Page: 1 of 68

TEST REPORT

Equipment Under Test: Notebook P.C.

: A2400D, A2500D, A2800D, A2400, A2500, A2800 Model No.

FCC ID : MSQA2DWM3B2200

Applicant : ASUSTEK COMPUTER INC.

Address of Applicant : 4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.

Date of Receipt : 2004.03.16

Date of Test(s) : 2004.03.23-2004.03.26

Date of Issue : 2004.03.29

Standards:

FCC OET Bulletin 65 supplement C, ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above. Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan E&E Services or testing done by SGS Taiwan E&E Services in connection with distribution or use of the product described in this report must be approved by SGS Taiwan E&E Services in writing.

Tested by	:	Dikin Yang	Date	: _	2004/03/29
_					
Approved by	:	Robert Chang	Date	:	2004/03/29

Report No. : ES/2004/30003 Page : 2 of 68

Contents

1. General Information	
1.1 Testing Laboratory	4
1.2 Details of Applicant	4
1.3 Description of EUT(s)	4
1.4 Test Environment	5
1.5 Operation description	5
1.6 Evaluation procedures	6
1.7 The SAR Measurement System	7
1.8 System Components	9
1.9 SAR System Verification	11
1.10 Tissue Simulant Fluid for the Frequency Band 2.4 to	2.5 GHz 12
1.11 Test Standards and Limits	12
2. Instruments List	14
3. Summary of Results	15
4. Measurements	19
802.11b	
Configuration 1	4.0
4.1.1 Top of the LCD panel position, lowest channel	19
4.1.2 Top of the LCD panel position, middle channel	20
4.1.3 Top of the LCD panel position, highest channel	21
Configuration 2	22
4.1.4 Back of the LCD panel position, lowest channel	22
4.1.5 Back of the LCD panel position, middle channel	23
4.1.6 Back of the LCD panel position, highest channel	24
Configuration 3	0.5
4.1.7 LCD panel position, lowest channel	25
4.1.8 LCD panel position, middle channel	26
4.1.9 LCD panel position, highest channel	27
Configuration 4	
4.1.10 Rear Side position, lowest channel	
4.1.11 Rear Side position, middle channel	
4.1.12 Rear Side position, highest channel	30
Configuration 5	
4.1.13 Bottom face position, lowest channel	31
4.1.14 Bottom face position, middle channel	32
4.1.15 Bottom face position, highest channel	33
Configuration 6	
4.1.16 LCD panel position, lowest channel	
4.1.17 LCD panel position, middle channel	
4.1.18 LCD panel position, highest channel	36

Report No. : ES/2004/30003 Page : 3 of 68

802.11g	_
Configuration 1	
4.2.1 Top of the LCD panel position, lowest channel	37
4.2.2 Top of the LCD panel position, middle channel	38
4.2.3 Top of the LCD panel position, highest channel	
Configuration 2	
4.2.4 Back of the LCD panel position, lowest channel	40
4.2.5 Back of the LCD panel position, middle channel	41
4.2.6 Back of the LCD panel position, highest channel	42
Configuration 3	
4.2.7 LCD panel position, lowest channel	43
4.2.8 LCD panel position, middle channel	44
4.2.9 LCD panel position, highest channel	45
Configuration 4	
4.2.10 Rear Side position, lowest channel	46
4.2.11 Rear Side position, middle channel	47
4.2.12 Rear Side position, highest channel	48
Configuration 5	
4.2.13 Bottom face position, lowest channel	49
4.2.14 Bottom face position, middle channel	50
4.2.15 Bottom face position, highest channel	51
Configuration 6	FO
4.2.16 LCD panel position, lowest channel	52
4.2.17 LCD panel position, middle channel	53
4.2.18 LCD panel position, highest channel	54
4.3 System Performance Validation	55
APPENDIX	
1. Photographs of Test Setup	56
2. Photographs of EUT	60
3. Probe Calibration certificate	62
4. Uncertainty Analysis	66
5. Phantom description	67
6. System Validation from Original equipment supplier	68

Page: 4 of 68

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. (FCC Registration number: 573967)

1F, No. 134, Wukung Road, Wuku industrial zone

Taipei county , Taiwan , R.O.C.
Telephone : +886-2-2299-3279
Fax : +886-2-2298-0488
Internet : http://www.sqs.com.tw

1.2 Details of Applicant

Name : ASUSTeK COMPUTER INC.

Address : 4FL., No. 150, Li-Te Rd., Peitou, Taipei, Taiwan, R.O.C.

1.3 Description of EUT(s)

Equipment Type	Notebook P.C.		
Test Procedure	FCC OET Bulletin 65, Supplement C		
TX Frequency range	2412-2462 MHz		
FCC ID	M	1SQA2D\	WM3B2200
Model No.	A2400D,), A2800D, A2400, , A2800
Number Of Channel	11		11
Modulation	Direct Sequence Spread Spectrum (DSSS)		
T (D.	802.11b 11 Mbps		
Transfer Rate	802.11g		6 Mbps
Max. SAR Measured	802.11b	2.11b 1.17 W/kg	
Max. SAR Measured	802.11g		0.664 W/kg
Antenna Gain Cable Loss(dBi)	Main Antenna Auxiliary Ar		Auxiliary Antenna
2450MHz	-0.3 (Peak) -1.8 (Peak		-1.8 (Peak)
Antenna Type	PIFA		
I/O Port	Mini PCI		

Page: 5 of 68

Power Supply	19Vdc from AC adapter

NOTE:

1. The mini PCI card, which brand is Intel and the model name is WM3B2200BG,is specified to this FUT.

2. The EUT is powered by the following adapter:

Brand	DELTA
Model	ADP-120GB
Input	100-240 Vac 1.8A 50-60Hz
Output	19Vdc 6.3A

3. For more detailed features description, please refer to the manufacturer's specifications or User's Manual.

1.4 Test Environment

Ambient temperature: 21.6° C

Tissue Simulating Liquid: 21.0° C

Relative Humidity: 61 %

1.5 Operation Configuration

Channel Frequency Under	802.11b	802.11g	
Channel Frequency Under Test And Its Conducted	17.90dBm(2412MHz)	14.66dBm(2412MHz)	
Output Power	17.91dBm(2437MHz) 17.89dBm(2462MHz)	14.16dBm(2437MHz) 14.34dBm(2462MHz)	
Antenna Configuration	Internal /	,	
Antenna Coningulation	internar /		
Antenna Position	The Antennas are located at both sides of the LCD; the right Antenna is the main antenna, and the left one is the auxiliary.	Left Antenna	
EUT Power Source	From The Host Equipment		
HOST Power Source	Fully Charged Battery		

The following test configurations have been applied in this test report:

Main Antenna

Page: 6 of 68

Configuration 1: The top of the LCD panel of EUT contact to the flat phantom. The transmitted antenna of the EUT located under the reference point of the flat phantom.(Fig.2)

- Configuration 2: The back of the LCD Panel of EUT contact to the flat phantom. The transmitted antenna of the EUT located under the reference point of the flat phantom. (Fig.3)
- Configuration 3: The LCD panel of EUT contact to the flat phantom. The transmitted antenna of the EUT located under the reference point of the flat phantom. (Fig.4)

Auxiliary Antenna

- Configuration 4: Rear Side of the EUT is paralleled with flat phantom, Spacing between EUT and phantom In contact (0 cm). (Fig.5)
- Configuration 5: Bottom face of the EUT is paralleled with flat phantom. Spacing between EUT and phantom In contact (0 cm) . (Fig.6)
- Configuration 6: The LCD panel of EUT contact to the flat phantom. The transmitted antenna of the EUT located under the reference point of the flat phantom, Spacing between EUT and phantom In contact (0 cm) (Fig.7)

NOTE:

- 1. Please reference "APPENDIX 1" for the photos of test configuration.
- 2. All test Configuration have been complied with the body worn configuration.
- 3. The Notebook has been installed the controlling software that could control the EUT transmitted channel and power. But that software is just for test software, not for normal user.

1.6 EVALUATION PROCEDURES

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the

Page: 7 of 68

distance from sensor to surface

6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (42875 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.7 The SAR Measurement System

Page: 8 of 68

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1760 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei| 2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

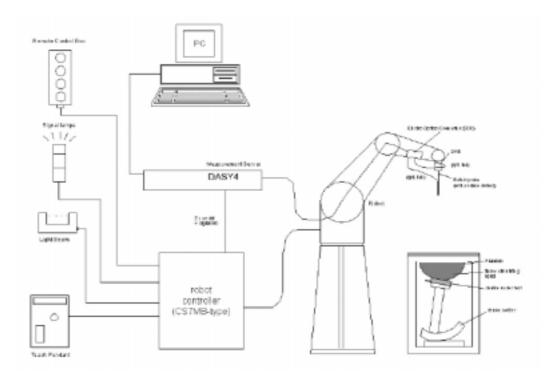


Fig. a The microwave circuit arrangement used for SAR system verification

• The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Page: 9 of 68

• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

1.8 System Components

ET3DV6 E-Field Probe

Directivity:

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$

(30 MHz to 3 GHz)

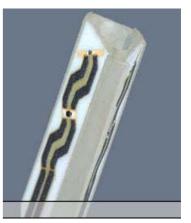
±0.2 dB in brain tissue (rotation around probe axis)

±0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: 5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

Srfce. Detect: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces


Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phone

ET3DV6 E-Field Probe

Report No.: ES/2004/30003 Page: 10 of 68

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX 3" for the Calibration Certification Report.

SAM PHANTOM V4.0C

Construction: The shell corresponds to the specifications of the Specific

Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the

dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow

the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the

robot.

Shell Thickness: $2 \pm 0.2 \text{ mm}$

Filling Volume: Approx. 25 liters
Dimensions: Height: 810 mm;

Length: 1000 mm; Width: 500 mm

PHANTOM v4.0C

DEVICE HOLDER

Construction

In combination with the Twin SAM Phantom V4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

Page: 11 of 68

1.9 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range 21.6 °C, the relative humidity was in the range 61% and the liquid depth above the ear reference points was above 15 cm (Fig.8) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

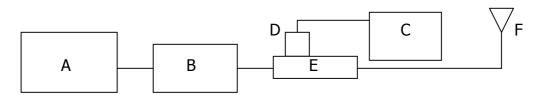


Fig. b The microwave circuit arrangement used for SAR system verification

- A. Agilent Model 8648D Signal Generator
- B. Mini circuits Model ZHL-42-SMA Amplifier
- C. Agilent Model E4416A Power Meter
- D. Agilent Model 8482H Power Sensor
- E. Agilent Model 777D Dual directional coupling
- F. Reference dipole Antenna

Photograph of the 2450MHz System Check

Validation Kit	Frequency	Target SAR 1g (250mW)	Target SAR 10g (250mW)	Measured SAR 1g	Measured SAR 10g	Measured date
DT3DV6 S/N :1760	2450 MHz	13.7 m W/g	6.02 m W/g	13.6m W/g	6.09m W/g	2004/3/23

Table 1. Results system validation

Page: 12 of 68

1.10 Tissue Simulant Fluid for the Frequency Band 2.4 to 2.5 GHz

The dielectric properties for this body-simulant fluid were measured by using the HP Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjuncation with HP 8714ET Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

F (Mhz)	Tissue type	Limits/ Measured	Dielectric Parameters		
			Permittivity Conductivity		Simulated Tissue
					Temp(° C)
2450	Body	Measured, 2004/03/	51.88	1.963	21.0
		Measured, 2004/03/	52.21	1.971	21.0
		Recommended Limits	50.1-55.3	1.85-2.05	20-24

The composition of the brain tissue simulating liquid for 2450 MHz is:

Ingredient	2450Mhz (Head)	2450Mhz (Body)	
DGMBE	550.0 g	301.7 ml	
Water	450.0 g	698.3 ml	
Total amount	1 L (1.0kg)	1 L (1.0kg)	

1.11 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1–1992, Copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits

Page: 13 of 68

specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

- (1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.
- (2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

	Uncontrolled Environment	Controlled Environment	
Human Exposure	General Population	Occupational	
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g	
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g	
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g	

Table .4 RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Report No. : ES/2004/30003
__Page : 14 of 68

2. Instruments List

Manufacturer	Device	Туре	Serial number	Date of last calibration
Schmid &	Dosimetric E-Field	ET3DV6	1760	Feb.17.2004
Partner	Probe			
Engineering AG				
Schmid &	2450 MHz System	D2450V2	712	SEP.17. 2003
Partner	Validation Dipole			
Engineering AG				
Schmid &	Data acquisition	DAE3	547	Feb.10.2004
Partner	Electronics			
Engineering AG				
Schmid &	Software	DASY 4 V4.1c		Calibration isn't
Partner		Build 47		necessary
Engineering AG				
Schmid &	Phantom	SAM		Calibration isn't
Partner				necessary
Engineering AG				
Agilent	Network Analyzer	8714ET	US41442815	Jun.16.2003
Agilent	Dielectric Probe Kit	85070D	US01440168	Jun.20.2003

Page: 15 of 68

3. Summary of Results

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in 4.Measurements

802.11b

Main Antenn	a SAR MEAS	SUREMENT					
Crest factor: 1 (Duty cycle: 100%) Depth of Liquid: 15.0 cm							
EUT Config	uration 1						
EUT Set-up conditions		Frequency		Conducted Output	•	1g SAR	Limit
Sep. [cm]	Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)
0.0	Top Side	1	2412	17.90	21.1	0.606	1.6
		6	2437	17.91	21.0	0.574	
		11	2462	17.89	21.0	0.601	
EUT Configuration 2							
EUT Set-up	conditions	Frequency		Conducted Output	Liquid	1g SAR	Limit
Sep. [cm]	Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)
0.0	Back side	1	2412	17.90	21.1	0.896	1.6
		6	2437	17.91	21.1	0.937	
		11	2462	17.89	21.1	1.01	
EUT Config	uration 3						
EUT Set-up	conditions	Freque	ncy	Conducted Output	Liquid	1g SAR	Limit
Sep. [cm]	Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)
0.0	LCD panel	1	2412	17.90	21.0	0.201	1.6
		6	2437	17.91	21.1	0.199	
		11	2462	17.89	21.0	0.223	

Measured Mixture Type	Body	Relative Humidity	61%
Ambient Temperature	21.6°C	Fluid Temperature	21.0°C

Report No. : ES/2004/30003 Page : 16 of 68

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in 4.Measurements

802.11b

	de: 100%)							
	Crest factor: 1 (Duty cycle: 100%) Depth of Liquid: 15.0 cm							
ration 4								
onditions	Frequency		Conducted Output	Liquid	1g SAR	Limit		
Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)		
Rear side	1	2412	17.90	21.1	1.15	1.6		
	6	2437	17.91	21.0	1.17			
	11	2462	17.89	21.0	1.12			
EUT Configuration 5								
onditions	Frequency		Conducted Output	Liquid	1g SAR	Limit		
Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)		
Bottom	1	2412	17.90	21.1	0.00315	1.6		
face	6	2437	17.91	21.1	0.00188			
-	11	2462	17.89	21.1	0.00285			
ration 6								
onditions	Frequency				1g SAR	Limit		
Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)		
_CD panel	1	2412	17.90	21.0	0.147	1.6		
	6	2437	17.91	21.1	0.135			
 	11	2462	17.89	21.0	0.134			
F	Antenna Position Rear side ration 5 onditions Antenna Position Bottom face ration 6 onditions Antenna Positions	Antenna Position Rear side 1 6 11 ration 5 onditions Frequent Channel Position Bottom face 6 11 ration 6 onditions Frequent Channel Channel Channel Frequent Channel	Antenna Position Rear side 1 2412 6 2437 11 2462 ration 5 onditions Antenna Position Bottom face face Onditions Frequency 1 2412 6 2437 11 2462 ration 6 onditions Frequency Antenna Position Frequency Channel MHz Antenna Position Channel MHz Antenna Position Channel MHz Antenna Position CD panel 1 2412 6 2437	Antenna Position Rear side 1 2412 17.90 6 2437 17.91 11 2462 17.89 ration 5 onditions Antenna Position Bottom face 6 2437 17.91 11 2462 17.90 6 2437 17.91 11 2462 17.90 6 2437 17.91 11 2462 17.89 ration 6 onditions Frequency Conducted Output Power (dbm) 1 2412 17.90 11 2462 17.89 ration 6 onditions Antenna Position CD panel 1 2412 17.90 6 2437 17.91	Antenna Position Channel MHz Power (dbm) Temp[°C] Rear side 1 2412 17.90 21.1 6 2437 17.91 21.0 11 2462 17.89 21.0 ration 5 Inditions Prequency Antenna Position Channel MHz Conducted Output Power (dbm) Liquid Temp[°C] Inditions Prequency Antenna Position 6 2437 17.91 21.1 Inditions Prequency Power (dbm) Conducted Output Power (dbm) Liquid Temp[°C] Inditions Prequency Power (dbm) Conducted Output Power (dbm) Liquid Temp[°C] Inditions Prequency Power (dbm) Inditions Power (dbm) Inditions Power (dbm) Inditions Power (dbm) Inditions Prequency Power (dbm) Inditions Power (dbm) Inditions Power (dbm) Inditions Power (dbm) Inditions Prequency Power (dbm) Inditions Power (dbm) Indition	Antenna Position Channel Position MHz Power (dbm) Temp[°C] (W/kg) Rear side 1 2412 17.90 21.1 1.15 6 2437 17.91 21.0 1.17 11 2462 17.89 21.0 1.12 ration 5 Indicated Position Frequency Power (dbm) Conducted Output Power (dbm) Liquid Power (W/kg) 1g SAR (W/kg) Position Face 6 2437 17.91 21.1 0.00315 Face 6 2437 17.91 21.1 0.00285 ration 6 Onditions Frequency Power (dbm) Conducted Output Power (dbm) Liquid Temp[°C] 1g SAR (W/kg) Antenna Position Channel MHz Power (dbm) Temp[°C] 0.147 CD panel 1 2412 17.90 21.0 0.147 6 2437 17.91 21.1 0.135		

Measured Mixture Type	Body	Relative Humidity	61%
Ambient Temperature	21.6°C	Fluid Temperature	21.0°C

Report No. : ES/2004/30003 Page : 17 of 68

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in 4.Measurements

802.11g

	EASUREME	NT					
1 (Duty cyc	1 4000()						
Crest factor: 1 (Duty cycle: 100%) Depth of Liquid: 15.0 cm							
ration 1							
EUT Set-up conditions		าсу	Conducted Output	-	1g SAR	Limit	
Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)	
Top side	1	2412	14.66	21.1	0.313	1.6	
	6	2437	14.16	21.0	0.317		
	11	2462	14.34	21.0	0.33		
EUT Configuration 2							
conditions	Frequency		Conducted Output	Liquid	1g SAR	Limit	
Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)	
Back side	1	2412	14.66	21.0	0.46	1.6	
	6	2437	14.16	21.1	0.447		
	11	2462	14.34	20.9	0.497		
ration 3							
conditions	Frequency		Conducted Output	Liquid	1g SAR	Limit	
Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)	
LCD panel	1	2412	14.66	20.9	0.0982	1.6	
	6	2437	14.16	20.9	0.103		
	11	2462	14.34	21.0	0.12		
	Antenna Position Top side ration 2 conditions Antenna Position Back side ration 3 conditions Antenna Positions	Antenna Position Top side Top	Antenna Position Top side Top	Conducted Output	Conducted Output Power (dbm) Composition Channel Position Top side 1 2412 14.66 21.1 2462 14.34 21.0	Conditions Frequency Conducted Output Power (dbm) Liquid Temp[°C] 1g SAR (W/kg) Antenna Position 1 2412 14.66 21.1 0.313 6 2437 14.16 21.0 0.317 11 2462 14.34 21.0 0.33 ration 2 Conditions Frequency Conducted Output Power (dbm) Liquid Temp[°C] 1g SAR Temp[°C] Antenna Position 1 2412 14.66 21.0 0.46 6 2437 14.16 21.1 0.447 11 2462 14.34 20.9 0.497 ration 3 Conditions Frequency Power (dbm) Conducted Output Power (dbm) Liquid Temp[°C] 1g SAR Temp[°C] Antenna Position Channel MHz Power (dbm) Temp[°C] (W/kg) CD panel 1 2412 14.66 20.9 0.0982 6 2437 14.16 20.9 0.103	

Measured Mixture Type	Body	Relative Humidity	61%
Ambient Temperature	21.6℃	Fluid Temperature	21.0°C

Report No. : ES/2004/30003 Page : 18 of 68

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in 4.Measurements

802.11g

<u> </u>							
Auxiliary Ant	<mark>enna</mark> SAR M	IEASUREME	NT				
Crest factor	: 1 (Duty cy	cle: 100%)			Depth (of Liquid	: 15.0 cm
EUT Config	uration 4						
EUT Set-up	conditions	Frequency		Conducted Output	Liquid	1g SAR	Limit
Sep. [cm]	Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)
0.0	Rear side	1	2412	14.66	21.1	0.568	1.6
		6	2437	14.16	21.0	0.664	
		11	2462	14.34	21.0	0.633	
EUT Configuration 5							
EUT Set-up conditions		Frequency		Conducted Output	Liquid	1g SAR	Limit
Sep. [cm]	Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)
0.0	Bottom	1	2412	14.66	21.0	0.00077	1.6
	face	6	2437	14.16	21.1	0.00071	
		11	2462	14.34	20.9	0.00079	
EUT Config	uration 6						
EUT Set-up	conditions	Frequency		Conducted Output	-	1g SAR	Limit
Sep. [cm]	Antenna Position	Channel	MHz	Power (dbm)	Temp[°C]	(W/kg)	(W/kg)
0.0	LCD panel	1	2412	14.66	20.9	0.0759	1.6
		6	2437	14.16	20.9	0.0751	
		11	2462	14.34	21.0	0.0791	
<u> </u>	<u> </u>		1	1	<u> </u>		

Measured Mixture Type	Body	Relative Humidity	61%
Ambient Temperature	21.6℃	Fluid Temperature	21.0°C

Page: 19 of 68

4.Measurements

Top of the LCD panel position, lowest channel Date/Time: 03/23/04

10:52:19

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.90176 mho/m, = 52.1152, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

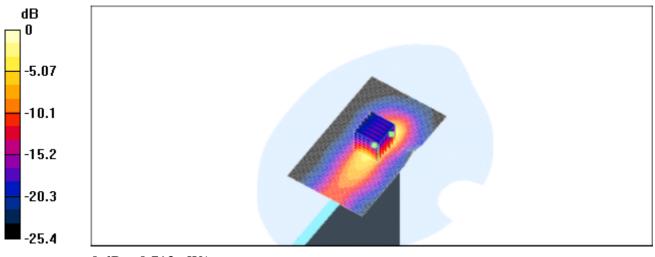
Top of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 10.8 V/m

Power Drift = -0.4 dB

Maximum value of SAR = 0.482 mW/g

Top of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.94 W/kg

SAR(1 g) = 0.606 mW/g; SAR(10 g) = 0.212 mW/g

Reference Value = 10.8 V/m

Power Drift = -0.4 dB

Maximum value of SAR = 0.713 mW/g

0 dB = 0.713 mW/g

Report No. : ES/2004/30003 Page : 20 of 68

Top of the LCD panel position, middle channel Date/Time: 03/23/04

11:47:04

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.92418 mho/m, r = 51.8878, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

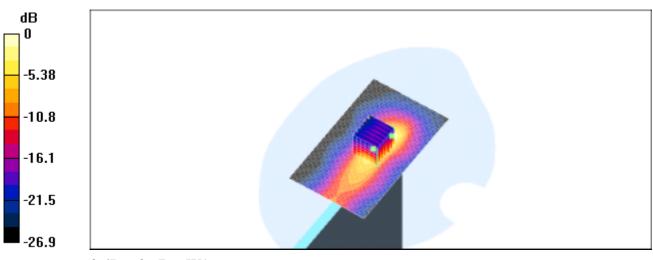
Top of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 10.2 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.449 mW/g

Top of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 0.574 mW/g; SAR(10 g) = 0.199 mW/g

Reference Value = 10.2 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.676 mW/g

0 dB = 0.676 mW/g

Page: 21 of 68 Date/Time: 03/23/04

13:03:26

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, $_r = 51.857$, = 1000 kg/m^3)

Top of the LCD panel position, highest channel

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

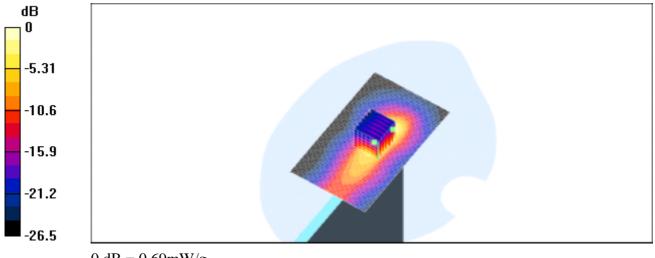
Top of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 10.3 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.453 mW/g

Top of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 0.601 mW/g; SAR(10 g) = 0.207 mW/g

Reference Value = 10.3 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.69 mW/g

0 dB = 0.69 mW/g

Page: 22 of 68

Date/Time: 03/23/04

23:52:05

Back of the LCD Panel position, lowest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, = 52.1899, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

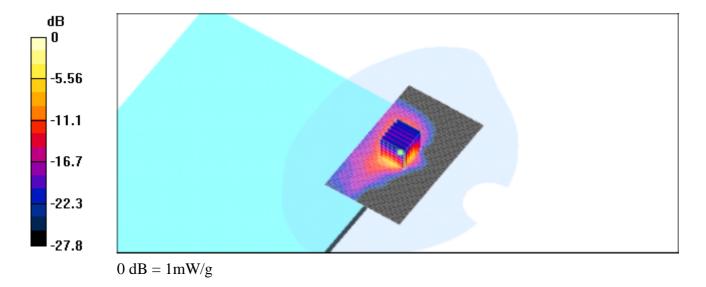
Back of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 24.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 1.33 mW/g

Back of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 0.896 mW/g; SAR(10 g) = 0.326 mW/g

Reference Value = 24.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 1 mW/g

Page: 23 of 68 Date/Time: 03/23/04

Back of the LCD Panel position, middle channel

23:20:55

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, r = 51.8878, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Back of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 24.9 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 1.4 mW/g

Back of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 3.31 W/kg

SAR(1 g) = 0.937 mW/g; SAR(10 g) = 0.334 mW/g

Reference Value = 24.9 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 1.06 mW/g

0 dB = 1.06 mW/g

Page: 24 of 68

Date/Time: 03/23/04

22:47:45

Back of the LCD Panel position, highest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, $_r = 51.857$, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

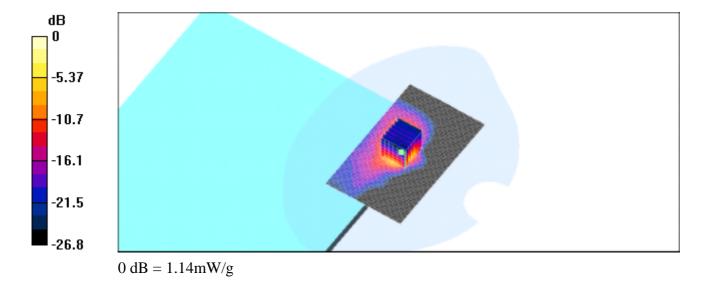
Back of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 25.4 V/m

Power Drift = 4e-05 dB

Maximum value of SAR = 1.49 mW/g

Back of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.354 mW/g

Reference Value = 25.4 V/m

Power Drift = 4e-05 dB

Maximum value of SAR = 1.14 mW/g

Page: 25 of 68

Date/Time: 03/24/04 10:35:52

LCD panel position, lowest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, r = 52.1899, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

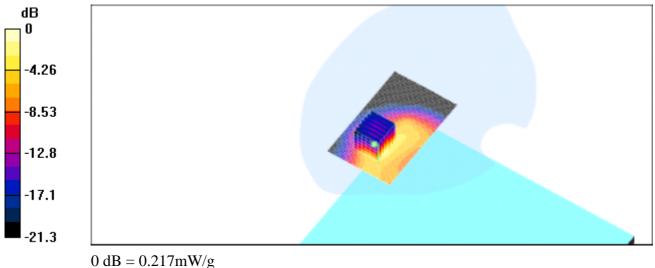
LCD panel/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.784 V/m

Power Drift = 0.06 dB

Maximum value of SAR = 0.211 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.477 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.0898 mW/g

Reference Value = 0.784 V/m

Power Drift = 0.06 dB

Maximum value of SAR = 0.217 mW/g

Page: 26 of 68

Date/Time: 03/24/04 11:03:17

LCD panel position, middle channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, r = 51.8878, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

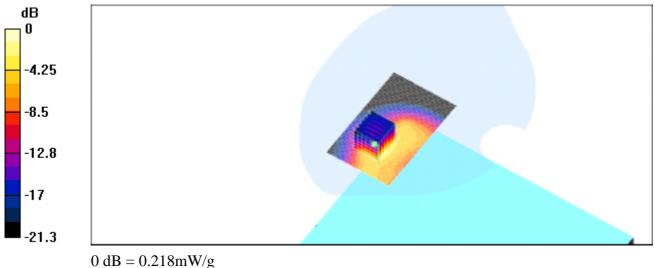
LCD panel/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.749 V/m

Power Drift = 0.1 dB

Maximum value of SAR = 0.209 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.0892 mW/g

Reference Value = 0.749 V/m

Power Drift = 0.1 dB

Maximum value of SAR = 0.218 mW/g

Report No.: ES/2004/30003 Page: 27 of 68

Date/Time: 03/24/04 11:26:55

LCD panel position, highest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

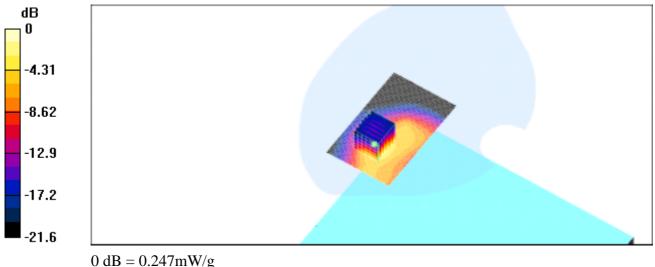
LCD panel/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.977 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 0.227 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.531 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.0989 mW/g

Reference Value = 0.977 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 0.247 mW/g

Page: 28 of 68

Date/Time: 03/24/04 19:56:36

Rear Side position, lowest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, = 52.1899, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

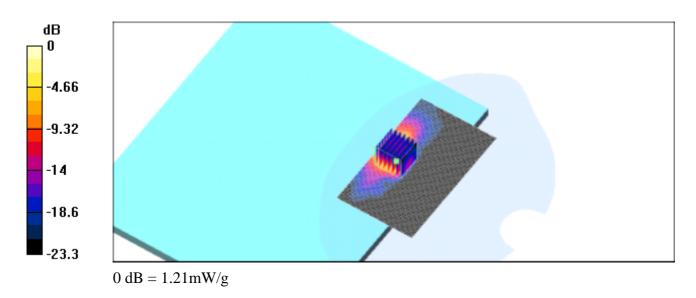
Rear side/Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 1.2 V/m

Power Drift = 0.1 dB

Maximum value of SAR = 1.22 mW/g

Rear side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 3.73 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.418 mW/g

Reference Value = 1.2 V/m

Power Drift = 0.1 dB

Maximum value of SAR = 1.21 mW/g

Page: 29 of 68

Date/Time: 03/24/04 20:30:25

Rear Side position, middle channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, = 51.8878, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

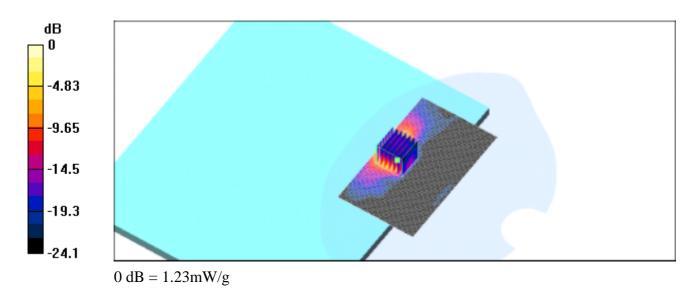
Rear side/Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 1.13 V/m

Power Drift = 0.09 dB

Maximum value of SAR = 0.942 mW/g

Rear side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.414 mW/g

Reference Value = 1.13 V/m

Power Drift = 0.09 dB

Maximum value of SAR = 1.23 mW/g

Page: 30 of 68
Date/Time: 03/24/04 21:01:15

Rear Side position, highest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

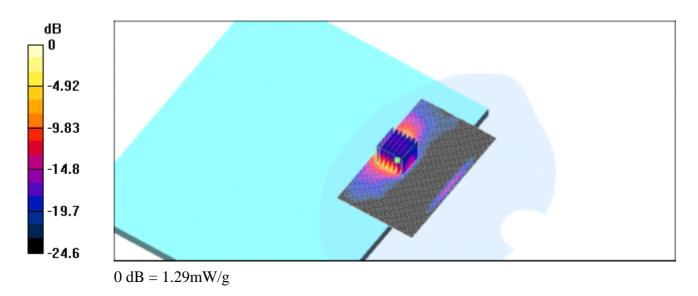
Rear side/Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 1.22 V/m

Power Drift = 0.2 dB

Maximum value of SAR = 1.06 mW/g

Rear side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 4.06 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.431 mW/g

Reference Value = 1.22 V/m

Power Drift = 0.2 dB

Maximum value of SAR = 1.29 mW/g

Page: 31 of 68
Date/Time: 03/25/04 19:39:01

Bottom face position, lowest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, = 52.1899, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

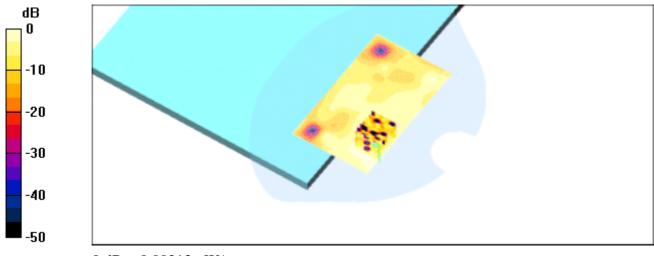
Bottom face/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.672 V/m

Power Drift = -0.3 dB

Maximum value of SAR = 0.00221 mW/g

Bottom face/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.0705 W/kg

SAR(1 g) = 0.00315 mW/g; SAR(10 g) = 0.00123 mW/g

Reference Value = 0.672 V/m

Power Drift = -0.3 dB

Maximum value of SAR = 0.00213 mW/g

0 dB = 0.00213 mW/g

Report No. : ES/2004/30003 Page : 32 of 68

Date/Time: 03/25/04 15:20:13

Bottom face position, middle channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, = 51.8878, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

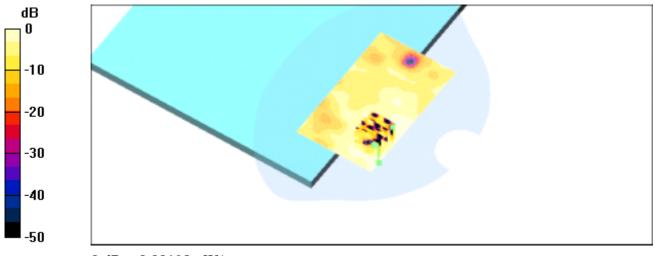
Bottom face/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.544 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.002 mW/g

Bottom face/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.0224 W/kg

SAR(1 g) = 0.00188 mW/g; SAR(10 g) = 0.000955 mW/g

Reference Value = 0.544 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.00198 mW/g

0 dB = 0.00198 mW/g

Page: 33 of 68

Date/Time: 03/25/04 16:18:30

Bottom face position, highest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

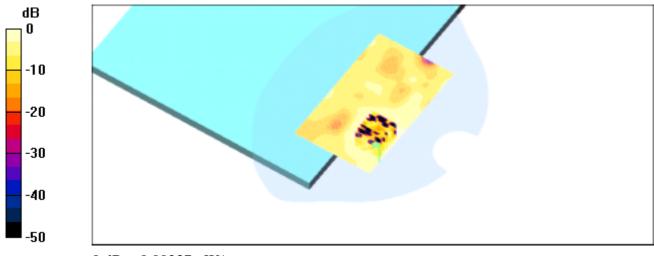
Bottom face/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.468 V/m

Power Drift = -0.06 dB

Maximum value of SAR = 0.00227 mW/g

Bottom face/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.0336 W/kg

SAR(1 g) = 0.00285 mW/g; SAR(10 g) = 0.00122 mW/g

Reference Value = 0.468 V/m

Power Drift = -0.06 dB

Maximum value of SAR = 0.00237 mW/g

0 dB = 0.00237 mW/g

Report No.: ES/2004/30003 Page: 34 of 68

Date/Time: 03/26/04 10:57:05

LCD panel position, lowest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, r = 52.1899, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

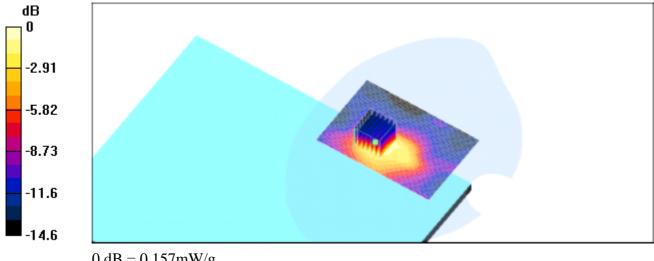
LCD panel/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 6.87 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.16 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.361 W/kg

SAR(1 g) = 0.147 mW/g; SAR(10 g) = 0.0744 mW/g

Reference Value = 6.87 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.157 mW/g

0 dB = 0.157 mW/g

Page: 35 of 68 Date/Time: 03/26/04 12:33:30

LCD panel position, middle channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, r = 51.8878, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

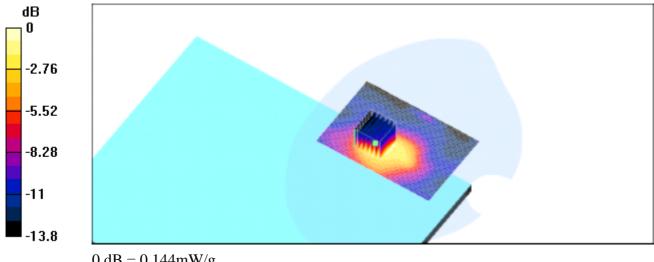
LCD panel/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 6.37 V/m

Power Drift = -0.005 dB

Maximum value of SAR = 0.139 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.33 W/kg

SAR(1 g) = 0.135 mW/g; SAR(10 g) = 0.0693 mW/g

Reference Value = 6.37 V/m

Power Drift = -0.005 dB

Maximum value of SAR = 0.144 mW/g

0 dB = 0.144 mW/g

Report No.: ES/2004/30003 Page: 36 of 68

Date/Time: 03/26/04 13:03:06

LCD panel position, highest channel

DUT: Wireless LAN 802.11b; Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

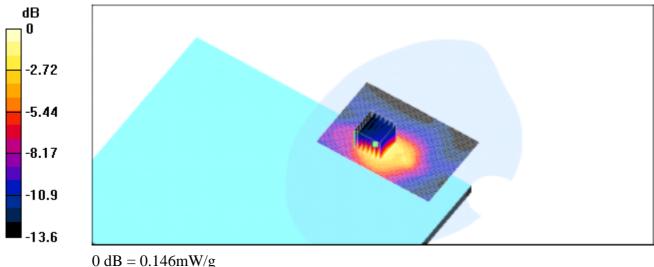
LCD panel/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 6.02 V/m

Power Drift = 0.03 dB

Maximum value of SAR = 0.133 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.327 W/kg

SAR(1 g) = 0.134 mW/g; SAR(10 g) = 0.0703 mW/g

Reference Value = 6.02 V/m

Power Drift = 0.03 dB

Maximum value of SAR = 0.146 mW/g

Page: 37 of 68 Date/Time: 03/23/04

Top of the LCD panel position, lowest channel 13:33:31

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.89744 mho/m, r = 52.1899, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

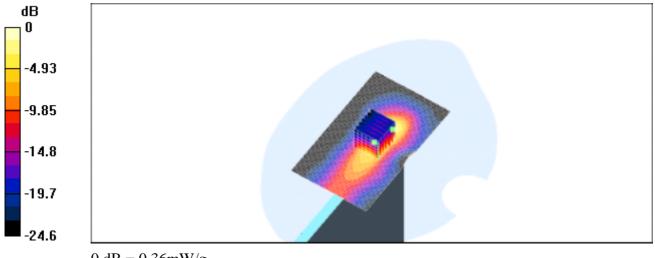
Top of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.41 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.244 mW/g

Top of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.313 mW/g; SAR(10 g) = 0.108 mW/g

Reference Value = 7.41 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.36 mW/g

0 dB = 0.36 mW/g

Page: 38 of 68 Date/Time: 03/23/04

Top of the LCD panel position, middle channel

14:51:15

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium: M2450 (= 1.92418 mho/m, r = 51.8878, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

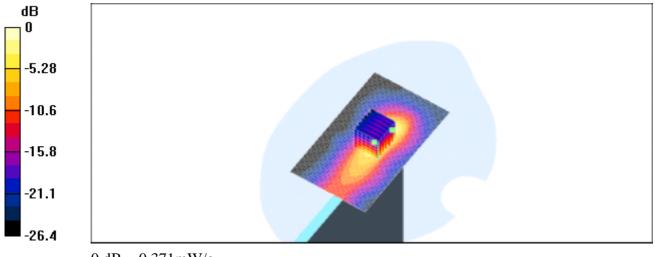
Top of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.46 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.25 mW/g

Top of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.11 mW/g

Reference Value = 7.46 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.371 mW/g

0 dB = 0.371 mW/g

Page: 39 of 68 Date/Time: 03/23/04

16:27:41

Top of the LCD panel position, highest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, $_r = 51.857$, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

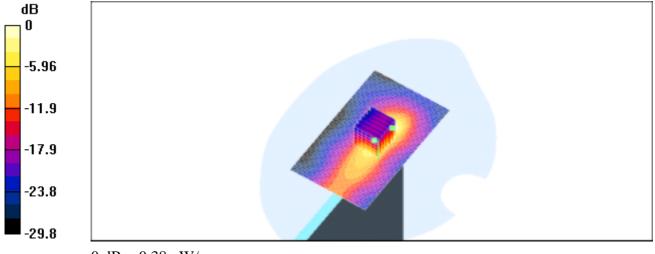
Top of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 7.51 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.253 mW/g

Top of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.33 mW/g; SAR(10 g) = 0.113 mW/g

Reference Value = 7.51 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.38 mW/g

0 dB = 0.38 mW/g

Page: 40 of 68

Date/Time: 03/23/04

17:27:02

Back of the LCD Panel position, lowest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, = 52.1899, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

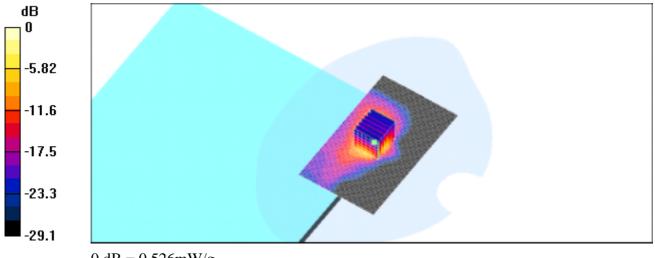
Back of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 18.1 V/m

Power Drift = -0.4 dB

Maximum value of SAR = 0.709 mW/g

Back of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.46 mW/g; SAR(10 g) = 0.163 mW/g

Reference Value = 18.1 V/m

Power Drift = -0.4 dB

Maximum value of SAR = 0.526 mW/g

0 dB = 0.526 mW/g

Page: 41 of 68

Date/Time: 03/23/04

21:54:59

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, r = 51.8878, = 1000 kg/m^3)

Back of the LCD Panel position, middle channel

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

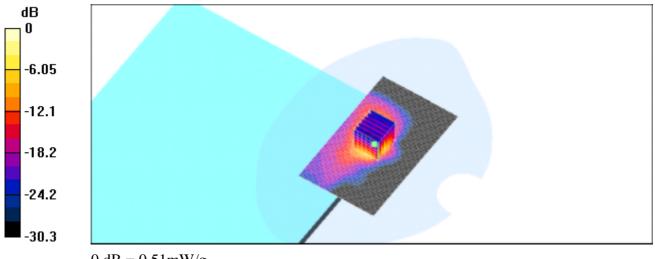
Back of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 17.3 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.662 mW/g

Back of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 0.447 mW/g; SAR(10 g) = 0.158 mW/g

Reference Value = 17.3 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.51 mW/g

0 dB = 0.51 mW/g

Page: 42 of 68

Date/Time: 03/23/04

22:21:56

Back of the LCD Panel position, highest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, $_r = 51.857$, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

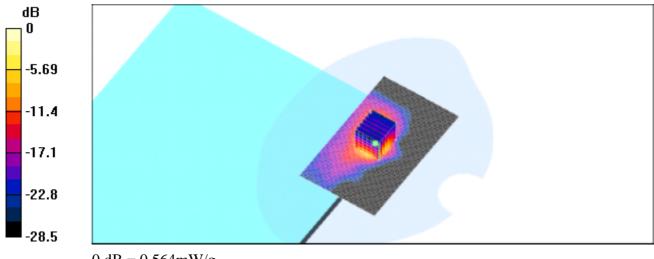
Back of the LCD panel/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 18.1 V/m

Power Drift = -0.06 dB

Maximum value of SAR = 0.731 mW/g

Back of the LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 0.497 mW/g; SAR(10 g) = 0.174 mW/g

Reference Value = 18.1 V/m

Power Drift = -0.06 dB

Maximum value of SAR = 0.564 mW/g

0 dB = 0.564 mW/g

Report No.: ES/2004/30003 Page: 43 of 68

Date/Time: 03/24/04 14:26:22

LCD panel position, lowest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, r = 52.1899, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

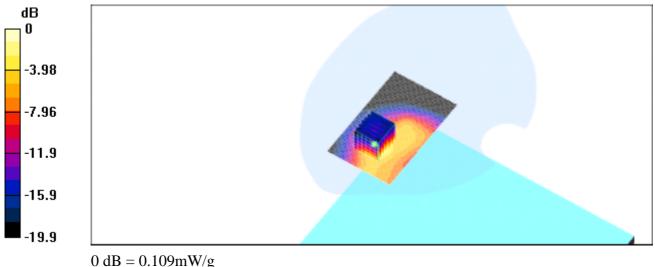
LCD panel/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.464 V/m

Power Drift = -0.9 dB

Maximum value of SAR = 0.102 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.233 W/kg

SAR(1 g) = 0.0982 mW/g; SAR(10 g) = 0.0438 mW/g

Reference Value = 0.464 V/m

Power Drift = -0.9 dB

Maximum value of SAR = 0.109 mW/g

Report No.: ES/2004/30003 Page: 44 of 68

LCD panel position, middle channel Date/Time: 03/24/04 14:00:47

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.92418 mho/m, r = 51.8878, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

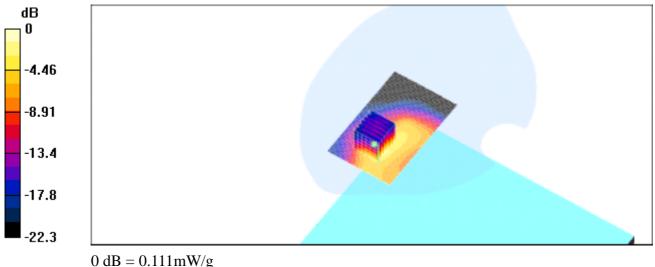
LCD panel/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.477 V/m

Power Drift = -0.6 dB

Maximum value of SAR = 0.107 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.24 W/kg

SAR(1 g) = 0.103 mW/g; SAR(10 g) = 0.0462 mW/g

Reference Value = 0.477 V/m

Power Drift = -0.6 dB

Maximum value of SAR = 0.111 mW/g

Report No.: ES/2004/30003 Page: 45 of 68

Date/Time: 03/24/04 13:16:26

LCD panel position, highest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

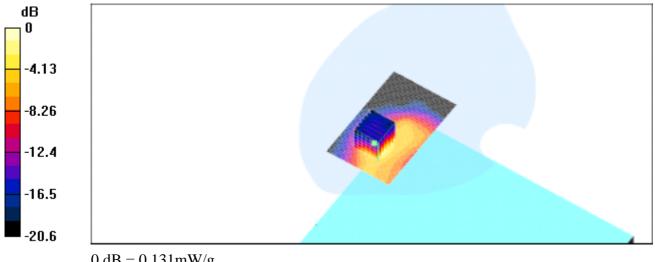
LCD panel/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.493 V/m

Power Drift = -0.3 dB

Maximum value of SAR = 0.124 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.284 W/kg

SAR(1 g) = 0.12 mW/g; SAR(10 g) = 0.0532 mW/g

Reference Value = 0.493 V/m

Power Drift = -0.3 dB

Maximum value of SAR = 0.131 mW/g

0 dB = 0.131 mW/g

Report No.: ES/2004/30003 Page: 46 of 68

Date/Time: 03/25/04 12:43:25

Rear Side position, lowest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, r = 52.1899, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

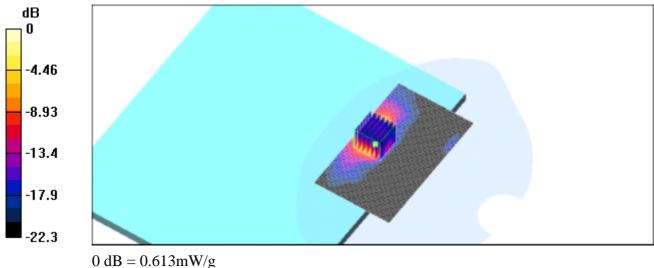
Rear side/Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 1.21 V/m

Power Drift = -0.01 dB

Maximum value of SAR = 0.53 mW/g

Rear side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.568 mW/g; SAR(10 g) = 0.212 mW/g

Reference Value = 1.21 V/m

Power Drift = -0.01 dB

Maximum value of SAR = 0.613 mW/g

Page: 47 of 68

Date/Time: 03/25/04 11:38:19

Rear Side position, middle channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, = 51.8878, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

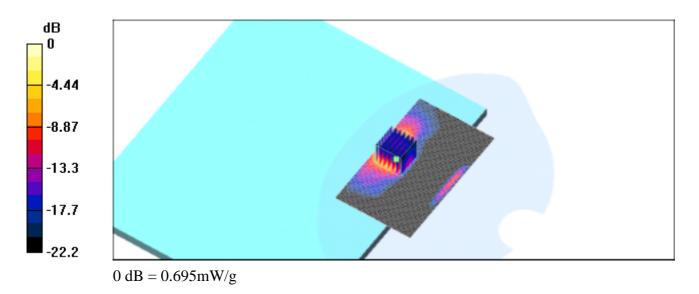
Rear side/Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 1.19 V/m

Power Drift = -0.03 dB

Maximum value of SAR = 0.639 mW/g

Rear side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2.2 W/kg

SAR(1 g) = 0.664 mW/g; SAR(10 g) = 0.239 mW/g

Reference Value = 1.19 V/m

Power Drift = -0.03 dB

Maximum value of SAR = 0.695 mW/g

Page: 48 of 68
Date/Time: 03/24/04 21:29:51

Rear Side position, highest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

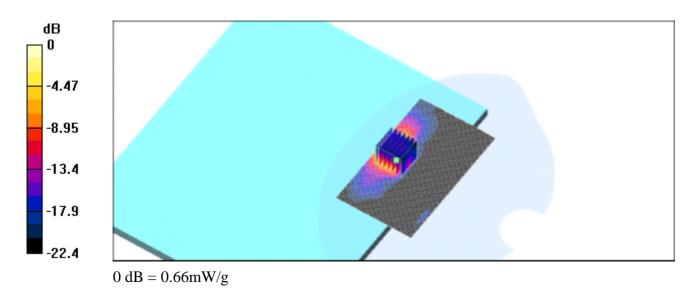
Rear side/Area Scan (101x61x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 1.21 V/m

Power Drift = 0.001 dB

Maximum value of SAR = 0.563 mW/g

Rear side/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 2.14 W/kg

SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.224 mW/g

Reference Value = 1.21 V/m

Power Drift = 0.001 dB

Maximum value of SAR = 0.66 mW/g

Page: 49 of 68
Date/Time: 03/25/04 20:47:34

Bottom face position, lowest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

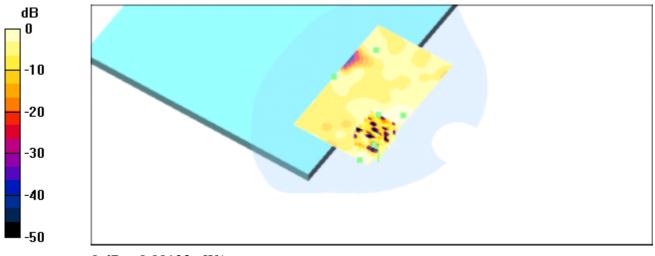
Bottom face/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.64 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.000938 mW/g

Bottom face/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.00356 W/kg

SAR(1 g) = 0.000774 mW/g; SAR(10 g) = 0.000396 mW/g

Reference Value = 0.64 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.00123 mW/g

0 dB = 0.00123 mW/g

Report No.: ES/2004/30003 Page: 50 of 68

Bottom face position, middle channel Date/Time: 03/25/04 21:14:08

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, = 51.8878, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

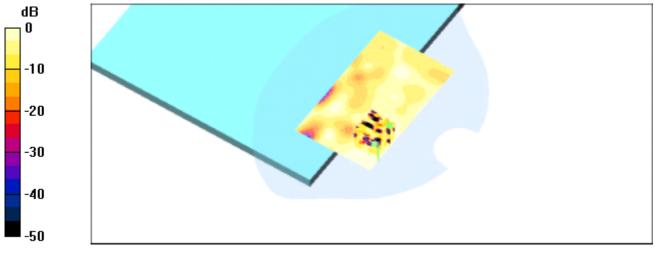
Bottom face/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.352 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.00149 mW/g

Bottom face/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.00288 W/kg

SAR(1 g) = 0.000708 mW/g; SAR(10 g) = 0.000425 mW/g

Reference Value = 0.352 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.00111 mW/g

0 dB = 0.00111 mW/g

Page: 51 of 68 Date/Time: 03/25/04 22:50:51

Bottom face position, highest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Bottom face/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 0.461 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.00106 mW/g

Bottom face/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.00258 W/kg

SAR(1 g) = 0.000792 mW/g; SAR(10 g) = 0.000485 mW/g

Reference Value = 0.461 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.001 mW/g

0 dB = 0.00107 mW/g

Page: 52 of 68 Date/Time: 03/26/04 14:11:44

LCD panel position, lowest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.89744 mho/m, r = 52.1899, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

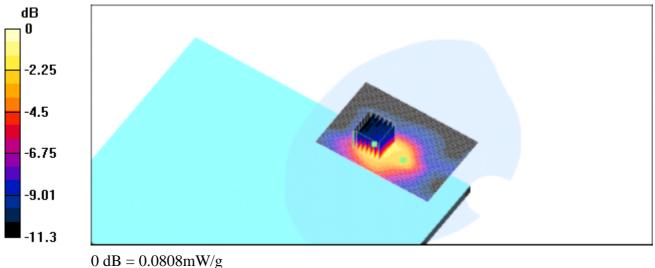
LCD panel/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 4.91 V/m

Power Drift = 0.06 dB

Maximum value of SAR = 0.0769 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.182 W/kg

SAR(1 g) = 0.0759 mW/g; SAR(10 g) = 0.0402 mW/g

Reference Value = 4.91 V/m

Power Drift = 0.06 dB

Maximum value of SAR = 0.0808 mW/g

Report No.: ES/2004/30003 Page: 53 of 68

Date/Time: 03/26/04 14:38:04

LCD panel position, middle channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.92418 mho/m, $_{r} = 51.8878$, $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

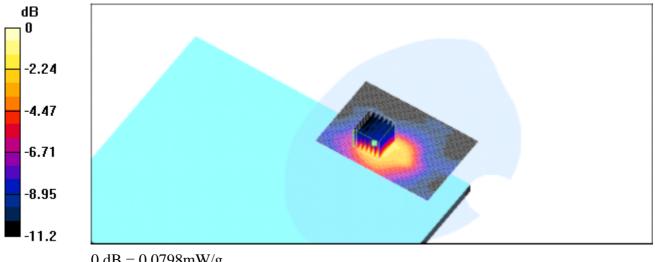
LCD panel/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 4.85 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 0.0761 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.179 W/kg

SAR(1 g) = 0.0751 mW/g; SAR(10 g) = 0.0397 mW/g

Reference Value = 4.85 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 0.0798 mW/g

0 dB = 0.0798 mW/g

Report No. : ES/2004/30003 Page : 54 of 68

Date/Time: 03/26/04 16:14:25

LCD panel position, highest channel

DUT: Wireless LAN 802.11g Type: Mini PCI;

Program: Notebook

Communication System: Wireless LAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: M2450 (= 1.97766 mho/m, r = 51.857, = 1000 kg/m^3)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

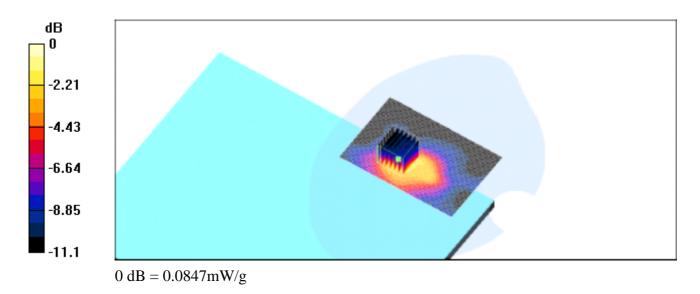
LCD panel/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 4.9 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 0.082 mW/g

LCD panel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.193 W/kg

SAR(1 g) = 0.0791 mW/g; SAR(10 g) = 0.0417 mW/g

Reference Value = 4.9 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 0.0847 mW/g

Page: 55 of 68 Date/Time: 03/23/04 09:07:04

SAR System Performance Verification

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Program: 20040323

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: M2450 (= 1.94029 mho/m, = 51.7099, = 1000 kg/m³)

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1760; ConvF(4.18, 4.18, 4.18); Calibrated: 2004/2/17

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn547; Calibrated: 2004/2/10

• Phantom: SAM 12; Type: SAM 4.0; Serial: TP:1150

• Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

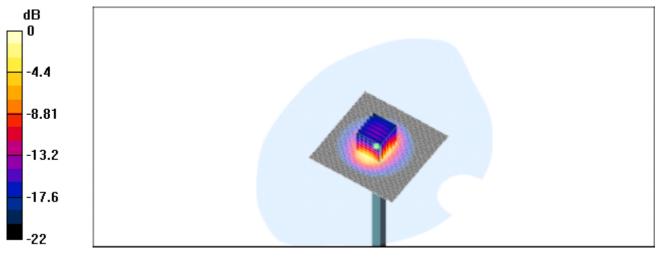
System Cal/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 90.8 V/m

Power Drift = 0.003 dB

Maximum value of SAR = 15.1 mW/g

System Cal/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.09 mW/g

Reference Value = 90.8 V/m

Power Drift = 0.003 dB

Maximum value of SAR = 15 mW/g

0 dB = 15 mW/g

Page: 56 of 68

Photographs of Test Setup

Fig.1 Photograph of the SAR measurement System

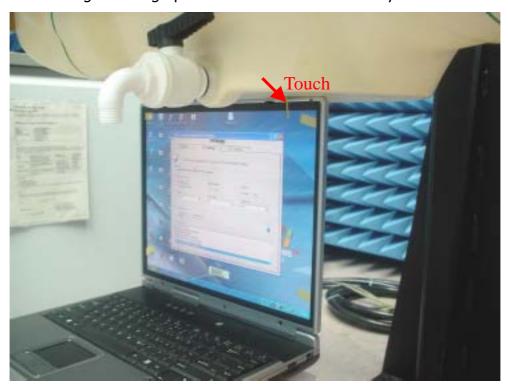


Fig.2 Photograph of the top of the LCD panel of Main Antenna contact to the flat Phantom; and at a distance of 0.0 cm from the base of the phantom.

Report No. : ES/2004/30003 Page : 57 of 68

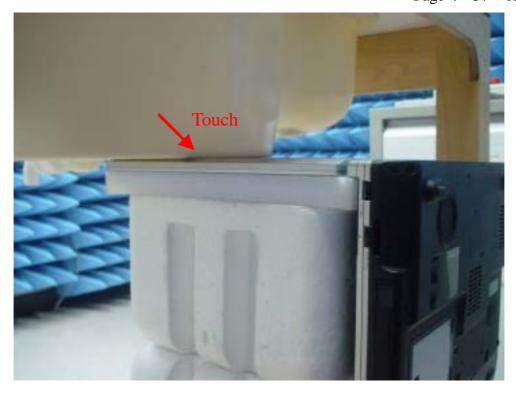


Fig.3 Photograph of the back of the LCD Panel of Right Antenna contact to the flat phantom; and at a distance of 0.0 cm from the base of the phantom

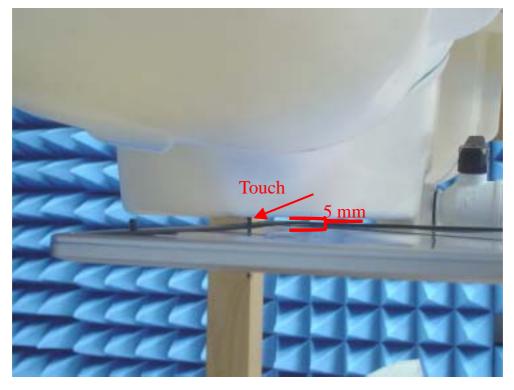


Fig.4 Photograph of the LCD panel of EUT contact to the flat phantom. Since there is a hook on the edgr of panel, the panel itself can not touch phantom. Spacing between hook and phantom - In contact (0 mm)

Report No. : ES/2004/30003 Page : 58 of 68

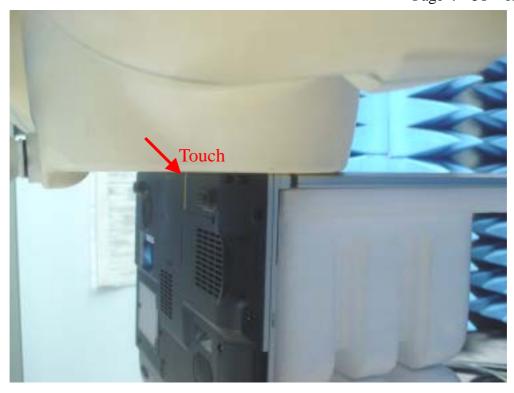


Fig.5 Photograph of the Rear side of the EUT is paralleled with flat Phantom; Spacing between EUT and phantom - In contact (0 cm).

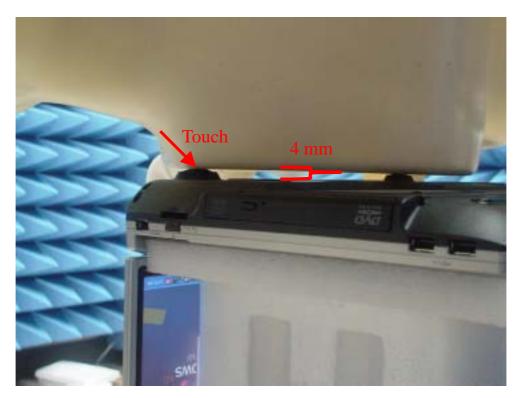


Fig.6 Photograph of the Bottom face of the EUT is paralleled with flat phantom. Spacing between EUT and phantom - In contact (0 cm)

Report No. : ES/2004/30003 Page : 59 of 68

Fig.7 Photograph of the LCD panel of EUT contact to the flat phantom. The transmitted antenna of the EUT located under the reference point of the flat phantom, Spacing between EUT and phantom - In contact (0 cm)

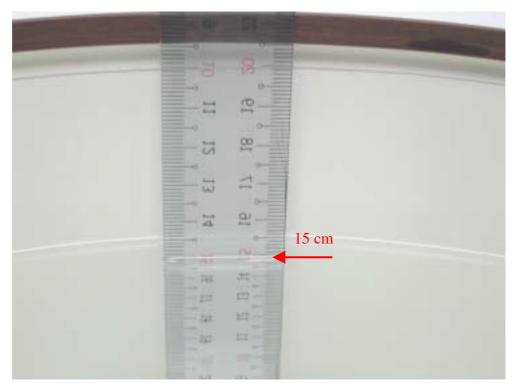


Fig.8 Photograph of the Tissue Simulant Fluid liquid depth 15cm

Report No. : ES/2004/30003 Page : 60 of 68

Photographs of the EUT

Fig.9 Antenna Position of EUT

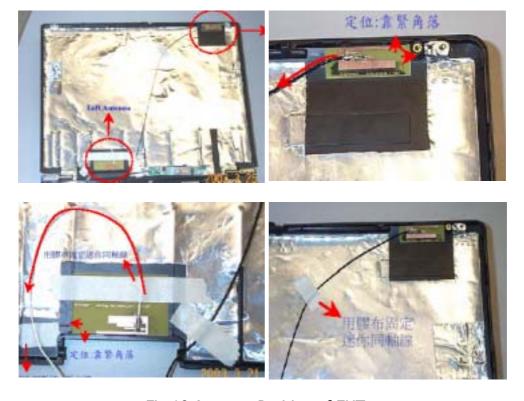


Fig.10 Antenna Position of EUT

Report No. : ES/2004/30003 Page : 61 of 68

Fig.11 Front view of EUT

Fig.12 Back view of EUT

Page: 62 of 68

Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstasse 43, 8034 Zurich, Switzerland

Client

SGS Taiwan (Auden)

CALIBRATION CERTIFICATE ET3DV6 - SN:1760 Object(s) Calibration procedure(s) QA CAL-01.v2 Calibration procedure for dosimetric E-field probes February 17, 2004 Calibration date Condition of the celebrated item In Tolerance (according to the specific calibration document) This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility, environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) Model Type D# Cat Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM E4419B GB41293874 2-Apr-03 (METAS, No 252-0250) Apr.04 Power sensor E4412A 2-Apr-03 (METAS, No 252-0250) MY41495277 Apr-04 Reference 20 dB Attenuator SN: 5005 (20b) 3-Apr-03 (METAS, No. 251-0340) Apr-04 Fluke Process Calibrator Type 702 SN: 6295803 8-Sep-03 (Sixtrel SCS No. E-030020) Sep-04 Power sensor HP 8481A MY41092180 18-Sep-02 (SPEAG, in house check Oct-03) In house check Oct 05 RF generator HP 8684C US3642UD1700 4-Aug-99 (SPEAG, in house sheek Aug-02) In house check: Aug-05 Network Analyzer HP 6753E US37390585 18-Oct-01 (SPEAG, in house check Oct-03) In house check: Oct 05 Name Function Signature Calibrated by Kata Pokovic Laboratory Director Approved by: Quality Manager Niels Kuster Date issued: February 17, 2004 This calibration certificate is issued as an infermediate solution until the accreditation process (based on ISC/IEC 17025 international Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Page: 63 of 68

Probe ET3DV6

SN:1760

Manufactured:

Last calibrated:

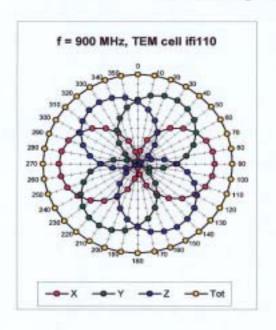
Recalibrated:

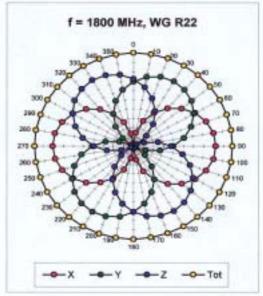
November 12, 2002

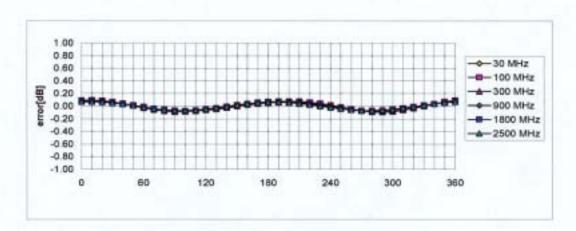
March 7, 2003

February 17, 2004

Calibrated for DASY Systems

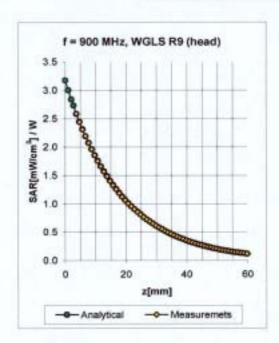

(Note: non-compatible with DASY2 system!)

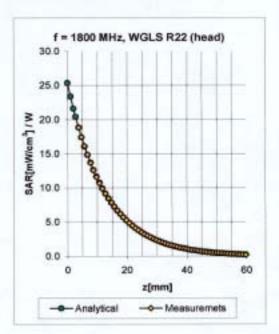

Page: 64 of 68


ET3DV6 SN:1760

February 17, 2004

Receiving Pattern (ϕ) , θ = 0°


Axial Isotropy Error < ± 0.2 dB


Page: 65 of 68

ET3DV6 SN:1760

February 17, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^R	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.51	1.96	6.34 ± 11.3% (k=2)
1800	1710-1890	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.36	5.13 ± 10.9% (k=2)
1900	1805-1995	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.42	5.10 ± 11.1% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.43	2.21	6.04 ± 11.3% (k=2)
1800	1710-1890	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.56	4.56 ± 10.9% (k=2)
1900	1805-1995	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.76	4.43 ± 11.1% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.47	1.45	4.18 ± 9.7% (k=2)

The total standard uncertainty is calculated as root-sum-equare of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

±10.3 %

 $\pm 20.6 \%$

 $\pm 10.0\%$

 $\pm 20.1 \%$

331

Page: 66 of 68

Uncertainty Analysis

Combined Std. Uncertainty

Expanded STD Uncertainty

DASY4 Uncertainty Budget According to IEEE P1528 [1] Uncertainty Prob. Div. Std. Unc. Std. Unc. (c_i) (c_i) (v_i) Error Description value. Dist. 10g (1g) (10g)lg. Peff Measurement System N Probe Calibration ±4.8% ±4.8% ±4.8% 1 00 Axial Isotropy 土4.7% R $\sqrt{3}$ 0.7 0.7 ±1.9% ±1.9% 00 Hemispherical Isotropy ±9.6% R $\sqrt{3}$ 0.70.7±3.9% $\pm 3.9 \%$ 00 Boundary Effects ±1.0% R $\sqrt{3}$ 1 1 ±0.6% ±0.6% 00 ±2.7% Linearity ±4.7% R $\sqrt{3}$ $\pm 2.7\%$ 1 1 00 System Detection Limits ±1.0% R $\sqrt{3}$ 1 1 ±0.6% ±0.6% 00 N Readout Electronics ±1.0% 1 1 ±1.0% ±1.0% 00 Response Time ±0.8% R $\sqrt{3}$ ±0.5% ±0.5% 1 1 00 Integration Time ±2.6% R $\sqrt{3}$ 1 1 ±1.5% ±1.5% 00 R $\sqrt{3}$ RF Ambient Conditions ±3.0 % 1 1 士1.7% $\pm 1.7\%$ 00 R Probe Positioner $\pm 0.4\%$ $\sqrt{3}$ 1 ±0.2% $\pm 0.2\%$ 00 Probe Positioning ±2.9 % R $\sqrt{3}$ 1 $\pm 1.7\%$ ±1.7% 00 Max. SAR Eval. ±1.0% R $\sqrt{3}$ ±0.6% ±0.6% 1 1 00 Test Sample Related Device Positioning ±2.9 % N ±2.9% ±2.9 % 875 ±3.6% N Device Holder 1 ±3.6% ±3.6 % 5 Power Drift ±5.0% R $\sqrt{3}$ 1 ±2.9% $\pm 2.9 \%$ 00 Phantom and Setup Phantom Uncertainty ±4.0% R $\sqrt{3}$ $\pm 2.3\%$ $\pm 2.3\%$ 1 1 00 Liquid Conductivity (target) ±5.0% R $\sqrt{3}$ ±1.8% ±1.2 % 0.640.4300 ±2.5 % N 0.64 Liquid Conductivity (meas.) 1 0.43 ±1.6% $\pm 1.1\%$ 00 Liquid Permittivity (target) ±5.0% R $\sqrt{3}$ 0.49 $\pm 1.4\%$ 0.6 ±1.7% 00 N Liquid Permittivity (meas.) ±2.5 % 0.6 0.49 $\pm 1.2\%$ 1 土1.5% 00

Page: 67 of 68

Phantom description

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 345 97 79

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0	
Type No	QD 000 P40 CA	
Series No	TP-1150 and higher	3
Manufacturer / Origin +	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland	

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

_		Details	Units tested
Test	Requirement	IT'S CAD File (*)	First article.
Shape	Compliance with the geometry according to the CAD model.	II IS CAD File ()	Samples
	according to the CAD model.	2mm +/- 0.2mm in	First article,
Material thickness	Compliant with the requirements according to the standards	specific areas	Samples
	according to alle standard	200 MHz - 3 GHz	Material
Material parameters	Dielectric parameters for required frequencies	Relative permittivity < 5 Loss tangent < 0.05.	TP 104-5
-	The state of the bar	Liquid type HSL 1800	Pre-series, First article
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	and others according to the standard.	

Standards

[1] CENELEC EN 50361

[2] IEEE P1528-200x draft 6.5

[3] *IEC PT 52209 draft 0.9
 (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Engineering AG

Zeughaustrasse 43, CH-4004 Zurfeb
Tel. +51 1 245 97 00, Fee +41 1 245 97 7

Schmid &

Page

F. Bombelt

Page: 68 of 68

System Validation from Original equipment supplier SPEAG Schmid & Partner

Page 1 of 1 Date/Time: 09/17/03 17:55:53

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN712 SN3013 M2450 170903.da4

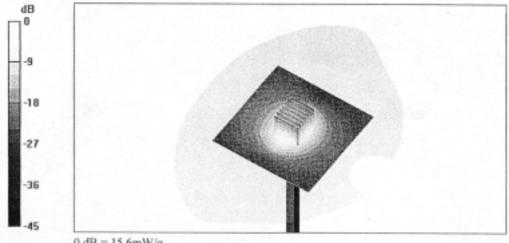
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN712 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz (σ = 2.03 mho/m, ε_{ν} = 50.75, ρ = 1000 kg/m³)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 90.4 V/m Power Drift = -0.04 dB

Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.37 mW/g Reference Value = 90.4 V/m Power Drift = -0.04 dB Maximum value of SAR = 15.6 mW/g

0 dB = 15.6 mW/g