

FCC Test Report

Product Name	Notebook PC
Model No.	E202S, L202S, R206S
FCC ID.	MSQE202S

Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	Apr. 27, 2015
Issued Date	Jun. 26, 2015
Report No.	1550007R-RFUSP23V00-A
Report Version	V1.0
Iac-MRA	Testing Laboratory 3023

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: Jun. 26, 2015 Report No.: 1550007R-RFUSP23V00-A

Product Name	Notebook PC
Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan
Manufacturer	1. Digitek(Chongqing) Limited
	2. Tech-Com(Shanghai) Computer Co. Ltd.
	3. Tech-Front (Chongqing) Computer Co., Ltd.
	4. WISTRON INFOCOMM(CHONGQING) CO., LTD.
Model No.	E202S, L202S, R206S
FCC ID.	MSQE202S
EUT Rated Voltage	AC 100-240V, 50/60Hz
EUT Test Voltage	AC 120V/60Hz
Trade Name	ASUS
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2014
	ANSI C63.4: 2014, ANSI C63.10: 2013
	KDB 558074 D01 DTS Meas Guidance v03r02
Test Result	Complied
Test Result	Complied

Documented By :

in sanne.

(Senior Adm. Specialist / Joanne Lin)

Tested By :

Andy Lin

(Assistant Engineer / Andy Lin)

Approved By :

(Director / Vincent Lin)

TABLE OF CONTENTS

	ription	Page
1.	GENERAL INFORMATION	
1.1.	EUT Description	
1.2.	Operational Description	6
1.3.	Tested System Details	7
1.4.	Configuration of Tested System	7
1.5.	EUT Exercise Software	7
1.6.	Test Facility	8
2.	CONDUCTED EMISSION	9
2.1.	Test Equipment	9
2.2.	Test Setup	9
2.3.	Limits.	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	PEAK POWER OUTPUT	
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limit	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	14
4.	RADIATED EMISSION	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF ANTENNA CONDUCTED TEST	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits.	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF Antenna Conducted Test	23
6.	BAND EDGE	24
6.1.	Test Equipment	24
6.2.	Test Setup	
6.3.	Limit	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
7.	OCCUPIED BANDWIDTH (6DB BW)	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits.	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	POWER DENSITY	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	
	ent 1: EUT Test Photographs	
Attachm	ent 2: EUT Detailed Photographs	

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Notebook PC
Trade Name	ASUS
Model No.	E202S, L202S, R206S
FCC ID.	MSQE202S
Frequency Range	2402 – 2480MHz
Channel Number	V4.0: 40CH
Type of Modulation	V4.0: GFSK(1Mbps)
Antenna Type	PIFA Antenna
Channel Control	Auto
Antenna Gain	Refer to the table "Antenna List"
Power Adapter	MFR: PIE, M/N: AD890326
	Input: AC 100-240V~50/60Hz, 0.8A
	Output: 19V==1.75A
	Cable Out: Shielded, 1.8m

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	HongLin	260-26061	PIFA	0.93 dBi for 2.4 GHz
2	INPAQ	WA-P-LB-02-227	PIFA	0.47 dBi for 2.4 GHz

Note:

1. The antenna of EUT is conform to FCC 15.203.

2. Only the higher gain antenna was tested and recorded in this report.

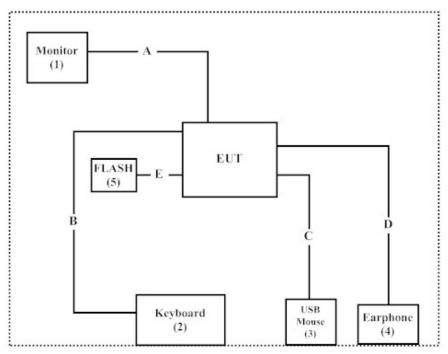
Center Frequency of Each Channel: (For V4.0)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 01:	2404 MHz	Channel 02:	2406 MHz	Channel 03:	2408 MHz
Channel 04:	2410 MHz	Channel 05:	2412 MHz	Channel 06:	2414 MHz	Channel 07:	2416 MHz
Channel 08:	2418 MHz	Channel 09:	2420 MHz	Channel 10:	2422 MHz	Channel 11:	2424 MHz
Channel 12:	2426 MHz	Channel 13:	2428 MHz	Channel 14:	2430 MHz	Channel 15:	2432 MHz
Channel 16:	2434 MHz	Channel 17:	2436 MHz	Channel 18:	2438 MHz	Channel 19:	2440 MHz
Channel 20:	2442 MHz	Channel 21:	2444 MHz	Channel 22:	2446 MHz	Channel 23:	2448 MHz
Channel 24:	2450 MHz	Channel 25:	2452 MHz	Channel 26:	2454 MHz	Channel 27:	2456 MHz
Channel 28:	2458 MHz	Channel 29:	2460 MHz	Channel 30:	2462 MHz	Channel 31:	2464 MHz
Channel 32:	2466 MHz	Channel 33:	2468 MHz	Channel 34:	2470 MHz	Channel 35:	2472 MHz
Channel 36:	2474 MHz	Channel 37:	2476 MHz	Channel 38:	2478 MHz	Channel 39:	2480 MHz

Note:

- 1. The EUT is a Notebook PCwith a built-in Bluetooth V4.0 transceiver.
- 2. These tests were conducted on a sample for the purpose of demonstrating compliance of Bluetooth transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.

Test Mode Mode 1: Transmit - BLE (GFSK)


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Prod	uct	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	DELL	U2410	CN-0J257M-728-01I-038L	N/A
2	Keyboard	Logitech	Y-UR83	SY848UK	N/A
3	USB Mouse	Logitech	M-BE58	HCA30103299	N/A
4	Earphone	Ergotech	ET-E201	N/A	N/A
5	FLASH	Transcend	JetFlash110	155422-2931	N/A

Signal Cable Type		Signal cable Description	
Α	HDMI Cable	Shielded, 1.8m	
В	Keyboard Cable	Shielded, 1.2m	
С	Mouse Cable	Shielded, 1.2m	
D	Earphone Cable	Shielded, 1.8m	
Е	USB to USB Cable	Shielded, 1.5m	

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "Raltek MP Tool " on the EUT.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.6. Test Facility

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	30-65
Barometric pressure (mbar)	860-1060	950-1000

Ambient conditions in the laboratory:

The related certificate for our laboratories about the test site and management system can be downloaded from

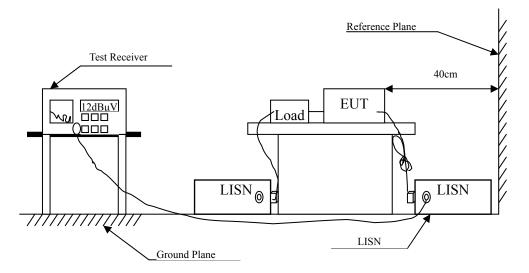
QuieTek Corporation's Web Site: <u>http://www.quietek.com/chinese/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

File on
Federal Communications Commission
FCC Engineering Laboratory
7435 Oakland Mills Road
Columbia, MD 21046
Registration Number: 92195

Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : service@quietek.com

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2014	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2015	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2015	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar., 2015	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2015	
	No.1 Shielded Room	-	•	-	

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

Remarks: In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4: 2014; tested to FHSS test procedure of FCC Public Notice DA 00-705 for compliance to FCC 47CFR 15.247 requirements.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

:	Notebook PC
:	Conducted Emission Test
:	Line 1
:	Mode 1: Transmit - BLE (GFSK)
	:

Frequency Correct		Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
LINE 1					
Quasi-Peak					
0.193	9.660	28.700	38.360	-26.411	64.771
0.255	9.663	23.310	32.973	-30.027	63.000
0.298	9.666	22.260	31.926	-29.845	61.771
0.380	9.670	21.850	31.520	-27.909	59.429
0.459	9.675	32.630	42.305	-14.866	57.171
0.658	9.685	22.040	31.725	-24.275	56.000
Average					
0.193	9.660	15.980	25.640	-29.131	54.771
0.255	9.663	14.050	23.713	-29.287	53.000
0.298	9.666	10.040	19.706	-32.065	51.771
0.380	9.670	9.530	19.200	-30.229	49.429
0.459	9.675	24.950	34.625	-12.546	47.171
0.658	9.685	12.600	22.285	-23.715	46.000

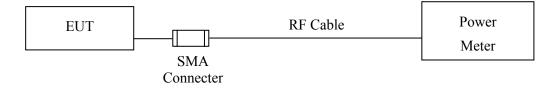
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Notebook PC
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
LINE 2					
Quasi-Peak					
0.173	9.664	33.200	42.864	-22.479	65.343
0.252	9.663	23.530	33.193	-29.893	63.086
0.314	9.667	22.810	32.477	-28.837	61.314
0.455	9.674	32.750	42.424	-14.862	57.286
0.658	9.685	22.040	31.725	-24.275	56.000
0.912	9.699	23.110	32.809	-23.191	56.000
Average					
0.173	9.664	21.550	31.214	-24.129	55.343
0.252	9.663	15.330	24.993	-28.093	53.086
0.314	9.667	14.020	23.687	-27.627	51.314
0.455	9.674	24.500	34.174	-13.112	47.286
0.658	9.685	13.110	22.795	-23.205	46.000
0.912	9.699	14.670	24.369	-21.631	46.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output


3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2015
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limit

The maximum peak power shall be less 1Watt.

3.4. Test Procedure

Tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 section 9.1.2 PKPM1 Peak power meter method.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Notebook PC
Test Item	:	Peak Power Output
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	5.11	1 Watt= 30 dBm	Pass
Channel 19	2440.00	5.39	1 Watt= 30 dBm	Pass
Channel 39	2480.00	5.03	1 Watt= 30 dBm	Pass

4. Radiated Emission

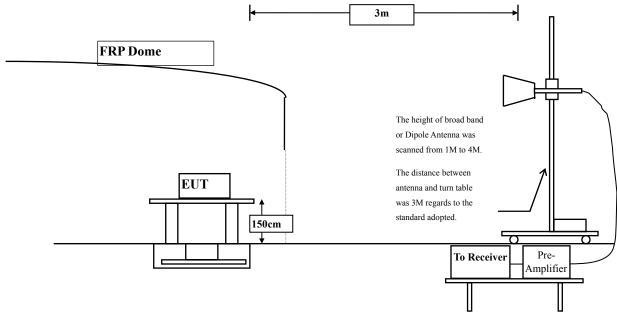
4.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2015
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2015
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.


4.2. Test Setup

Below 1GHz

Above 1GHz

4.3. Limits

General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	Field strength	Measurement distance			
IVITIZ	(microvolts/meter)	(meter)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks: 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz

Product Test Item Test Site Test Mode	 Notebook PC Harmonic Radiated Emission No.3 OATS Mode 1: Transmit - BLE (GFSK)(2402MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector:						
4804.000	3.327	36.510	39.837	-34.163	74.000	
7206.000	10.136	35.120	45.256	-28.744	74.000	
9608.000	13.706	35.950	49.656	-24.344	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4804.000	6.638	37.740	44.377	-29.623	74.000	
7206.000	11.005	35.620	46.625	-27.375	74.000	
9608.000	14.103	35.900	50.003	-23.997	74.000	
Average						
Detector:						

4.6. Test Result of Radiated Emission

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook PC					
Test Item	: Harmonic Radiated Emission					
Test Site	: No.3 OAT	S				
Test Mode	: Mode 1: Tr	ransmit - BLE (GFSK) (2440MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector:						
4880.000	3.010	37.870	40.880	-33.120	74.000	
7320.000	11.833	35.270	47.104	-26.896	74.000	
9760.000	12.580	36.030	48.611	-25.389	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4880.000	5.738	35.990	41.728	-32.272	74.000	
7320.000	12.703	34.250	46.953	-27.047	74.000	
9760.000	13.052	35.750	48.802	-25.198	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Notebook PC							
Test Item	: Harmonio	: Harmonic Radiated Emission						
Test Site	: No.3 OA	: No.3 OATS						
Test Mode	: Mode 1: '	Transmit - BLE	(GFSK) (2480MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m			
Horizontal								
Peak Detector:								
4960.000	2.760	37.050	39.810	-34.190	74.000			
7440.000	12.567	34.650	47.216	-26.784	74.000			
9920.000	13.456	35.330	48.786	-25.214	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
4960.000	5.557	36.700	42.257	-31.743	74.000			
7440.000	13.426	34.300	47.725	-26.275	74.000			
9920.000	13.958	35.260	49.218	-24.782	74.000			
Average								
Detector:								

_

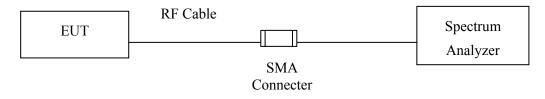
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Notebook PC
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2440MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
239.520	-6.878	43.369	36.491	-9.509	46.000
390.840	0.962	30.294	31.256	-14.744	46.000
501.420	2.019	24.801	26.820	-19.180	46.000
652.740	1.899	29.113	31.012	-14.988	46.000
802.120	6.356	24.575	30.931	-15.069	46.000
957.320	6.615	30.093	36.708	-9.292	46.000
Vertical					
239.520	-6.138	42.969	36.831	-9.169	46.000
390.840	-0.768	32.294	31.526	-14.474	46.000
536.340	1.609	26.672	28.281	-17.719	46.000
685.720	2.254	29.868	32.122	-13.878	46.000
827.340	2.711	29.508	32.219	-13.781	46.000
968.960	3.936	30.598	34.534	-19.466	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF Antenna Conducted Test**


5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note: 1. All equipments are calibrated every one year.

2. The test instruments Marked "X" are used to measure the final test results.

5.2. Test Setup

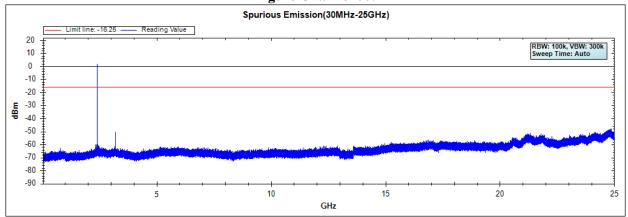
5.3. Limits

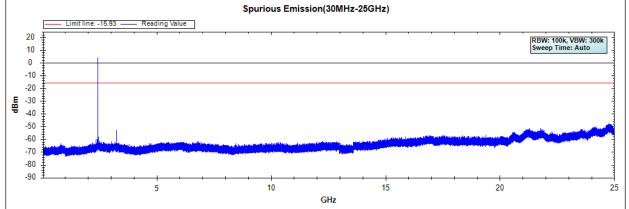
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

5.5. Uncertainty


± 150Hz


5.6. Test Result of RF Antenna Conducted Test

Product	:	Notebook PC
Test Item	:	RF Antenna Conducted Test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

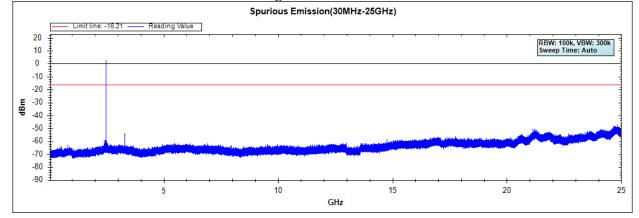

Figure Channel 00:

Figure Channel 19:

Figure Channel 39:

Note: The above test pattern is synthesized by multiple of the frequency range.

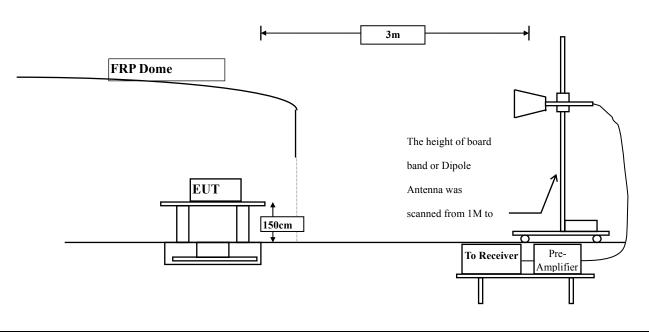
6. Band Edge

6.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2015
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2015
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note: 1. All equipments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

Above 1GHz

6.3. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

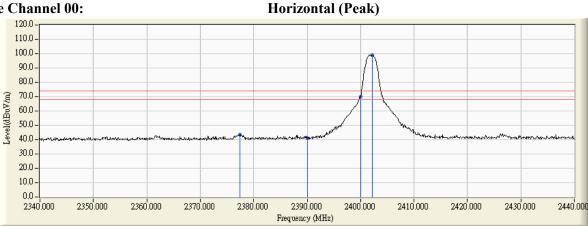
The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

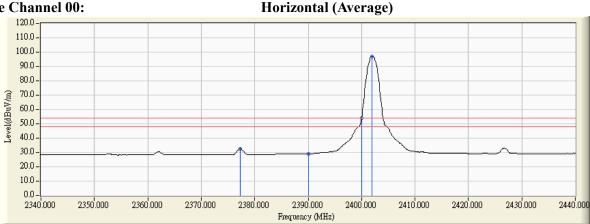
6.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz


6.6. **Test Result of Band Edge**

Product	:	Notebook PC
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2402MHz)

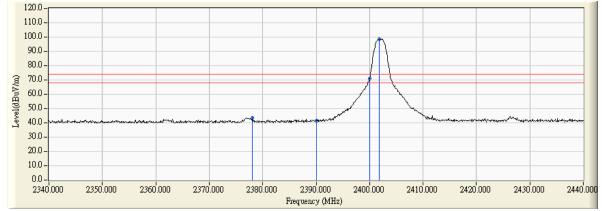

RF Radiated Measurement (Horizontal):

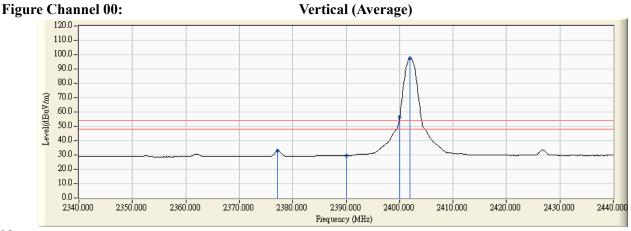
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
00 (Peak)	2377.400	-1.179	44.777	43.597	74.00	54.00	Pass
00 (Peak)	2390.000	-1.131	42.080	40.949	74.00	54.00	Pass
00 (Peak)	2400.000	-1.084	70.837	69.754			
00 (Peak)	2402.200	-1.072	100.025	98.954			
00 (Average)	2377.300	-1.665	34.166	32.500	74.00	54.00	Pass
00 (Average)	2390.000	-1.725	30.896	29.171	74.00	54.00	Pass
00 (Average)	2400.000	-1.733	55.643	53.911			
00 (Average)	2402.000	-1.729	98.955	97.226			

Figure Channel 00:

Figure Channel 00:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

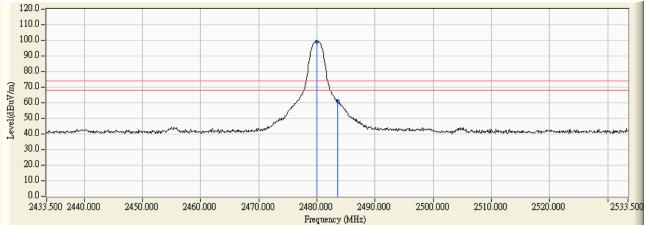

Product	:	Notebook PC
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2402MHz)


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
00 (Peak)	2378.100	-1.669	45.147	43.478	74.00	54.00	Pass
00 (Peak)	2390.000	-1.725	42.983	41.258	74.00	54.00	Pass
00 (Peak)	2400.000	-1.733	72.517	70.785			
00 (Peak)	2401.800	-1.729	100.413	98.684			
00 (Average)	2377.200	-1.665	34.484	32.819	74.00	54.00	Pass
00 (Average)	2390.000	-1.725	31.365	29.640	74.00	54.00	Pass
00 (Average)	2400.000	-1.733	58.098	56.366			
00 (Average)	2402.000	-1.729	99.157	97.428			

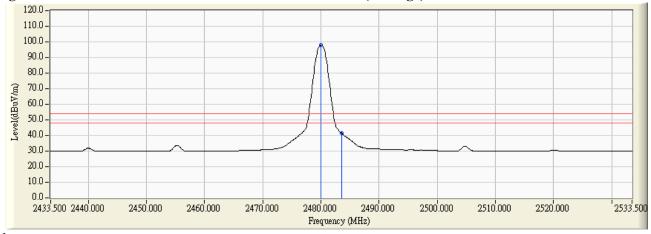
Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Notebook PC
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2480MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dagult
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
39 (Peak)	2480.000	-0.581	99.640	99.059			
39 (Peak)	2483.500	-0.558	61.396	60.838	74.00	54.00	Pass
39 (Average)	2480.000	-0.581	98.692	98.111			
39 (Average)	2483.500	-0.558	42.129	41.571	74.00	54.00	Pass

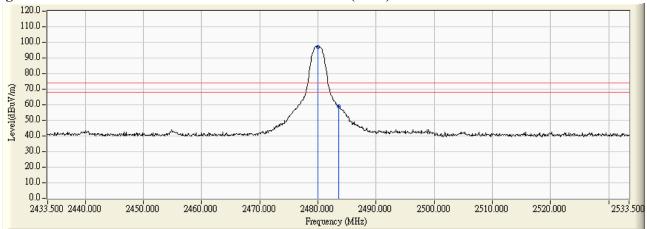

Figure Channel 39:

Horizontal (Peak)

Figure Channel 39:

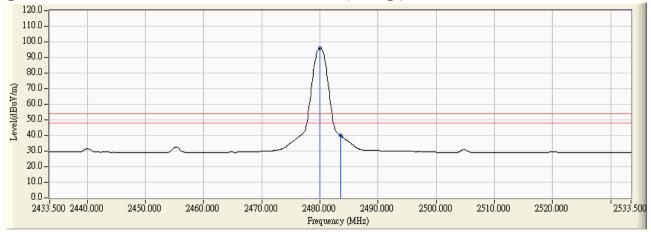
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Notebook PC
Test Item	:	Band Edge
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK) (2480MHz)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
39 (Peak)	2480.000	-1.324	98.514	97.190			
39 (Peak)	2483.500	-1.305	60.376	59.071	74.00	54.00	Pass
39 (Average)	2480.000	-1.324	97.428	96.104			
39 (Average)	2483.500	-1.305	41.509	40.204	74.00	54.00	Pass


Figure Channel 39:

Vertical (Peak)

Figure Channel 39:

Vertical (Average)

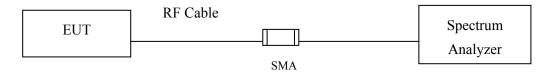
Note:

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth (6dB BW)


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	Notebook PC
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	750.0	>500	Pass
19	2440	760.0	>500	Pass
39	2480	760.0	>500	Pass

Figure Channel 00:

🎉 Keysight Spectrum Analyzer - Swej						
RL RF 50 Ω Center Freq 2.40200	AC 0000 GHz PNO: Wide G	SENSE:INT		ALIGN AUTO e: Log-Pwr	07:15:35 PM May 05, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWW	
10 dB/div Ref 10.00 d	IFGain:Low	#Atten: 20 dB		Mkr	2 2.401 64 GHz -2.37 dBm	Auto Tupo
		21	3		-2.16.dBm	Center Fred 2.402000000 GH:
-30.0			he he			Start Free 2.397000000 GH
-60.0						Stop Fre 2.407000000 GH
Center 2.402000 GHz #Res BW 100 kHz	#VBV	V 300 kHz		Sweep 1	Span 10.00 MHz .000 ms (1001 pts) FUNCTION VALUE	CF Ste 1.000000 MH <u>Auto</u> Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2.401 75 GHz 2.401 64 GHz 2.402 39 GHz	3.84 dBm -2.37 dBm -2.30 dBm				Freq Offse 0 H
7 8 9 10 11 (
MSG				STATUS	,	

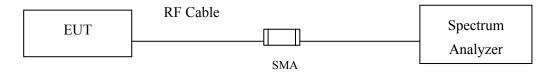
							-								
		Spect		Analyzer - Sw											
	nter	Fre	RF eq 2		AC 00000 GH	łz		ENSE:INT	-	Avg Ty		n auto g-Pwr	TRA	M May 05, 2015 CE 1 2 3 4 5 6	
						NO: Wide Gain:Low	Trig: Fr #Atten:								1
10 /	B/div		Dof	f 10.00	dBm							Mkr		63 GHz 01 dBm	Auto Tune
Log				10.00			2	1	3					-1 83 dBm	Comton From
-10.								Ň							Center Freq 2.440000000 GHz
-20.					-			_							
-30.			-								_				Start Freq
-40.	- 10		+					-		- m					2.435000000 GHz
-50.					harmon			1			-	-			
-60.1 -70.1	m	<u>~~~</u>	M	The state of the s										m	Stop Freq
-80.								_							2.445000000 GHz
		24	400	00 GHz									Snan 1	0.00 MHz	CF Step
	es B					#VE	SW 300 kH	z			Swe	eep 1		(1001 pts)	1.000000 MHz
	MODE	TRC			X		Y		FUNC	TION	FUNCTIO	N WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
1 2 3	N N N	1	f f		2.439 7 2.439 6 2.440 3	3 GHz	<u>4.17</u>	dBm							Freq Offset
3 4 5	N	1	T		2.440 3	9 GHZ	-1.99 (звт							0 Hz
- 5 6 7															
89															
10 11															
•	l	-	•	1		-	III	- 1		-					
MSG												STATUS	3		

Figure Channel 19:

Figure Channel 39:

📁 Keysight Spectrum Analyzer - Swe	ept SA	8			
KL RF 50 Ω Center Freq 2.48000	AC 00000 GHz PNO: Wide C	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	07:28:24 PM May 05, 2015 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Ref 10.00 (IFGain:Low	#Atten: 20 dB	Mkr	2 2.479 62 GHz -2.25 dBm	Auto Tune
-10.0		21 3		-2.15 dBm	Center Freq 2.480000000 GHz
-30.0 -40.0 -50.0			Very Contraction of the second		Start Freq 2.475000000 GHz
-60.0				ha vergen vind Phrowner	Stop Freq 2.485000000 GHz
Center 2.480000 GHz #Res BW 100 kHz	#VBW	/ 300 kHz	Sweep 1	Span 10.00 MHz .000 ms (1001 pts)	CF Step 1.000000 MHz <u>Auto</u> Man
1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - 6	2.479 75 GHz 2.479 62 GHz 2.480 38 GHz	3.85 dBm -2.25 dBm -2.36 dBm		E	Freq Offset 0 Hz
7 8 9 10 11					
MSG			STATUS	3	

8. **Power Density**


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2015

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2013, the maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	Notebook PC
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit - BLE (GFSK)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	3.750	< 8dBm	Pass
19	2440	4.070	< 8dBm	Pass
39	2480	3.780	< 8dBm	Pass

Figure Channel 00:

📁 Keysight Spectrum Analyzer - Swept SA							
Center Freq 2.40200000) GHz	SENSE:INT	Avg Type:		07:15:53 PM M TRACE TYPE	1 2 3 4 5 6 MWWWWW	Frequency
10 dB/div Ref 10.00 dBm		itten: 20 dB		Mkr1 2.4	DET 01 745	PNNNNN	Auto Tune
0.00					~~~~		Center Freq 2.402000000 GHz
-10.0							Start Freq 2.401437500 GHz
-30.0							Stop Freq 2.402562500 GHz
-60.0							CF Step 112.500 kHz <u>Auto</u> Man
-70.0							Freq Offset 0 Hz
-80.0							
Center 2.4020000 GHz #Res BW 100 kHz	#VBW 30	0 kHz	s	weep 1.00	Span 1.1 00 ms (1		
MSG				STATUS			

	1 lg	ure Channel I			
📕 Keysight Spectrum Analyzer - Swept S					
		NSE:INT AI Avg Type:		PM May 05, 2015 ACE 1 2 3 4 5 6 Freq	uency
Center Freq 2.440000	DUU GHZ PNO: Wide Trig: Fre IFGain:Low #Atten: 2	e Run	- т	VPE MWWWWW DET P NNNNN	
0 dB/div Ref 10.00 dB	15 8 GHz ^{Ai} .07 dBm	Auto Tun			
og og				Cer	nter Fre
0.00				2.44000	00000 GH
0.0				s	tart Fre
0.0					30000 GH
0.0				s	top Fre
D.0					70000 GH
D.0				11	CF Ste 4.000 kH
0.0				Auto	4.000 Ki Ma
0.0				Fre	eq Offs
5.0					0 F
D.0					
enter 2.4400000 GHz Res BW 100 kHz	#VBW 300 kHz	<u> </u>	Span weep 1.000 ms	1.140 MHz (1001 pts)	
SG			STATUS	<u>```</u>	

Figure Channel 19:

Figure Channel 39:

			I iguite en			
	um Analyzer - Swept					
X/RL		AC	SENSE:INT	ALIGN AUTO	07:28:41 PM May 05, 2015	Frequency
Center Fre	q 2.480000	000 GHz		Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWW	riequency
		PNO: Wide IFGain:Low	Trig: Free Run #Atten: 20 dB		DET P NNNN	
				Mkr1 0	.479 744 6 GHz	Auto Tun
					3.78 dBm	
10 dB/div	Ref 10.00 dB	m			3.76 UBIII	
		● 1,				
						Center Fre
0.00		~ ~				2.48000000 GH
-10.0	-					
						Start Fre
-20.0						2.479430000 GH
-20.0						
-30.0						Stop Fre
						2.480570000 GH
-40.0						2.480370000 GI
						CF Ste
-50.0						114.000 kH
						<u>Auto</u> Ma
-60.0						
-70.0						Freq Offse
						0 H
-80.0	+ +					
Center 2.48				. .	Span 1.140 MHz	
#Res BW 1	UU KHZ	#V	BW 300 kHz	Sweep 1	.000 ms (1001 pts)	
ISG				STATUS		

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs