

FCC Test Report

Product Name	Notebook PC
Model No	E202S, L202S, R206S
FCC ID.	MSQE202S

Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	Apr. 27, 2015	
Issue Date	Jun. 26, 2015	
Report No.	1550007R-RFUSP25V00	
Report Version	V1.0	
TESTING Laboratory 3023		

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issue Date: Jun. 26, 2015 Report No.: 1550007R-RFUSP25V00

Product Name	Notebook PC		
Applicant	ASUSTeK COMPUTER INC.		
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan		
Manufacturer	1. Digitek(Chongqing) Limited		
	2. Tech-Com(Shanghai) Computer Co. Ltd.		
	3. Tech-Front (Chongqing) Computer Co., Ltd.		
	4. WISTRON INFOCOMM(CHONGQING) CO., LTD.		
Model No.	E202S, L202S, R206S		
FCC ID.	MSQE202S		
EUT Rated Voltage	AC 100-240V, 50/60Hz		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	ASUS		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2014		
	ANSI C63.4: 2014, ANSI C63.10: 2013		
	KDB 558074 D01 DTS Meas Guidance v03r02		
Test Result	Complied		
Documented By	: Joanne Liv (Senior Adm. Specialist / Joanne Lin)		
Tested By	Andy Lin		
	(Assistant Engineer / Andy Lin)		

Approved By

:

tro

(Director / Vincent Lin)

TABLE OF CONTENTS

De	Description		
1.	GENERAL INFORMATION	5	
1.1.	EUT Description	5	
1.2.	Operational Description		
13	Tested System Details	8	
1.5.	Configuration of Tested System	8	
1.4.	FUT Evercise Software		
1.5.	Test Engility		
1.0.	Conducted Emission		
2.	Conducted Emission	10	
2.1.	Test Equipment		
2.2.	Test Setup		
2.3.	Limits		
2.4.	Test Procedure		
2.5.	Uncertainty		
2.6.	Test Result of Conducted Emission		
3.	Peak Power Output	14	
3.1.	Test Equipment	14	
3.2.	Test Setup		
3.3.	Limits		
3.4.	Test Procedure		
3.5	Uncertainty	14	
3.6.	Test Result of Peak Power Output		
4.	Radiated Emission	19	
4.1.	Test Equipment	19	
4.2.	Test Setup		
4.3.	Limits		
4.4.	Test Procedure		
4.5.	Uncertainty		
4.6.	Test Result of Radiated Emission		
5.	RF antenna conducted test		
5.1.	Test Equipment		
5.2.	Test Setup		
5.3.	Limits		
5.4.	Test Procedure		
5.5.	Uncertainty		
5.6.	Test Result of RF antenna conducted test		
6.	Band Edge	43	
6.1.	Test Equipment		
6.2.	Test Setup		
6.3.	Limits	44	
6.4	Test Procedure	ΔΔ	
6.5	Uncertainty	ΔΔ	
6.6	Test Result of Band Edge	Д5	
0.0.	Tost Robuit of Dunu Dago		

7.	Occupied Bandwidth	61
7.1.	Test Equipment	61
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	70
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	79

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Notebook PC	
Trade Name	ASUS	
Model No.	E202S, L202S, R206S	
FCC ID.	MSQE202S	
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW, 2422-2452MHz for 802.11n-40BW	
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7	
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 150Mbps	
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)	
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)	
Antenna Type	PIFA Antenna	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	
Power Adapter	MFR: PIE, M/N: AD890326	
	Input: AC 100-240V~50/60Hz, 0.8A	
	Output: 19V=1.75A	
	Cable Out: Shielded, 1.8m	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	HongLin	260-26061	PIFA	0.93 dBi for 2.4 GHz
2	INPAQ	WA-P-LB-02-227	PIFA	0.47 dBi for 2.4 GHz

Note:

1. The antenna of EUT conforms to FCC 15.203.

2. Only the higher gain antenna was tested and recorded in this report

802.11b/g/n-20MHz Center Frequency of Each Channel:

6		1 2					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		
802.11n-40M	Hz Center Fre	equency of Ead	ch Channel:				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 03:	2422 MHz	Channel 04:	2427 MHz	Channel 05:	2432 MHz	Channel 06:	2437 MHz
Channel 07:	2442 MHz	Channel 08:	2447 MHz	Channel 09:	2452 MHz		

- 1. The EUT is a Notebook PC with a built-in WLAN and Bluetooth transceiver, this report for WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. At result of pretests, module supports dual-channel transmission, only the worst case is shown in the report.
- Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$\cdot 802.11g is 6Mbps \$\cdot 802.11n(20M-BW) is 7.2Mbps and 802.11n(40M-BW) is 15Mbps)
- 5. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)
	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Prod	uct	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	DELL	U2410	CN-0J257M-728-01I-038L	N/A
2	Keyboard	Logitech	Y-UR83	SY848UK	N/A
3	USB Mouse	Logitech	M-BE58	HCA30103299	N/A
4	Earphone	Ergotech	ET-E201	N/A	N/A
5	FLASH	Transcend	JetFlash110	155422-2931	N/A

Signal Cable Type		Signal cable Description
Α	HDMI Cable	Shielded, 1.8m
В	Keyboard Cable	Shielded, 1.2m
С	Mouse Cable	Shielded, 1.2m
D	Earphone Cable	Shielded, 1.8m
Е	USB to USB Cable	Shielded, 1.5m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "Raltek MP Tool" on the EUT.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/chinese/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on					
	Federal Communications Commission					
	FCC Engineering Laboratory					
	7435 Oakland Mills Road					
	Columbia, MD 21046					
	Registration Number: 92195					
Site Name:	Quietek Corporation					
Site Address:	No.5-22, Ruishukeng,					
	Linkou Dist. New Taipei City 24451,					
	Taiwan, R.O.C.					
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789					
	E-Mail : <u>service@quietek.com</u>					

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2014	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2015	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2015	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar., 2015	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2015	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit					
Frequency	L	imits			
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Notebook PC
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
Line 1					
Quasi-Peak					
0.177	9.663	34.290	43.953	-21.276	65.229
0.209	9.661	28.060	37.721	-26.593	64.314
0.259	9.664	22.320	31.984	-30.902	62.886
0.318	9.667	21.650	31.317	-29.883	61.200
0.474	9.675	30.420	40.095	-16.648	56.743
0.654	9.685	19.330	29.015	-26.985	56.000
Average					
0.177	9.663	22.510	32.173	-23.056	55.229
0.209	9.661	12.940	22.601	-31.713	54.314
0.259	9.664	12.460	22.124	-30.762	52.886
0.318	9.667	13.800	23.467	-27.733	51.200
0.474	9.675	20.380	30.055	-16.688	46.743
0.654	9.685	7.480	17.165	-28.835	46.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Notebook PC
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
Line 2					
Quasi-Peak					
0.154	9.670	35.470	45.140	-20.746	65.886
0.193	9.660	26.210	35.870	-28.901	64.771
0.216	9.661	29.380	39.041	-25.073	64.114
0.248	9.663	25.820	35.483	-27.717	63.200
0.275	9.665	17.270	26.935	-35.494	62.429
0.494	9.676	29.420	39.096	-17.075	56.171
Average					
0.154	9.670	18.450	28.120	-27.766	55.886
0.193	9.660	8.750	18.410	-36.361	54.771
0.216	9.661	20.140	29.801	-24.313	54.114
0.248	9.663	14.480	24.143	-29.057	53.200
0.275	9.665	2.680	12.345	-40.084	52.429
0.494	9.676	19.130	28.806	-17.365	46.171

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2015
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2015
Note:				
1.	All equipments are	calibrated with trac	eable calibrations. Each calibrations	ation is traceable to the
	national or internat	ional standards.		

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 D01 DTS Meas Guidance v03r02 section 9.1.2 PKPM1 Peak power meter method.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Notebook PC
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

	Frequency	Average Power For different Data Rate (Mbps)			Peak Power	Required	D k	
Channel No	(MHz)	1	2	5.5	11	1	Limit	Kesult
			Measur	ement Lev	vel (dBm)			
01	2412	13.52				16.13	<30dBm	Pass
06	2437	16.02	15.95	15.88	15.72	18.57	<30dBm	Pass
11	2462	13.15				15.70	<30dBm	Pass

Product	:	Notebook PC
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

	Fraguanay	Average PowerPeakFor different Data Rate (Mbps)Power							Peak Power	Dequired		
Channel No	(MHz)	6	9	12	18	24	36	48	54	6	Limit	Result
			Measurement Level (dBm)									
01	2412	11.22								21.21	<30dBm	Pass
06	2437	14.10	14.01	13.92	13.83	13.74	13.65	13.56	13.47	23.32	<30dBm	Pass
11	2462	10.15								20.63	<30dBm	Pass

Product	:	Notebook PC
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

			Average Power							Peak		
	Fraguanay		F	for diffe	erent Da	ata Rate	e (Mbps	5)		Power	Paguirad	
Channel No	(MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Limit	Result
			Measurement Level (dBm)									
01	2412	10.11								20.16	<30dBm	Pass
06	2437	13.05	12.94	12.89	12.74	12.69	12.54	12.47	12.41	22.01	<30dBm	Pass
11	2462	9.74								19.09	<30dBm	Pass

Product	:	Notebook PC
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

		Average Power							Peak			
	Frequency		For different Data Rate (Mbps) Pow							Power	Required	
Channel No	(MHz)	15	30	45	60	90	120	135	150	15	Limit	Result
			Measurement Level (dBm)									
03	2422	8.39								17.90	<30dBm	Pass
06	2437	11.31	11.22	11.13	11.04	10.95	10.86	10.77	10.68	20.53	<30dBm	Pass
09	2452	8.24								17.56	<30dBm	Pass

4. Radiated Emission

4.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep., 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun., 2014
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun., 2014
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun., 2014
	Χ	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun., 2014

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct., 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar., 2015
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan., 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug., 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan., 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul., 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul., 2014

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	Field strength	Measurement distance				
	(microvolts/meter)	(meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Notebook PC
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	rrect Reading Measurem		Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4824.000	3.261	35.190	38.451	-35.549	74.000
7236.000	10.650	34.390	45.040	-28.960	74.000
9648.000	13.337	36.370	49.706	-24.294	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	35.410	41.831	-32.169	74.000
7236.000	11.495	34.180	45.675	-28.325	74.000
9648.000	13.807	35.290	49.096	-24.904	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Notebook PC					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 1: Transmit (802.11b 1Mbps) (2437 MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	C		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector:						
4874.000	3.038	36.100	39.137	-34.863	74.000	
7311.000	11.795	33.490	45.284	-28.716	74.000	
9748.000	12.635	35.510	48.145	-25.855	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4874.000	5.812	35.920	41.731	-32.269	74.000	
7311.000	12.630	34.290	46.919	-27.081	74.000	
9748.000	13.126	35.160	48.286	-25.714	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook PC					
Test Item	: Harmon	ic Radiated Emiss	sion Data			
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2462 MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector:						
4924.000	2.858	34.810	37.667	-36.333	74.000	
7386.000	12.127	34.070	46.198	-27.802	74.000	
9848.000	12.852	35.310	48.163	-25.837	74.000	
Average Detector:						
Vertical						
Peak Detector:						
4924.000	5.521	34.530	40.050	-33.950	74.000	
7386.000	13.254	34.090	47.344	-26.656	74.000	
9848.000	13.367	35.040	48.407	-25.593	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
4824.000	3.261	39.490	42.751	-31.249	74.000
7236.000	10.650	33.590	44.240	-29.760	74.000
9648.000	13.337	35.930	49.266	-24.734	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	34.860	41.281	-32.719	74.000
7236.000	11.495	34.140	45.635	-28.365	74.000
9648.000	13.807	35.320	49.126	-24.874	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook PC						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2437 MH	Z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
Peak Detector:							
4874.000	3.038	35.990	39.027	-34.973	74.000		
7311.000	11.795	33.810	45.604	-28.396	74.000		
9748.000	12.635	35.830	48.465	-25.535	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	5.812	35.220	41.031	-32.969	74.000		
7311.000	12.630	33.360	45.989	-28.011	74.000		
9748.000	13.126	35.300	48.426	-25.574	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Notebook PC						
Test Item	: Harmon	ic Radiated Emiss	sion Data				
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 2: Transmit (802.11g 6Mbps) (2462 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	_			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
4924.000	2.858	34.890	37.747	-36.253	74.000		
7386.000	12.127	33.710	45.838	-28.162	74.000		
9848.000	12.852	34.730	47.583	-26.417	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4924.000	5.521	34.590	40.110	-33.890	74.000		
7386.000	13.254	34.810	48.064	-25.936	74.000		
9848.000	13.367	35.510	48.877	-25.123	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
4824.000	3.261	35.530	38.791	-35.209	74.000
7236.000	10.650	34.340	44.990	-29.010	74.000
9648.000	13.337	36.040	49.376	-24.624	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	35.250	41.671	-32.329	74.000
7236.000	11.495	33.960	45.455	-28.545	74.000
9648.000	13.807	35.330	49.136	-24.864	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
4874.000	3.038	35.400	38.437	-35.563	74.000
7311.000	11.795	33.580	45.374	-28.626	74.000
9748.000	12.635	35.220	47.855	-26.145	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	35.480	41.291	-32.709	74.000
7311.000	12.630	34.050	46.679	-27.321	74.000
9748.000	13.126	34.860	47.986	-26.014	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
4924.000	2.858	34.640	37.497	-36.503	74.000
7386.000	12.127	33.810	45.938	-28.062	74.000
9848.000	12.852	35.070	47.923	-26.077	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	35.010	40.530	-33.470	74.000
7386.000	13.254	33.860	47.114	-26.886	74.000
9848.000	13.367	35.220	48.587	-25.413	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2422MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
4844.000	3.171	34.950	38.121	-35.879	74.000
7266.000	11.162	34.590	45.752	-28.248	74.000
9688.000	12.964	35.210	48.175	-25.825	74.000
Average Detector:					
Vertical					
Peak Detector:					
4844.000	6.178	35.070	41.248	-32.752	74.000
7266.000	11.982	34.420	46.402	-27.598	74.000
9688.000	13.507	35.270	48.778	-25.222	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Noteboo Harmon No.3 O/ Mode 43 	ok PC ic Radiated Emissic ATS Transmit (802.11n	on Data MCS0 15Mbps 40	M-BW) (2437 MH	(z)
Frequency	Correct	Reading	Measuremer	nt Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4874.000	3.038	35.630	38.667	-35.333	74.000
7311.000	11.795	34.070	45.864	-28.136	74.000
9748.000	12.635	34.980	47.615	-26.385	74.000
Average Detector	:				
Vertical					
Peak Detector:					
4874.000	5.812	35.610	41.421	-32.579	74.000
7311.000	12.630	34.440	47.069	-26.931	74.000
9748.000	13.126	35.570	48.696	-25.304	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Notebook PCHarmonic Radiated Emission Data						
Test Item							
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2452 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	C			
MHz	dB	dBμV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
4904.000	2.914	34.970	37.885	-36.115	74.000		
7356.000	11.995	33.610	45.604	-28.396	74.000		
9808.000	12.475	35.110	47.585	-26.415	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4904.000	5.530	34.730	40.261	-33.739	74.000		
7356.000	13.005	33.910	46.914	-27.086	74.000		
9808.000	12.901	35.110	48.011	-25.989	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)(2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
150.280	-7.870	48.856	40.986	-2.514	43.500
241.460	-6.590	39.843	33.253	-12.747	46.000
390.840	0.962	39.000	39.962	-6.038	46.000
516.940	3.200	36.230	39.430	-6.570	46.000
800.180	6.417	29.640	36.057	-9.943	46.000
972.840	7.189	26.436	33.625	-20.375	54.000
Vertical					
241.460	-6.000	39.375	33.375	-12.625	46.000
379.200	0.881	37.393	38.274	-7.726	46.000
536.340	1.609	26.399	28.008	-17.992	46.000
722.580	-0.757	32.153	31.396	-14.604	46.000
821.520	3.036	22.243	25.279	-20.721	46.000
924.340	3.149	32.288	35.437	-10.563	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	Notebook PC
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)(2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
231.760	-8.217	46.715	38.498	-7.502	46.000
336.520	-3.399	32.471	29.072	-16.928	46.000
538.280	3.316	21.392	24.708	-21.292	46.000
691.540	3.722	27.409	31.131	-14.869	46.000
815.700	6.451	25.715	32.166	-13.834	46.000
1000.000	9.564	34.309	43.873	-10.127	54.000
Vertical					
179.380	-0.824	36.621	35.797	-7.703	43.500
297.720	-4.356	34.010	29.654	-16.346	46.000
394.720	-1.697	30.249	28.552	-17.448	46.000
600.360	1.302	24.548	25.850	-20.150	46.000
769.140	2.558	28.434	30.992	-15.008	46.000
885.540	1.322	30.454	31.776	-14.224	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	Notebook PC
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
239.520	-6.878	45.270	38.392	-7.608	46.000
371.440	0.860	30.019	30.879	-15.121	46.000
501.420	2.019	34.009	36.028	-9.972	46.000
652.740	1.899	27.613	29.512	-16.488	46.000
802.120	6.356	26.815	33.171	-12.829	46.000
943.740	6.843	29.324	36.167	-9.833	46.000
Vertical					
237.580	-6.537	45.880	39.343	-6.657	46.000
396.660	-2.039	33.068	31.029	-14.971	46.000
526.640	1.152	24.654	25.806	-20.194	46.000
687.660	2.292	29.681	31.973	-14.027	46.000
842.860	2.378	25.806	28.184	-17.816	46.000
970.900	2.967	29.842	32.809	-21.191	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	Notebook PC
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
239.520	-6.878	45.070	38.192	-7.808	46.000
390.840	0.962	32.229	33.191	-12.809	46.000
518.880	3.203	25.156	28.359	-17.641	46.000
679.900	2.823	27.935	30.758	-15.242	46.000
844.800	6.442	28.667	35.109	-10.891	46.000
972.840	7.189	29.088	36.277	-17.723	54.000
Vertical					
239.520	-6.138	43.870	37.732	-8.268	46.000
381.140	0.816	30.023	30.839	-15.161	46.000
513.060	0.436	26.977	27.413	-18.587	46.000
652.740	-3.101	32.113	29.012	-16.988	46.000
802.120	2.966	28.315	31.281	-14.719	46.000
947.620	3.231	34.385	37.616	-8.384	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.
5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty

Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

Product	:	Notebook PC
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Channel 06 (2437MHz)

Product	:	Notebook PC
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz)

Channel 11 (2462MHz)

Product	:	Notebook PC
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel 01 (2412MHz)

Channel 06 (2437MHz)

Channel 11 (2462MHz)

Product	:	Notebook PC
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel 01 (2422MHz)

Channel 04 (2437MHz)

Channel 07 (2452MHz)

6. Band Edge

6.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct., 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar., 2015
	X Horn Antenna		Schwarzbeck	BBHA9170/209	Jan., 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug., 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan., 2015
	X Pre-Amplifier		MITEQ	JS41-001040000-58-5P/153945	Jul., 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul., 2014

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

6.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2385.800	1.845	57.047	58.892	74.00	54.00	Pass
01 (Peak)	2390.000	1.841	53.796	55.637	74.00	54.00	Pass
01 (Peak)	2400.000	1.828	62.103	63.931			
01 (Peak)	2412.000	1.921	103.908	105.829			
01 (Average)	2386.700	1.844	49.976	51.820	74.00	54.00	Pass
01 (Average)	2390.000	1.841	45.056	46.897	74.00	54.00	Pass
01 (Average)	2400.000	1.828	55.881	57.709			
01 (Average)	2411.400	1.915	101.521	103.436			

Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2388.900	1.842	53.517	55.359	74.00	54.00	Pass
01 (Peak)	2390.000	1.841	51.401	53.242	74.00	54.00	Pass
01 (Peak)	2400.000	1.828	57.359	59.187			
01 (Peak)	2412.100	1.922	100.104	102.026			
01 (Average)	2386.200	1.845	46.005	47.850	74.00	54.00	Pass
01 (Average)	2390.000	1.841	42.709	44.550	74.00	54.00	Pass
01 (Average)	2400.000	1.828	50.629	52.457			
01 (Average)	2411.400	1.915	97.763	99.678			

VERTICAL (Peak)

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	(dBµV/m)	$(dB\mu V/m)$	Result
11 (Peak)	2461.100	2.047	100.759	102.806			
11 (Peak)	2483.500	2.253	46.038	48.290	74.00	54.00	Pass
11 (Peak)	2485.900	2.272	47.118	49.390	74.00	54.00	Pass
11 (Average)	2462.700	2.063	99.235	101.299			
11 (Average)	2483.500	2.253	43.388	45.640	74.00	54.00	Pass
11 (Average)	2486.000	2.272	44.015	46.288	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2461.700	2.053	102.955	105.008			
11 (Peak)	2483.500	2.253	52.289	54.541	74.00	54.00	Pass
11 (Peak)	2490.600	2.309	53.073	55.382	74.00	54.00	Pass
11 (Average)	2462.700	2.063	94.876	96.940			
11 (Average)	2483.500	2.253	40.429	42.681	74.00	54.00	Pass
11 (Average)	2486.100	2.274	40.632	42.905	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

RF Radiated Measurement (Horizontal):

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	$(dB\mu V/m)$	Result
01 (Peak)	2389.000	1.842	64.565	66.407	74.00	54.00	Pass
01 (Peak)	2390.000	1.841	62.961	64.802	74.00	54.00	Pass
01 (Peak)	2400.000	1.828	76.669	78.497			
01 (Peak)	2417.500	1.977	104.245	106.223			
01 (Average)	2390.000	1.841	48.081	49.922	74.00	54.00	Pass
01 (Average)	2400.000	1.828	55.899	57.727			
01 (Average)	2417.400	1.977	95.484	97.460			

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2389.200	1.842	59.251	61.093	74.00	54.00	Pass
01 (Peak)	2390.000	1.841	56.566	58.407	74.00	54.00	Pass
01 (Peak)	2400.000	1.828	71.815	73.643			
01 (Peak)	2418.200	1.985	99.896	101.881			
01 (Average)	2390.000	1.841	43.928	45.769	74.00	54.00	Pass
01 (Average)	2400.000	1.828	51.373	53.201			
01 (Average)	2417.300	1.976	91.180	93.155			

Figure Channel 01:

VERTICAL (Peak)

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2455.200	1.999	99.422	101.421			
11 (Peak)	2483.500	2.253	55.402	57.654	74.00	54.00	Pass
11 (Peak)	2485.200	2.267	56.069	58.335	74.00	54.00	Pass
11 (Average)	2456.100	1.992	90.697	92.690			
11 (Average)	2483.500	2.253	42.761	45.013	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2455.200	1.999	99.184	101.183			
11 (Peak)	2483.500	2.253	55.036	57.288	74.00	54.00	Pass
11 (Peak)	2484.600	2.261	56.041	58.302	74.00	54.00	Pass
11 (Average)	2456.100	1.992	90.482	92.475			
11 (Average)	2483.500	2.253	42.493	44.745	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2390.000	1.841	63.756	65.597	74.00	54.00	Pass
01 (Peak)	2400.000	1.828	76.212	78.040			
01 (Peak)	2417.600	1.979	103.028	105.007			
01 (Average)	2390.000	1.841	45.855	47.696	74.00	54.00	Pass
01 (Average)	2400.000	1.828	53.418	55.246			
01 (Average)	2417.500	1.977	94.231	96.209			

Figure Channel 01:

Horizontal (Peak)

Figure Channel 01:

Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2388.300	1.843	57.895	59.737	74.00	54.00	Pass
01 (Peak)	2390.000	1.841	57.604	59.445	74.00	54.00	Pass
01 (Peak)	2400.000	1.828	72.940	74.768			
01 (Peak)	2408.800	1.890	99.154	101.044			
01 (Average)	2390.000	1.841	43.605	45.446	74.00	54.00	Pass
01 (Average)	2400.000	1.828	51.046	52.874			
01 (Average)	2417.500	1.977	90.067	92.045			

Figure Channel 01:

VERTICAL (Peak)

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2458.700	2.021	101.113	103.134			
11 (Peak)	2483.500	2.253	57.027	59.279	74.00	54.00	Pass
11 (Peak)	2485.200	2.267	61.047	63.313	74.00	54.00	Pass
11 (Average)	2456.200	1.993	92.042	94.036			
11 (Average)	2483.500	2.253	44.736	46.988	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2458.700	2.021	98.440	100.461			
11 (Peak)	2483.500	2.253	54.360	56.612	74.00	54.00	Pass
11 (Peak)	2484.900	2.264	56.109	58.373	74.00	54.00	Pass
11 (Average)	2456.200	1.993	89.384	91.378			
11 (Average)	2483.500	2.253	42.425	44.677	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

:	Notebook PC
:	Band Edge Data
:	No.3 OATS
:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)
	:

RF Radiated Measurement (Horizontal):

Channal Ma	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	(dBµV/m)	$(dB\mu V/m)$	Result
03 (Peak)	2385.800	1.845	57.214	59.059	74.00	54.00	Pass
03 (Peak)	2390.000	1.841	56.069	57.910	74.00	54.00	Pass
03 (Peak)	2400.000	1.828	72.737	74.565			
03 (Peak)	2419.700	2.000	96.265	98.265			
03 (Average)	2390.000	1.841	44.671	46.512	74.00	54.00	Pass
03 (Average)	2400.000	1.828	49.409	51.237			
03 (Average)	2420.400	2.007	86.724	88.731			

Figure Channel 03:

Horizontal (Peak)

Figure Channel 03:

Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBµV)	(dBµV/m)	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
03 (Peak)	2388.500	1.842	57.255	59.097	74.00	54.00	Pass
03 (Peak)	2390.000	1.841	55.766	57.607	74.00	54.00	Pass
03 (Peak)	2400.000	1.828	72.146	73.974			
03 (Peak)	2438.500	2.182	95.955	98.136			
03 (Average)	2390.000	1.841	44.734	46.575	74.00	54.00	Pass
03 (Average)	2400.000	1.828	48.771	50.599			
03 (Average)	2436.400	2.171	86.902	89.073			

Figure Channel 03:

VERTICAL (Peak)

Figure Channel 03:

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2452MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
09 (Peak)	2437.100	2.178	95.321	97.499			
09 (Peak)	2483.500	2.253	54.437	56.689	74.00	54.00	Pass
09 (Peak)	2488.000	2.288	55.499	57.788	74.00	54.00	Pass
09 (Average)	2436.000	2.167	86.447	88.614			
09 (Average)	2483.500	2.253	42.475	44.727	74.00	54.00	Pass

Figure Channel 09:

Horizontal (Peak)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Notebook PC
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2452MHz)

Channel No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
09 (Peak)	2449.700	2.059	95.382	97.441			
09 (Peak)	2483.500	2.253	55.058	57.310	74.00	54.00	Pass
09 (Peak)	2487.100	2.281	55.219	57.500	74.00	54.00	Pass
09 (Average)	2437.200	2.180	86.085	88.264			
09 (Average)	2483.500	2.253	43.426	45.678	74.00	54.00	Pass

Figure Channel 09:

VERTICAL (Peak)

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2014; tested according to DTS test procedure of Jan KDB558074 for compliance to FCC 47CFR 15.247 requirements.

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	Notebook PC
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
01	2412	10200	>500	Pass
06	2437	10200	>500	Pass
11	2462	10200	>500	Pass

Figure Channel 01:

Agilen	nt Spe	ctrun	n Ana	alyzer - Swe	pt SA									
Cen	ter	Fre	RF eq 2	50 Ω 2.41200	AC	Iz	 Trig: Fre	NSE:INT	Avg Ty	ALIGN: /pe: Log	AUTO -Pwr	05:10:55 Pf TRAC TYF	4 May 06, 2015 E 1 2 3 4 5 6 E M WWWWWW	Frequency
10 d	Ref Offset 0.5 dB Ref 20.50 dBm							0 dB			Mkr	2 2.406 -4.5	90 GHz 50 dBm	Auto Tune
Log 10.5 0.500 -9.50							2 ADDRAGE	Lacon	3				-2.89 dBm	Center Freq 2.412000000 GHz
-19.5 -29.5 -39.5				and put	Man del	A C C C C C C C C C C C C C C C C C C C			- Vy		م	my mm		Start Freq 2.387000000 GHz
-49.5 -59.5 -69.5	سر ^{الوم} يد	ᡐ᠇ᢇᢦ		ми» <u>V</u>								<u> </u>	Barton Analon	Stop Freq 2.437000000 GHz
Cen #Re	ter : s Bl	2.41 N 1	20 00	0 GHz kHz	1	#VBI	W 300 kHz	·		Swe	ep 4.	Span 5 800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
■KF 1 2 3 4 5 6 7 8 9 10 11	MODE N N	TRC 1 1	f f		× 2.412 5 2.406 9 2.417 1	0 GHz 0 GHz 0 GHz	¥ 3.11 d -4.50 d -3.59 d	Bm Bm Bm Bm		FUNCTION	WIDTH	FUNCTIO		Freq Offset 0 Hz
MSG							Ш				STATUS			

						0						
Agilent	Spectru	ın An	alyzer - Swe	ept SA								
LXI RL		RF	50 Ω	AC		SE	NSE:INT		ALIGN AUTO	05:15:07 P	M May 06, 2015	_
Cent	er Fr	ea 2	2.43700	00000 GH	z			Avg Ty	pe: Log-Pwr	TRA	CE 1 2 3 4 5 6	Frequency
				PI	NO: Fast 🔾	Trig: Fre	e Run			TY	PE MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
				IFO	Gain:Low	#Atten: J	U dB			Đ		Auto Tupo
		Dof		러모					Mk	r2 2.431	90 GHz	Auto Tune
10 dB	/div	Rei	f 20.50 c	dBm						-2.	18 dBm	
Log							. 1					
10.5 -						+	₽—	- 2	_			Center Fred
0.500						1 marine	maria	. () ³			-0.53 dBm	2 437000000 CH
0.000 =					000	1	Y	M				2.437000000 GH2
-9.50 -					NON-	<u>۷</u>		V V	-	-		
-19.5 -					s.				۹	_		
20.5					5				J			StartFree
-29.5 -												2.412000000 GHz
-39.5 -			MM	My MI		-			1 Corport	and burn		
-49.5 🚧		mel	w v	June 1					A	Viry	Mary James	
50.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										-VUIN -	Stop Fred
-59.5 -												2 462000000 GHz
-69.5 -												2.40200000 0112
I L												
Cente	er 2.4	370	0 GHz							Span 5	0.00 MHz	CF Step
#Res	BW	100	kHz		#VB۱	N 300 kHz	:		Sweep	4.800 ms (1001 pts)	5.000000 MHz
MKBI MI	ODEL TR	ri sri		×		Y	3		UNCTION WIDT	ELINICTI		<u>Auto</u> Man
	N 1	f		2 437 5	0 GHz	5 47 d	Bm		onemon with	Tonern		
<u>2</u> i	N 1	f		2.431 9	0 GHz	-2.18 d	Bm					
3 1	N 1	f		2.442 1	0 GHz	-1.23 d	Bm					Freq Offset
4		-										0 Hz
6		-								-	=	1
7												
8	_											
10		+								+		
11		+								-	~	
<											>	
MSG									STAT	US		

Figure Channel 06:

Figure Channel 11:

Agilent Spec	trum Analyzer -	Swept SA								
🕅 RL Center I	RF 50 Freq 2.462	ΩΩ AC	lz	SENS	SE:INT	Avg Type	ALIGNAUTO	05:19:05 PM TRAC	4 May 06, 2015 E 1 2 3 4 5 6	Frequency
	Ref Offset	0.5 dB	10: Fast 🕞 Jain:Low	#Atten: 30	dB		2 2.456	90 GHz	Auto Tune	
10 dB/div Log 10.5 0.500		<u>) dBm</u>		2 ADDAW WY		3			-3.25 dBm	Center Freq 2.462000000 GHz
-19.5 -29.5 -39.5							- mar			Start Freq 2.437000000 GHz
-49.5 -59.5	way to be a second and	manador V							anthe an article	Stop Freq 2.487000000 GHz
Center 2 #Res BV	2.46200 GHz N 100 kHz	· · · · · · · · · · · · · · · · · · ·	#VBW	/ 300 kHz			Sweep 4.	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
Land Land <thland< th=""> Land Land <thl< td=""><td>Itic Sur 1 f 1 f 1 f - - - - - -</td><td>2.461 50 2.456 90 2.467 10</td><td>2 GHz 2 GHz 0 GHz </td><td>2.75 dB -4.74 dB -3.84 dB</td><td></td><td></td><td></td><td></td><td></td><td>Freq Offset 0 Hz</td></thl<></thland<>	Itic Sur 1 f 1 f 1 f - - - - - -	2.461 50 2.456 90 2.467 10	2 GHz 2 GHz 0 GHz 	2.75 dB -4.74 dB -3.84 dB						Freq Offset 0 Hz
MSG				Ш			STATUS	3		

:	Notebook PC
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)
	: : :

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
01	2412	16650	>500	Pass
06	2437	16700	>500	Pass
11	2462	16700	>500	Pass

Figure Channel 01:

Agiler	nt Spec	ctrum	n Ana	alyzer - Swe	ept SA											
KAL R Cen	L Iter	Fre	RF	50 Ω 2.41200		iHz			ISE:INT	Avg	A Type:	LIGNAUTO Log-Pwr	05:23:02 P	M May 06, 2015 E 1 2 3 4 5	6	Frequency
10 d	B/div		Ref	Offset 0.5	i dB	PNO: Fas FGain:Lo	st 🖵 w	Trig: Free #Atten: 30	⊧Run)dB			Mkr	۳ 2 2.403 -9.2	70 GHz		Auto Tune
Log 10.5 0.500 -9.50						²	2	ant and the second	more	A manage	3 3			-9.25 dBr		Center Freq 2.412000000 GHz
-19.5 -29.5 -39.5				man	myhuman						4 4 4	and the set of the set	moth Vised and			Start Freq 2.387000000 GHz
-49.5 -59.5 -69.5			<u>I</u> MUA A											<u>[]]1490000</u> [ee]		Stop Freq 2.437000000 GHz
Cen #Re	ter 2 s Bl	2.41 N 10	20 00	0 GHz kHz		#\	vвw	300 kHz			s	weep 4	Span 5 .800 ms (0.00 MHz 1001 pts		CF Step 5.000000 MHz
1 2 3 4 5 6 7 8 9 10 11	MODE N N	1 1 1			× 2.416 2.403 2.420	<u>15 GHz</u> 70 GHz 35 GHz		-3.25 df -9.36 df -12.26 df	5 m 3 m 3 m	UNCTION			FUNCTI	DN VALUE		Freq Offset 0 Hz
MSG												STATUS	3			

8	
Spectrum Analyzer - Swept SA	
RF 50 Ω AC SENSE:INT ALIGN AUTO 05:27:21 PM May06, 2015 ier Freq 2.437000000 GHz Avg Type: Log-Pwr Trace [1 2 3 4 5 6] Frequencies DNO: East Trig: Free Run Trig: Pree Run Trig: Free Run	uency
IFGain:Low #Atten: 30 dB Mkr2 2 428 65 GH7 At	uto Tune
Ref Offset 0.5 dB Mdiv Ref 20.50 dBm -10.33 dBm	
1 Cer	nter Freq
2.43700	00000 GHz
	tart Fred
2.41200	00000 GHz
www.mww.tywww.audituk	
S a region	top Freq
	0000 GH2
er 2.43700 GHz Span 50.00 MHz s BW 100 kHz #VBW 300 kHz Sweep 4.800 ms (1001 pts) 5.00	CF Step
	Man
N 1 f 2.442 25 GHz -0.42 8Bm	ea Offset
	0 Hz
STATUS	

Figure Channel 06:

Figure Channel 11:

Agilent Spectrum Analyzer - Swept SA				
LXI RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	05:31:49 PM May 06, 2015	Fraguanay
Center Freq 2.462000000 GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
PNO: Fast 😱 IEGain: I ow	'Trig: Free Run #Atten: 30 dB		DET P N N N N N	
II GUILLON		Mike	2 2 452 65 CUT	Auto Tune
Ref Offset 0.5 dB		IVIKIA	-13 82 dBm	
			10.02 40.0	
10.5				Contor From
10.5				Center Freq
0.500				2.462000000 GHz
-9.50	and management and	company	-10.03 dBm	
107		Y		
-19.5				Start Freq
-29.5				2 437000000 GHz
-39.5		1 100 m		2.40.000000
and al walk of white mount		- MUL	Mun My Where Long	
-49.5 www.hap-19-19-19-19-19-19-19-19-19-19-19-19-19-			- marinaut Myler	Stop Fred
-59.5				Stopried
-69.5				2.487000000 GHz
-05.5				
Center 2 46200 GHz	I		Spap 50 00 MHz	05.010
#Pas BW 100 kHz #VBW	300 kHz	Sween /	800 mc (1001 ntc)	CF Step
#Res BW TOO KITZ #YBW	J00 K112		800 ms (1001 prs)	5.000000 WIH2
MKR MODE TRC SCL X	Y FUN	CTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mail
1 N 1 f 2.455 15 GHz	-4.03 dBm			
2 N 1 f 2.453 65 GHz	-13.82 dBm			Erog Offect
A 1 F 2.470 30 GHZ	-13.30 dbm			Flequise
5			=	0 Hz
6				
				l
10				l I
11			~	
<				1
P				

Product	:	Notebook PC
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
01	2412	17850	>500	Pass
06	2437	17800	>500	Pass
11	2462	17850	>500	Pass

Figure Channel 01:

Agiler	nt Spe	ctrum	i Ana	lyzer - Swe	pt SA								
ιxı Cen	L Iter	Fre	RF q2	50 Ω 2.41200	AC 0000 GH	łz	SE Tria: Eno		Avg Ty	ALIGNAUTO	05:36:11 P TRA	M May 06, 2015 E 1 2 3 4 5 6	Frequency
10 d	B/div	,	Ref Ref	Offset 0.5 20.50 c	dB IBm	NO: Fast 🤇 Gain:Low	Atten: 3	0 dB		Mk	r2 2.403 -10.	10 GHz 68 dBm	Auto Tune
Log 10.5 0.500 -9.50						↓ ² ~~~	1 Virminum		von neuron von f	3		-9.92 dBm	Center Freq 2.412000000 GHz
-19.5 -29.5 -39.5					and town of the second of the	de la constante				Man and a start	Margaretter .		Start Freq 2.387000000 GHz
-49.5 -59.5 -69.5	iqwel ^{ft}	hypeleg ^{all}	(Let	244/rda								AND, Addrew Control	Stop Freq 2.437000000 GHz
Cen #Re	ter (s B)	2.41 N/1	200 00) GHz KHz	×	#VB	W 300 kHz			Sweep 4	Span 5 1.800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11	N N N		f f		2.406 6 2.403 1 2.420 9	5 GHz 0 GHz 5 GHz	3.92 d -10.68 d -11.43 d	Bm Bm Bm					Freq Offset 0 Hz
MSG										STATU	IS		

						0						
Agile	nt Spec	trum A	nalyzer - Sw	rept SA								
l,Xi R	L	R	F 50 Ω	AC	-	SEI	ISE:INT		ALIGN AUTO	05:40:20 Pf	4 May 06, 2015	Frequency
Cer	nter l	Freq	2.4370	00000 GH	z	Tria: Free	Run	Avg Type	e: Log-Pwr	TRAC TYI) ⁾ Е 1 2 3 4 5 6 РЕМ ИМИМИ	Trequency
				IFO	Gain:Low	#Atten: 3) dB			DI	T P N N N N N	
		_							Mkr	2 2 4 2 8	15 GHz	Auto Tune
10 d	Bidiv	Re	ef Offset 0. of 20 50	5 dB dBm						-6.8	B2 dBm	
Lõg		- N	20.00									
10.5						1						Center Freq
0.500					 2(\						2.437000000 GHz
-9.50					mm	www.	magnin	married.			-6.82 dBm	
10.00					1			L A				
-19.5					Ý			1	1			Start Freq
-29.5									Mr. North			2.412000000 GHz
-39.5			o- the second	and boomsteries					"Yanto	NNNNo-JAKAN, MI		
-49.5	bornintr	-populor	Complete a	•						- In the state of the	mar hours	
E0 E												Stop Freq
-59.5												2.462000000 GHz
-69.5												
Cor	tor 2	127								Enon 6	0.00 MHz	
ucei #Re	s Bl	4.437 V 100	00 GHZ) kH7		#\/R\/	(300 kHz			Sween 4	300 ms (0.00 Minz 1001 nts)	CF Step
<i></i>			7 1112			1 000 1012			04000 4	.000 110 (1001 pts)	Auto Man
MKE	MODE	TRC SO	1	X 0.424.6		Y 0.00 -!!	FUN	CTION FU!	NCTION WIDTH	FUNCTIO	IN VALUE	
2	N	$\frac{1}{1}$ f		2.4316	5 GHZ	-0.82 di -6.82 di	3m 3m					
3	N	1 f		2.445 9	5 GHz	-8.71 d	Зm					Freq Offset
4		_										0 Hz
6												
7												
8		-										
10												
11											<u> </u>	
									07471			
MSG									STATUS			

Figure Channel 06:

Figure Channel 11:

Agile	nt Spe	ctrur	n Ana	lyzer - Swej	ot SA								
Cer	L nter	Fre	RF eq 2	50 Ω 2.46200	AC 0000 GH	lz	Tuture	ENSE:INT	Avg Type	ALIGNAUTO e: Log-Pwr	05:50:39 P	M May 06, 2015 CE 1 2 3 4 5 6	Frequency
10 d	B/div	,	Ref Ref	Offset 0.5 20.50 d	dB Bm	NO: Fast Gain:Low	#Atten:	30 dB		Mkr	2 2.453 -10.	10 GHz 86 dBm	Auto Tune
Log 10.5 0.500 -9.50						¢ ² m	1	ne mano	man man and	3		-10.04 dBm	Center Freq 2.462000000 GHz
-19.5 -29.5 -39.5			- 1. 6 10	Munaperil	Matter or and a start					he was a wally	-		Start Freq 2.437000000 GHz
-49.5 -59.5 -69.5	John Vo	d-U-org	ada.		-							. walling alm to	Stop Freq 2.487000000 GHz
Cer #Re	nter : s B\ Minda	2.40 W 1	620 00	0 GHz kHz	×	#V	BW 300 KH	z		Sweep 4	Span 5 .800 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
1 3 4 5 6 7 8 9 10 11 <	N N N	1 1 1	f		2.456 6 2.453 1 2.470 9	5 GHz 0 GHz 5 GHz	-4.04 -10.86 -11.79	dBm dBm dBm					Freq Offset 0 Hz
MSG										STATU	6		5.4

Product	:	Notebook PC
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
03	2422	36700	>500	Pass
06	2437	36700	>500	Pass
09	2452	36700	>500	Pass

Figure Channel 03:

M RF SO G Center Freq 2.42200 Ref Offset 0. 10 dB/div Ref 20.50 10.5	AC	SENSE:INT	ALIGN AUTO	an all the second second h	
Ref Offset 0. 10 dB/div Ref Offset 0. 10 dB/div Ref 20.50 10.5				05:54:41 PM May 06, 2015	Erequency
Ref Offset 0. 10 dB/div Ref 20.50 10.5 0.50 -9.50 -9.5 -29.5 -39.5 -49.5 -59.5 -69.5	DOOOO GHZ PNO: Fast IFGain:Low	5 Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
Log 10.5 -9.50 -9.50 -9.5 -39.5 -39.5 -49.5 -59.5 -69.5	.5 dB dBm		Mk	(r2 2.403 7 GHz -15.75 dBm	Auto Tuno
9.50 -19.5 -29.5 -39.5 -49.5 -59.5 -69.5	<u> </u>				Center Free 2.422000000 GH
-49.5 -59.5 -69.5			3 	14.80 dBm	Start Fre 2.372000000 GH
				*1284-1286-1243481 - ***********************************	Stop Fre 2.472000000 GH
Center 2.42200 GHz #Res BW 100 kHz	#VBW	/ 300 kHz	Sweep 9	Span 100.0 MHz J.600 ms (1001 pts)	CF Ste 10.000000 MH
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4	X 2.424 1 GHz 2.403 7 GHz 2.440 4 GHz				Freq Offs 0 H
WSG			STATU	s	

			8					
Agilent Spect	rum Analyzer - Sw	vept SA						
Center F	req 2.4370	2 AC 00000 GHz	SENSE:	INT Avg Typ	ALIGNAUTO e: Log-Pwr	05:58:41 Pf TRAC TY	M May 06, 2015	Frequency
		PNO: Fast IFGain:Lov	#Atten: 30 d	B		D	T P N N N N N	Auto Tun
10 dB/div	Ref Offset 0. Ref 20.50	5 dB dBm			M	kr2 2.418 -12.8	3 7 GHz 83 dBm	
10.5								Center Free
0.500		¢2	- marine and	1	3		11.60 dBm	2.437000000 GH
-19.50					Ŷ		-11.05 (1011)	
-29.5		-			L. L.		0	Start Free 2.387000000 GH
-39.5	maninamatin	and all var wards			Mary Mary	-leavely web whether	mouse	
-59.5								Stop Fre
-69.5								2.487000000 GH
Center 2. #Res BW	43700 GHz 100 kHz	#\	/BW 300 kHz		Sweep (Span 1 9.600 ms (00.0 MHz 1001 pts)	CF Ste 10.000000 MH
MKR MODE T	RC SCL	X 2 /39 1 CHz	Y 5.69 dBm	FUNCTION FU	NCTION WIDTH	FUNCTIO		<u>Auto</u> Ma
2 N 3 N	1 f 1 f	2.455 1 GHz 2.418 7 GHz 2.455 4 GHz	-12.83 dBm -16.88 dBm					FreqOffse
5								он
7	2 8 8							
9								
10			Vin				<u> </u>	
MSG					STATU	s		10

Figure Channel 06:

Figure Channel 09:

Agilent Spect	trum Analyzer -	Swept SA								
X RL	RF 5	JOΩ AC		SENSF	E:INT	A	ALIGN AUTO	06:02:48 PM	4 May 06, 2015	Frequency
Center F	req 2.452	2000000 GH PT IFC	Z NO: Fast 😱 Sain:Low	Trig: Free F #Atten: 30	Run dB	Avg iype	: Log-Pwr	TYP	123456 PEMWWWWW TPNNNNN	
10 dB/div	Ref Offsel Ref 20.5	t0.5 dB 50 dBm					Mk	r2 2.433 -15.2	3 7 GHz 26 dBm	Auto Tuno
Log 10.5 0.500			•2		 1					Center Fre 2.452000000 GH
-9.50 -19.5 -29.5 -39.5									-14.68 dBm	Start Fre 2.402000000 GH
-49.5 -59.5 -69.5	Northeast Story Association	fl-oppy-s (landestander						her Marcon Lylled age	Hall and the second	Stop Fre 2.502000000 G⊦
Center 2. #Res BW	.45200 GH: / 100 kHz	z	#VBW	300 kHz			Sweep 9.	Span 1 600 ms (00.0 MHz 1001 pts)	CF Ste 10.000000 MH
MKR MODE T 1 N 4 3 N 4 5 6 7 8 9 10 10 11 4	FC SCL 1 f 1 f - - - - - - - - - - - - - -	× 2.455 5 2.433 7 2.470 4	5 GHz 7 GHz 1 GHz 	-3.68 dBn -15.26 dBn -20.11 dBn						Auto Ma Freq Offs 0 H
MSG							STATUS			

8. **Power Density**

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	Notebook PC
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
01	2412	3.040	< 8dBm	Pass
06	2437	5.480	< 8dBm	Pass
11	2462	2.780	< 8dBm	Pass

Figure Channel 01:

Agiler	it Spectru	m Analyzer - S	wept SA								
الا Cen	ter Fr	RF 50 eq 2.412	Ω AC DO0000 G	lz	SEN		Avg Type	ALIGN AUTO : Log-Pwr	05:11:12 PM TRAC	4 May 06, 2015 E 1 2 3 4 5 6	Frequency
10 di	3/div	Ref Offset(Ref 20.50).5 dB dBm	NO: Fast 🕞 Gain:Low	#Atten: 30) dB		Mkr1 2	.412 520 3.0	0 2 GHz 04 dBm	Auto Tune
Log 10.5						1					Center Freq 2.412000000 GHz
0.500 -9.50	product	~~~/	mhhh	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	jurn		www	~~~	Mary	Start Freq 2.404350000 GHz
-19.5 -29.5											Stop Freq 2.419650000 GHz
-39.5 -49.5											CF Step 1.530000 MHz <u>Auto</u> Man
-59.5											Freq Offset 0 Hz
-69.5 Cen	ter 2.4	12000 GH	Z	#1/5141	200 kU				Span 1	5.30 MHz	
#Re: ^{MSG}	s вw 1	UU KHZ		#VBW	300 KHZ			SWEED 1	.407 MS (1001 pts)	

					115		annei	00.			
Agiler	nt Spectru	um Analyzer - Sw	ept SA								
L XI R	L	RF 50 Ω	AC		SEI	ISE:INT		ALIGN AUTO	05:15:25 PM	4 May 06, 2015	Eregueney
Center Freq 2.437000000 GHz				Dun	Avg Type	: Log-Pwr	TRAC	E123456	Frequency		
			P	NO:Fast 🕞 Gain:Low	#Atten: 30) dB			DE	PNNNN	
								Mkr1 ⁴	2 / 36 / 9/	5.1.687	Auto Tune
40 -		Ref Offset 0.5	5 dB					INIKI I 2	5	48 dBm	
Log	Bialv	Rei 20.50 0				1			•		
											Center Fred
10.5					1						2 43700000 CH-
					♦'						2.437000000 GH2
0.000			n rar	mm	m	m	mm	m	л.		
0.500		- h /m	- Contraction			1		- Wa		0.0	Start Fred
	a M	$M \leq 1$				4				~~~~~	2 420350000 CH-
-9.50	14-	\neg							- W	~	2.429350000 GH2
-19.5											Stop Fred
											2 444650000 CU-
-29.5											2.444050000 GH2
-39.5											CF Step
-35.5											1.530000 MHz
10.5											<u>Auto</u> Man
-49.5											
											Fred Offset
-59.5											0 Hz
											0 112
-69.5											
Cen	ter 2.4	37000 GHz		<i>(</i>) () ()				_	Span 1	5.30 MHz	
#Re	S BW	100 KHZ		#VBW	300 kHz			sweep	1.467 ms (1001 pts)	
MSG								STATU	JS		

Figure Channel 06:

Figure Channel 11:

Agiler	Agilent Spectrum Analyzer - Swept SA										
R <mark>کرا</mark> Cer	∟ nter Fr	RF 50 Ω eq 2.4620	AC 00000 GH	lz			Avg Type	ALIGNAUTO :: Log-Pwr	05:19:23 PM TRAC	4 May 06, 2015 E 1 2 3 4 5 6	Frequency
10 di	B/div	Ref Offset 0. Ref 20.50	5 dB dBm	NO: Fast G	#Atten: 30) dB		Mkr1 2	.461 510 2.) 4 GHz 78 dBm	Auto Tune
10.5					1						Center Freq 2.462000000 GHz
0.500 -9.50	مسكمسه	m M	hant	ᠳ᠁ᠲ᠕ᢦᢛ	hal	part	han har and har	www	\sim	Mary	Start Freq 2.454350000 GHz
-19.5 -29.5											Stop Freq 2.469650000 GHz
-39.5											CF Step 1.530000 MHz <u>Auto</u> Man
-59.5											Freq Offset 0 Hz
-69.5 Cen	iter 2.4	62000 GHz							Span 1	5.30 MHz	
#Re ^{мsg}	s BW ′	100 kHz		#VBW	300 kHz			Sweep 1	.467 ms (1001 pts)	

Product	:	Notebook PC
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
01	2412	-3.290	< 8dBm	Pass
06	2437	-0.360	< 8dBm	Pass
11	2462	-4.090	< 8dBm	Pass

Figure Channel 01:

Agiten	t Spectrum A	nalyzer - Swo	ept SA								
LXI RL	- R	F 50 Ω	AC		SEM	ISE:INT		ALIGN AUTC	05:23:19 P	И Мау 06, 2015	Frequency
Cen	ter Freq	2.41200	00000 GH	z	Tria: Eroz	Dun	Avg Type	: Log-Pwi	r TRAG		riequency
10 dE	Re 3/div R e	f Offset 0.5	odB JBm	NO: Fast 🕞 Gain:Low	#Atten: 30) dB		Mkr	1 2.416 1 -3.	71 GHz 29 dBm	Auto Tune
Log 10.5											Center Freq 2.412000000 GHz
0.500 -9.50		, m	prolonio m	mumumm	man	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>የ</u> ምላለመንድ አሳ	inny		Start Freq 2.399512500 GHz
-19.5 -29.5		and the second sec								March 1	Stop Freq 2.424487500 GHz
-39.5	al and and									Mary No.	CF Step 2.497500 MHz <u>Auto</u> Man
-59.5											Freq Offset 0 Hz
-69.5 Cent	ter 2.4120	00 GHz		#\(B))	200 kHz				Span 2	4.98 MHz	
#Res MSG	5 044 100	KIIZ		#VBW	JUU KHZ			Sweep STAT	2.400 MS (1001 pts)	

					5		anner	001				
Agiler	nt Spectri	um Analyzer - Sw	ept SA									
<mark>ж</mark> к Cen	ter Fr	RF 50 Ω req 2.4370	AC 00000 G	Hz	SEM		Avg Type	ALIGN AUTO E: Log-Pwr	05:27:38 Pf TRAC	May 06, 2015	Frequency	
			I	PNO: Fast 🕞 -Gain:Low	#Atten: 30) dB		BAland	DI		Auto Tune	
10 di	3/div	Ref Offset 0.9 Ref 20.50	5 dB dBm					WIKFI	2.430 1	-0.36 dBm		
10.5											Center Freq	
0.500			● ¹								2.437000000 GHz	
-9.50		land land	mun	warm	Manna	mm	man	www.	m		Start Freq 2.424475000 GHz	
-19.5									L.		Stop Freg	
-29.5	أمر	v.M.							نىرىر	Mr.	2.449525000 GHz	
-39.5	M. M.									"M	CF Step 2.505000 MHz	
-49.5											<u>Auto</u> Man	
-59.5											Freq Offset 0 Hz	
-69.5												
Cen #Re	ter 2.4 s BW	3700 GHz 100 kHz		#vbw	300 kHz		<u> </u> :	Sweep 2	Span 2 .400 ms (5.05 MHz 1001 pts)		
MSG								STATUS	3			

Figure Channel 06:

Figure Channel 11:

Agilen	t Spectru	ım Analyzer - Sw	ept SA								
Cen	ter Fr	RF 50 Ω eq 2.46200	AC 00000 GH	lz	SB		Avg Type	ALIGNAUTO : Log-Pwr	05:32:06 Pf TRAC	May 06, 2015	Frequency
10 dE	3/div	Ref Offset 0. Ref 20.50	5 dB d Bm	NO: Fast 🕞 Gain:Low	#Atten: 30) dB		Mkr1	2.455 1 -4.	36 GHz 09 dBm	Auto Tune
10.5											Center Freq 2.462000000 GHz
0.500 -9.50		Joni	1 ymlwparm	a Mana	mann	promotion	manyou	mayon	m		Start Freq 2.449475000 GHz
-19.5 -29.5		and a second sec							h h	M.	Stop Freq 2.474525000 GHz
-39.5 -49.5	a grand a grand a									- Arman -	CF Step 2.505000 MHz <u>Auto</u> Man
-59.5											Freq Offset 0 Hz
-69.5 Cen	ter 2.4	6200 GHz							Span 2	5.05 MHz	
#Re: ^{мsg}	s BW 1	100 kHz		#VBW	300 kHz			Sweep 2	.400 ms (1001 pts)	

Product	:	Notebook PC
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
01	2412	-3.900	< 8dBm	Pass
06	2437	-0.870	< 8dBm	Pass
11	2462	-4.080	< 8dBm	Pass

Figure	Channel	01:
--------	---------	-----

Agilen	t Spectru	m Analyzer - Sw	ept SA								
Cen	ter Fre	RF 50 Ω eq 2.4120	AC D0000 GH	Hz	SEN		Avg Type	ALIGNAUTO : Log-Pwr	05:36:29 Pf TRAC	4 May 06, 2015 E 1 2 3 4 5 6	Frequency
10 dE	3/div	Ref Offset 0.9 Ref 20.50	P IF 5 dB dBm	NO: Fast 🕞 Gain:Low	#Atten: 30	dB		Mkr1	2.406 6 -3.	45 GHz 90 dBm	Auto Tune
10.5											Center Freq 2.412000000 GHz
0.500 -9.50		/v^/^	phylonethop the	1 \v&wvymA	mmmy	mmmm	and Araaanse		My		Start Freq 2.398612500 GHz
-19.5 -29.5		N N N							h No		Stop Freq 2.425387500 GHz
-39.5	www.	and the second s								WWW Promer	CF Step 2.677500 MHz <u>Auto</u> Man
-59.5											Freq Offset 0 Hz
-69.5											
Cen #Res	ter 2.4' s BW 1	1200 GHz 00 kHz		#VBW	300 kHz			Sweep 2	Span 2 600 ms (6.78 MHz 1001 pts)	
MSG								STATUS	S		

					8						
Agilen	t Spectrum	n Analyzer - Swe	ept SA								
l,XI R	L	RF 50 Ω	AC		SEN	ISE:INT		ALIGN AUTO	05:40:37 PM	4 May 06, 2015	-
Cen	ter Fre	q 2.43700	0000 GH	z]	_	Avg Type	: Log-Pwr	TRAC	E123456	Frequency
		•	P	NO: Fast 🔾	Trig: Free	Run			DE		
			IFC	jain:Low	#Atten: 30						
	F	Ref Offset 0 5	dB					Mkr1 2	.431 633	3 3 GHz	Autorune
10 di	B/div I	Ref 20.50 c	1Bm						-0.3	87 dBm	
Log											
											Center Freq
10.5											2 437000000 CH-
											2.437000000 GHZ
				1							
0.500											
		n	Murany	\mathcal{M}	many	Warward	Mr. Munda	Marin M.	12hy		Start Freq
-9.50						1					2.423650000 GHz
						ļ					
		5							3		
-19.5		N ¹							4		Stop Freq
		م ¹ م							Ч ₁ .		2.450350000 GHz
-29.5		A							ν _ν	P1.	
	N. 1	°								Wm	
20.5	and No.									When	CF Step
-39.5										• •	2.670000 MHz
											<u>Auto</u> Man
-49.5											
-59.5											Freq Offset
55.5											0 Hz
-69.5											
Cen	ter 2.43	700 GHz							Span 2	6.70 MHz	
#Re	s BW 10	00 kHz		#VBW	300 kHz		;	Sweep 2	.600 ms (1001 pts)	
MSG								STATUS	5		C

Figure Channel 06:

Figure Channel 11:

Agilent	t Spectru	m Analyzer - Sw	ept SA								
Cent	ter Fre	RF 50 Ω ∋q 2.46200	AC 00000 GH	z	SEN	SE:INT	Avg Type	ALIGNAUTO : Log-Pwr	05:50:56 F	M May 06, 2015 CE 1 2 3 4 5 6	Frequency
10 dE	S/div	Ref Offset 0.5 Ref 20.50 (P IF(5 dB d Bm	NO: Fast 🖵 Gain:Low	#Atten: 30	dB		Mkr	1 2.456 (-4.	618 GHz 08 dBm	Auto Tune
10.5											Center Frec 2.462000000 GHz
0.500 -9.50		M	Mymerwynn	1	Mary Mary May	mann	ward ward	man	rm		Start Fred 2.448612500 GHz
-19.5 -29.5		nown							h ku		Stop Frec 2.475387500 GHz
-39.5 -49.5	Martin									Martin a	CF Step 2.677500 MHz <u>Auto</u> Mar
-59.5											Freq Offse 0 Hz
Cent #Res	er 2.40 8 BW 1	6200 GHz 00 kHz		#VBW	300 kHz			Sweep	Span 2 2.600 ms	26.78 MHz (1001 pts)	

Product	:	Notebook PC
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
03	2422	-8.900	< 8dBm	Pass
06	2437	-5.700	< 8dBm	Pass
09	2452	-8.790	< 8dBm	Pass

rigure Channel 03.	Figure	Channel	03:
--------------------	--------	---------	-----

								ept SA	n Analyzer - Sw	nt Spectru	Agiler
Frequency	4 May 06, 2015	05:54:59 Pf	ALIGN AUTO	A	SENSE:INT	SEI		AC	RF 50 Ω	L	LXI R
,	E P N N N N N	TYI	e: Log-Pwr	Avgiy	ree Run : 30 dB	Trig: Fre #Atten: 3	FHZ PNO: Fast 😱 IFGain:Low	00000 G	q 2.42200	iter Fr	Cer
Auto Tune	38 GHz 90 dBm	r1 2.435 -8.	Mk					5 dB d Bm	Ref Offset 0.5 Ref 20.50 (B/div	10 di
Center Fred 2.422000000 GHz											10.5
Start Fred 2.394475000 GH2		n faithfuil	1	. Headrin and h	พ.ศ. <mark>1</mark> พร ^{ุณ} พ.ศ.ศ.	Adjonanja	المالم وقد وعد محمد عامران	geonge and	fur		0.500 -9.50
Stop Fred 2.449525000 GHz					¥						-19.5 -29.5
CF Step 5.505000 MH: Auto Mar	What which	- Murry							WE Lord	w W have	-39.5 -49.5
Freq Offse 0 H:											-59.5
	5.05 MHz 1001 pts)	Span 5 5.267 ms (Sweep		łz	300 kHz	#VBW		200 GHz 00 kHz	ter 2.4 s BW 1	-69.5 Cen #Re

				- igui e e					
Agilent Spe	ectrum Analyzer - Swe	ept SA							
LX/ RL RF 50Ω AC SENSE:INT						ALIGNAUTO 05:58:		M May 06, 2015	
Center Freq 2.437000000 GHz					Avg Type	Avg Type: Log-Pwr		E123456	Frequency
PNO: Fast 🖵 Trig: Free Run							TY		
		lFGair	:Low #At	ten: 30 dB			5	- 1	Auto Tupo
Bef Offset 0.5 dB Mkr1 2.439 15 GHz									Autorun
10 dB/div Ref 20.50 dBm -5.70 dBm									
					T	<u> </u>	1		
									Center Fred
10.5						-			2 437000000 CH
40.2003									2.437000000 GH
0.500									
0.500				▲ ¹					
			100	M. Andara da Antalan		in how			StartFree
-9.50	Pullind	hele-utric structures for	and the start of t	the set of	a B B a Barlow B and a	Mandara L. anda	a hallow and		2.409475000 GH
-19.5				V					
10.0	1								Stop Free
2012	1						1		2.464525000 GH
-29.5	5						- Na		
	Long.						"The		
-39.5	1 8-10	0					-	No. 1	CF Step
Parto	MANN.							"Hawilly	5.505000 MH
19.5									<u>Auto</u> Mar
-40.0									
-59.5					-				FreqOffse
									0 H:
-69.5					-				
Center 2.43700 GHz Span 55.05 MH								5.05 MHz	
#Res BW 100 kHz			#VBW 300 kHz			Sweep 5.267 ms (1001 pts)			
MSG						STATI	IS		
						S.AIG	5.50 J.		

Figure Channel 06:

Figure Channel 09:

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs