Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client C&C (Auden) | (9/A)E 3)3(A) 16/N | | | e a paragraphic and paragraphic design of the consequence conse | |---|---------------------------------|--|--| | Object(s) | D2450V2 - SN | 7/28 | | | Calibration procedure(s) | QA CAL-05 v2
Calibration pro | cedure for dipole validation kits | | | Calibration date: | March 23, 2004 | 4 | | | Condition of the calibrated item | In Tolerance (a | iccording to the specific calibration | n document) ; | | 17025 international standard. All calibrations have been condu | cted in the closed laborator | used in the calibration procedures and conformity of yellow the calibration procedures and conformity of yellow the calibration procedures and conformity of p | · | | Calibration Equipment used (M8 | TE chical for calibration) | * | * | | Model Type | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Power meter EPM E442 | GB37480704 | 6-Nov-03 (METAS, No. 252-0254) | Nov-04 | | Power sensor HP 8481A | US37292783 | 6-Nov-03 (METAS, No. 252-0254) | Nov-04 | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (Agilent, No. 20021018) | Oct-04 | | RF generator R&S SML-03 | 100698 | 27-Mar-2002 (R&S, No. 20-92389) | In house check: Mar-05 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (SPEAG, in house check Nov-03) | In house check: Oct 05 | | | Name | Function | Signature | | Calibrated by: | Judiu Mpeller | Technician - | quittine | | Approved by: | Katja Pokovic | Laboratory Director | v
Lielfaria | | | | | Date issued: March 23, 2004 | Date issued: March 23, 2004 This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed. 880-KP0301061-A Page 1 (1) Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # **DASY** # Dipole Validation Kit Type: D2450V2 Serial: 728 Manufactured: January 9, 2003 Calibrated: March 23, 2004 ### 1. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz: Relative Dielectricity 37.6 $\pm 5\%$ Conductivity 1.88 mho/m $\pm 5\%$ The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power. ### 2. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are: averaged over 1 cm³ (1 g) of tissue: 58.4 mW/g \pm 16.8 % (k=2)¹ averaged over 10 cm³ (10 g) of tissue: **26.4 mW/g** \pm 16.2 % (k=2)¹ ¹ validation uncertainty ### 3. Dipole Impedance and Return Loss The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are: Electrical delay: 1.154 ns (one direction) Transmission factor: 0.993 (voltage transmission, one direction) The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements. Feedpoint impedance at 2450 MHz: $Re{Z} = 53.0 \Omega$ Im $\{Z\} = 3.5 \Omega$ Return Loss at 2450 MHz -27.0 dB # 4. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with **body** simulating solution of the following electrical parameters at 2450 MHz: Relative Dielectricity 52.0 + 5% Conductivity 2.00 mho/m $\pm 5\%$ The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.02 at 2450 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power. # 5. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the advanced extrapolation are: averaged over 1 cm³ (1 g) of tissue: **53.6 mW/g** \pm 16.8 % (k=2)² averaged over 10 cm³ (10 g) of tissue: 25 mW/g \pm 16.2 % (k=2)² # 6. Dipole Impedance and Return Loss The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements. Feedpoint impedance at 2450 MHz: $Re{Z} = 48.6 \Omega$ $Im \{Z\} = 5.8 \Omega$ Return Loss at 2450 MHz -24.4 dB # 7. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. #### 8. Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. # 9. Power Test After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. ² validation uncertainty Date/Time: 03/23/04 13:23:36 Test Laboratory: SPEAG, Zurich, Switzerland ## **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN728** Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 37.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### **DASY4** Configuration: - Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/23/2004 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn411; Calibrated: 11/6/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006; - Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112 Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.8 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 17 mW/g Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.8 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 16.3 mW/g Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 14.6 mW/g; SAR(10 g) = 6.59 mW/g 0 dB = 16.3 mW/g 19 Mar 2004 14:34:03 Date/Time: 03/23/04 11:35:14 Test Laboratory: SPEAG, Zurich, Switzerland ### **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN728** Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz: Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) # **DASY4** Configuration: Probe: ES3DV2 - SN3013; ConvF(4.02, 4.02, 4.02); Calibrated: 1/23/2004 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE3 Sn411; Calibrated: 11/6/2003 • Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006; • Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112 Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 87.5 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 16.2 mW/g # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.5 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 15.2 mW/g Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.25 mW/g 0 dB = 15.2 mW/g CENTER 2 450.000 000 MHz SPAN 400.000 000 MHz