Appendix B – System Check Plots

System Performance Check at 2450 MHz

DUT: D2450V2_SN712

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.798$ S/m; $\epsilon_r = 41.414$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

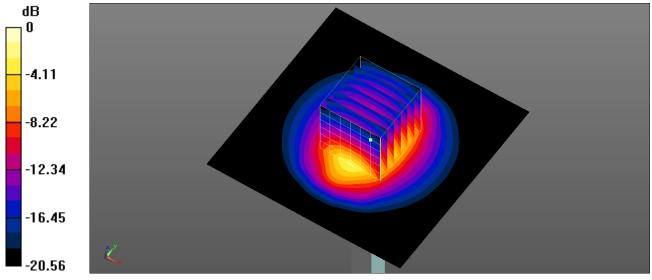
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3847; ConvF(7.17, 7.17, 7.17) @ 2450 MHz; Calibrated: 2024/2/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2024/4/22
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 2450MHz/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.39 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.23 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 5.27 W/kg

SAR(1 g) = 2.72 W/kg; SAR(10 g) = 1.3 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 55.8%

Maximum value of SAR (measured) = 4.40 W/kg

0 dB = 4.40 W/kg = 6.43 dBW/kg

System Performance Check at 5250 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.523 S/m; ϵ_r = 37.599; ρ = 1000 kg/m³

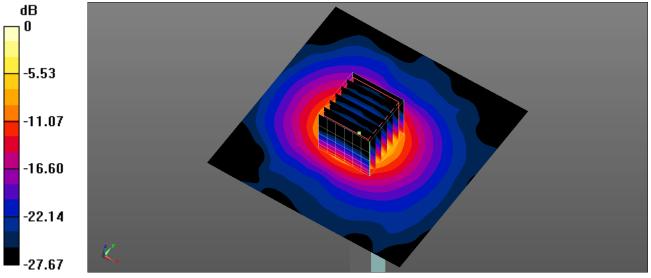
Phantom section: Flat Section Measurement Standard: DASY5

DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5
- Probe: EX3DV4 SN3847; ConvF(5.35, 5.35, 5.35) @ 5250 MHz; Calibrated: 2024/2/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2024/4/22
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.66 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 47.65 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 4 W/kg; SAR(10 g) = 1.13 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 61.3%Maximum value of SAR (measured) = 9.65 W/kg

0 dB = 9.65 W/kg = 9.85 dBW/kg

System Performance Check at 5600 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 4.833$ S/m; $\epsilon_r = 37.34$; $\rho = 1000$ kg/m³

Phantom section: Flat Section Measurement Standard: DASY5

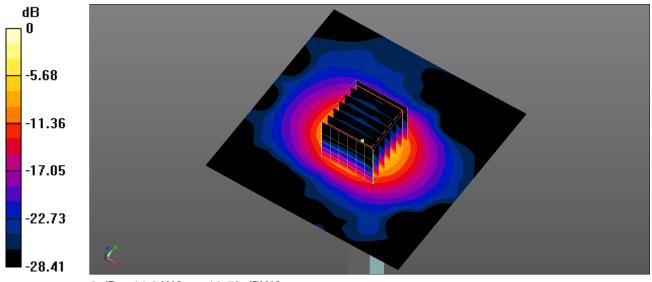
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3847; ConvF(4.66, 4.66, 4.66) @ 5600 MHz; Calibrated: 2024/2/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2024/4/22
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 10.8 W/kg

System Performance Check at 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.21 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 20.0 W/kg

SAR(1 g) = 4.48 W/kg; SAR(10 g) = 1.25 W/kg

Smallest distance from peaks to all points 3 dB below = 8.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.9%

Maximum value of SAR (measured) = 11.3 W/kg

0 dB = 11.3 W/kg = 10.53 dBW/kg

System Performance Check at 5800 MHz

DUT: D5GHzV2_SN1021

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.049$ S/m; $\epsilon_r = 37.148$; $\rho = 1000$ kg/m³

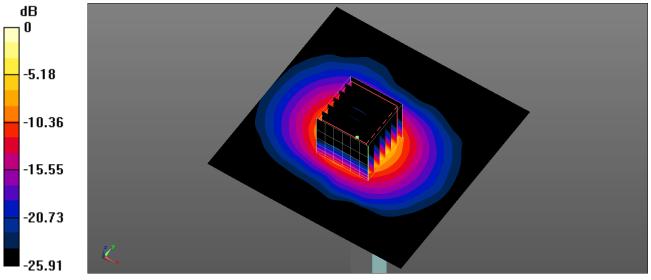
Phantom section: Flat Section Measurement Standard: DASY5

DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3847; ConvF(4.79, 4.79, 4.79) @ 5800 MHz; Calibrated: 2024/2/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2024/4/22
- Phantom: ELI; Type: QD OVA 001 BB; Serial: 1036
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5800MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 10.2 W/kg

System Performance Check at 5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 46.63 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 4 W/kg; SAR(10 g) = 1.12 W/kg

Smallest distance from peaks to all points 3 dB below = 8.3 mm

Ratio of SAR at M2 to SAR at M1 = 62.8% Maximum value of SAR (measured) = 10.0 W/kg

0 dB = 10.0 W/kg = 10.00 dBW/kg