ES3DV3-SN:3052 September 24, 2014 ### DASY/EASY - Parameters of Probe: ES3DV3 - SN:3052 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 6.34 | 6.34 | 6.34 | 0.80 | 1.14 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.26 | 6.26 | 6.26 | 0.75 | 1.18 | ± 12.0 % | | 900 | 55.0 | 1.05 | 6.14 | 6.14 | 6.14 | 0.44 | 1.56 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 4.94 | 4.94 | 4.94 | 0.46 | 1.68 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.71 | 4.71 | 4.71 | 0.45 | 1.73 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 4.75 | 4.75 | 4.75 | 0.55 | 1.56 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.30 | 4.30 | 4.30 | 0.74 | 1.10 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.16 | 4.16 | 4.16 | 0.80 | 1.01 | ± 12.0 % | ^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to Certificate No: ES3-3052_Sep14 Report No: (NIE) Page 12 of 17 46071RRF.004 Page 91 of 133 2015-06-11 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip distance from the boundary. diameter from the boundary. September 24, 2014 ES3DV3-SN:3052 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ES3-3052_Sep14 Page 13 of 17 ES3DV3- SN:3052 September 24, 2014 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: ES3-3052_Sep14 Page 14 of 17 ES3DV3- SN:3052 September 24, 2014 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ES3-3052_Sep14 Page 15 of 17 ES3DV3- SN:3052 September 24, 2014 ### **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz Certificate No: ES3-3052_Sep14 Page 16 of 17 September 24, 2014 ### DASY/EASY - Parameters of Probe: ES3DV3 - SN:3052 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -53.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 2 mm | | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signator The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **AT4 Wireless** Certificate No: EX3-3687_Jul14 Accreditation No.: SCS 108 C ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3687 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 14, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 17, 2014 2015-06-11 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3687_Jul14 Page 1 of 11 **Report No:** (NIE) 46071RRF.004 Page 97 of 133 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9 i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx.v.z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,v,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,v.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No
tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3687_Jul14 Page 2 of 11 46071RRF.004 2015-06-11 Page 98 of 133 EX3DV4 - SN:3687 July 14, 2014 # Probe EX3DV4 SN:3687 Manufactured: Calibrated: March 10, 2009 July 14, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3687_Jul14 July 14, 2014 EX3DV4-SN:3687 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3687 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.51 | 0.44 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 100.3 | 100.4 | 99.5 | | Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |---------------|--|---|---------|------------|------|----------|----------|---------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 140.8 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 148.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 130.5 | | | 10062-
CAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | Х | 9.95 | 68.3 | 21.3 | 8.68 | 123.7 | ±3.3 % | | | | Υ | 10.27 | 68.5 | 21.3 | | 130.5 | | | A.C | | Z | 10.38 | 69.1 | 21.8 | <u></u> | 137.7 | | | 10117-
CAA | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | Х | 10.08 | 68.3 | 20.9 | 8.07 | 132.6 | ±3.0 % | | | | Υ | 10.13 | 68.1 | 20.6 | ******** | 130.4 | | | | | Z | 10.50 | 69.3 | 21.4 | | 149.7 | | | | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | Х | 9.65 | 68.1 | 20.9 | 8.10 | 125.9 | ±3.0 % | | | | Υ | 9.83 | 68.0 | 20.7 | | 126.2 | | | | | Z | 10.05 | 68.9 | 21.3 | | 142.9 | | | 10400-
AAA | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle) | Х | 9.90 | 68.3 | 21.1 | 8.37 | 126.1 | ±3.0 % | | | | Υ | 10.11 | 68.3 | 21.0 | | 127.6 | | | | 37-14 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 | Z | 10.29 | 69.1 | 21.6 | | 141.6 | | | 10401-
AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle) | Х | 10.73 | 69.0 | 21.5 | 8.60 | 135.8 | ±3.0 % | | | | Y | 10.79 | 68.7 | 21.2 | | 134.6 | | | | | Z | 10.66 | 68.6 | 21.3 | | 125.2 | | | | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle) | X | 11.00 | 69.4 | 21.5 | 8.53 | 138.1 | ±3.0 % | | | | Y | 10.77 | 68.6 | 21.0 | | 134.0 | | | | | Z | 10.89 | 69.0 | 21.3 | | 127.7 | | | 10417-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 99pc duty cycle) | Х | 9.70 | 68.0 | 20.9 | 8.23 | 124.9 | ±2.7 % | | | | Y | 9.88 | 68.0 | 20.7 | | 124.3 | | | 3 4 | | Z | 10.13 | 69.0 | 21.5 | | 142.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3687_Jul14 Page 4 of 11 A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3687 July 14, 2014 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3687 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 5200 | 36.0 | 4.66 | 4.77 | 4.77 | 4.77 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.60 | 4.60 | 4.60 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.25 | 4.25 | 4.25 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.29 | 4.29 | 4.29 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-3687_Jul14 Report No: (NIE) Page 5 of 11 diameter from the boundary. EX3DV4-SN:3687 July 14, 2014 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3687 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 5200 | 49.0 | 5.30 | 4.32 | 4.32 | 4.32 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.15 | 4.15 | 4.15 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.67 | 3.67 | 3.67 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.89 | 3.89 | 3.89 | 0.50 | 1.90 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-3687_Jul14 Page 6 of 11 Page 102 of 133 2015-06-11 diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) 2015-06-11 July 14, 2014 EX3DV4-SN:3687 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3687_Jul14 Page 8 of 11 EX3DV4- SN:3687 July 14, 2014 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3687_Jul14 Page 9 of 11 Page 105 of 133 2015-06-11 EX3DV4- SN:3687 July 14, 2014 ### **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz Certificate No: EX3-3687_Jul14 Page 10 of 11 July 14, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3687 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -51.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | | ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client AT4 Wireless Certificate No: D2450V2-756_Jul13 | CALIBRATION C | ERIIFICALI | = | | |------------------------------------|---|--|---| | Object | D2450V2 - SN: 7 | 756 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | Calibration date: | July 22, 2013 | | | | This calibration certificate docum | ents the traceability to nat
rtainties with confidence p | ional standards, which realize the physical ur
robability are given on the following pages ar | nits of measurements (SI).
nd are part of the certificate. | | All calibrations have been conduc | cted in the closed laborato | ry facility: environment temperature (22 ±
3)° | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technielan 👚 ƒ | 1 1 | | | | Section (quantities) (1975/1975) | | | Approved by: | Katja Pokovic | Technical Manager | WH- | | | | | | | | | | | Certificate No: D2450V2-756_Jul13 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions". Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-756_Jul13 Page 2 of 8 2015-06-11 Page 109 of 133 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | m = 4 m | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.5 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | and out and had | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-756_Jul13 Page 3 of 8 **Report No:** (NIE) 46071RRF.004 Page 110 of 133 2015-06-11 ### **Appendix** ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 56.2 Ω + 2.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.2 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 51.8 Ω + 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.8 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.157 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 22, 2004 | Certificate No: D2450V2-756_Jul13 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 22.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 756 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.304 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.1 W/kg 0 dB = 17.1 W/kg = 12.33 dBW/kg Certificate No: D2450V2-756_Jul13 Page 5 of 8 ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 19.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 756 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 50.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.42,
4.42, 4.42); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.304 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 17.2 W/kg 0 dB = 17.2 W/kg = 12.36 dBW/kg Certificate No: D2450V2-756_Jul13 Page 7 of 8 ### Impedance Measurement Plot for Body TSL ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | CALIBRATION (| CERTIFICATI | | o: D5GHzV2-1071_Jul13 | |-------------------------------|-----------------------------------|--|---------------------------------| | Object | D5GHzV2 - SN: | | | | Calibration procedure(s) | QA CAL-22.v2
Calibration proce | edure for dipole validation kits be | tween 3-6 GHz | | Calibration date: | July 23, 2013 | | | | The measurements and the unce | ertainties with confidence p | ional standards, which realize the physical urprobability are given on the following pages at ry facility: environment temperature (22 \pm 3)° | nd are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | ower sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | ype-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe EX3DV4 | SN: 3503 | 28-Dec-12 (No. EX3-3503_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | ower sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | \ <i>W</i> -L | | approved by: | Katja Pokovic | Technical Manager | 70 W | | pp.orod by. | Naga I ONOVIC | i echilicat Matiaget | John Ref- | | | | | | Certificate No: D5GHzV2-1071_Jul13 Page 1 of 13 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** c) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1071 Jul13 Page 2 of 13 2015-06-11 Page 117 of 133 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.7 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 4.46 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.74 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.0 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1071_Jul13 Page 3 of 13 Page 118 of 133 2015-06-11 ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 7777 | ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1071_Jul13 Page 4 of 13 ### Body TSL parameters at 5200 MHz The following parameters and calculations
were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.9 ± 6 % | 5.40 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 2101 | ### SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | , | |---|--------------------|---| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 19.5 % (k=2) | ### Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.4 ± 6 % | 5.79 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.87 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1071_Jul13 Page 5 of 13 ## Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.9 ± 6 % | 6.21 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ~~~ | wa== | ### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.51 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1071_Jul13 Page 6 of 13 ### **Appendix** ### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 52.9 Ω - 7.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.3 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 53.0 Ω - 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.6 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 53.9 Ω - 1.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.1 dB | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 51.8 Ω - 3.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.5 dB | ### Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 54.3 Ω + 0.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.7 dB | ### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 54.6 Ω - 0.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.1 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.208 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 26, 2008 | Certificate No: D5GHzV2-1071_Jul13 Page 7 of 13 46071RRF.004 Page 122 of 133 2015-06-11 #### **DASY5 Validation Report for Head TSL** Date: 23.07.2013 2015-06-11 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1071 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.46 \text{ S/m}$; $\varepsilon_r = 35.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.74$ S/m; $\varepsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.05 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.878 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 18.5 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.722 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 8.36 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.8 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.571 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.5 W/kg Certificate No: D5GHzV2-1071 Jul13 Page 8 of 13 Report No: (NIE) 46071RRF.004 Page 123 of 133 ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 16.07.2013 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1071 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.4 \text{ S/m}$; $\varepsilon_r = 48.9$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5500 MHz; $\sigma = 5.79$ S/m; $\varepsilon_r = 48.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.21 \text{ S/m}$; $\varepsilon_r = 47.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.271 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 17.8 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.207 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 19.3 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.736 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 7.51 W/kg; SAR(10 g) =
2.08 W/kg Maximum value of SAR (measured) = 18.8 W/kg Certificate No: D5GHzV2-1071 Jul13 Page 11 of 13 2015-06-11 Page 126 of 133 Report No: (NIE) 46071RRF.004 0 dB = 18.8 W/kg = 12.74 dBW/kg Certificate No: D5GHzV2-1071_Jul13 Page 12 of 13 ### Impedance Measurement Plot for Body TSL Certificate No: D5GHzV2-1071_Jul13 Page 13 of 13