medium parameters used: f = 847 MHz;  $\sigma = 0.987$  mho/m;  $\varepsilon_{-} = 56.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP: Type: SAM; Serial: TP-1446
   Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Body Rear/Ch0/Volume Scan:

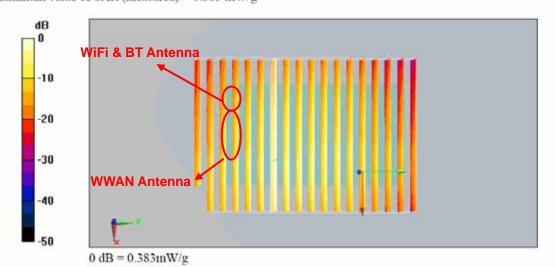
Date: 2008/4/9

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body Bluetooth Ch0 Rear Face with 1.5cm Gap 3DH1 PDA1 Battery B Volume

Communication System: Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2402 MHz;  $\sigma = 1.88 \text{ mho/m}$ ;  $\epsilon_e = 54$ ;  $\rho = 1000 \text{ kg/m}^3$ 


Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.240 mW/gMaximum value of SAR (measured) = 0.383 mW/g





#### DASY5 Configuration for Body Rear/Ch9400/Volume Scan:

Date: 2008/3/18

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body WCDMA Ch9400 Rear Face with 1.5cm Gap RMC12.2K\_EUT1+Battery2+Earphone\_Volume

DUT: 830315

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL\_1900 Medium parameters used: f = 1880 MHz;  $\sigma = 1.5$  mho/m;  $\epsilon_{\nu} = 51.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- · Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Body Rear/Ch1/Volume Scan:

Date: 2008/4/9

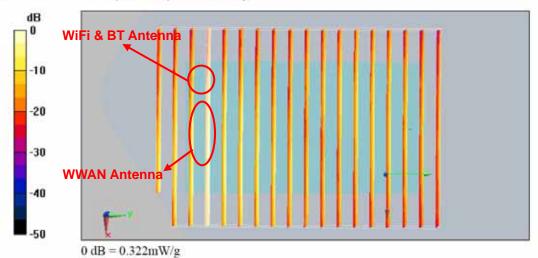
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body 802.11b Ch1 Rear Face with 1.5cm Gap EUT1+Battery2+Earphone Volume

DUT: 830315

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.89 \text{ mho/m}$ ;  $\epsilon_{-} = 53.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 


Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.194 mW/gMaximum value of SAR (measured) = 0.322 mW/g





#### DASY5 Configuration for Body Rear/Ch9400/Volume Scan:

Date/Time: 2008/3/18

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body WCDMA Ch9400 Rear Face with 1.5cm Gap RMC12.2K EUT1+Battery2+Earphone Volume

DUT: 830315

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 Medium parameters used: f = 1880 MHz;  $\sigma = 1.5 \text{ mho/m}$ ;  $\epsilon_{\nu} = 51.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- · Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Body Rear/Ch0/Volume Scan:

Date: 2008/4/9

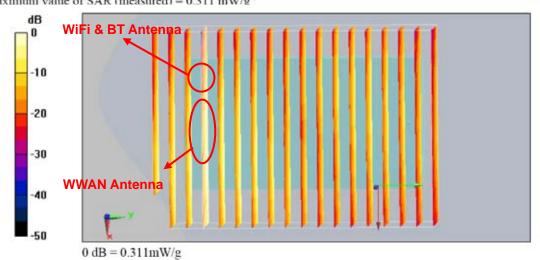
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body Bluetooth Ch0 Rear Face with 1.5cm Gap 3DH1 PDA1 Battery B Volume

DUT: 830315

Communication System: Bluetooth; Frequency: 2402 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used; f = 2402 MHz;  $\sigma = 1.88$  mho/m;  $\epsilon_r = 54$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.188 mW/gMaximum value of SAR (measured) = 0.311 mW/g



## <Model: P560>

#### DASY5 Configuration for Left Cheek/Ch1/Volume Scan:

Date: 2008/4/12

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Cheek\_802.11b Ch1\_EUT2+Battery1\_Volume

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.82$  mho/m;  $\varepsilon_r = 38$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Test Report No : FA830315A

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
   Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Left Cheek/Ch251/Volume Scan:

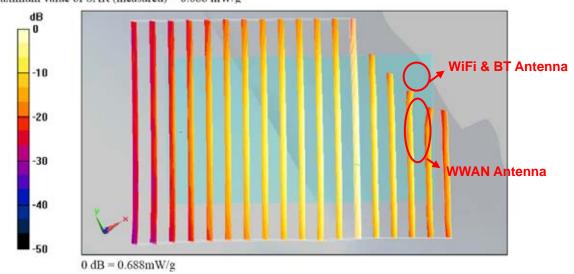
Date: 2008/4/12

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Cheek\_GSM850 Ch251\_EUT2+Battery1\_Volume

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL\_850 Medium parameters used: f = 849 MHz;  $\sigma = 1.3 \text{ mho/m}$ ;  $\varepsilon_c = 40.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 


Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- · Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

SAR(1 g) = 0.666 mW/g; SAR(10 g) = 0.455 mW/gMaximum value of SAR (measured) = 0.688 mW/g



#### DASY5 Configuration for Left Cheek/Ch9400/Volume Scan:

Date: 2008/3/14

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Left Cheek WCDMA1900 Ch9400 EUT2+Battery1 Volume

Communication System: WCDMA Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: HSL 1900 Medium parameters used: f = 1880 MHz:  $\sigma = 1.4 \text{ mho/m}$ :  $\epsilon_e = 39$ :  $\rho = 1000 \text{ kg/m}^3$ 

Test Report No : FA830315A

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
   Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Left Cheek/Ch1/Volume Scan:

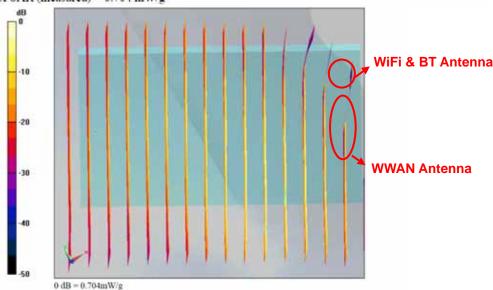
Date: 2008/3/19

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Left Cheek 802.11b Ch1 EUT2+Battery1 Volume

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.82$  mho/m;  $\epsilon = 38$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.58, 4.58, 4.58); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- · Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

#### SAR(1 g) = 0.653 mW/g; SAR(10 g) = 0.392 mW/gMaximum value of SAR (measured) = 0.704 mW/g



#### DASY5 Configuration for Body Rear/Ch1/Volume Scan:

Date: 2008/4/12

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body 802.11b Ch1 Rear Face with 1.5cm Gap EUT2+Battery2+Earphone Volume

DUT: 830314

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.89 \text{ mho/m}$ ;  $\varepsilon_r = 53.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### DASY5 Configuration for Body Rear/Ch251/Volume Scan:

Date: 2008/4/14

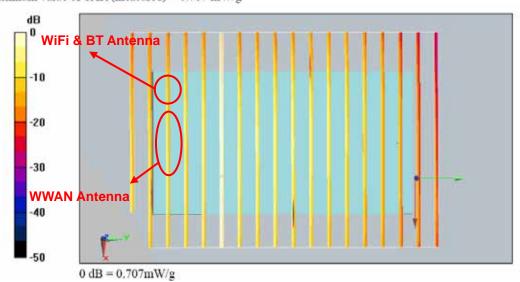
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Body GSM850 Ch251 Rear Face with 1.5cm Gap GPRS10 EUT2+Battery2+Earphone Volume

DUT: 830314

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: MSL 850 Medium parameters used: f = 849 MHz;  $\sigma = 1.4$  mho/m;  $\epsilon_a = 56.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>


Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- · Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

SAR(1 g) = 0.667 mW/g; SAR(10 g) = 0.466 mW/gMaximum value of SAR (measured) = 0.707 mW/g



Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/17

#### Body\_GSM1900 Ch512\_Rear Face with 1.5cm Gap\_GPRS10\_EUT2+Battery2+Earphone\_Volume DUT: 830314

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL\_1900 Medium parameters used: f = 1850.2 MHz;  $\sigma = 1.47$  mho/m;  $\varepsilon_r = 51.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

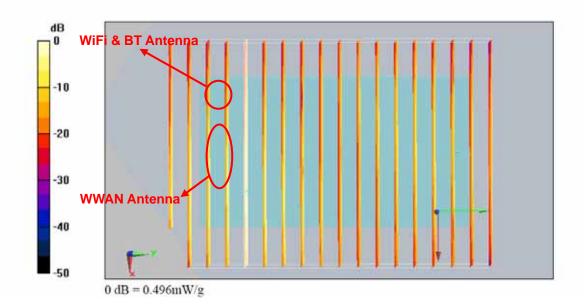
- Probe: ET3DV6 SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- · Phantom: SAM with CRP: Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/3/19

#### Body\_802.11b Ch1\_Rear Face with 1.5cm Gap\_EUT2+Battery2+Earphone\_Volume DUT: 830314

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2412 MHz;  $\sigma = 1.89 \text{ mho/m}$ ;  $\epsilon_{\perp} = 53.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 


Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
   Measurement SW: DASY5, V5.0 Build 91

#### Multi Band Result:

SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.299 mW/gMaximum value of SAR (measured) = 0.496 mW/g



## Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Test Report No : FA830315A

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D835V2-499 Mar08 CALIBRATION CERTIFICATE D835V2 - SN: 499 Object Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits March 17, 2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 04-Oct-07 (METAS, No. 217-00736) Oct-08 Power sensor HP 8481A 04-Oct-07 (METAS, No. 217-00736) US37292783 Oct-08 SN: 5086 (20g) Reference 20 dB Attenuator 07-Aug-07 (METAS, No 217-00718) Aug-08 Reference Probe ES3DV2 SN: 3025 01-Mar-08 (SPEAG, No. ES3-3025\_Mar08) Mar-09 DAE4 SN 909 03-Sep-07 (SPEAG, No. DAE4-909\_Sep07) Sep-08 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 100005 04-Aug-99 (SPEAG, in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-07) In house check: Oct-08 Function Name Signature Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 17, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-499\_Mar08

Page 1 of 9

### Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499\_Mar08

Page 2 of 9

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY4                     | V4.7        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 15 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         | \$1         |
| Frequency                    | 835 MHz ± 1 MHz           |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 41.5 ± 6 %   | 0.90 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C | ****         |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 2.29 mW/g                  |
| SAR normalized                                        | normalized to 1W   | 9.16 mW / g                |
| SAR for nominal Head TSL parameters 1                 | normalized to 1W   | 9.16 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.50 mW/g                  |
| SAR normalized                                          | normalized to 1W   | 6.00 mW/g                  |
| SAR for nominal Head TSL parameters 1                   | normalized to 1W   | 6.00 mW / g ± 16.5 % (k=2) |

Certificate No: D835V2-499\_Mar08

Page 3 of 9

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 54.0 ± 6 %   | 1.00 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C | <u> </u>     | 212              |

## SAR result with Body TSL

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------|--------------------|----------------------------|
| SAR measured                              | 250 mW input power | 2.46 mW/g                  |
| SAR normalized                            | normalized to 1W   | 9.84 mW / g                |
| SAR for nominal Body TSL parameters 2     | normalized to 1W   | 9.52 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                            |
|---------------------------------------------|--------------------|----------------------------|
| SAR measured                                | 250 mW input power | 1.63 mW / g                |
| SAR normalized                              | normalized to 1W   | 6.52 mW/g                  |
| SAR for nominal Body TSL parameters 2       | normalized to 1W   | 6.37 mW / g ± 16.5 % (k=2) |

Certificate No: D835V2-499\_Mar08

Page 4 of 9

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

## Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.9 Ω - 2.3 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 28.9 dB       |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 49.2 Ω - 3.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.3 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.392 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 10, 2003 |

Certificate No: D835V2-499\_Mar08

Page 5 of 9



## DASY4 Validation Report for Head TSL

Date/Time: 17.03.2008 11:32:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

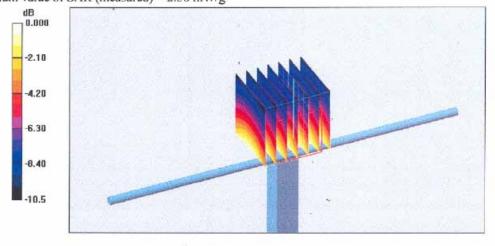
Medium parameters used: f = 835 MHz;  $\sigma = 0.9$  mho/m;  $\epsilon_r = 41.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

#### DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(6.09, 6.09, 6.09); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172


#### Unnamed procedure/Zoom Scan (7x7x7)/Cube 0:

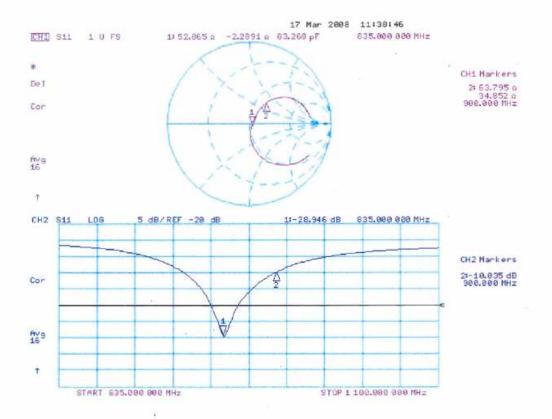
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 3.34 W/kgSAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g

Maximum value of SAR (measured) = 2.58 mW/g




0 dB = 2.58 mW/g

Certificate No: D835V2-499 Mar08

Page 6 of 9



## Impedance Measurement Plot for Head TSL



Certificate No: D835V2-499\_Mar08

Page 7 of 9



## **DASY4 Validation Report for Body TSL**

Date/Time: 10.03.2008 12:48:36

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900;

Medium parameters used: f = 835 MHz;  $\sigma = 1 \text{ mho/m}$ ;  $\varepsilon_r = 54$ ;  $\rho = 1000 \text{ kg/m}^3$ 

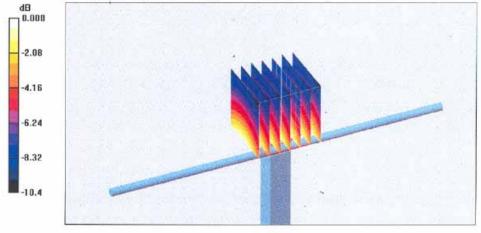
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

#### DASY4 Configuration:

- Probe: ES3DV2 SN3025; ConvF(5.85, 5.85, 5.85); Calibrated: 01.03.2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

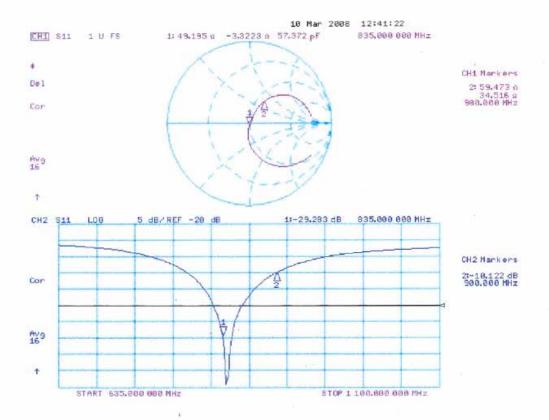
#### Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/g


Maximum value of SAR (measured) = 2.64 mW/g



0 dB = 2.64 mW/g



## Impedance Measurement Plot for Body TSL



Certificate No: D835V2-499\_Mar08

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d041 Mar08

| Object                                                                                                                                                                                                                                     | D1900V2 - SN: 5                                                                                                               | d041                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                                                                   | QA CAL-05.v7<br>Calibration proce                                                                                             | dure for dipole validation kits                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |
| Calibration date:                                                                                                                                                                                                                          | March 18, 2008                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |
| Condition of the calibrated item                                                                                                                                                                                                           | In Tolerance                                                                                                                  | ngerfennige Charles and in                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |
| The measurements and the unor                                                                                                                                                                                                              | ertainties with confidence p                                                                                                  | onal standards, which realize the physical units or<br>robability are given on the following pages and are<br>y facility: environment temperature $(22 \pm 3)$ °C and                                                                                                                                                                                                                           | e part of the certificate.                                                                                                            |
| Calibration Equipment used (M&                                                                                                                                                                                                             | TE oritical for calibration)                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |
| See (Ap) 19 At                                                                                                                                                                                                                             | TE oritical for calibration)                                                                                                  | Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                                                                                       | Scheduled Calibration                                                                                                                 |
| Primary Standards Power meter EPM-442A                                                                                                                                                                                                     | ID#<br>GB37480704                                                                                                             | 04-Oct-07 (METAS, No. 217-00736)                                                                                                                                                                                                                                                                                                                                                                | Oct-08                                                                                                                                |
| Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A                                                                                                                                                                         | ID #<br>GB37480704<br>US37292783                                                                                              | 04-Oct-07 (METAS, No. 217-00736)<br>04-Oct-07 (METAS, No. 217-00736)                                                                                                                                                                                                                                                                                                                            | Oct-08<br>Oct-08                                                                                                                      |
| Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                                                                           | ID#<br>GB37480704<br>US37292783<br>SN: 5086 (20g)                                                                             | 04-Oct-07 (METAS, No. 217-00736)<br>04-Oct-07 (METAS, No. 217-00736)<br>07-Aug-07 (METAS, No 217-00718)                                                                                                                                                                                                                                                                                         | Oct-08<br>Oct-08<br>Aug-08                                                                                                            |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator                                                                                                                         | ID#<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 (10r)                                                         | 04-Oct-07 (METAS, No. 217-00736)<br>04-Oct-07 (METAS, No. 217-00736)<br>07-Aug-07 (METAS, No 217-00718)<br>07-Aug-07 (METAS, No 217-00718)                                                                                                                                                                                                                                                      | Oct-08<br>Oct-08<br>Aug-08<br>Aug-08                                                                                                  |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Reference 10 dB Attenuator<br>Reference Probe ES3DV2<br>DAE4                                         | ID#<br>GB37480704<br>US37292783<br>SN: 5086 (20g)                                                                             | 04-Oct-07 (METAS, No. 217-00736)<br>04-Oct-07 (METAS, No. 217-00736)<br>07-Aug-07 (METAS, No 217-00718)                                                                                                                                                                                                                                                                                         | Oct-08<br>Oct-08<br>Aug-08                                                                                                            |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2                                                                                                  | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 (10r)<br>SN: 3025                                            | 04-Oct-07 (METAS, No. 217-00736)<br>04-Oct-07 (METAS, No. 217-00736)<br>07-Aug-07 (METAS, No 217-00718)<br>07-Aug-07 (METAS, No 217-00718)<br>01-Mar-08 (SPEAG, No. ES3-3025_Mar08)                                                                                                                                                                                                             | Oct-08<br>Oct-08<br>Aug-08<br>Aug-08<br>Mar-09                                                                                        |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A                                                   | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID# MY41092317                                      | 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)                                                                                                                   | Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08                                                      |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06                           | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005                             | 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07)                                                                           | Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08 In house check: Oct-09                               |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID# MY41092317                                      | 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07)                                                                                                                   | Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08                                                      |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A                                                   | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 GB37480704 | 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07) 04-Oct-07 (METAS, No. 217-00736) | Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08 In house check: Oct-09 In house check: Oct-08 Oct-08 |
| Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206            | 04-Oct-07 (METAS, No. 217-00736) 04-Oct-07 (METAS, No. 217-00736) 07-Aug-07 (METAS, No. 217-00718) 07-Aug-07 (METAS, No. 217-00718) 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-07) 4-Aug-99 (SPEAG, in house check Oct-07) 18-Oct-01 (SPEAG, in house check Oct-07)                                  | Oct-08 Oct-08 Aug-08 Aug-08 Mar-09 Sep-07 Scheduled Check In house check: Oct-08 In house check: Oct-09 In house check: Oct-08        |

Certificate No: D1900V2-5d041\_Mar08

Page 1 of 9

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
  uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041\_Mar08

Page 2 of 9

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY4                     | V4.7 |
|------------------------------|---------------------------|------|
| Extrapolation                | Advanced Extrapolation    |      |
| Phantom                      | Modular Flat Phantom V5.0 |      |
| Distance Dipole Center - TSL | 10 mm with S              |      |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         | V    |
| Frequency                    | 1900 MHz ± 1 MHz          |      |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 40.2 ± 6 %   | 1.47 mho/m ± 6 % |
| Head TSL temperature during test | (21.1 ± 0.2) °C |              | -                |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 10.1 mW/g                  |
| SAR normalized                                        | normalized to 1W   | 40.4 mW / g                |
| SAR for nominal Head TSL parameters 1                 | normalized to 1W   | 39.5 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.20 mW / g                |
| SAR normalized                                          | normalized to 1W   | 20.8 mW/g                  |
| SAR for nominal Head TSL parameters 1                   | normalized to 1W   | 20.6 mW / g ± 16.5 % (k=2) |

Certificate No: D1900V2-5d041\_Mar08

Page 3 of 9

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 51.6 ± 6 %   | 1.57 mho/m ± 6 % |
| Body TSL temperature during test | (21.4 ± 0.2) °C |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------|--------------------|----------------------------|
| SAR measured                              | 250 mW input power | 10.4 mW / g                |
| SAR normalized                            | normalized to 1W   | 41.6 mW/g                  |
| SAR for nominal Body TSL parameters 2     | normalized to 1W   | 40.1 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.44 mW / g                |
| SAR normalized                                          | normalized to 1W   | 21.8 mW/g                  |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 21.3 mW / g ± 16.5 % (k=2) |

Certificate No: D1900V2-5d041\_Mar08

Page 4 of 9

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

## **Appendix**

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.0 $\Omega$ + 5.1 j $\Omega$ |  |
|--------------------------------------|--------------------------------|--|
| Return Loss                          | - 24.2 dB                      |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | $48.0 \Omega + 6.1 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 23.6 dB                   |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.199 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |  |
|-----------------|---------------|--|
| Manufactured on | July 04, 2003 |  |

Certificate No: D1900V2-5d041\_Mar08

Page 5 of 9



#### **DASY4 Validation Report for Head TSL**

Date/Time: 18.03.2008 12:05:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

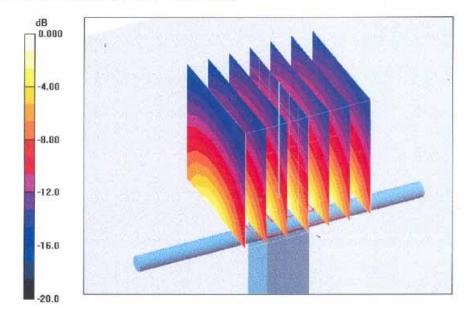
Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz;  $\sigma = 1.47 \text{ mho/m}$ ;  $\epsilon_r = 40.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

#### DASY4 Configuration:


- Probe: ES3DV2 SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

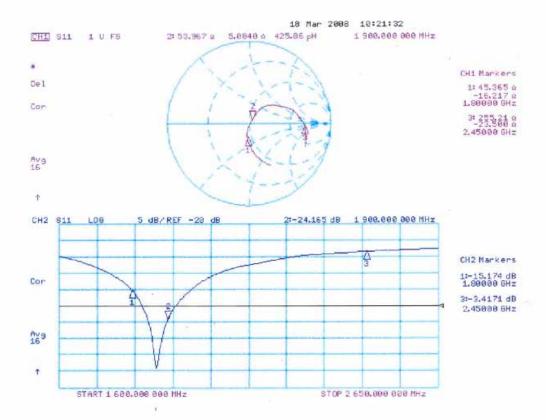
#### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.7 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.2 mW/g Maximum value of SAR (measured) = 11.8 mW/g




0 dB = 11.8 mW/g

Certificate No: D1900V2-5d041\_Mar08

Page 6 of 9



## Impedance Measurement Plot for Head TSL



Certificate No: D1900V2-5d041\_Mar08

Page 7 of 9



#### **DASY4 Validation Report for Body TSL**

Date/Time: 14.03.2008 13:22:24

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

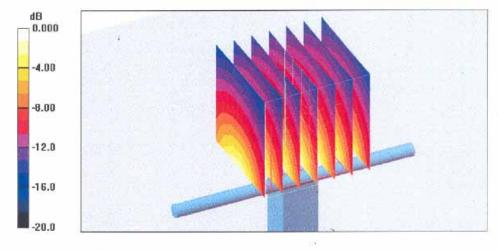
Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz;  $\sigma = 1.57$  mho/m;  $\epsilon_r = 51.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

#### DASY4 Configuration:


- Probe: ES3DV2 SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

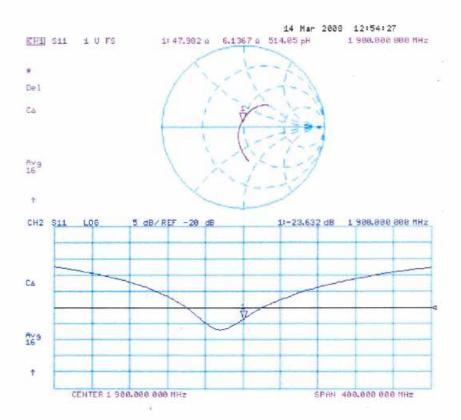
#### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.44 mW/g Maximum value of SAR (measured) = 12.0 mW/g




0 dB = 12.0 mW/g

Certificate No: D1900V2-5d041\_Mar08

Page 8 of 9



## Impedance Measurement Plot for Body TSL



Certificate No: D1900V2-5d041\_Mar08

Page 9 of 9

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Accreditation No.: SCS 108

C

Certificate No: DAE3-577 Nov07 Client CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 577 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) November 16, 2007 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Fluke Process Calibrator Type 702 Oct-08 SN: 6295803 04-Oct-07 (Elcal AG, No: 6467) Keithley Multimeter Type 2001 SN: 0810278 03-Oct-07 (Elcal AG, No: 6465) Oct-08 Secondary Standards Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1004 25-Jun-07 (SPEAG, in house check) In house check Jun-08 Function Signature Name Calibrated by: Dominique Steffen Technician R&D Director Approved by: Fin Bomholt Issued: November 16, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-577\_Nov07

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

#### Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

#### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577\_Nov07

Page 2 of 5

#### DC Voltage Measurement

A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1......+3mV High Range: 1LSB =  $6.1\mu V$ , 61nV , Low Range: 1LSB = DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                    | Y                    | Z                    |
|---------------------|----------------------|----------------------|----------------------|
| High Range          | 404.432 ± 0.1% (k=2) | 403.884 ± 0.1% (k=2) | 404.331 ± 0.1% (k=2) |
| Low Range           | 3.94218 ± 0.7% (k=2) | 3.94771 ± 0.7% (k=2) | 3.94526 ± 0.7% (k=2) |

## Connector Angle

| The second secon | A CONTRACTOR OF THE PARTY OF TH |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connector Angle to be used in DASY system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 268°±1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



## Appendix

1. DC Voltage Linearity

| High Range        | Input (μV) | Reading (μV) | Error (%) |
|-------------------|------------|--------------|-----------|
| Channel X + Input | 200000     | 199999.3     | 0.00      |
| Channel X + Input | 20000      | 20005.75     | 0.03      |
| Channel X - Input | 20000      | -19997.67    | -0.01     |
| Channel Y + Input | 200000     | 199999.5     | 0.00      |
| Channel Y + Input | 20000      | 20002.82     | 0.01      |
| Channel Y - Input | 20000      | -20004.40    | 0.02      |
| Channel Z + Input | 200000     | 199999.6     | 0.00      |
| Channel Z + Input | 20000      | 20005.54     | 0.03      |
| Channel Z - Input | 20000      | -20001.11    | 0.01      |

| Low Range         | Input (μV) | Reading (µV) | Error (%) |
|-------------------|------------|--------------|-----------|
| Channel X + Input | 2000       | 2000.1       | 0.00      |
| Channel X + Input | 200        | 199.12       | -0.44     |
| Channel X - Input | 200        | -200.64      | 0.32      |
| Channel Y + Input | 2000       | 2000         | 0.00      |
| Channel Y + Input | 200        | 199.96       | -0.02     |
| Channel Y - Input | 200        | -201.00      | 0.50      |
| Channel Z + Input | 2000       | 1999.9       | 0.00      |
| Channel Z + Input | 200        | 199.05       | -0.47     |
| Channel Z - Input | 200        | -201.08      | 0.54      |

## 2. Common mode sensitivity

|           | Common mode<br>Input Voltage (mV) | High Range<br>Averaģe Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 13.88                              | 12.97                             |
|           | - 200                             | -12.40                             | -14.29                            |
| Channel Y | 200                               | -6.32                              | -6.22                             |
|           | - 200                             | 5.34                               | 5.31                              |
| Channel Z | 200                               | 1.08                               | 0.59                              |
|           | - 200                             | -1.42                              | -1.66                             |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | 1.14           | 0.16           |
| Channel Y | 200                | 1.52           | -              | 3.87           |
| Channel Z | 200                | 0.23           | 0.75           | -              |

Certificate No: DAE3-577\_Nov07



#### 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15969            | 16269           |
| Channel Y | 15848            | 16148           |
| Channel Z | 16203            | 16661           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MO

| Pr-154 Pr-157 Pr | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) |
|------------------|--------------|------------------|------------------|---------------------|
| Channel X        | 0.12         | -1.70            | 1.72             | 0.50                |
| Channel Y        | -2.46        | -3.42            | -1.39            | 0.44                |
| Channel Z        | -0.78        | -2.16            | 0.00             | 0.29                |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

|           | Zeroing (MOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 0.2000         | 199.3            |
| Channel Y | 0.2001         | 199.9            |
| Channel Z | 0.1999         | 199.4            |

8. Low Battery Alarm Voltage (verified during pre test)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

9. Power Consumption (verified during pre test)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.0              | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: ET3-1788\_Sep07

Accreditation No.: SCS 108

| Object                                                                                                                                                                                                                                     | ET3DV6 - SN:1                                                                                                                                | 788                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                                                                   | QA CAL-01 v6<br>Calibration proc                                                                                                             | edure for dosimetric E-field probes                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |
| Calibration date                                                                                                                                                                                                                           | September 26,                                                                                                                                | 2007                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |
| Condition of the calibrated item                                                                                                                                                                                                           | In Tolerance                                                                                                                                 | tellustrating of prescriptions                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |
| All calibrations have been conducted (M&)                                                                                                                                                                                                  |                                                                                                                                              | ory facility: environment temperature $(22 \pm 3)^{\circ}$ C and                                                                                                                                                                                                                                                                                                                      | 1 humidity < 70%.                                                                                              |
|                                                                                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |
| Primary Standards                                                                                                                                                                                                                          | ID #                                                                                                                                         | Cal Date (Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                                                                             | Scheduled Calibration                                                                                          |
| Power meter E44198                                                                                                                                                                                                                         | GB41293874                                                                                                                                   | 29-Mar-07 (METAS, No. 217-00670)                                                                                                                                                                                                                                                                                                                                                      | Mar-08                                                                                                         |
| Power meter E44198<br>Power sensor E4412A                                                                                                                                                                                                  | GB41293874<br>MY41495277                                                                                                                     | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)                                                                                                                                                                                                                                                                                                                  | Mar-08<br>Mar-08                                                                                               |
| Power meter E4419B<br>Power sensor E4412A<br>Power sensor E4412A                                                                                                                                                                           | GB41293874<br>MY41495277<br>MY41498067                                                                                                       | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)                                                                                                                                                                                                                                                                              | Mar-08<br>Mar-08<br>Mar-08                                                                                     |
| Power meter E4419B<br>Power sensor E4412A<br>Power sensor E4412A<br>Reference 3 dB Attenuator                                                                                                                                              | G841293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)                                                                                     | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>8-Aug-07 (METAS, No. 217-00719)                                                                                                                                                                                                                                           | Mar-08<br>Mar-08<br>Mar-08<br>Aug-08                                                                           |
| Power sansor E4412A<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                                      | G841293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)                                                                  | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>8-Aug-07 (METAS, No. 217-00719)<br>29-Mar-07 (METAS, No. 217-00671)                                                                                                                                                                                                       | Mar-08<br>Mar-08<br>Mar-08<br>Aug-08<br>Mar-08                                                                 |
| Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator                                                                                                 | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)                                               | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>8-Aug-07 (METAS, No. 217-00719)<br>29-Mar-07 (METAS, No. 217-00671)<br>8-Aug-07 (METAS, No. 217-00720)                                                                                                                                                                    | Mar-08<br>Mar-08<br>Mar-08<br>Aug-08<br>Mar-08<br>Aug-08                                                       |
| Power meter E4419B<br>Power sensor E4412A<br>Power sensor E4412A<br>Reference 3 dB Attenuator<br>Reference 20 dB Attenuator                                                                                                                | G841293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)                                                                  | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>8-Aug-07 (METAS, No. 217-00719)<br>29-Mar-07 (METAS, No. 217-00671)                                                                                                                                                                                                       | Mar-08<br>Mar-08<br>Mar-08<br>Aug-08<br>Mar-08                                                                 |
| Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2                                                                          | GB41293874<br>MY41495277<br>MY41498087<br>SN: S5054 (3c)<br>SN: S5086 (20b)<br>SN: S5129 (30b)<br>SN: S013                                   | 29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>29-Mar-07 (METAS, No. 217-00670)<br>8-Aug-07 (METAS, No. 217-00719)<br>29-Mar-07 (METAS, No. 217-00671)<br>8-Aug-07 (METAS, No. 217-00720)<br>4-Jan-07 (SPEAG, No. ES3-3013_Jan07)                                                                                                                            | Mar-08<br>Mar-08<br>Mar-08<br>Aug-08<br>Mar-08<br>Aug-08<br>Jan-08                                             |
| Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards                                                 | GB41293874<br>MY41495277<br>MY41498087<br>SN: \$5054 (3c)<br>SN: \$5086 (20b)<br>SN: \$5129 (30b)<br>SN: 3013<br>SN: 854                     | 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07)                                                                                                        | Mar-08<br>Mar-08<br>Aug-08<br>Mar-08<br>Aug-08<br>Jan-08<br>Apr-08                                             |
| Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C                           | GB41293874<br>MY41495277<br>MY41498087<br>SN: \$5054 (3c)<br>SN: \$5086 (20b)<br>SN: \$5129 (30b)<br>SN: 3013<br>SN: 854                     | 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apx-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house)                                                                                  | Mar-08<br>Mar-08<br>Aug-08<br>Mar-08<br>Aug-08<br>Jan-08<br>Apr-08                                             |
| Power mater E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E | GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: \$013 SN: 854  ID # US3642U01706 US37390585           | 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-69 (SPEAG, in house check Nov-05)                                          | Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07                 |
| Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4                                                                     | GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: \$5129 (30b) SN: \$654 ID # U\$3642U01700 U\$37390585 | 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-854_Apr07) Check Date (in house) 4-Aug-69 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) | Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Apr-08 Scheduled Check In house check: Nov-07 In house check: Oct-07 |

Certificate No: ET3-1788\_Sep07

Page 1 of 9

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Sorvizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ

φ rotation around probe axis

Polarization 8

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
  the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788\_Sep07

Page 2 of 9



September 26, 2007

# Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated:

September 19, 2006

Modified:

September 24, 2007

Recalibrated:

September 26, 2007

## Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788\_Sep07

Page 3 of 9



September 26, 2007

## DASY - Parameters of Probe: ET3DV6 SN:1788

| Sensitivity in Free Space <sup>A</sup> |              |                 | Diode C | compression <sup>B</sup> |
|----------------------------------------|--------------|-----------------|---------|--------------------------|
| NormX                                  | 1.72 ± 10.1% | $\mu V/(V/m)^2$ | DCP X   | 91 mV                    |
| NormY                                  | 1.66 ± 10.1% | $\mu V/(V/m)^2$ | DCP Y   | 93 mV                    |
| NormZ                                  | 1.70 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z   | 94 mV                    |

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

### **Boundary Effect**

TSL

900 MHz

Typical SAR gradient: 5 % per mm

| Sensor Cente          | r to Phantom Surface Distance | 3.7 mm | 4.7 mm |  |
|-----------------------|-------------------------------|--------|--------|--|
| SAR <sub>be</sub> [%] | Without Correction Algorithm  | 6.2    | 3.3    |  |
| SAR <sub>be</sub> [%] | With Correction Algorithm     | 0.4    | 1.0    |  |

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

| Sensor Cente          | r to Phantom Surface Distance | 3.7 mm | 4.7 mm |
|-----------------------|-------------------------------|--------|--------|
| SAR <sub>be</sub> [%] | Without Correction Algorithm  | 12.0   | 8.1    |
| SAR <sub>be</sub> [%] | With Correction Algorithm     | 0.2    | 0.1    |

#### Sensor Offset

Probe Tip to Sensor Center

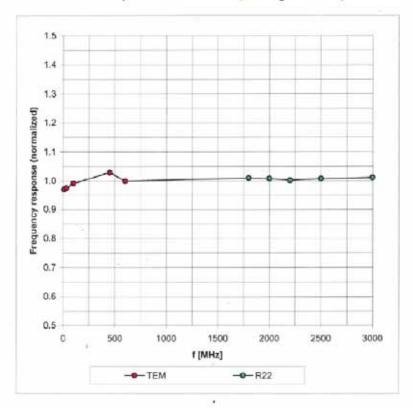
2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788\_Sep07

Page 4 of 9

<sup>\*</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 8).


Numerical linearization parameter; uncertainty not required.

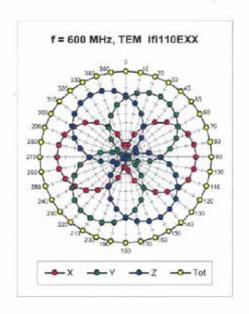


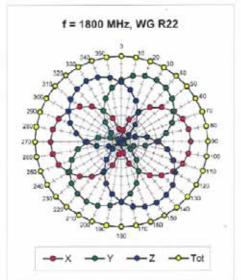
September 26, 2007

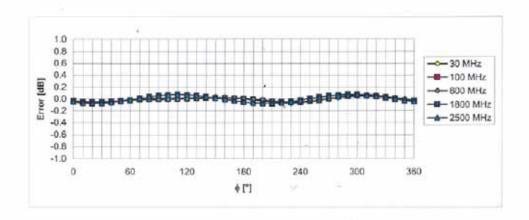
## Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1788\_Sep07


Page 5 of 9

September 26, 2007

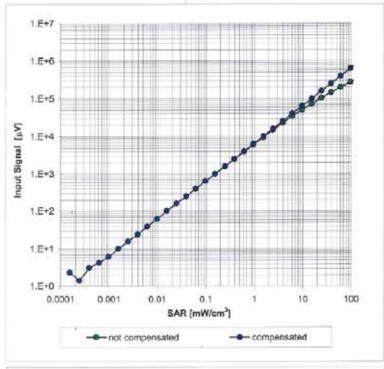
## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

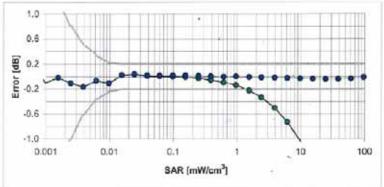






Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ET3-1788\_Sep07


Page 6 of 9

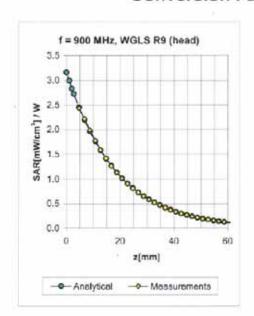
September 26, 2007

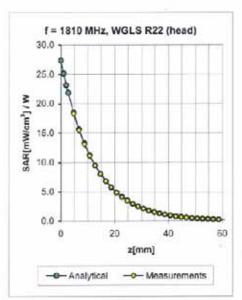
## Dynamic Range f(SAR<sub>head</sub>)

(Waveguide R22, f = 1800 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1788\_Sep07

Page 7 of 9

September 26, 2007

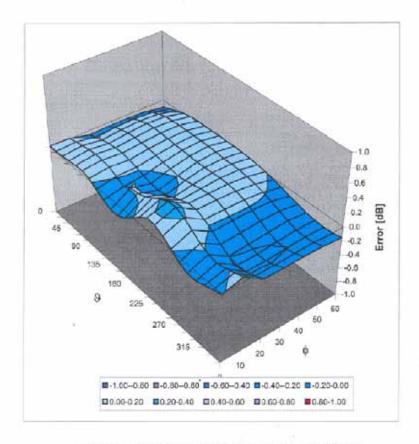
## Conversion Factor Assessment





| f [MHz] | Validity [MHz] <sup>C</sup> | TSL  | Permittivity | Conductivity   | Alpha | Depth | ConvF Uncertainty  |
|---------|-----------------------------|------|--------------|----------------|-------|-------|--------------------|
| 900     | ± 50 / ± 100                | Head | 41.5 ± 5%    | 0.97 ± 5%      | 0.22  | 3.28  | 6.54 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Head | 40.0 ± 5%    | $1.40 \pm 5\%$ | 0.59  | 2.15  | 5.28 ± 11.0% (k=2) |
| 2000    | ± 50 / ± 100                | Head | 40.0 ± 5%    | 1.40 ± 5%      | 0.60  | 2.23  | 4.87 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Head | 39.2 ± 5%    | $1.80\pm5\%$   | 0.61  | 2.39  | 4.58 ± 11.8% (k=2) |
|         |                             |      |              |                |       |       |                    |
| 900     | ± 50 / ± 100                | Body | 55.0 ± 5%    | 1.05 ± 5%      | 0.28  | 2.94  | 6.37 ± 11.0% (k=2) |
| 1810    | ± 50 / ± 100                | Body | 53.3 ± 5%    | 1.52 ± 5%      | 0.63  | 2.39  | 4.75 ± 11.0% (k=2) |
| 2000    | $\pm$ 50 / $\pm$ 100        | Body | 53.3 ± 5%    | 1.52 ± 5%      | 0.63  | 2.33  | 4.36 ± 11.0% (k=2) |
| 2450    | ± 50 / ± 100                | Body | 52.7 ± 5%    | 1.95 ± 5%      | 0.61  | 2.58  | 4.17 ± 11.8% (k=2) |
|         |                             |      |              |                |       |       |                    |

Certificate No: ET3-1788\_Sep07


Page 8 of 9

<sup>&</sup>lt;sup>C</sup> The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

September 26, 2007

## Deviation from Isotropy in HSL

Error (¢, 3), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788\_Sep07

Page 9 of 9