

FCC Test Report

(Class II Permissive Change)

Product Name	Model 7260HMW Wireless Network Adapter
Model No	7260HMW
FCC ID	MSQ7260H

Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	May 08, 2014
Issued Date	Jun. 12, 2014
Report No.	1450257R-RFUSP63V00
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: Jun. 12, 2014 Report No.: 1450257R-RFUSP63V00

Product Name	Model 7260HMW Wireless Network Adapter		
Applicant	ASUSTeK COMPUTER INC.		
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan		
Manufacturer	Intel Mobile Communications		
Model No.	7260HMW		
FCC ID.	MSQ7260H		
EUT Rated Voltage	DC 3.3V (via Mini-PCI Express slot)		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	Intel		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E: 2012		
	ANSI C63.10: 2009, FCC KDB-789033		
Test Result	Complied		

Documented By :

:

:

Rita Huang

(Senior Adm. Specialist / Rita Huang)

Tested By

Andy Lin

(Engineer / Andy Lin)

Approved By

(Director / Vincent Lin)

TABLE OF CONTENTS

Description

Page

1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Operational Description	7
1.3.	Tested System Datails	8
1.4.	Configuration of tested System	8
1.5.	EUT Exercise Software	9
1.6.	Test Facility	10
2.	Maximun conducted output power	11
2.1.	Test Equipment	11
2.2.	Test Setup	11
2.3.	Limits	12
2.4.	Test Procedure	12
2.5.	Uncertainty	13
2.6.	Test Result of Maximum conducted output power	14
3.	Radiated Emission	58
3.1.	Test Equipment	58
3.2.	Test Setup	58
3.3.	Limits	59
3.4.	Test Procedure	60
3.5.	Uncertainty	60
3.6.	Test Result of Radiated Emission	61
4.	Band Edge	107
4.1.	Test Equipment	107
4.2.	Test Setup	107
4.3.	Limits	108
4.4.	Test Procedure	108
4.5.	Uncertainty	109
4.6.	Test Result of Band Edge	110
5.	EMI Reduction Method During Compliance Testing	144
Attachment 1:	EUT Test Photographs	
Attachment 2:	EUT Detailed Photographs	

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Model 7260HMW Wireless Network Adapter		
Trade Name	Intel		
FCC ID.	MSQ7260H		
Model No.	7260HMW		
	802.11a/n-20MHz: 5180-5320MHz, 5500-5700MHz		
En an an Dan an	802.11n-40MHz: 5190-5310, 5510-5670MHz		
Frequency Kange	802.11ac-20MHz: 5720, 802.11ac-40MHz: 5710		
	802.11ac-80MHz: 5210-5290MHz, 5530-5690MHz		
Number of Channels	802.11a/n-20MHz: 19; 802.11n-40MHz: 9		
	802.11ac-20MHz: 1, 802.11ac-40MHz: 1, 802.11ac-80MHz: 5		
Data Rate	802.11a: 6 - 54Mbps		
	802.11n: up to 300Mbps		
	802.11ac-80MHz: up to 866.7MHz		
Channel Control	Auto		
Type of Modulation	802.11a/n/ac:OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM		
Antenna Type	PIFA Antenna		
Antenna Gain	Refer to the table "Antenna List"		
Test Platform.(Notebook PC)	Brand Name: ASUS, M/N: Q551L / N591L		
Power Adapter	MFR : PI, M/N : AD887320		
	INPUT: 100-240V, 50-60Hz, 1.5A		
	OUTPUT : 19V, 3.42A		
	Cable out : Non-shielded, 2.3m		

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	ACON	APP6P-701177 (Main)(Aux)	PIFA	1.12dBi For 5.15~5.35GHz
				-2.53dBi For 5.47~5.725GHz
				0.53dBi For 5725-5825GHz
2	INPAQ	WA-F-LBLB-04-025 (Main)(Aux)	PIFA	1.03dBi For 5.15~5.35GHz
				-0.81dBi For 5.47~5.725GHz
				0.43dBi For 5725-5825GHz

Note: 1. The antenna of EUT is conform to FCC 15.203

2. Only the higher gain antenna was tested and recorded in this report.

802.11a/n-20MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 36:	5180 MHz	Channel 40:	5200 MHz	Channel 44:	5220 MHz	Channel 48:	5240 MHz
Channel 52:	5260 MHz	Channel 56:	5280 MHz	Channel 60:	5300 MHz	Channel 64:	5320 MHz
Channel 100:	5500 MHz	Channel 104:	5520 MHz	Channel 108:	5540 MHz	Channel 112:	5560 MHz
Channel 116:	5580 MHz	Channel 120:	5600 MHz	Channel 124:	5620 MHz	Channel 128:	5640 MHz
Channel 132:	5660 MHz	Channel 136:	5680 MHz	Channel 140:	5700 MHz		

802.11n-40MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 38:	5190 MHz	Channel 46:	5230 MHz	Channel 54:	5270 MHz	Channel 62:	5310 MHz
Channel 102:	5510 MHz	Channel 110:	5550 MHz	Channel 118:	5590 MHz	Channel 126:	5630 MHz
Channel 134:	5670 MHz						

802.11ac-20MHz Carrier Frequency of Each Channel:

Channel Frequency

Channel 144: 5720 MHz

802.11ac-40MHz Carrier Frequency of Each Channel:

Channel Frequency

Channel 142: 5710 MHz

802.11ac-80MHz Carrier Frequency of Each Channel:

ChannelFrequencyChannelFrequencyChannelFrequencyChannelChannel 42:5210 MHzChannel 58:5290 MHzChannel 106: 5530 MHzChannel 122: 5610 MHzChannel 138:5690 MHz5690 MHzFrequencyFrequencyFrequency

QuieTer

Note:

- 1. This device is a Model 7260HMW Wireless Network Adapter, Contains functions and so on WLAN Bluetooth , This report for WLAN.
- 2. The Hardware is identical for two models, the differences between the models is sale via different distributors.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11a is 6Mbps \$\cdot 802.11n(20M-BW)\$ is 14.4Mbps and 802.11n(40M-BW)\$ is 30Mbps \$\cdot 802.11ac(20M-BW)\$ is 14.4Mbps and 802.11ac(40M-BW)\$ is 30Mbps \$\cdot 802.11ac(80M-BW)\$ is 65Mbps).
- 5. At result of pretests, module supports dual-channel transmission, only the worst case is shown in the report. (802.11a is chain A)
- 6. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.
- 7. This is to request a Class II permissive change for FCC ID: MSQ7260H, originally granted on 04/19/2014.

The major change filed under this application is:

Change #1: Additional Chassis added, Model number: Q551L, N591L

- #2: Reduce the Output Power through firmware (only reduce Wi-Fi Power, bluetooth power haven't changes).
- #3: Addition two new antennas, the antenna type is the same, the antenna gain is smaller than the original application.

Test Mode	Mode 1: Transmit (802.11a-6Mbps)
	Mode 2: Transmit (802.11n-20BW 14.4Mbps)
	Mode 3: Transmit (802.11n-40BW 30Mbps)
	Mode 4: Transmit (802.11ac-20BW)
	Mode 5: Transmit (802.11ac-40BW)
	Mode 6: Transmit (802.11ac-80BW)

1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Produ	ıct	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	Dell	ST2320LF	CN-QM2NN6-72892-221-C9WS	Non-Shielded, 1.8m
2	Sub Woofer	ASUS	N/A	N/A	N/A
3	Keyboard	DELL	SK-8115	MY-0DJ325-71619-6A3-1918	N/A
4	USB Mouse	Logitech	M-U0003	LZ024HR	N/A
5	IPod nano	Apple	A1199	7R649LBKVQ5	N/A
6	Earphone	Dr.AV	CD-806B	N/A	N/A

Signal Cable Type		Signal cable Description
А	HDMI Cable	Non-Shielded, 1.3m
В	Speaker Cable	Non-Shielded, 0.45
С	Keyboard Cable	Non-Shielded, 1.7m, with one ferrite core bonded.
D	Mouse Cable	Non-Shielded, 1.8m
Е	I-Pod Cable	Non-Shielded, 1.2m
F	Earphone Cable	Non-Shielded, 1.6m

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute "DRTU Ver1.7.0-778" program on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions	s in the laboratory	:
--------------------	---------------------	---

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u>

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

Site Description: File on Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Site Name: Quietek Corporation Site Address: No.5-22, Ruishukeng Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Maximun conducted output power

2.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2014
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014
NT /				

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

2.2. Test Setup

26dBc Occupied Bandwidth

Conduction Power Measurement (for 802.11an)

Conduction Power Measurement (for 802.11ac)

2.3. Limits

- (1) For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antenna of directional gain greater than 6 dBi are used, the Maximum conducted output power shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- (2) For the band 5.25-5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antenna of directional gain greater than 6 dBi are used, the Maximum conducted output power shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1W or 17 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antenna of directional gain greater than 6 dBi are used, the Maximum conducted output power shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.

2.4. Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater than 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW \leq 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter) <u>Note: the power meter have a video bandwidth that is greater than or equal to the measurement</u> <u>bandwidth, (Anritsu/MA2411B video bandwidth: 65MHz)</u>

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D01 section F) procedure is used for measurements.

2.5. Uncertainty

± 1.27 dB

2.6. Test Result of Maximum conducted output power

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

Maximum conducted output power Measurement: CHAIN A

Channel Number	Frequency	Data Rate	26dB Bandwidth	Output Power	Outpu	out Power Limit		
	(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)		
36	5180	6	24.700	7.86	17	17.93		
40	5200	6	25.350	7.77	17	18.04		
48	5240	6	25.100	7.89	17	18.00		
52	5260	6	23.700	7.79	24	24.75		
60	5300	6	23.450	7.83	24	24.70		
64	5320	6	23.200	7.69	24	24.65		
100	5500	6	24.650	7.76	24	24.92		
120	5600	6	24.300	7.84	24	24.86		
140	5700	6	23.350	7.82	24	24.68		

Note: Power Output Value =Reading value on average power meter + cable loss

							Ch	annel	36				
🊺 Ag	jilent Sp	pectru	um Ar	nalyzer - Swep	t SA								
w∥ ℝ Cer	L Iter	Fre	RF eq (50 Ω 5.18000	AC	lz	SEI	Run	Avg Ty	ALIGN AUTO	10:47:22 Al TRAC	4Jun 09, 2014 E 1 2 3 4 5 6 E M WWWWW	Frequency
_					P IF	NO: Fast (Gain:Low	#Atten: 3	0 dB		Mkr	DE		Auto Tune
10 d	B/div		Ref	f 20.00 d	Bm						-31.3	35 dBm	
10.0													Center Freq 5,18000000 GHz
-10.0						Jane	and the state of the second	monton	mont				
-20.0 -30.0					2 alleline barrow	vu			``````````````````````````````````````	march 3		-28.56 dBm	Start Freq 5.155000000 GHz
-40.0 -50.0	لعرساله	rwAd	NANG	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 7 77						Wasamwan	www.have-low	
-60.0													Stop Freq 5.20500000 GHz
-70.0		5 4 6	200	0.042							Snon 6	0.00 844-7	05.04-1
#Re	s Bl	N 2	40	kHz		#VB	W 1.0 MHz			Sweep 1	.000 ms (1001 pts)	5.000000 MHz Auto Man
MKR 1	MODE	TRC 1	SCL		X 5 183 5	0 GHz	2 56 di	FUN	CTION F	UNCTION WIDTH	FUNCTIO	N VALUE	
2 3 4 5	N N	1	f		5.167 5 5.192 2	0 GHz 0 GHz	-31.35 dE -30.02 dE	3m 3m					Freq Offset 0 Hz
6 7 8													
10 11												•	
MSG										STATU	s		<u>[:</u>]

26dB Occupied Bandwidth:

Channel 40

🊺 Ag	ilent Sp	pectrur	m An	alyzer - Swej	ot SA														
اللا Cen	⊺ ter	Fre	RF q5	50 Ω	AC 00000 0	GH:	z	_	SEI	NSE:IN	Т	Avg	Type	LIGN AUTO	12:15:3 T	RACI	I Jun 09, 2014	5	Frequency
10 4			Dof	20.00	dBm	PN IFG	O: Fast ain:Low	_	Atten: 30) dB			1010.	Mkr	1 5.20	DE 04 (78			Auto Tune
10.0 10.0 0.00		· · ·		20.00				~~~	ware		1				•				Center Freq 5.20000000 GHz
-20.0 -30.0 -40.0		ر. مەلىرىلەر	~. Ira ll	and the construction of the second	2 m	~~~							<u>\</u>	Markan S	har	1.u	-27.78 dBm		Start Freq 5.175000000 GHz
-50.0 -60.0 -70.0																			Stop Freq 5.225000000 GHz
Cen #Re	ter : s B\	5.20 N 24	000 10) GHz (Hz			#VE	зw	1.0 MHz			1	ę	Sweep 1	Spar .000 m	n 50 s (1	0.00 MHz 1001 pts)		CF Step 5.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 < □	MODE N N		SCI f f		× 5.204 5.187 5.212	4 00 7 15 2 50) GHz GHz GHz GHz		Y -1.783 dE -28.955 dE -28.083 dE	3m 3m	FUNC		FUN		FUN				Freq Offset 0 Hz
MSG														STATUS					

									0		iii							
🊺 Agil	lent Sp	ectrur	n An	alyzer - Swe	pt SA													
Cent	ter	Fre	RF q5	50 Ω	AC	GH	Z	_	SE	NSE:I	NT	Avg	Туре	ALIGN AUTO : Log-Pwr	10:49:45 A TRA	M Jun 09, 2014 CE 1 2 3 4 5 6 PE M WWWWW	5	Frequency
						IFG	O: Fast Sain:Lov	v v	#Atten: 3	0 dE	3				D	ET P NNNN	Ň	Auto Tune
10 dE	3/div	F	Ref	20.00	dBm									Mkr	2 5.227 -28.	30 GHz 23 dBm		
10.0									. 1									Center Freq
0.00							مىر	~~~~	mention	h	three m	~~~/¥~	1					5.240000000 GHz
-10.0						n	1			Ť			t	•			┡	
-20.0						en l'an	ſ						~	South States		-27.94 dBm		Start Freq
-40.0			Long	Mar Van Ma	N N N									***	A STATION			0.2 10000000 0112
-50.0	where	()														mumun		Stop Freq
-60.0																		5.265000000 GHz
Cant	tor f	5 24	000												Snan 5	0 00 MHz	ŀ	CE Stop
#Res	s BV	V 24	101	kHz			#\	/BW	1.0 MHz				;	Sweep 1	.000 ms ((1001 pts)	II,	5.000000 MHz
MKR M	MODE	TRC 1	SCL		×	36 70	GHz		Y -1 94 d	Bm	FUNC	TION	FUN	CTION WIDTH	FUNCTI	ON VALUE	1	<u>luto</u> Man
2 3	N N	1	f f		5.2 5.2	27 30 52 40) GHz) GHz		-28.23 d	Bm Bm								Freq Offset
4																=		0 Hz
6 7																		
9 10																		
11									III									
MSG														STATU	6			

Channel 48

Channel 52

							0.									
🊺 Ag	jilent S	pectru	ım An	alyzer - Swe	pt SA											
<mark>ω</mark> κ Cen	L Iter	Fre	RF q5	50 Ω	AC 00000 GH	lz	s s	ENSE:IN	T	Avg T	Al ype:	LIGN AUTO Log-Pwr	10:55:39 A TRAC	M Jun 09, 2014 E 1 2 3 4 5 6		Frequency
					PI IF(NO: Fast Gain:Low	#Atten:	ae Rur 30 dB	n				DI			
10 d	B/div	,	Ref	20.00	dBm							Mkr	2 5.288 -28.	15 GHz 21 dBm		Autorune
Log 10.0										1						Center Freq
0.00			_			m		m	man	m					5.3	800000000 GHz
-10.0 -20.0					▲ 2	Å					L.	3				Stort From
-30.0	_		_		A MARCAN AND AND AND AND AND AND AND AND AND A	r					~	had my how and		-28.07 dBm	5.2	275000000 GHz
-40.0 -50.0	d.	M	w	Markinghow								ξų	a vid warman	martineze		
-60.0								_							5.3	Stop Freq 25000000 GHz
-70.0																
Cen #Re	ter : s B\	5.30 N 24	000 40	0 GHz kHz		#VE	3W 1.0 MH	z			S	weep 1	5 Span ,000 ms (0.00 MHz 1001 pts)		CF Step 5.000000 MHz
MKR 1	MODE	TRC 1	SCL f		X 5 304 7	5 GHz	Y	1Bm	FUNC	TION	FUNC	TION WIDTH	FUNCTION	DN VALUE	<u>Auto</u>	Man
2 3	N N	1	f		5.288 1 5.311 6	5 GHz 0 GHz	-28.21 (-28.17 (iBm iBm								Freq Offset
4			_											Е		0 Hz
7																
9 10			_													
							III	-						+ +		
MSG												STATUS	6			

Channel 60

Channel 64

Ac	uilent Si	pectru	m An	alvzer - Swe	ept SA												
Cen	L Iter	Fre	RF q 5	50 Ω	AC	0 GH	lz		SE	NSE:INT	A	/g Type	ALIGN AUTO	10:57:12 A TRA	M Jun 09, 2014 CE 1 2 3 4 5 (5	Frequency
10 d	B/div	,	Ref	20.00	dBm	PI IF(NO: Fast Gain:Lov	t 🖵 W	#Atten: \$	e Run 30 dB			Mkr	2 5.308 -29.	20 GHz 66 dBm		Auto Tune
Log 10.0 0.00								~~~~	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	runnante	run					Center Freq 5.320000000 GHz
-20.0 -30.0 -40.0				NI ^{UM}	Andrew	2	and a second					- tay	3 Martin Martin	e saute	-29.02 dBm		Start Freq 5.295000000 GHz
-50.0 -60.0 -70.0	l	ng lan	~~~~~	and William and											Mr. revery Carles		Stop Freq 5.345000000 GHz
Cen #Re	iter : s Bl	5.32 N 2	200	0 GHz kHz			#\	/BW	1.0 MHz	2		-	Sweep 1	Span 5 .000 ms (0.00 MHz (1001 pts)		CF Step 5.000000 MHz .uto Man
MKR 1 2 3 4 5 6 7 8 9 10 11	MODE N N	1 1 1	SCL f f		× 5. 5. 5.	. <u>316 4</u> . <u>308 2</u> . <u>3</u> 31 4	5 GHz 0 GHz 0 GHz		Y -3.02 d -29.66 d -29.48 d	Bm Bm Bm	FUNCTION		ICTION WIDTH	FUNCT	ON VALUE		Freq Offset 0 Hz
 ✓ MSG 									III				STATUS	3	Þ		

							014		1 200					
🊺 Ag	jilent Sj	pectru	ım Ar	nalyzer - Swe	pt SA									
LXI RI	L		RF	50 Ω	AC		S	ENSE:INT		A	LIGN AUTO	10:58:32 A	M Jun 09, 2014	Frequency
Cen	ter	Fre	q (5.50000	00000 G	Hz	Tria: Er	ee Dun	Avg	Type:	Log-Pwr	TRAC	E 1 2 3 4 5 6	Trequency
					H II	NO: Fast	#Atten:	30 dB				DI	PNNNN	
· · · ·						Guineow								Auto Tune
											MKC	2 5.487	80 GHZ	
10 di	B/div		Ref	20.00	dBm							-30.	09 aBM	
Log														
10.0							1							Center Freq
0.00			_			-		_						5.50000000 GHz
-10.0						and the		Vinne	marson					
10.0						11				١.	_			
-20.0					2	NV NV				~	. // ³			Start Freq
-30.0			-		I when the	/		_			man of the second		-29.06 dBm	5.475000000 GHz
-40.0					Noter						"wall vite	A		
10.0		Acar	-	and and and								"Why wind	1. 6	
-50.0													a a she and a she and a she	Stop Fred
-60.0			_											5 50500000 CU-
-70.0														5.525000000 GH2
Cen	ter	5.50	000	0 GHz								Span 5	0.00 MHz	CF Step
#Re:	s Bl	N 2	40	kHz		#VE	W 1.0 MH	z		S	weep 1.	.000 ms (1001 pts)	5.000000 MHz
	Haad		0.01									E HOT		<u>Auto</u> Man
MKR	MODE	1RC	SCL .		× 5 402 (3.06	d D m	UNCTION	FUNC	TION WIDTH	FUNCTION		
2	N	1	f		5.492	B0 GHZ	-30.09 (1Bm						
3	Ν	1	f		5.512	45 GHz	-29.38 (lBm						Freq Offset
4														0 Hz
6														
7														
8														
10														
11														
•													•	
MSG											STATUS			
												1		

Channel 100

Channel 120

🇾 Agil	ent Spe	ctrum /	Analyzer - Sw	ept SA									
Cent	er F	R Fred	F 50 9	2 AC	17	SI	NSE:INT	Avg	ALI Type: L	IGN AUTO	11:00:46 A TRAC	M Jun 09, 2014	Frequency
		100	011000	P	NO: Fast (Gain:Low	Trig: Fre #Atten: 3	e Run 30 dB	_		-	TYI Di		Auto Turo
10 dB	s/div	Re	ef 20.00	dBm						Mkr	2 5.688 -28.	15 GHz 85 dBm	
Log 10.0 - 0.00 -						1	y man	at a marked					Center Freq 5.70000000 GHz
-20.0 -30.0 -40.0			1 m Anna	2- and and a second					- Vw	3 10 10 10 10 10 10		-28.05 dBm	Start Freq 5.675000000 GHz
-50.0 - -60.0 - -70.0 -	alant.	alayo Ad										h h h f a f h h f a f f a f f a f f a f f a f f a f f a f f a f f a f f a f a f a f a f a f a f a f a f a f a f	Stop Freq 5.725000000 GHz
Cent #Res	er 5. s BW	.700 240	00 GHz kHz		#VB	W 1.0 MH	2		Sv	veep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKR M 1 2 3 4 5 6	N N N	RC SC 1 f 1 f 1 f		× 5.695 2 5.688 1 5.711 5	5 GHz 5 GHz 0 GHz	-2.05 d -28.85 d -28.50 d	Bm Bm Bm	FUNCTION	FUNCT	ION WIDTH	FUNCTI		Freq Offset 0 Hz
7 8 9 10 11						III							

Channel 140

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

Maximum conducted output power Measurement:

CHAIN A+B

Channel Number	Frequency	Data Rate	26dB Bandwidth	Chain A Power	Chain B Power	Output Power	Outpu	t Power Limit
	(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	dBm+10log(BW)
36	5180	14.4	23.900	5.21	4.44	7.85	17	17.92
40	5200	14.4	23.150	5.06	4.82	7.95	17	17.85
48	5240	14.4	24.700	4.85	4.68	7.78	17	17.85
52	5260	14.4	24.050	5.01	4.81	7.92	24	25.02
60	5300	14.4	24.500	4.93	4.84	7.90	24	24.79
64	5320	14.4	24.050	5.02	4.89	7.97	24	24.76
100	5500	14.4	24.250	5.19	4.76	7.99	24	24.83
120	5600	14.4	24.250	5.06	4.74	7.91	24	24.97
140	5700	14.4	23.750	5.03	4.52	7.79	24	24.85

Note:

1. Power Output Value = Reading value on average power meter + cable loss

2. Output Power (dBm) = 10*LOG (Chain A Power (mW)+ Chain B Power (mW))

3. 26 dB Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.

🊺 A	gilent S	pectru	ım Ar	nalyzer - Sw	ept SA															
<mark>ω</mark> ℝ Cer	ıter	Fre	RF q (50 s 5.1800	2 AC) GH	z		SEN	NSE:INT		Avg T	ype:	LIGN AUTO	11:	02:13 AI TRAC	M Jun 09, 2	2014 4 5 6		Frequency
_						IFG	IO: Fast Sain:Low	ц.	#Atten: 3	0 dB						DE	TPNN	NNN		
10 d	B/div	,	Ref	f 20.00	dBm									Mkr	2 5.	167 -31.3	80 G 38 dE	Hz 3m		Auto Tune
Log 10.0																				Center Frea
0.00	-								.0	_ ∂ 1									5	.180000000 GHz
-10.0							1 martine	~~~~~		100 m	- martin	ally son and	Ì							
-30.0						2	e r						ľ	∿			-31.21	dBm	5	Start Freq
-40.0			~~~~	Work Carbon	NW									in the second	d un gran	R	And And	_		
-50.0	larm	hrður.	-1															Marta		Stop Freq
-60.C																			5	.205000000 GHz
Cor		5 19	200												6,	an 5	0.00 N			CE Oton
#Re	s B	W 2	40	kHz			#VI	SW [·]	1.0 MHz				S	weep 1	.000	ms (1001 p	ots)		5.000000 MHz
	MODE	TRC 1	SCL f		X 5 1	181 2/	5 GHz		Y	Bm	FUNCT	ION	FUN	CTION WIDTH		FUNCTION	ON VALUE		Au	<u>o</u> Man
2 3	N	1	f		5.1 5.1	167 80 192 7	GHz 5 GHz		-31.38 dE -32.65 dE	Bm Bm										Freq Offset
4																		=		0 Hz
6 7																				
8 9 10										_		_						=		
11									m	_							_	- + +		
MSG														STATU	s					

26dB Occupied Bandwidth:

Channel 36 - Chain A

Channel 40 - Chain A

鯅 Agil	lent Spe	ectrum	Analyzer - Sv	vept SA								
<mark>ير)</mark> Cent	⊺ ter F	req	5.2000	Ω AC	iHz	SE	NSE:INT	Avg T	ALIGN AUTO	12:22:01 P TRA	M Jun 09, 2014 CE 1 2 3 4 5 6	Frequency
10 dE	3/div	R	ef 20.00) dBm	PNO: Fast FGain:Low	Atten: 3	0 dB	Avgin	Mkı	٦ r1 5.198 -5.4	75 GHz 99 dBm	Auto Tune
Log 10.0 - 0.00 -					mumu	n yerron marke	l	and the second	\ \			Center Freq 5.200000000 GHz
-20.0 + -30.0 + -40.0 +		Inthorn	wardwitze	2 marshundar	North Contraction of the second se				Anton 3	Uhrow to all approximately and	_31.50 dBm	Start Freq 5.175000000 GHz
-50.0 -60.0 -70.0	× ۳۳ ملي											Stop Freq 5.225000000 GHz
Cent #Res	ter 5 s BW	.200 / 241	00 GHz) kHz	x	#VE	SW 1.0 MHz		FUNCTION	Sweep '	Span 5 1.000 ms (0.00 MHz (1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 6 7 8 9 9 10 11	N N N			5.198 5.187 5.211	75 GHz 70 GHz 95 GHz	-5.499 d -32.883 d -31.720 d	Bm Bm Bm I I I I I I I I I I I I I I I I					Freq Offset 0 Hz
MSG	_								STATU	IS	•	

🔰 Agilent Spectrum Analyzer - Swept SA			
⊠ RL RF 50 Ω AC Center Freq 5.240000000	GHz	ALIGN AUTO 11:07:28 AM Jun 09, 2014 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 TYPE M MARAAAAAA	Frequency
10 dB/div Def 20.00 dBm	PN0: Fast () The Run IFGain:Low #Atten: 30 dB	مرتبع Mkr2 5.228 05 GHz -30.65 dBm	Auto Tune
		wangen ng	Center Freq 5.240000000 GHz
-20.0 -30.0 -40.0	2		Start Freq 5.215000000 GHz
-50.0			Stop Freq 5.265000000 GHz
Center 5.24000 GHz #Res BW 240 kHz	#VBW 1.0 MHz	Span 50.00 MHz Sweep 1.000 ms (1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 75 GHz 4.64 dBm 28 05 GHz -30.65 dBm 52 30 GHz -30.97 dBm		Freq Offset 0 Hz
	III		

Channel 48 - Chain A

Channel 52 - Chain A

🎉 Agilent Spectrum Analyzer - Swept SA			
ເx RL RF 50 Ω AC Center Freq 5.260000000 G	iHz	ALIGN AUTO 11:11:03 AM Jun 09, 2 Avg Type: Log-Pwr TRACE 1 2 3	Frequency
10 dB/div Ref 20.00 dB m	PNO: Fast Difference Run FGain:Low #Atten: 30 dB	Mkr2 5.247 30 G -33.07 dE	Hz Auto Tune
10.0 0.00 -10.0	1	warm	Center Fred 5.260000000 GHz
-20.0 -30.0 -40.0		3 -30.43	Start Free 5.235000000 GHz
-50.0			Stop Free 5.285000000 GH;
Center 5.26000 GHz #Res BW 240 kHz	#VBW 1.0 MHz	Span 50.00 M Sweep 1.000 ms (1001 p	IHZ CF Step ots) 5.000000 MH: Auto Mar
McR Model rRc Scu x 1 N 1 f 5.261 2 N 1 f 5.247 3 N 1 f 5.272 4	25 GHz -4.43 dBm 30 GHz -33.07 dBm 55 GHz -31.67 dBm	NCTION FUNCTION WIDTH FUNCTION VALUE	Freq Offset
7	111		•
MSG		STATUS	

🊺 Agile	nt Spectri	um An	alyzer - Swep	ot SA								
Cente	er Fre	RF ∋q5	50 Ω 5.30000	AC	-Iz	SE	NSE:INT	Avg Ty	ALIGN AUTO be: Log-Pwr	11:20:58 A TRAC	M Jun 09, 2014	Frequency
10 dB/	div	Ref	20.00 c	P IF IBm	NO: Fast Gain:Low	#Atten: 3	0 dB		Mkr	2 5.288 -31.	35 GHz 53 dBm	Auto Tune
10.0 - 0.00 - -10.0 -					put	1	montallow	hoursonerstry				Center Freq 5.30000000 GHz
-20.0 -30.0 -40.0			a n arawind	Marken 2					WI 3	www.and ex	-31.14 dBm	Start Freq 5.275000000 GHz
-50.0 = -60.0 = -70.0 =	<u>الالين الم</u> ليم ال	werdow	oltera								- Contrology	Stop Freq 5.325000000 GHz
Cente #Res	er 5.30 BW 2	000 240	0 GHz kHz		#VE	3W 1.0 MHz			Sweep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
MKR MC 1 N 2 N 3 N 4 - 5 - 6 - 7 - 8 - 9 - 10 - - -		SCL f f		x 5.298 7 5.288 3 5.312 3	75 GHz 35 GHz 30 GHz	Y -5.14 d -31.53 d -32.25 d	Bm Bm Bm Bm 	INCTION	INCTION WIDTH	FUNCTI		Freq Offset 0 Hz
MSG									STATUS	6		

Channel 60 - Chain A

Channel 64 - Chain A

🊺 Ag	jilent S	pectru	ım Ar	nalyzer - Swep	ot SA										
<mark>⊯</mark> R Cen	L Iter	Fre	RF q (50 Ω 5.32000	AC	łz		SEN	ISE:INT	Avg	/ Type	LIGN AUTO	11:26:24 A TRAC	M Jun 09, 2014 E 1 2 3 4 5 6	Frequency
10 d	B/div	,	Ref	f 20.00 d	P IF JBm	NO: Fast Gain:Low	, • #	Atten: 30) dB			Mkr	2 5.308 -31.	00 GHz 72 dBm	Auto Tune
Log 10.0 0.00 -10.0						phonester	man	m		mmm	64				Center Freq 5.32000000 GHz
-20.0 -30.0 -40.0				- 0400019	low how we are) My	M BARAN	Souther for the second second	-31.01 dBm	Start Freq 5.295000000 GHz
-50.0 -60.0 -70.0		e de la												and and an an	Stop Freq 5.345000000 GHz
Cen #Re	ter s Bl	5.32 N 2	200 40	0 GHz kHz		#V	BW 1.	0 MHz			5	Sweep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
MKR 1 2 3 4 5 6 7 8 9 10 11 <			SCL f f		x 5.321 2 5.308 0 5.331 7	25 GHz 0 GHz 25 GHz		Y -5.01 dE 31.72 dE 31.58 dE	3m 3m 3m				FUNCTION		Freq Offset 0 Hz
MSG												STATUS			

🎉 Agilent Spectrum Analyzer - S	wept SA				
Center Freq 5.500	000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	11:31:34 AM Jun 09, 2014 TRACE 1 2 3 4 5 6 TYPE M MAAAAAAAA	Frequency
10 dB/div Ref 20.00	PN0: Fast (IFGain:Low	#Atten: 30 dB	Mkr	2 5.487 40 GHz -30.53 dBm	Auto Tune
Log 10.0 0.00		1	m Brith Mang		Center Freq 5.50000000 GHz
-20.0 -30.0 -40.0	2 d		3	-30.35 dBm	Start Freq 5.475000000 GHz
-50.0 126~ mladam Vi ** -60.0					Stop Freq 5.525000000 GHz
Center 5.50000 GHz #Res BW 270 kHz	#VB	W 1.0 MHz	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 N 1 F 2 N 1 f 3 N 1 f 4 - - 5 - - 6 - -	5.498 75 GHz 5.487 40 GHz 5.512 10 GHz	-4.35 dBm -30.53 dBm -31.36 dBm	PUNCTION		Freq Offset 0 Hz
1 1 10 1 11 1		III	STATIS		

Channel 100 - Chain A

Channel 120 - Chain A

颠 Agilent Spe	ctrum Analyzer - Sw	vept SA								
Center F	RF 50	Ω AC 1000000 GH	z	SEN	ISE:INT	Avg Type	ALIGN AUTO : Log-Pwr	11:34:59 A	HJun 09, 2014	Frequency
10 dB/div	Ref 20.00		NO: Fast ⊆ Gain:Low	#Atten: 30) dB		Mkr	2 5.688 -29.	15 GHz 84 dBm	Auto Tune
Log 10.0 0.00			men	and the she	1	howerman				Center Freq 5.70000000 GHz
-20.0 -30.0 -40.0	. Nuch 108	al martin and					Maria 3		-29.42 dBm	Start Freq 5.675000000 GHz
-50.0 -60.0 -70.0	a chronol where the							" NILVACIA		Stop Freq 5.725000000 GHz
Center 5. #Res BW	70000 GHz 240 kHz	X	#VBV	V 1.0 MHz	FUN		Sweep 1.	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 N 2 N 3 N 4 5 6 7 8	RC SUL 1 f 1 f 1 f	5.701 2: 5.688 1: 5.712 4:	5 GHz 5 GHz 0 GHz	-3.42 dE -29.84 dE -29.86 dE	Bm Bm			FUNCTION		Freq Offset 0 Hz
10 11 •				III.			STATUS		•	

Channel 140 - Chain A

Channel 36 - Chain B

🊺 Agi	ilent S	pectru	ım Ar	nalyzer ·	- Swep	t SA																		
<mark>یں</mark> Cen	⊺ ter	Fre	RF q (5.20	50 Ω 000	AC 000)0 G	Hz	2	_	Tri	SEN	NSE:II	NT	Avg	Type	ALIGN AU	wr	12:24:2 T	RACI	Jun 09,	2014	6	Frequency
10 45			Pot	201	00.0	Brr		PNC	D: Fas ain:Lo	w W	At	ten: 30	dB				N	lkr′	1 5.20	DE 01 (25 G	Hz	Ň	Auto Tune
Log 10.0 0.00		, 		20.	00 0				~^^	~~~~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	~~~~	~~								Center Freq 5.20000000 GHz
-20.0 -30.0 -40.0				MAYLINA	,hand well	warn	2 	مى								\	hun and the	3	where the day	H.r.,	31.(97 dBm		Start Freq 5.175000000 GHz
-50.0 -60.0 -70.0	<u></u>	<u></u>																				- Univ		Stop Freq 5.225000000 GHz
Cent #Res	ter s Bl	5.20 N 2	000 40	0 G⊦ kHz	łz				#\	vвw	1.0	MHz		5111/		\$	Sweep) 1.	Spar 000 m	1 50 s (1).00 001	VIHz pts)		CF Step 5.000000 MHz Auto Man
1 2 3 4 5 6	N N N	1 1 1	f f f				5.201 5.187 5.212	25 60 60	<u>GHz</u> GHz GHz		-5. -32. -32.	968 dE 161 dE 616 dE	3m 3m 3m	PUN					FUN	CHO	N VALU			Freq Offset 0 Hz
7 8 9 10 11 <												III												
MSG																	ST	ATUS						

Channel 40 - Chain B

Channel 48 - Chain B

🊺 Ag	jilent S	pectri	Jm A	nalyze	er - Swe	ept SA																			.
Cen	L Iter	Fre	RF Pq	5.24	50 s 400	000	с)00	GH	z		Т.	SEI	NSE:II	nT	Avg	Туре	ALIGN A	UTO Pwr	11:08:52 TF	2 AM J RACE	un 09, 2 1 2 3 4	5 6		Frequ	ency
			Der					PI IFC	NO: Fa Gain:L	ast 🕞 .ow	##	itten: 3	0 dB				N	/kr2	2 5.22	74		Hz		Au	to Tune
10 di Log 10.0 0.00		/	Re	r 20	J.UU		<u>m</u>			www	m	what a	X	1 ~~~~	where	r^y			-01				5	Cent 240000	ter Frec
-20.0 -30.0 -40.0				1. m	المعرسهما	, m ²	مرار مرار مرار ا	2 سىمە	f T							4	Mar and	3 Marana	he and the second second	-	-30.75	dBm	5	St a 215000	art Fred
-50.0 -60.0 -70.0	Py-40754	<u>humryli</u>																			(*N)/~~	rt <u>za</u>	5	St 265000	op Fred
Cen #Re	ter s B	5.24 W 2	400 40	0 G kHz	iHz z				\$	¢νΒ₩	/ 1.0	MHz				1	Swee	p 1.	Span 000 ms	50. ; (10	00 M 001 p	Hz ts)	Aut	(5.000	CF Step 1000 MH2 Mar
MXR 1 2 3 4 5 6 7 8 9 10 11	MODE N N	1 1 1	SCI f f				× 5.2 5.2 5.2	41 23 27 4 52 8	5 GH 0 GH 0 GH		-3 -3 -3	Y 4.75 dl 1.49 dl 1.07 dl	Bm Bm	FUNC	TION	FUN			FUNC	CTION	VALUE			Fre	q Offse 0 H:
MSG																	s	TATUS							

💓 Agilent Spectrum Analyzer - Swept SA				
XX RL RF 50 Ω AC Center Freq 5.260000000 GHz		ALIGN AUTO Avg Type: Log-Pwr	11:12:32 AM Jun 09, 2014 TRACE 1 2 3 4 5 6 TYPE M MAAAAAAAAA	Frequency
PNO: Fast IFGain:Low	, #Atten: 30 dB	Mkr2	2 5.247 45 GHz -32.96 dBm	Auto Tune
	- month and the second	1		Center Freq 5.260000000 GHz
-20.0 -30.0 -40.0		Martin Carl	-30.41 dBm	Start Freq 5.235000000 GHz
-50.0 La control 4 1000				Stop Freq 5.285000000 GHz
Center 5.26000 GHz #Res BW 240 kHz #V	BW 1.0 MHz	Sweep 1.	Span 50.00 MHz 000 ms (1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
MRR Model HRC Sci X 1 N 1 f 5.265.00 GHz. 2 N 1 f 5.265.00 GHz. 3 N 1 f 5.265.00 GHz. 4	-4.41 dBm -32.96 dBm -33.01 dBm			Freq Offset 0 Hz
MSG		STATUS	•	

Channel 52 - Chain B

Channel 60 - Chain B

鱦 Agilent Spectrum Anal	lyzer - Swept SA				
Center Freq 5.	50 Ω AC 300000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	11:24:26 AM Jun 09, 2014 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref :	PNO: Fas IFGain:Lo 20.00 dBm	#Atten: 30 dB	Mkr	2 5.286 75 GHz -31.81 dBm	Auto Tune
Log 10.0 0.00 -10.0	prof	www.www.www	1 		Center Freq 5.300000000 GHz
-20.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-30.66 dBm	Start Freq 5.275000000 GHz
-50.0				- my bronder	Stop Freq 5.325000000 GHz
Center 5.30000 #Res BW 240 k	GHz Hz #	VBW 1.0 MHz	Sweep 1	Span 50.00 MHz .000 ms (1001 pts)	CF Step 5.000000 MHz Auto Mar
MRX MODE RC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 6 - - - 7 - - -	x 5.307 50 GHz 5.286 75 GHz 5.312 25 GHz	-4.66 dBm -31.81 dBm -31.56 dBm			Freq Offset 0 Hz
		III	STATUS	······································	

鱦 Agilent Spe	ectrum Analyzer - Sw	/ept SA					
ເ <mark>xv</mark> ℝ∟ Center F	RF 50	Ω AC 1000000 GHz	SENSE:	Avg Type	ALIGN AUTO : Log-Pwr	11:27:42 AM Jun 09, 2014 TRACE 1 2 3 4 5 6 TYPE M MAAAAAAAA	Frequency
10 dB/div	Ref 20.00	PNO: Fa: IFGain:Lo	w #Atten: 30 dE	3	Mkr2	2 5.307 60 GHz -31.43 dBm	Auto Tune
Log 10.0 0.00 -10.0		- por	1	montanna			Center Freq 5.320000000 GHz
-20.0 -30.0 -40.0	and and here	2 magoen and the second		\	Mar Jammer Mary	-31.09 dBm	Start Freq 5.295000000 GHz
-50.0 איזיאין -60.0	apt-thrif "						Stop Freq 5.345000000 GHz
Center 5 #Res BW	.32000 GHz 240 kHz	#	VBW 1.0 MHz		Sweep 1.	Span 50.00 MHz 000 ms (1001 pts)	CF Step 5.000000 MHz Auto Man
MRR MODE 1 N 2 N 3 N 4 5 6 7 8 9 10 11	RC SCU 1 f 1 f 1 f	x 5.315 00 GHz 5.307 60 GHz 5.331 95 GHz	Y -5.09 dBm -31.43 dBm -31.97 dBm				Freq Offset 0 Hz
< MSG			I		STATUS	• • •	

Channel 64 - Chain B

Channel 100 - Chain B

🊺 Ag	ilent Sp	ectrum /	Analyzer - Swe	ept SA								
<mark>یہ</mark> Cen	T ter F	req	F 50 G	AC 00000 GH	lz	SEI			ALIGN AUTO : Log-Pwr :>100/100	12:25:42 P TRAC	M Jun 09, 2014 E 1 2 3 4 5 6 PE M WWWWW	Frequency
10 di	B/div	Re	ef 20.00	dBm	NO: Fast C Gain:Low	Atten: 30) dB	Avginoid	Mkr	1 5.598 -4.7	75 GHz 00 dBm	Auto Tune
Log 10.0 0.00 -10.0						1 vrvvvici		v				Center Freq 5.60000000 GHz
-20.0 -30.0 -40.0			. L. adhermetted	2 Velander					3	Aronton and	-30.70 dBm	Start Freq 5.575000000 GHz
-50.0 -60.0 -70.0	مدرانيس ا	ֈֈՠֈ֎	A.~~*								huviluutan yaha	Stop Freq 5.625000000 GHz
Cen #Re:	ter 5 s BV	.600 / 240	00 GHz kHz		#VB	W 1.0 MHz			Sweep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7	N N N	1 f 1 f 1 f		× 5.598 7 5.587 0 5.612 0	5 GHz 5 GHz 0 GHz	-4.700 df -31.563 df -31.849 df	3m 3m 3m 3m			FUNCTI		Freq Offset 0 Hz
9 10 11 < MSG						111			STATUS	þ	+	

Channel 120 - Chain B

Channel 140 - Chain B

🎉 Agilent Spectru	m Analyzer - Swe	pt SA								
Center Fre	RF 50 Ω q 5.70000	AC 00000 GH	Z	SEN	SE:INT	Avg Ty	ALIGN AUTO pe: Log-Pwr	11:36:42 A	M Jun 09, 2014 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 dB/div	Ref 20.00	IFG	iO: Fast ⊆ Gain:Low	#Atten: 30) dB		Mkr	2 5.687 -32.9	00 GHz 93 dBm	Auto Tune
Log 10.0 0.00			photop	1	,nama	h				Center Freq 5.700000000 GHz
-20.0 -30.0 -40.0	h_rest-TV-TV	2 Avarant Harrison	л ^у				William 3	Mr.	-30.92 dBm	Start Freq 5.675000000 GHz
-50.0								- Museula	^{Pe} rtheody Sympon	Stop Freq 5.725000000 GHz
Center 5.70 #Res BW 2	0000 GHz 40 kHz		#VBV	V 1.0 MHz			Sweep 1	Span 5 .000 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MHz Auto Man
MKR MODE TRC 1 N 1 2 N 1 3 N 1 4	SCL f f f	× 5.695 00 5.687 00 5.712 65) GHz) GHz 5 GHz	Y -4.92 dE -32.93 dE -31.68 dE	Bm Bm Bm Bm	ICTION F	UNCTION WIDTH	FUNCTIO		Freq Offset 0 Hz
9 10 11				III						

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Maximum conducted output power Measurement:

CHAIN A+B

Channel Number	Frequency	Data Rate	26dB Bandwidth	Chain A Power	Chain B Power	Output Power	Outpu	ut Power Limit	
	(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	dBm+10log(BW)	
38	5190	30	40.600	4.84	4.86	7.86	17	20.12	
46	5230	30	41.000	5.04	4.84	7.95	17	20.12	
54	5270	30	40.700	4.98	4.86	7.93	24	27.16	
62	5310	30	42.000	5.08	4.82	7.96	24	27.05	
102	5510	30	40.300	5.03	4.82	7.94	24	27.11	
118	5590	30	42.400	4.89	4.52	7.72	24	27.26	
134	5670	30	40.800	5.04	4.75	7.91	24	27.11	

Note:

1. Power Output Value = Reading value on average power meter + cable loss

2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))

3. 26 dB Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.

M RL RF 50 Ω AC SENSE:INT ALIGN AUTO 11:41:54 AM Jun 09, 2014 Frequ Center Freq 5.190000000 GHz Trig: Free Run Trig: Fre	lency
PNO: Fast High recent DET P NNNNN	
	ito Tune
Mkr2 5.168 7 GHz 10 dB/div Ref 20.00 dBm	
Log 10.0 0.00 10.0 10.0 10.0 10.0 10.0 10.0 5.19000	n ter Freq 0000 GHz
-100 -200 -300 -400	tart Freq 0000 GHz
-50.0	top Freq 0000 GHz
Center 5.19000 GHz Span 100.0 MHz #Res BW 390 kHz #VBW 1.0 MHz Sweep 1.000 ms (1001 pts)	CF Step 0000 MHz Man
MKR MODE TRC ScI X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE A 1 N 1 f 5.168.7 GHz -6.27 dBm -6.27 dBm -6.27 gBm	e q Offset 0 Hz
7	

26dB Occupied Bandwidth:

Channel 38 – Chain A

Channel 46 – Chain A

Agilent Spectrum Analyzer - Swept SA			
RL RF 50 Ω AC Center Freq 5.230000000 GHz Context C	SENSE:INT	ALIGN AUTO 11:44:59 AM Jun 09, 2014 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 TYPE M MAAAAAAAA	Frequency
I0 dB/div Ref 20.00 dBm	#Atten: 30 dB	 Mkr2 5.209 1 GHz -31.80 dBm _	Auto Tune
10.0 0.00 -10.0	1		Center Freq 5.230000000 GHz
-20.0 2 -30.0 2 -40.0 4bin of the forefunction		-31.36 dBm	Start Freq 5.18000000 GHz
-50.0			Stop Freq 5.28000000 GHz
Center 5.23000 GHz #Res BW 430 kHz #	VBW 1.0 MHz	Span 100.0 MHz Sweep 1.000 ms (1001 pts)	CF Step 10.000000 MHz Auto Man
MKR MODE TFC SCI X 1 N 1 f 5.227 9 GHz 2 N 1 f 5.209 1 GHz 3 N 1 f 5.251 2 GHz 4	Y FUNC 2 -5.36 dBm 3 -31.80 dBm 2 -32.20 dBm 4		Freq Offset 0 Hz
MSG		STATUS	

🊺 Ag	jilent Sp	pectru	m An	alyzer - Swep	pt SA										
Cen	L Iter	Fre	RF q 5	50 Ω 5.27000	AC 00000 G	iHz	_	SEI	NSE:INT	Avg	A Type:	LIGN AUTO	12:55:23 P TRAC	M Jun 09, 2014	Frequency
10 d	D (diu		Dof	20.00/	dBm	PNO: Fast FGain:Lov	* 🖵	#Atten: 3	0 dB			Mk	r2 5.24	9 2 GHz 99 dBm	Auto Tune
10.0 10.0 0.00				20.00 (, mare	- Mary Mary	poloun	1					Center Freq 5.270000000 GHz
-20.0 -30.0 -40.0						\$ ²						3 Vorten Theological	Mannanan	-31.98.dBm	Start Freq 5.220000000 GHz
-50.0 -60.0 -70.0	~₩/~	مىيەم ا	ewn-st	J. Let " () Let "										Mensedalwase proper	Stop Freq 5.320000000 GHz
Cen #Re	ter : s B\	5.27 N 4	'00 30	0 GHz kHz		#V	/BW	1.0 MHz			s	weep 1	Span 1 .000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11					× 5.27 5.24 5.29	9 2 GHz 9 2 GHz 1 2 GHz		-5.98 df -31.99 df -32.45 df	50 FU				FUNCTI		Freq Offset 0 Hz
MSG												STATUS	5		

Channel 54 – Chain A

Channel 62 – Chain A

🎉 Agilent Spectr	um Analyzer - Swe	ept SA								
Center Fro	RF 50 G	AC 00000 GHz		SEN:	SE:INT	Avg Typ	ALIGN AUTO	01:00:26 P TRAC	M Jun 09, 2014	Frequency
		PNO IFGai	:Fast ⊆ in:Low	#Atten: 30	dB		М	kr2 5.29		Auto Tune
10 dB/div Log 10.0	Ref 20.00	dBm	L	wannytany	nummum	1		-29.		Center Freq 5.31000000 GHz
-20.0 -30.0 -40.0		2	2				3 Munanda		-29.83 dBm	Start Freq 5.26000000 GHz
-50.0 - grown dd -60.0 -70.0	nahipenlim(),rhour							an toy Paulybury L _{ang}	~~harrow-	Stop Freq 5.36000000 GHz
Center 5.3 #Res BW 4	1000 GHz 30 kHz		#VBW	1.0 MHz			Sweep 1	Span 1 1.000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKR MODE TRG 1 N 1 2 N 1 3 N 1 4 - - 5 - - 6 - - 7 - - 9 - 10 11 - -	SCL f f f	X 5.319 4 (5.290 0 (5.330 3 (GHz GHz GHZ	Y -3.83 dB -29.91 dB -29.87 dB	FUN m m m		UNCTION WIDTH			Freq Offset 0 Hz

🎉 Agilent Spectrum Analyzer - Swe	ept SA				
Center Freq 5.5100	Ω AC 00000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:15:42 PM Jun 09, 2014 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
10 dB/div Ref 20.00	dBm	#Atten: 30 dB	Mł	tr2 5.488 6 GHz -31.49 dBm	Auto Tune
10.0 0.00		1 months manuf	heyer have been been a		Center Freq 5.510000000 GHz
-20.0 -30.0 -40.0	2 https://www.		3	-29.53 dBm	Start Freq 5.460000000 GHz
-50.0				And Bright of Mary And Balances	Stop Freq 5.560000000 GHz
Center 5.51000 GHz #Res BW 430 kHz	#VB	W 1.0 MHz	Sweep 1	Span 100.0 MHz .000 ms (1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
Image with the sector 1 N 1 f 2 N 1 f 3 1 f 3 N 1 f 3 1 1 f 3 1 1 1 1 1 1 1 1 1 1 1	x 5.503 3 GHz 5.488 6 GHz 5.531 6 GHz	-3.53 dBm -31.49 dBm -31.90 dBm			Freq Offset 0 Hz
6 9 10 11 11 14		III	STATI		

Channel 102 – Chain A

Channel 118 – Chain A

🎉 Agilent Spectrum Analyzer - Swept	: SA				
⊠ ⊺ RF 50Ω Center Freq 5.59000	AC 0000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	12:29:08 PM Jun 09, 2014 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast G IFGain:Low	Atten: 30 dB	Avginold.2100/100	r1 5.585 9 GHz	Auto Tune
10 dB/div Ref 20.00 d	Bm			-4.772 dBm	
0.00		1 Januar prover	and here		Center Freq 5.59000000 GHz
-20.0		¥			Otart Error
-30.0			- V ³	-30.77 dBm	5.540000000 GHz
-50.0 man man man man	Lunn -			White and the manage	Stop Fred
-60.0 -70.0					5.640000000 GHz
Center 5.59000 GHz #Res BW 430 kHz	#VBV	V 1.0 MHz	Sweep 1	Span 100.0 MHz .000 ms (1001 pts)	CF Step 10.000000 MHz
MKR MODE TRC SCL	X	Y F	UNCTION FUNCTION WIDTH		Auto Man
2 N 1 f 3 N 1 f 4 5	5.568 3 GHz 5.610 8 GHz	-32.011 dBm -30.818 dBm			Freq Offset 0 Hz
6 7 8					
9 10 11 11					
MSG			STATU	6	L

🊺 Agile	ent Spectr	um Ar	alyzer - Swep	t SA								
Cent	er Fro	RF eq (50 Ω 5.67000	AC 0000 GH	lz	SEI	Bun	Avg Type	ALIGN AUTO e: Log-Pwr	02:23:07 PI TRAC	4Jun 09, 2014 E 1 2 3 4 5 6 E MWWWWW	Frequency
				PI IF(NO: Fast 🕒 Gain:Low	#Atten: 3	0 dB		Mk	r2 5.648		Auto Tune
10 dB/ Log 10.0 -	/div	Ref	⁻ 20.00 d	Bm						-32.	54 aBm	Center Freg
0.00 - -10.0 -					, and a	m-l-h-l-h	1	when the state of				5.670000000 GHz
-20.0 -					2 7			\ \	∕) ³		-30.81 dBm	Start Freq
-40.0	. IS OFFICE	undere	www.	M. C. Martin Martin					and the second	what we be	Library on an	5.62000000 GHz
-60.0 -												Stop Freq 5.720000000 GHz
Cento	er 5.6	700	0 GHz		#\/B\	(4 0 MHz			Swaan 4	Span 1	00.0 MHz	CF Step
MKR M		SCL		X	#VBV	Y 1.0 MH2	FUNC		Sweep 1	FUNCTION		Auto Man
2 3 4	N 1 N 1 N 1	f		5.648 5.690	8 GHZ 9 GHZ	-32.54 dE -31.53 dE	3m 3m 3m					Freq Offset
5 6 7											=	
8 9 10												
MSG						III			STATUS	3	*	

Channel 134 – Chain A

Channel 38 – Chain B

🊺 Ag	jilent Sp	pectru	m An	alyzer - Swep	t SA								
Cen	L Iter	Fre	RF q 5	50 Ω 5.23000	AC 0000 GH	lz	SE Trig: Fre	NSE:INT	Аvg Тур	ALIGN AUTO e: Log-Pwr	11:46:18 A TRAC	M Jun 09, 2014 E 1 2 3 4 5 6 E M WWWWW	Frequency
_					PI IF0	NO: Fast G Gain:Low	#Atten: 3	0 dB		M	cr2 5 20		Auto Tune
10 d	B/div		Ref	20.00 d	IBm					IV.	-30.	73 dBm	
10.0													Center Freq
0.00							minning	hurner	www				5.230000000 GHz
-10.0						- MARINE			- marken				
-30.0						<u>~</u>			1	↓ ³		-29.48 dBm	Start Freq 5.18000000 GHz
-40.0				-1 In 1 - 10 - 10	work of the second					Wern Wardy	1000000		
-50.0	dya\dra	لمصله	****	Ju							a second day	hudden and the state	Stop Freq
-60.0 -70.0													5.28000000 GHz
Cen	L_	5 23	001								Snan 1	00.0 MHz	CE Sten
#Re	s Bl	N 4	30	kHz		#VB۱	V 1.0 MHz			Sweep ′	1.000 ms (1001 pts)	10.000000 MHz
MKR 1	MODE N	TRC 1	SCL f		×	2 GHz	Y -3.48 d	FU	NCTION FU	NCTION WIDTH	FUNCTION	ON VALUE	Auto Man
2 3	N N	1	f		5.209 5.250	2 GHz 1 GHz	-30.73 d	Bm Bm					Freq Offset
4												=	0 Hz
6 7													
8 9 10													
11													
MSG										STATU	s		

Channel 46 – Chain B

Channel 54 – Chain B

🊺 Ag	gilent S	pectru	ım Ar	nalyzer - Swe	ept SA														
ιxµ ℝ Cer	L nter	Fre	RF q {	^{50 ی}	2 AC) GH	z	_	SEI	NSE:INT		Avg	Туре	LIGN AUTO	12:56:50 TF	PM Jun	09,2014 2 3 4 5 6		Frequency
10 d	B/div	,	Ref	f 20.00	dBm	IFG	IO: Fast Sain:Low	,	#Atten: 3	0 dB				M	(r2 5.2 -31	50 0	GHz dBm		Auto Tune
Log 10.0 0.00								and the second		بالبالغمار	wyord	WM-mail	ent.						Center Freq 5.270000000 GHz
-20.0 -30.0 -40.0					- Mastra		2			¥ 				A3	Arth Alten II - A		31.27 dBm		Start Freq 5.220000000 GHz
-50.0 -60.0 -70.0	(Takin	gy-selfe		nji (endina , na													<u>r~luq vila yaqaa</u>		Stop Freq 5.32000000 GHz
Cer #Re	nter Is Bl	5.27 N 4	700 30	0 GHz kHz			#V	вw	1.0 MHz				ę	weep 1	Span .000 ms	100.0 (100	0 MHz 1 pts)	A	CF Step 10.000000 MHz Auto Man
MKR 1 2 3 4 5 6 7 8 9 10 11 11	MODE N N	1 1 1	SCL f f		× 5 5 5	.266 9 .250 (.291 3	9 GHz 0 GHz 3 GHz		Y -5.27 dl -31.85 dl -32.68 dl	Bm 3m 3m	FUNC	TION		CTION WIDTH	FUNC				Freq Offset 0 Hz
MSG														STATU	S				

🍺 Agilent Sp	pectrum Analyz	zer - Swept SA	1								
Center	_R ⊧ Freq 5.3	50 Ω A	∝)00 GH	z	SEI		Avg Ty	ALIGN AUTO pe: Log-Pwr	02:12:07 P	M Jun 09, 2014 CE 1 2 3 4 5 6	Frequency
10 dB/div	Ref 2	0.00 dB	PN IFG	0: Fast ⊆ ain:Low	#Atten: 3	0 dB		М	kr2 5.28 -30.	9 6 GHz 16 dBm	Auto Tune
Log 10.0 0.00					1	rumbertuk	Nr. WWW. Carlos				Center Freq 5.310000000 GHz
-20.0 -30.0 -40.0			- Alar - American	2				3 Mul	Anna ha II a	-29.57 dBm	Start Freq 5.260000000 GHz
-50.0 xup (v. -60.0	and the state of the second	U-shir (Hatt							I TANK WAY IN	Mr. Marker and State	Stop Freq 5.360000000 GHz
Center (#Res BV	5.31000 C N 430 kH	GHz	×	#VBV	V 1.0 MHz		NCTION	Sweep	Span 1 1.000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MH2 <u>Auto</u> Mar
1 N 2 N 3 N 4 5 6	1 f 1 f 1 f		5.302 4 5.289 6 5.330 7	GHz GHz GHz	-3.57 dE -30.16 dE -30.35 dE	3m 3m 3m				E	Freq Offsel 0 Hz
7 8 9 10 11					m						
MSG								STAT	US		<u>-</u>

Channel 62 – Chain B

Channel 102 – Chain B

🊺 Agi	ilent Sp	pectru	ım An	alyzer - S	Swept S	5A														
<mark>ير)</mark> Cen	⊺ ter	Fre	RF q 5	5.590	0 Ω 000	AC) G⊦	z		Tria	SEN:	SE:INT	Avg	Type Hold:	LIGN AUTO	12:31:25 TF	5 PM Jur RACE 1 TYPE M	2 3 4 5	4 6	Frequency
10 45			Dof	20.0	0.45	2m	IFC	NO: Fa Gain:Lo	ow	Atte	n: 30	dB	748I		Mł	(r1 5.5 -5.	78 2 032	GH	z	Auto Tune
Log 10.0 0.00	5/010			20.0		5111				l www.ty.wy	mm	putron	Munner							Center Freq 5.59000000 GHz
-20.0 -30.0 -40.0					نور مرب	no./w	Almonto de la	2						ł	3			-31.03 dB	in	Start Freq 5.540000000 GHz
-50.0 -60.0 -70.0	<u>mñtar</u>	μu _m A	JUN - V														www.ww.alu		-	Stop Freq 5.640000000 GHz
Cent #Res	ter : s B\	5.59 N 4	000 30	0 GH: kHz	z	~		#	VBW	1.0 N	/IHz		UCTION	Ş	Sweep 1	Span .000 ms	100. s (100	0 MH 01 pts	iz S)	CF Step 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6 7 8 9 10 11	N N N		Set f f			× 5 5	5.578 5.568 5.611	2 GH; 8 GH; 1 GH;		- <u>5.03</u> - <u>31.89</u> - <u>31.24</u>	32 dB 95 dB 15 dB		NCTION	FUN		FUNC				Freq Offset 0 Hz
< MSG	_								-	III	J	-		ł	STATU	5		۱.	Ť	

Channel 118 – Chain B

Channel 134 – Chain B

🊺 Ag	gilent S	ipectri	um Ai	nalyzer - Swep	ot SA									
KXIR Cer	L nter	Fre	RF eq (50 Ω 5.67000	AC 0000 GH	lz	S Tria: Fr	ENSE:INT	Avg	ALIGN Type: Log	AUTO -Pwr	02:24:25 Pf TRAC	4Jun 09, 2014 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 d	B/div		Rei	f 20.00 c	IF IF	NO: Fast Gain:Low	#Atten:	30 dB			Mk	r2 5.649 -29.9	9 8 GHz 95 dBm	Auto Tune
Log 10.0 0.00 -10.0						JacQuell	whtere where the second	Zmm	1	log_				Center Freq 5.670000000 GHz
-20.0 -30.0 -40.0				61 J ano Al	A Carlow and a carlow a carl	2				3	Gently Canada and		-29.04 dBm	Start Freq 5.620000000 GHz
-50.0 -60.0 -70.0		salanan	Nergebyr									hans have been	hpull, ad s _{ann} erly, _{opp} syke	Stop Freq 5.720000000 GHz
Cer #Re	nter s B	5.67 W 4	700 30	0 GHz kHz		#VE	3W 1.0 MH	z		Swe	ep 1.	Span 1 000 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man
MKR 1 2 3 4 5 6 7 8 9 10 11 11	MODE N N	TRC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SCL f f		× 5.678 5.649 5.690	8 GHz 8 GHz 6 GHz	* -3.04 (-29.95 (-29.28 (dBm dBm dBm dBm dBm	UNCTION			FUNCTIO		Freq Offset 0 Hz
MSG											STATUS			
QuieTer

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-20BW)

Maximum conducted output power Measurement:

(CHAIN A+B)

Channel Number	Frequency	Data Rate	26dB Bandwidth	Chain A Power	Chain B Power	Output Power	Outp	ut Power Limit
	(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	dBm+10log(BW)
144 (Band3)	5720	14.4	15.750	5.13	4.33	7.76	24	22.97
144 (Band4)	5720	14.4	5.450	1.03	-2.81	1.18	30	24.36

- 1. Power Output Value =Reading value on average power meter + cable loss
- 2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))
- 3. 26 dB Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.
- 4. According to KDB 644545 D01 Guidance for IEEE 802.11ac v01, the operation channel work across the 5470-5725 MHz and 5725-5825 MHz band, the operation channel 5725 MHz is a dividing point, must each meet the band limits.

Agilen	it Spec	trum A	nalyzer - Sw	ept SA								
LXI RI	L	F	RF 50 Ω	AC		SE	NSE:INT	A	ALIGN AUTO	04:15:13 F	M May 29, 2014	Frequency
Cen	ter	req	5.7200	00000 G	HZ PNO: Fast (Trig: Fre	e Run	AVgity	pe: Log-Pwr	TY	E 1 2 3 4 5 6	
				I	Gain:Low	#Atten: 3	0 dB			D		• · · · • •
									Mkr	2 5.709	25 GHz	Auto Tune
10 dE	3/div	R	ef 20.00	dBm						-32.	06 dBm	
10.0												Contor From
0.00							1	4				5 720000000 CH7
10.0					Marine	. Margan	Lann	man				5.72000000 GH2
-10.0					Π		1					
-20.0					27				3		24 64 dDm	Start Freq
-30.0				م م	×				- North		-31 09 1000	5.695000000 GHz
-40.0		- 84	. In march	Marma				-	North Martin	hr		
-50.0	or A	- part - dij	Manufacture . L								And the second	Stop Frog
-60.0								-				5 745000000 CH-
-70.0												5.74500000 GH2
Cen	ter 5	720								Snan 5	0.00 MHz	
#Re	s BM	V 220) kHz		#VB	N 1.0 MHz			Sweep	1.00 ms (1001 pts)	CF Step
NKE D	MODEL	TBCI SI	71	~		~	EI			FUNCTIO		Auto Man
1	N	1 f		5.721	25 GHz	-5.64 d	Bm	inement -	ORCHOR WIDTH	Tonene	IT WALDE	
2	N	1 f		5.709	25 GHz	-32.06 d	Bm					
4	N	1 f	·	5.725	00 GHz	-7.54 d	Bm					Frequise
5		-										0 HZ
7												
8		_										
10												
11												
MSG									STATUS	,		
mod									STATUS	í		

26dB Occupied Bandwidth:

Channel 144– Chain A

Channel 144 – Chain B

wept SA												
Ω AC 00000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:19:05 PM May 29, 2014 TRACE 1 2 3 4 5 6 TYPE MMAAAAAAAA	Frequency								
Mkr2 5.709 00 GHz 0 dB/div Ref 20.00 dBm -36.28 dBm												
	1	4		Center Freq 5.720000000 GHz								
2		3	-33.97 dbm	Start Freq 5.695000000 GHz								
			Locara a Contra ana ang tang tang tang tang tang tang	Stop Freq 5.745000000 GHz								
#VBW	1.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MHz Auto Man								
5.715 00 GHz 5.709 00 GHz 5.730 95 GHz 5.725 00 GHz	-7.97 dBm -36.28 dBm -34.51 dBm -8.00 dBm			Freq Offset								
	vept SA 2 AC PN0: Fast IFGain:Low dBm 2 4 2 3 3 4 5 4	Wept SA SENSE:INT 00000 GHz PR0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB dBm 1 2 1 2 1 2 1 2 1 3 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 5 1 5 34.51 dBm 5.725 00 GHz -30.0 dBm 5 -30.0 dBm	Wept SA SENSE:INT ALIGNAUTO 00000 GHz PR0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr dBm 1 4 2 4 3 2 4 3 4 1 4 2 4 3 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 5 1 1 5 715 00 GHz -7.97 dBm 5 34.51 dBm 5.725 00 GHz 5 3.00 dBm 1	Vept: SA SENSE:INT ALIGNAUTO [04:19:05 FM May 29, 2014] 00000 GHz Trig: Free Run IFGain:Low Avg Type: Log-Pwr #Atten: 30 dB Trace [1 2 3 4 5 6 Type] Tree Run Type] dBm -36.28 dBm -36.28 dBm -36.28 dBm 2 -33 -3337 dBm 2 -33 -3337 dBm 2 -33 -3337 dBm 2 -36.28 dBm -36.28 dBm 2 -33 -3337 dBm 4 -35397 dBm -35397 dBm 4 -35397 dBm -35397 dBm 5.715 00 GHz -7.97 dBm FUNCTION WIDTH FUNCTION VIDTH 5.715 00 GHz -7.97 dBm -7.97 dBm -7.97 dBm 5.725 00 GHz -36.0 dBm -36.28 dBm -5.725 00 GHz								

Maximum conducted output power:

Channel 144– Chain B

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11ac-40BW)

Maximum conducted output power Measurement:

(CHAIN A+B)

Channel Number	Frequency	Data Rate	26dB Bandwidth	Chain A Power	Chain B Power	Output Power	Outp	ut Power Limit
	(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	dBm+10log(BW)
142 (Band3)	5710	30	35.600	4.81	5.08	7.96	24	26.51
142 (Band4)	5710	30	5.200	-7.59	-7.66	-4.61	30	24.16

- 1. Power Output Value =Reading value on average power meter + cable loss
- 2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))
- 3. 26 dB Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.
- 4. According to KDB 644545 D01 Guidance for IEEE 802.11ac v01, the operation channel work across the 5470-5725 MHz and 5725-5825 MHz band, the operation channel 5725 MHz is a dividing point, must each meet the band limits.

Agilon	t Spor	etrum	Anal	luzor - S	won	+ SA																
	L per		RE	50	0	AC	1					SEN	ISE:IN	JT			ALIGNAUTO	04:22	2:55 P	M May 29, 2014		
Cen	ter	Fre	a 5	.7100	000	000	0 G	Hz			<u>'</u> ۲				Avg	Туре	: Log-Pwr	1	TRAC	E123456	5	Frequency
							F	NO:	Fast	Ŧ	Trig:	Free	Ru	n					TYE	EM WWWW	t F	
							IF	Gai	n:Low		#Atte	n: 30	dB							- ()·		
																	M	<r2 5.<="" td=""><td>689</td><td>94 GHz</td><td>1</td><td>Autorune</td></r2>	689	94 GHz	1	Autorune
10 di	10 dB/div Ref 20.00 dBm -33.66 dBm												╟									
10.0																					Ir	
10.0														1							1	Center Freq
0.00					+			+		_			$\vdash \Diamond$		/	4						5.710000000 GHz
-10.0					-			+ ,	فسريهاتهم	ann an	-	-may	min	****	The second	how		-			┞	
-20.0								1				1	<u> </u>			\rightarrow					I	
20.0								^ 2									\wedge^3			00.00 dD-		Start Freq
-30.0					-		العرا	-		_							Y.,			-35.02 dbm		5.66000000 GHz
-4U.U						SW	1 ⁰⁰	+									And the second second				┞	
-50.0	d-d-c/M	₽₩₽₽₩₽₽	100m	in Annana in		-		+		_								Aroyon,	M-08-4-4	word work work by	Ir	
-60.0					-			+														Stop Freq
-70.0																					L	5.760000000 GHz
																					┞	
Cen	ter :	5.71	000) GHz														Spa	າກ 1	00.0 MHz	1	CE Sten
#Re	s BV	N 39	90 k	Ήz					#VI	зw	1.0 №	IHz					Sweep	1.00 n	ns (1001 pts)	H.	10.000000 MHz
MKB	MODE	TRC	SCL			X					Y			FUNC	TION	I FUN	ICTION WIDTH	FU	NCTIO	N VALUE	14	Auto Man
1	N	1	f			(5.712	: 5 G	Hz		-7.0	2 dE	3m								IF	
2	N	1	f				5.689	4 G	Hz		-33.6	<u>6 dE</u>	ßm			-						
4	N	1	f			-	5.730 5.725	00	Hz		-33.0	4 ar 0 dF	sm lm									Freq Offset
5											11.0	<u>v u </u>										0 Hz
6		_	\rightarrow						_				_								Iŀ	
8			-																			
9																						
10			-										-									
12																						
MSG																	STATU	e				
Mod																	SIAIU	Ŭ				

26dB Occupied Bandwidth:

Channel 142– Chain A

Channel 142 – Chain B

Agilent S	Spectrum	Analyzer - Sw	ept SA										
Cente	er Fre	RF 50 Ω q 5.7100	AC 00000 GH	z	SEI		Avg Type	ALIGNAUTO e: Log-Pwr	04:27:54 F	M May 29, 2014	Frequency		
10 dB/	IFGain:Low #Atten: 30 dB مواجه المحالي المحالي محالي المحالي المح محالي محالي المحالي محال محالي محالي محالي محالي المحالي المحالي المحالي المحالي المحالي المحالي محالي المحالي المحالي محالي محالي محالي محالي محا												
10.00				ADRAMAN	1	Jerailoutere	4				Center Freq 5.710000000 GHz		
-20.0				2				3 mur		-31.41.dBm	Start Freq 5.66000000 GHz		
-50.0 📈 -60.0 — -70.0 —	n in the second s							16A,	and and a second se	th/cmleadatharda	Stop Freq 5.76000000 GHz		
Cente #Res	er 5.71 BW 43	000 GHz 0 kHz		#VBV	/ 1.0 MHz	FUNC	TION FUR	Sweep	Span 1 1.00 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz Auto Man		
1 N 2 N 3 N 4 N 5 6 7		f f f f	5.699 5.689 5.730 : 5.725 (4 GHz 1 GHz 2 GHz 0 GHz	-5.41 dl -31.22 dl -32.00 dl -11.15 dl	3m 3m 3m					Freq Offset 0 Hz		
8 9 10 11 12 MSG								STATU	s				

Maximum conducted output power:

05:50:34 PM May 29, 2014 Radio Std: None
 SERVEE:INT
 ALIGNAL

 Center Freq: 5.728000000 GHz
 Trig: Free Run
 Avg|Hold>10/10

 #Atten: 30 dB
 B
 Avg|Hold>10/10
 ALIGN AUTO Frequency Center Freq 5.728000000 GHz Ģ Radio Device: BTS #IFGain:Low Ref 20.00 dBm 10 dB/div og 10.0 **Center Freq** 5.728000000 GHz 0.00 10.0 20.0 30 C ٩, 40.C herphylow -50.C -60.C 70.0 CF Step 10.000000 MHz Center 5.728 GHz #Res BW 1 MHz Span 100 MHz Auto Man #VBW 3 MHz Sweep 1 ms Freq Offset **Channel Power Power Spectral Density** 0 Hz -7.59 dBm / 5.9 MHz -75.29 dBm /Hz STATUS MSG

Channel 142– Chain B

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)

Maximum conducted output power Measurement:

(CHAIN A+B)

Channel Number	Frequency	Data Rate	26dB Bandwidth	Chain A Power	Chain B Power	Output Power	Outp	put Power Limit		
	(MHz)	(Mbps)	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	dBm+10log(BW)		
42	5210	65	80.400	4.91	5.02	7.98	24	30.05		
58	5290	65	79.800	4.88	5.07	7.99	24	30.02		
106	5530	65	79.800	5.22	4.65	7.95	24	30.02		
122	5610	65	80.200	5.21	4.74	7.99	24	30.04		
138 (Band3)	5690	65	74.400	5.11	4.79	7.96	24	29.72		
138 (Band4)	5690	65	5.000	-11.89	-11.91	-8.89	30	23.99		

- 1. Power Output Value =Reading value on average power meter + cable loss
- 2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))
- 3. 26 dB Bandwidth is the bandwidth of chain A or chain B whichever is less bandwidth, output power limitation is more stringent.
- 4. According to KDB 644545 D01 Guidance for IEEE 802.11ac v01, the operation channel work across the 5470-5725 MHz and 5725-5825 MHz band, the operation channel 5725 MHz is a dividing point, must each meet the band limits.

	Channel 42– Chain A												
Agiler	nt Spe	ctru	n An	alyzer - Swe	ept SA								
(X) R Cer	L Iter	Fre	RF Peq (50 Ω 5.21000	AC	Hz NO: East	Trig: Fr	ee Run	Avg Ty	ALIGNAUTO pe: Log-Pwr	05:08:18 P TRAC TYF	M May 29, 2014 E 1 2 3 4 5 6 E M WWWWW	Frequency
	IFGain:Low #Atten: 30 dB Der P NNNN Mkr2 5.170 2 GHz 23.52 dPm												Auto Tune
10 d Log	B/div		Ref	f 20.00 d	IBm					1	-33.:	ss abm	
10.0 0.00								1					Center Freq 5.210000000 GHz
-10.0 -20.0 -30.0						2		*	- Company	3		-31.98 dBm	Start Freq
-40.0 -50.0	from	AND W	^م ريد 100	and the state of the second	mont					hallyhow	Munhorwan	hormonia	5.11000000 GH2
-60.0 -70.0													Stop Freq 5.310000000 GHz
Cen #Re	ter : s B\	5.2′ N 8	100 20	GHz kHz		#V	BW 1.0 MH	z		Sweep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz
MKR 1	MODE	TRC	SCL		×	6 CH7	Y 5 99 /	i Ban	INCTION F	UNCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Man
2 3 4 5	N N	1	f		5.170 5.250	2 GHz 6 GHz	-33.53 (-33.29 (IBm IBm					Freq Offset 0 Hz
8 9 10													
11 12 MSG										STATU	6		

26dB Occupied Bandwidth:

Channel 58– Chain A

Agilent Spectrum Analyzer - Swept SA				
XX RL RF 50Ω AC	SENSE:INT	ALIGNAUTO Ava Type: Log-Pwr	05:12:40 PM May 29, 2014 TRACE 1 2 3 4 5 6	Frequency
PNO: Fast G	Trig: Free Run			
IFGain:Low	#Atten: 30 dB	RAL.		Auto Tune
10 dB/diu Bef 20 00 dBm				
10.0				Center Freq
0.00				5.29000000 GHz
-10.0	- and the provest	many warning		
-20.0		- 3		Start Fred
-30.0		V~	-32:48-dBm	5 19000000 GHz
-40.0		how Windows	- 1×0	
-50.0 front on the second second			mall what where here have not an	
-60.0				Stop Freq
-70.0				5.390000000 GHz
Center 5.2900 GHz #Res BM 820 kHz #VBM	(10 MHz	Sween	Span 200.0 MHz 1 00 ms (1001 nts)	CF Step
		Uncep	noo nis (roor prs)	20.000000 MHz Auto Man
1 N 1 f 5.283 0 GHz	-6.48 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>rtato</u> intari
2 N 1 f 5.249 6 GHz	-33.62 dBm			
3 N I I 5.330 8 GH2	-33.45 uBm			FreqOffset
5				0 HZ
7				
9				
10				
12				
MSG		STATUS	;	L]

Agilent Spe	etrum Analy:	zer - Swept	SA								
Center	Freq 5.5	50 Ω / 5300000	ac 000 GH	Z	SEN		Avg Typ	ALIGNAUTO e: Log-Pwr	04:33:26 P TRAC	M May 29, 2014 E 1 2 3 4 5 6	Frequency
10 dB/div	Ref 2	0.00 dB	IFG m	iO: Fast 🕒 Jain:Low	#Atten: 30) dB		MI	⊳ (r2 5.48) -35.	98GHz 00dBm	Auto Tune
Log 10.0 0.00					1						Center Freq 5.530000000 GHz
-20.0 -30.0 -40.0			Lumuent .	2	,			3		-33.92 dBm	Start Freq 5.430000000 GHz
-50.0 -60.0 -70.0	<u>1994</u> 26936.78 1020-20								where we are a second sec	antar de la constante de la consta	Stop Freq 5.630000000 GHz
Center : #Res B\	5.5300 G N 820 kH	Hz Iz	×	#VBV	V 1.0 MHz	FL	NCTION	Sweep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz <u>Auto</u> Man
1 N 2 N 3 N 4 5 6 7 8 9 10	1 f 1 f 1 f		5.519 2 5.489 8 5.570 4	2 GHz 3 GHz 1 GHz	-7.92 dE -35.00 dE -35.08 dE	3m 3m 3m					Freq Offset 0 Hz
11 12 MSG								STATU	s		

Channel 106– Chain A

Channel 122– Chain A

Agile	nt Spe	ctrum	Ana	lyzer - Sw	ept SA														
الا Cer	L nter	Fre	RF q 5	50 ຊ .6100	2 AC)0 G⊦	łz		SE	NSE:IN	т	Avg	A Type:	LIGN AUTO Log-Pwr	05:	17:32 P TRAC	M May 29, 3	2014	Frequency
10 d	B/div	F	Ref	20.00	dBm	PI IF(NO: Fas Gain:Lo	at ⊆ w	#Atten: 3	0 dB				Mł	(r2 5	5.569 -34.2	9 8 G 25 dE	Hz Sm	Auto Tune
Log 10.0 0.00 -10.0								سەرى	1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Center Freq 5.610000000 GHz
-20.0 -30.0 -40.0	MJ	hund	w	mathelis/ruite	here her have	ament	2							3			32.30	dBm	Start Freq 5.510000000 GHz
-50.0 -60.0 -70.0														- H H H H		savl-yrbjr	ndel representation	<u>vla</u> 49	Stop Freq 5.710000000 GHz
Cer #Re	ter : s B\	5.61 N 82	00 (20 k	GHz (Hz		,	#\	/вw	1.0 MHz	<u>.</u>	ELNIG	TION	E ING	Sweep	Sp 1.00	oan 2 ms (00.0 M 1001 p	IHz (ts)	CF Step 20.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 12						5.598 : 5.569 : 5.650 :	2 GHz 8 GHz 0 GHz		-6.30 d -34.25 d -32.82 d	Bm Bm Bm	FUNC						N VALUE		Freq Offset
MSG														STATU	S				

Agilent Spectr	rum Analyzer - Swe	ept SA							
Center F	RF 50 Ω req 5.69000	AC 00000 GHz	SENS	E:INT	Avg Type	LIGN AUTO	04:50:14 P TRAC	M May 29, 2014	Frequency
		PNO: Fast IFGain:Low	#Atten: 30	dB		Mk	r2 5.650		Auto Tune
10 dB/div 10.0	Ref 20.00 c			ىلىرىكىستىرەتىرىدار <u>ل</u> ىر			-30.7		Center Freq 5.69000000 GHz
-20.0		2				3		-33.28 dBm	Start Freq 5.59000000 GHz
-50.0	488° (h)) ()					an to Bulkrowsky		indijese Quidesanje	Stop Freq 5.790000000 GHz
Center 5.0 #Res BW	6900 GHz 820 kHz	#VI	3W 1.0 MHz	FUNCT	TION FUN	Sweep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz <u>Auto</u> Man
1 N 1 2 N 1 3 N 1 4 N 1 5 6 7 8		5.682 4 GHz 5.650 4 GHz 5.730 6 GHz 5.725 0 GHz	-7.28 dBr -30.26 dBr -38.17 dBr -13.53 dBr	m n n n					Freq Offset 0 Hz
9 10 11 12 MSG						STATUS			

Channel 138– Chain A

Channel 42 – Chain B

Agiler	nt Spec	ctrum.	Analyzer - Swe	ept SA								
KXIR Cer	L nter	Frec	RF 50Ω 15.21000	AC	lz	SEN	ISE:INT	Avg Ty	ALIGNAUTO pe: Log-Pwr	05:10:26 F	M May 29, 2014	Frequency
10 d	B/div	R	ef 20.00 d	JBm	NO: Fast G Gain:Low	#Atten: 30	dB		МІ	(r2 5.17) -33.	0 0 GHz 44 dBm	Auto Tune
Log 10.0 0.00 -10.0					-	Mananthorized	1	when				Center Freq 5.210000000 GHz
-20.0 -30.0 -40.0			melimitel		2				3	MAN Mallala -	-31.48 dBm	Start Freq 5.110000000 GHz
-50.0 -60.0 -70.0											fr. 18-27-414/20-0-4-2-4-	Stop Freq 5.310000000 GHz
Cen #Re	ter : s BV	5.210 N 82	00 GHz 0 kHz	0	#VB۱	W 1.0 MHz			Sweep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 11				5.216 · 5.170 · 5.250 ·	4 GHz 0 GHz 6 GHz	5.48 dE -33.44 dE -33.55 dE						Freq Offset 0 Hz
MSG									STATU	S		

Agile	nt Spe	ctrur	m An	alyzer - S	wept	SA														
ιx/ ℝ Cer	L Iter	Fre	RF Pq	50 5.2900	Ω)000	ac 000	GH	Z			SENSE	EINT	Avg	Туре	ALIGNAUTO : Log-Pwr	05:14	:46 PN TRACE	1 May 29, 2014		Frequency
10 d	Bidiy		Rei	5 20 00			IFG	IU: Fas iain:Lo	st L	#Atten:	: 30 d	IB			Mł	(r2 5.: -3	DE 250 32.8	0 GHz 6 dBm		Auto Tune
10.0 10.0 0.00				20.00					and and and a	for a market	•		hande	Dia 6						Center Freq 5.29000000 GHz
-20.0 -30.0 -40.0	that	المعمدان		+ Mathemat	Lunem		and	2							3			-31.47 dBm		Start Freq 5.19000000 GHz
-50.0 -60.0 -70.0																				Stop Freq 5.390000000 GHz
Cer #Re	nter : s B\	5.29 N 8	900 20	GHz kHz				#\	VBW	1.0 MF	łz				Sweep	Spa 1.00 m	n 20 1s (1	00.0 MHz 001 pts)	Au	CF Step 20.000000 MHz to Man
1 2 3 4 5 6 7 8 9 10 11 12						× 5.2 5.3	296 E 250 C 329 E	3 GHz) GHz 3 GHz		5.47 -32.86 -32.45	dBrr dBrr		TION			FUN				Freq Offset 0 Hz
MSG															STATUS	5				

Channel 58 – Chain B

Channel 106 – Chain B

Off RL RF SD Q AC SENSEINT ALIGNAUTO OL-35:29 PM May 20, 2014 Frequency Center Freq 5.53000000 GHZ PN0: Fast Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Trig: Free II: 2 + 3 + 5 Trig: Free Run Br PNNNNN Auto Tun 10 dB/div Ref 20.00 dBm -35.33 dBm -35.33 dBm -35.33 dBm 10 dB/div Ref 20.00 dBm -35.33 dBm -34.88 dBm -35.33 dBm 10.0 -2 -3 -34.88 dBm -5.530000000 GHZ 20.0 -2 -3 -34.88 dBm -5.63000000 GHZ 40.0 -2 -3 -34.88 dBm -5.63000000 GHZ 70.0 -2 -3 -34.88 dBm -5.63000000 GHZ 70.0 -2 -3 -34.88 dBm -5.63000000 GHZ 70.0 -2 -3 -34.88 dBm -2.0.0000 MHZ -2.0.0000 MHZ 70.0 -2 -35.33 dBm -2.0.0000 MHZ -2.0.0000 MHZ -2.0.0000 MHZ -2.0.0000 MHZ 7 -1 -5.527 6 CHZ -3.48 dBm -2.0.0000 MHZ	Agiler	nt Spe	ectrun	n An	alyzer - Swe	ept SA									
PNO: Fast PNO: Fast <t< td=""><td><mark>⊯</mark> R Cen</td><td>L Iter</td><td>Fre</td><td>RF</td><td>50 Ω 5.53000</td><td>AC 0000 GH</td><td>z</td><td>SE</td><td></td><td>A</td><td>vg Type</td><td>ALIGNAUTO : Log-Pwr</td><td>04:35:28 P TRAC</td><td>M May 29, 2014</td><td>Frequency</td></t<>	<mark>⊯</mark> R Cen	L Iter	Fre	RF	50 Ω 5.53000	AC 0000 GH	z	SE		A	vg Type	ALIGNAUTO : Log-Pwr	04:35:28 P TRAC	M May 29, 2014	Frequency
Log Center Fre 100 1 1 1 1 1 1 5.53000000 GH 100 2 3 34.48 dBm 5.43000000 GH 5.43000000 GH 200 2 3 34.48 dBm 5.43000000 GH 5.43000000 GH 400 4 4 4 4 5.63000000 GH 5.63000000 GH 5.00 4 4 5.527 6 GHz \$\$\$ PUNCTION WIDTH \$\$\$ PUNCTION WIDTH \$\$\$\$ PUNCTION WIDTH \$	10 d	B/div		Ref	f 20.00 c	IBm	NO: Fast (Gain:Low	#Atten: 3	DdB			Mk	(r2 5.49) -35.3	D 0 GHz 33 dBm	Auto Tune
20.0 3	Log 10.0 0.00 -10.0								1	محاودهم					Center Freq 5.53000000 GHz
50.0 Image: Stop Free 60.0 Image: Stop Free 60.0 Image: Stop Free 70.0 Image: Stop Free 70.0 Image: Stop Free 70.0 Image: Stop Free 70.0 Image: Stop Free 7 Image: Stop Free 8 Image: Stop Free 9 Image: Stop Free	-20.0 -30.0 -40.0					- altern work	2					3		-34.48 dBm	Start Freq 5.43000000 GHz
Center 5.5300 GHz #VBW 1.0 MHz Span 200.0 MHz CF Ste #Res BW 820 kHz #VBW 1.0 MHz Sweep 1.00 ms (1001 pts) 20.000000 MHZ 1 N 1 f 5.527 6 GHz -3.48 dBm 2 N 1 f 5.527 6 GHz -36.33 dBm 3 N 1 f 5.569 8 GHz -35.72 dBm Freq Offset 4	-50.0 -60.0 -70.0		, sibil ue	4040	hanese fa first the second									u Andrea and an and an and an	Stop Freq 5.630000000 GHz
Indice Indice Indice Indice Fore-flow Fore-flow<	Cen #Re	ter s B	5.53 W 8	300 20	GHz kHz		#VB	W 1.0 MHz		FUNCTION		Sweep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz Auto Man
	1 2 3 4 5 6 7 8 9 10 11 12	N N N		f		5.527 5.490 5.569	6 GHz 0 GHz 8 GHz	-8,48 dl -35,33 dl -35,72 dl	3m 3m 3m						Freq Offset 0 Hz

Agile	nt Spe	ctrum	Analyzer - Sw	ept SA								
wµ Cer	L nter	Free	RF 50 Ω 5.61000	AC 00000 GH	lz	SEP		Avg Typ	ALIGNAUTO e: Log-Pwr	05:19:31 P TRAC	M May 29, 2014	Frequency
10 d	B/div	, F	ef 20.00 (dBm	NO: Fast 🕞 Gain:Low	#Atten: 30) dB		MI	(r2 5.56 -33.	9 8 GHz 10 dBm	Auto Tune
Log 10.0 0.00						1	strawburges					Center Freq 5.610000000 GHz
-20.0 -30.0 -40.0				المرابع	2				3		32.27 dBm	Start Freq 5.510000000 GHz
-50.0 -60.0 -70.0	/wv	\$~++*13 ⁻⁴ N	, doloon ya ku						handras from	hold a work was	₽└┥╲┍╼╕╆┸╤╍╼╍┺┙	Stop Freq 5.710000000 GHz
Cer #Re	nter : s B\	5.61 N 82	0 GHz 0 kHz		#VBV	V 1.0 MHz			Sweep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz
1 2 3 4 5 6 7 8 9 10 11 12				× 5.594 5.569 5.650	0 GHz 8 GHz 2 GHz	6.26 df -33.10 df -34.25 df	FUN 3m 3m 3m 3m 		NCTION WIDTH	FUNCTIC	N VALUE	Auto Man Freq Offset 0 Hz
MSG									STATU	5		

Channel 122 – Chain B

Channel 138 – Chain B

Agiler	nt Spe	ctrur	m An	alyzer - Swe	ept SA										
גע R Cer	L Iter	Fre	RF Pq	50 Ω 5.69000	AC 0000 GI	Ηz		SEN		Avg T _i	ALIGI pe: Lo	nauto g-Pwr	04:52:50 P TRAC	M May 29, 2014	Frequency
				5 00 00 -	P IF	'NO: Fast Gain:Lov	v V	#Atten: 30) dB			Mk	r2 5.65	0 6 GHz	Auto Tune
10 d Log 10.0 0.00			Rei	1 20.00 C	iBm			<u>n-introduction</u>			} ⁴		-27.5		Center Freq 5.69000000 GHz
-20.0 -30.0 -40.0	λι J			f Land Williams	menuter	2_					3	1 Mar. Aslin		-32.00-dBm	Start Freq 5.59000000 GHz
-50.0 -60.0 -70.0		Y. W.											ny novody (v s _{e s} ali		Stop Freq 5.79000000 GHz
Cen #Re	ter: sB\ xmma	5.69 N 8	900 20	GHz kHz	×	#V	/BW 1	1.0 MHz	FIN	FTION	Sv	veep	Span 2 1.00 ms (00.0 MHz 1001 pts)	CF Step 20.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 12	N N N				5.699 5.650 5.730 5.725	2 GHz 6 GHz 0 GHz 0 GHz		-6.00 dE -27.87 dE -33.21 dE -12.93 dE	3m 3m 3m 3m						Freq Offset 0 Hz
MSG												STATUS			

Maximum conducted output power:

Agilent	Spectr	um Analyzer - Cha	annel Power								
Cent	er F	RF 50 Ω req 5.21000	AC 00000 GH	z	Center Fr	ISE:INT eq: 5.21000	0000 GHz		05:52:59 P Radio Std:	M May 29, 2014 None	Frequency
			#IFC	Gain:Low	#Atten: 30) dB	Avginoid.	/ 10/10	Radio Dev	ice: BTS	
10 dB/	/div	Ref 20.0	0 dBm								
Log 10.0 -											Center Freq
0.00 -											5.210000000 GHz
-10.0 —				and a state	and a state of the second	In the second states	WT HILD				
-20.0 —				<u>}</u>			101.0.1				
-30.0											
-40.0		nterestinger Automation	Alfrid way he wanged					L.	urbail sate		
-60.0 —	a huyan.								n north lythere	effekto-ykelingeg	
-70.0											CF Step
L Cente	er 5.	21 GHz							Span	200 MHz	20.000000 MHz
#Res	BW	1 MHz			#VE	W 3 MH	z		Swe	ep 1 ms	Auto
Cł	nanı	nel Power				Power	Spectr	al Dens	ity		Freq Offset 0 Hz
		4.91 dE	3m / 80	0.4 MHz		-	73.93	dBm	/Hz		
MSG								STATUS	6		

Channel 42– Chain A

Channel 42– Chain B

Agilent	Spectrur	n Analyzer - Ch	annel Power								
X Cento	er Fre	RF 50 Ω 9 q 5.2100(AC 00000 GH #IF0	lz Gain:Low	SEP Center Fi Trig: Free #Atten: 30	NSE:INT req: 5.21000 ≥ Run 0 dB	00000 GHz Avg Hold	ALIGN AUTO	Radio Std: Radio Dev	M May 29, 2014 None ice: BTS	Frequency
10 dB/	/div	Ref 20.0	0 dBm				1	÷	1		
10.0 -											Center Freq 5.210000000 GHz
-10.0 — -20.0 —				Att where	_৵ ₽₰₽₽₽₽₩₩₽₽₩₽₽₽₽	/****#ayantaray	- AMARK RANGE - AMARKA				
-30.0 — -40.0 —											
-50.0 / 1 -60.0 —	hww.hat	┥ ┪╞┙ ╍╒╞╍┙┇╷┩┍┞┍╕╝╍ ^人 ┙	UNANN NY TAR -					^{- 4} 74474 - 474 -	Mart & Alexandric Andrews	⋫ ⋎ ⋋⋭⋍⋗ _⋫ ⋡⋚⋭ _⋳ ⋛∼⋴⋪⋽⋈	
-70.0 Cente	er 5.2	1 GHz							Span	200 MHz	CF Step 20.000000 MHz Auto Man
#Res	BW [•]	1 MHz			#VE	SW 3 MH	z		Swe	ep 1ms	
Ch	nann	el Power				Power	Spectr	al Dens	ity		Freq Offset 0 Hz
	:	5.02 dI	3m / 8	0.6 MHz		-	73.84	dBm	/Hz		
ИSG								STATUS	5		

t Spect	rum Analyz	er - Cha	nnel Power								
tor E	RF	50 Ω		1-	SE Center F	NSE:INT	00000 GHz	ALIGN AUTO	05:57:41 P	M May 29, 2014	Save
]	9000	#IF	Gain:Low	Trig: Fre #Atten: 3	e Run 0 dB	Avg Hold:	>10/10	Radio Dev	ice: BTS	State►
3/div	Ref	20.00	dBm								
											Trace (+ State)
				المراكدين المراكدين	uru (nuiqanayin a naying	n // Tarkalauroop	how all your where the				
<i>μ</i>		n diale	y way the fight of	P				Na. Michael Indonetic	the hotel for the	Marth Williams	Data (Export) ► Trace 1
ter 5	29 GHz	,							Snar	200 MHz	Screen
s BW	1 MHz	•			#VI	BW 3M	Hz		Swe	ep 1 ms	inage
han	nel Po	wer ≀dF	Sm (s	91 MU-		Powe	er Spectra	al Dens dBm	ity (⊔z ■		
	4.00		2111 / 0	. 19172			-, -, 01	STATUS			
	<u>spect</u> <u>ter F</u> الالالا الالالالا ter 5 s BW	spectrum Analyz RF ter Freq 5.2 3/div Ref א/div Ref bannel Pc bannel Pc 4.88	spectrum Analyzer - Cha RF 50 2 ter Freq 5.29000 Waiv Ref 20.00 Waiv Ref 20.00 State of the second sec	Spectrum Analyzer - Channel Power RF 50.2 RF 50.2 Waiv Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm <	Spectrum Analyzer - Channel Power RF 502 AC RF 502 AC //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Low //IFGain:Lo	Spectrum Analyzer - Channel Power Ref 20.00 dBm MirGain:Low M	Spectrum Analyzer - Channel Power RF 502 AC SEMSEINT Ler Freq 5.290000000 GHz Center Freq 5.290 Center Freq 5.29 Ce	Spectrum Analyzer - Channel Power RF 50.2 AC Center Freq 5.290000000 GHz #IFGain:Low Center Freq 5.29000000 GHz #IFGain:Low #Atten: 30 dB Wdiv Ref 20.00 dBm Ref 20.00 dBm Ref 20.00	Processor Processor ALIGNAUTO Image: Several se	Spectrum Analyzer - Channel Power SENSE:INT ALISNAUTO 05:57:41 F Ler Freq 5.290000000 GHz Center Freq: 6.29000000 GHz Radio Std. #FGain:Low #Atten: 30 dB Aughted>10/10 #div Ref 20.00 dBm Radio Dev Wdiv Ref 20.00 dBm Image: Sense:	Spectrum Analyzer - Channel Power SENSE:INT ALIONAUTO 05:57:41 PM May 29, 2014 ter Freq 5.290000000 GHz Griter Freq 5:29000000 GHz Radio Std: None #IFGain:Low #IFGain:Low Avg Hold>>10/10 Bdiv Ref 20.00 dBm Ref 20.00 dBm Radio Device: BTS Wdiv Ref 20.00 dBm Ref 20.00 dBm Ref 20.00 dBm Image: Spectrum Power Image: Spectrum Power Spectrum Power Power Spectral Density 4.88 dBm / 81 MHz -74.07 dBm /Hz Image: Spectrum Power

Channel 58– Chain A

Channel 58– Chain B

Agilent Spe	ectrum Analyzer - Cha	nnel Power								
Center	RF 50 Ω	0000 GH	z	Center F	ISE:INT req: 5.53000	0000 GHz	ALIGNAUTO	Radio Std	M May 29, 2014 : None	Save
		#IFG	ain:Low 🗭	J Trig: Free #Atten: 30	e Run)dB	Avg Hold	:>10/10	Radio Dev	vice: BTS	State
10 dB/div Log 10.0 0.00	/ Ref 20.00) dBm								Trace (+ State)
-10.0 -20.0 -30.0			pillar maler	lonan Marin	Mananthington	all and an and a second se				
40.0 50.0	_{กร่องส} ารประเทศ เป็นเป็นเป็นเป็นเป็นเป	utres and						harmolythickey	YA ^{MA} AYU'AJUAPAJ <i>JA</i> YA	Data (Export) I Trace 1
70.0 Center	5.53 GHz W 1 MHz			#VE	SW 3 MH	z		Spar Sw	200 MHz	Screen Image
Cha	nnel Power				Power	Spectr	al Dens	ity	· · ·	
	5.22 dE	3m / 80).6 MHz		-	73.74	dBm	/Hz		
ISG							STATUS	3		

Channel 106– Chain A

Channel 106– Chain B

Agilent Sp	ectrum Analyzer - Cl	nannel Power								r
Center	r Freq 5.6100	2 AC 00000 GH	z	Center Fi	NSE:INT req: 5.61000	00000 GHz	ALIGNAUTO	06:02:53 F Radio Std:	M May 29, 2014 None	Save
		#IFC	Gain:Low	Trig: Free #Atten: 30	e Run) dB	Avg Hold:	>10/10	Radio Dev	ice: BTS	State►
10 dB/di Log 10.0	iv Ref 20.0	00 dBm								Trace (+ State)
-10.0 -20.0 -30.0			programmer all all and a second se	aning an	p ^{argit} li ^{theren} itigen	nl/A ^{lfra} thelitelitel				
-40.0 -50.0	ĸŎŔŊŧŮĸŦŊŎ ₽ ₽ĸ [₽] ĬĽ ^{ŦĹ} Ĺ ^ĸ ŸŢ <mark>Ϸ</mark> ĬŸ	Ward March M					4 h4484 _{74.05} /11	bel/Wyrapae	₩ [₩] ₩₩₩₩₩₩₩₩	Data (Export)
-70.0 Center #Res B	5.61 GHz 3W 1 MHz			#VE	SW 3 MH	z		Span Swe	200 MHz ep 1 ms	Screen Image
Cha	Channel Power Power Spectral Density 5.21 dBm / 80.2 MHz -73.63 dBm /Hz									
MSG							STATU	s	_	

Channel 122– Chain A

Channel 122– Chain B

Agilent S	Spectrun	n Analyzer - Cha	annel Power								
	r Ero	RF 50 Ω			SEN Center Fr	ISE:INT :ea: 5 68800	0000 GHz	ALIGN AUTO	06:05:50 F	M May 29, 2014 None	Save
Cente		g 5.00000	#IFG	IZ Gain:Low	Trig: Free #Atten: 30	eq: 0.00000 Run) dB	Avg Hold	> 10/10	Radio Dev	ice: BTS	State►
10 dB/ Log 10.0	div	Ref 20.0	0 dBm								Trace (+ State)
-10.0 — -20.0 —				yh-it.hy/aya/*it	alar in sign war an	y er.pg antr	₩₩ [₩] ₩₩₩₩₩₩₩				
-30.0 - -40.0 - -50.0 -	alvalitiona.a	utulongerurqMaaqil	M Markey Mary Markey	1				h Mural dep	(^h # ^{hosh} ak#gh _{wall} igo	utipiting when a	Data (Export) ► Trace 1
-70.0 Cente #Res	er 5.61 BW 1	B8 GHz MHz			#VE	sw змн	z		Span	200 MHz	Screen Image
Ch	Channel Power Power Spectral Density 5 11 dBm / 74.6 MH -73 41 dBm /Hz										
MSG								STATUS	3		

Channel 138– Chain A

Agilen	t Spectru	ım Analyzer - Cha	annel Power									
<mark>IXI</mark> Cen	tor Fr	RF 50Ω		7	Center	EN9 Fre	E:INT a: 5.728	000000 GHz	ALIGN AUTO	06:06:43 F Radio Std:	M May 29, 2014	Frequency
	#IFGain:Low				Trig: Fr #Atten:	ee 30	Run dB	Avg Ho	old:>10/10	Radio Device: BTS		
10 di	3/div	Ref 20.0	0 dBm			÷	·			1		
10.0												Center Freq
0.00												5.728000000 GHz
-10.0			den Minuter (24) u Mi		ANK 11. 20-							
-20.0		plumber	a haran di dad	1	coulour Autor	M						
-30.0												
40.0												
-40.0		where 1					Μ.					
-50.0	ur-,-r1						Mr. May	h www.	didle with the strange	http:///////////////////////////////////	anariyya Mahan	
-70.0												
10.0												CF Step 20 000000 MHz
Cen #Re	ter 5.3 s BW	728 GHz 1 MHz			#V	#VBW 3 MHz				Span Swe	ep 1 ms	<u>Auto</u> Man
с	Channel Power						Powe	er Spec	tral Dens	sity		Freq Offset 0 Hz
	-1	1.89 dE	3m / 5.	6 MHz				-79.3	8 dBm	/Hz		
MSG									STATU	s		[]

Channel	138-	Chain	B
---------	------	-------	---

Agilen	it Spect	rum Analyzer - Ch	iannel Power									
LXI L	L	RF 50 Ω	2 AC		SEN	ISE:INT		ALIGN /	AUTO	06:08:20 P	M May 29, 2014	Frequency
Cen	ter F	req 5.6880	00000 GH	z	Center Free	eq: 5.68800	0000 GHz	~ 10/1	^	Radio Std:	None	requeries
]	#IFG	Jain:Low	#Atten: 30	dB	UI BILINA		•	Radio Dev	ice: BTS	
		<u>د</u>										
		D of 30.0										
10 at 1.oa	3/div	Ref 20.0	10 aBm				, <u>,</u>	1				
10.0												Center Fred
10.0												E CODODODO CU-
0.00			+ +	++								5.688000000 GHZ
-10.0												
				anther antiper	h-so-lead/arti-tare/artai	handler of the						
-20.0			+ +			·						
-30.0				<u> </u>				1				
								II.				
-4U.U								K				
-50.0	high	wert want want	halfertfetel th weather"	4				N.	المعادمة المعاد			
60.0	H.	·r •							,	unininina kana	ndd yn	
-00.0												
-70.0			+	++								CE Sten
												20.000000 MHz
Cen	ter 5	.688 GHz								Span	200 MHz	Auto Man
#Re:	s BW	i 1 MHz			#VB	<u>W ЗМН</u>	z			Swe	ep 1 ms	
c	han	nel Power	r			Power	Spectr	al D	ensi	tv		Freq Offset
-							•••••	ui _	•1.5.	•9		0 Hz
		4 70 -1	n		_		70.00	-15	·			
		4.79 ai	Bm /74	1.4 MH		-	73.93	ar	sm	/Hz 📕		
					_						-	
									CTATUO			
MSG									STATUS			

Agilent Spe	ectrum Analyzer - Ch	annel Power						
	RF 50 S		SENSE:INT	A	LIGNAUTO	06:11:36 P	M May 29, 2014	Frequency
Center	#IFGain:Low			Avg Hold:>	10/10	Radio Dev	ice: BTS	
10 dB/div	Ref 20.0	0 dBm				T		
10.0 0.00								Center Freq 5.728000000 GHz
-10.0 -20.0	phymeter	ulliprotection to all accelerate	พทางระประเทศ					
-30.0	and shink the							
-50.0 ••••••••	MA_AMA®**		- Curra	^{prograd} y viol of the by the state of the s	ph/ lantaq h/hadin	yllun simproficipa	holer-addelated	
-70.0	6 700 C U-					Snor	200 MU-	CF Step 20.000000 MHz
Center #Res B\	5.728 GHZ W 1 MHz		#VBW 3	MHz		Span 200 MHz Sweep 1 ms		<u>Auto</u> Man
Cha	nnel Powe	•	Ром	ver Spectra	l Dens	ity		Freq Offset 0 Hz
	-11.91 dBm / 5 мнz 🔳 -78.90 dBm /нz 📕							
MSG					STATUS	6		

3. Radiated Emission

3.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2013
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2013
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2013
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2013
	X Pre-Amplifi		QTK	AP-180C / CHM_0906076	Sep., 2013
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2013
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

3.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits									
Frequency MHz	Field strength	Measurement distance							
	(microvolts/meter)	(ineter)							
0.009-0.490	2400/F(kHz)	300							
0.490-1.705	24000/F(kHz)	30							
1.705-30	30	30							
30-88	100	40							
88-216	150	43.5							
216-960	200	46							
Above 960	500	54							

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

3.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

3.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

3.6. Test Result of Radiated Emission

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10360.000	12.930	36.510	49.440	-24.560	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
10360.000	13.724	36.590	50.314	-23.686	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					

Note:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter										
Test Item	: Harmoni	c Radiated Emiss	sion Data								
Test Site	: No.3 OA	TS									
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11a-6Mbps) (5200MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit						
	Factor Level Level										
MHz	dB	dBuV	dBuV/m	dB	dBuV/m						
Horizontal											
Peak Detector:											
10400.000	12.959	36.810	49.769	-24.231	74.000						
15660.000	*	*	*	*	74.000						
20880.000	*	*	*	*	74.000						
26100.000	*	*	*	*	74.000						
Average											
Detector:											
Vertical											
Peak Detector:											
10400.000	13.877	38.150	52.027	-21.973	74.000						
15660.000	*	*	*	*	74.000						
20880.000	*	*	*	*	74.000						
26100.000	*	*	*	*	74.000						
Average											
Detector:											

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter								
Test Item	: Harmoni	ic Radiated Emiss	sion Data						
Test Site	: No.3 OA	ATS							
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5240MHz	2)					
Frequency	Correct	Reading	Measurement	Margin	I imit				
requeitey	Factor	Level	I evel	Margin	Linne				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10480.000	13.693	36.260	49.954	-24.046	74.000				
15720.000	*	*	*	*	74.000				
20960.000	*	*	*	*	74.000				
26200.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
10480.000	14.620	37.260	51.881	-22.119	74.000				
15720.000	*	*	*	*	74.000				
20960.000	*	*	*	*	74.000				
26200.000	*	*	*	*	74.000				
Average									
Detector:									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5260MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	36.560	50.575	-23.425	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10520.000	14.818	37.030	51.848	-22.152	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter								
Test Item	: Harmon	: Harmonic Radiated Emission Data							
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11a-6Mbps) (5300MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10600.000	14.550	36.260	50.809	-23.191	74.000				
15900.000	*	*	*	*	74.000				
21200.000	*	*	*	*	74.000				
26500.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
10600.000	14.881	37.230	52.111	-21.889	74.000				
15900.000	*	*	*	*	74.000				
21200.000	*	*	*	*	74.000				
26500.000	*	*	*	*	74.000				
Average									
Detector:									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5320MHz	z)					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10640.000	14.690	35.690	50.380	-23.620	74.000				
15960.000	*	*	*	*	74.000				
21280.000	*	*	*	*	74.000				
26600.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
10640.000	15.083	36.360	51.443	-22.557	74.000				
15960.000	*	*	*	*	74.000				
21280.000	*	*	*	*	74.000				
26600.000	*	*	*	*	74.000				
Average									
Detector:									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmon	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5500MHz	2)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11000.000	16.399	35.690	52.089	-21.911	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11000.000	17.132	36.350	53.482	-20.518	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
Average								
Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11a-6Mbps) (5600MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11200.000	16.664	35.540	52.205	-21.795	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11200.000	17.643	35.840	53.483	-20.517	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
Average								
Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter								
Test Item	: Harmon	: Harmonic Radiated Emission Data							
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5700MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11400.000	16.530	35.480	52.011	-21.989	74.000				
17100.000	*	*	*	*	74.000				
22800.000	*	*	*	*	74.000				
28500.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
11400.000	17.138	35.980	53.118	-20.882	74.000				
17100.000	*	*	*	*	74.000				
22800.000	*	*	*	*	74.000				
28500.000	*	*	*	*	74.000				
Average									
Detector:									

Note:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS 						
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10360.000	12.930	36.540	49.470	-24.530	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10360.000	13.724	36.590	50.314	-23.686	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product Test Item Test Site Test Mode	 Model 7 Harmon No.3 Oz Mode 2 	1 7260HMW Wireless Network Adapter onic Radiated Emission Data OATS 2 2: Transmit (802.11n-20BW 14.4Mbps) (5200MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10400.000	12.959	36.510	49.469	-24.531	74.000	
15660.000	*	*	*	*	74.000	
20880.000	*	*	*	*	74.000	
26100.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10400.000	13.877	36.360	50.237	-23.763	74.000	
15660.000	*	*	*	*	74.000	
20880.000	*	*	*	*	74.000	
26100.000	*	*	*	*	74.000	
Average Detector:						

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10480.000	13.693	36.590	50.284	-23.716	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10480.000	14.620	36.590	51.211	-22.789	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
Average							
Detector:							

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	TS					
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5260MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	36.540	50.555	-23.445	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10520.000	14.818	36.590	51.408	-22.592	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
| Product
Test Item
Test Site
Test Mode | Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MHz) | | | | | | |
|--|--|---------|-------------|---------|--------|--|--|
| Frequency | Correct | Reading | Measurement | Margin | Limit | | |
| | Factor | Level | Level | | | | |
| MHz | dB | dBuV | dBuV/m | dB | dBuV/m | | |
| Horizontal | | | | | | | |
| Peak Detector: | | | | | | | |
| 10600.000 | 14.550 | 36.590 | 51.139 | -22.861 | 74.000 | | |
| 15900.000 | * | * | * | * | 74.000 | | |
| 21200.000 | * | * | * | * | 74.000 | | |
| 26500.000 | * | * | * | * | 74.000 | | |
| Average
Detector: | | | | | | | |
| | | | | | | | |
| Vertical | | | | | | | |
| Peak Detector: | | | | | | | |
| 10600.000 | 14.881 | 36.480 | 51.361 | -22.639 | 74.000 | | |
| 15900.000 | * | * | * | * | 74.000 | | |
| 21200.000 | * | * | * | * | 74.000 | | |
| 26500.000 | * | * | * | * | 74.000 | | |
| Average
Detector: | | | | | | | |

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5320MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
10640.000	14.690	36.560	51.250	-22.750	74.000	
15960.000	*	*	*	*	74.000	
21280.000	*	*	*	*	74.000	
26600.000	*	*	*	*	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
10640.000	15.083	36.580	51.663	-22.337	74.000	
15960.000	*	*	*	*	74.000	
21280.000	*	*	*	*	74.000	
26600.000	*	*	*	*	74.000	
Average						
Detector:						

--

Note:
1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5500MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11000.000	16.399	36.510	52.909	-21.091	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11000.000	17.132	36.580	53.712	-20.288	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5600MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11200.000	16.664	35.180	51.845	-22.155	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11200.000	17.643	36.010	53.653	-20.347	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
Average Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

=

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5700MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11400.000	16.530	35.150	51.681	-22.319	74.000	
17100.000	*	*	*	*	74.000	
22800.000	*	*	*	*	74.000	
28500.000	*	*	*	*	74.000	
Average Detector:						
Vertical						
Peak Detector:						
11400.000	17.138	36.030	53.168	-20.832	74.000	
17100.000	*	*	*	*	74.000	
22800.000	*	*	*	*	74.000	
28500.000 Average Detector:	*	*	*	*	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10380.000	12.939	37.520	50.459	-23.541	74.000		
15570.000	*	*	*	*	74.000		
20760.000	*	*	*	*	74.000		
25950.000	*	*	*	*	74.000		
Average Detector:							
Vertical							
Peak Detector:							
10380.000	13.796	37.030	50.826	-23.174	74.000		
15570.000	*	*	*	*	74.000		
20760.000	*	*	*	*	74.000		
25950.000	*	*	*	*	74.000		
Average Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmonic Radiated Emission Data							
Test Site	e : No.3 OATS							
Test Mode	: Mode 3:	Transmit (802.11	n-40BW 30Mbps) (5	230MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10460.000	13.508	36.580	50.088	-23.912	74.000			
15690.000	*	*	*	*	74.000			
20920.000	*	*	*	*	74.000			
26150.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
10460.000	14.433	37.150	51.583	-22.417	74.000			
15690.000	*	*	*	*	74.000			
20920.000	*	*	*	*	74.000			
26150.000	*	*	*	*	74.000			
Average								
Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

-

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11540.000	16.966	35.590	52.556	-21.444	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10540.000	14.829	36.190	51.018	-22.982	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
Average Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product:Model 7260HMW Wireless Network AdapterTest Item:Harmonic Radiated Emission DataTest Site:No.3 OATSTest Mode:Mode 3: Transmit (802.11n-40BW 30Mbps) (5310MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10620.000	14.623	35.680	50.303	-23.697	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10620.000	14.970	36.570	51.540	-22.460	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7 Harmon No.3 OA Mode 3: 	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5510MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11200.000	16.656	35.680	52.336	-21.664	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11020.000	17.224	35.240	52.464	-21.536	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000 Average Detector:	*	*	*	*	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5590MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11180.000	16.681	35.150	51.831	-22.169	74.000		
16770.000	*	*	*	*	74.000		
22360.000	*	*	*	*	74.000		
27950.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Delector:	17 502	25 100	50 712	21 297	74.000		
11180.000	17.525	35.190	52.715	-21.287	74.000		
16770.000	个 业	* *	* *	т Ф	74.000		
22360.000	*	*	*	*	74.000		
27950.000	*	*	*	*	/4.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Model 7260HMW Wireless Network Adapter Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5670MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11340.000	16.408	35.590	51.997	-22.003	74.000		
17010.000	*	*	*	*	74.000		
22680.000	*	*	*	*	74.000		
28350.000	*	*	*	*	74.000		
Average Detector:							
Vertical							
Peak Detector:							
11340.000	16.408	35.590	51.997	-22.003	74.000		
17010.000	*	*	*	*	74.000		
22680.000	*	*	*	*	74.000		
28350.000	*	*	*	*	74.000		
Average Detector:							

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 4	: Mode 4: Transmit (802.11ac-20BW) (5720MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
1 5	Factor	Level	Level	C				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11440.000	16.779	35.530	52.309	-21.691	74.000			
17160.000	*	*	*	*	74.000			
22880.000	*	*	*	*	74.000			
28600.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11440.000	17.519	35.180	52.699	-21.301	74.000			
17160.000	*	*	*	*	74.000			
22880.000	*	*	*	*	74.000			
28600.000	*	*	*	*	74.000			
Average								

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 O	ATS					
Test Mode	: Mode 5	: Transmit (802.11	1ac-40BW) (5710MH	(5710MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	8			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11420.000	16.648	35.350	51.997	-22.003	74.000		
17130.000	*	*	*	*	74.000		
22840.000	*	*	*	*	74.000		
28550.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11420.000	17.311	34.990	52.300	-21.700	74.000		
17130.000	*	*	*	*	74.000		
22840.000	*	*	*	*	74.000		
28550.000	*	*	*	*	74.000		
Average							

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 6	: Transmit (802.11	ac-80BW) (5210MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10420.000	13.135	37.320	50.455	-23.545	74.000			
15630.000	*	*	*	*	74.000			
20840.000	*	*	*	*	74.000			
26050.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
10420.000	14.057	37.410	51.467	-22.533	74.000			
15630.000	*	*	*	*	74.000			
20840.000	*	*	*	*	74.000			
26050.000	*	*	*	*	74.000			
Average								
Detector:								

///////

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Model 7260HMW Wireless Network Adapter								
Test Item	Test Item : Harmonic Radiated Emission Data							
Test Site	No 3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW) (5290MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10580.000	14.423	36.110	50.533	-23.467	74.000			
15870.000	*	*	*	*	74.000			
21160.000	*	*	*	*	74.000			
26450.000 Average Detector:	*	*	*	*	74.000			
Vertical								
Peak Detector:								
10580.000	14.849	36.020	50.869	-23.131	74.000			
15870.000	*	*	*	*	74.000			
21160.000	*	*	*	*	74.000			
26450.000	*	*	*	*	74.000			

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 6	: Mode 6: Transmit (802.11ac-80BW) (5530MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11060.000	16.580	35.020	51.600	-22.400	74.000				
16590.000	*	*	*	*	74.000				
22120.000	*	*	*	*	74.000				
27650.000	*	*	*	*	74.000				
Average									
Detector:									
Vertical									
Peak Detector:									
11060.000	17.375	35.430	52.805	-21.195	74.000				
16590.000	*	*	*	*	74.000				
22120.000	*	*	*	*	74.000				
27650.000	*	*	*	*	74.000				
Average									
Detector:									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW) (5610MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11220.000	16.589	34.620	51.210	-22.790	74.000			
16830.000	*	*	*	*	74.000			
22440.000	*	*	*	*	74.000			
28050.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11220.000	17.620	35.210	52.830	-21.170	74.000			
16830.000	*	*	*	*	74.000			
22440.000	*	*	*	*	74.000			
28050.000	*	*	*	*	74.000			
Average								
Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: Model 7260HMW Wireless Network Adapter							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW) (5690MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11380.000	16.480	35.490	51.971	-22.029	74.000			
17070.000	*	*	*	*	74.000			
22760.000	*	*	*	*	74.000			
28450.000	*	*	*	*	74.000			
Average								
Detector:								
Vertical								
Peak Detector:								
11380.000	17.125	35.130	52.256	-21.744	74.000			
17070.000	*	*	*	*	74.000			
22760.000	*	*	*	*	74.000			
28450.000	*	*	*	*	74.000			
Average								

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: General	: General Radiated Emission					
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5200MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
39.700	-3.625	38.372	34.747	-5.253	40.000		
350.100	-1.298	30.478	29.180	-16.820	46.000		
460.680	4.030	23.853	27.883	-18.117	46.000		
608.120	3.925	23.992	27.917	-18.083	46.000		
774.960	5.153	24.390	29.543	-16.457	46.000		
918.520	6.718	24.963	31.681	-14.319	46.000		
Vertical							
Peak Detector							
159.980	-5.120	30.328	25.207	-18.293	43.500		
260.860	-4.870	26.292	21.422	-24.578	46.000		
375.320	0.388	29.473	29.861	-16.139	46.000		
617.820	0.958	25.340	26.298	-19.702	46.000		
753.620	2.730	23.285	26.015	-19.985	46.000		
943.740	3.383	27.725	31.108	-14.892	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: 7	Fransmit (802.11	a-6Mbps) (5300MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
39.700	-3.625	31.664	28.039	-11.961	40.000		
216.240	-10.271	30.050	19.779	-26.221	46.000		
390.840	0.962	28.884	29.846	-16.154	46.000		
610.060	3.657	24.281	27.938	-18.062	46.000		
885.540	6.542	23.316	29.858	-16.142	46.000		
963.140	7.021	24.254	31.275	-22.725	54.000		
Vertical							
Peak Detector							
177.440	-1.248	25.103	23.855	-19.645	43.500		
381.140	0.816	30.202	31.018	-14.982	46.000		
511.120	0.783	26.311	27.094	-18.906	46.000		
687.660	2.292	23.001	25.293	-20.707	46.000		
840.920	2.284	24.032	26.316	-19.684	46.000		
967.020	3.889	27.193	31.082	-22.918	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 72	260HMW Wireles	ss Network Adapter					
Test Item	: General Radiated Emission							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11a-6Mbps) (5600MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
39.700	-3.625	31.303	27.678	-12.322	40.000			
253.100	-5.669	28.492	22.823	-23.177	46.000			
371.440	0.860	29.216	30.076	-15.924	46.000			
546.040	4.386	23.198	27.584	-18.416	46.000			
788.540	6.144	23.898	30.042	-15.958	46.000			
908.820	6.330	24.235	30.565	-15.435	46.000			
Vertical								
Peak Detector								
159.980	-5.120	29.909	24.788	-18.712	43.500			
383.080	0.195	29.025	29.220	-16.780	46.000			
538.280	1.996	23.996	25.992	-20.008	46.000			
685.720	2.254	22.994	25.248	-20.752	46.000			
825.400	3.016	23.525	26.541	-19.459	46.000			
961.200	3.310	28.038	31.348	-22.652	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 72	60HMW Wireles	ss Network Adapter					
Test Item	: General Radiated Emission							
Test Site	: No.3 OATS							
Test Mode	: Mode 2: '	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5200MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
39.700	-3.625	30.610	26.985	-13.015	40.000			
253.100	-5.669	28.881	23.212	-22.788	46.000			
396.660	0.771	29.140	29.911	-16.089	46.000			
606.180	4.196	23.521	27.717	-18.283	46.000			
755.560	5.039	24.298	29.337	-16.663	46.000			
930.160	7.530	22.788	30.318	-15.682	46.000			
Vertical								
Peak Detector								
45.520	-10.625	40.334	29.709	-10.291	40.000			
379.200	0.881	28.790	29.671	-16.329	46.000			
511.120	0.783	25.722	26.505	-19.495	46.000			
683.780	2.011	22.830	24.841	-21.159	46.000			
823.460	3.081	23.557	26.638	-19.362	46.000			
970.900	2.967	28.976	31.943	-22.057	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 72	: Model 7260HMW Wireless Network Adapter						
Test Item	: General Radiated Emission							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
39.700	-3.625	31.607	27.982	-12.018	40.000			
253.100	-5.669	28.129	22.460	-23.540	46.000			
398.600	0.879	29.855	30.734	-15.266	46.000			
606.180	4.196	23.824	28.020	-17.980	46.000			
831.220	7.121	23.515	30.636	-15.364	46.000			
967.020	7.299	24.420	31.719	-22.281	54.000			
Vertical								
Peak Detector								
41.640	-11.715	40.657	28.943	-11.057	40.000			
158.040	-5.172	30.598	25.426	-18.074	43.500			
379.200	0.881	29.231	30.112	-15.888	46.000			
617.820	0.958	25.226	26.184	-19.816	46.000			
804.060	3.371	24.289	27.660	-18.340	46.000			
955.380	2.956	29.450	32.406	-13.594	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

QuieTer

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5600MHz)

Frequency	Correct	Reading	Reading Measurement		Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
39.700	-3.625	31.062	27.437	-12.563	40.000
383.080	1.305	28.682	29.987	-16.013	46.000
579.020	3.421	23.783	27.204	-18.796	46.000
718.700	3.818	23.521	27.339	-18.661	46.000
817.640	6.716	23.702	30.418	-15.582	46.000
953.440	6.735	25.089	31.824	-14.176	46.000
Vertical					
Peak Detector					
158.040	-5.172	30.109	24.937	-18.563	43.500
365.620	0.282	29.254	29.536	-16.464	46.000
511.120	0.783	25.579	26.362	-19.638	46.000
604.240	2.199	23.739	25.939	-20.061	46.000
823.460	3.081	23.864	26.945	-19.055	46.000
965.080	3.832	28.105	31.937	-22.063	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

QuieTer

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	General Radiated Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
39.700	-3.625	31.609	27.984	-12.016	40.000
371.440	0.860	29.449	30.309	-15.691	46.000
456.800	2.432	24.433	26.865	-19.135	46.000
602.300	3.794	23.634	27.428	-18.572	46.000
741.980	3.892	23.660	27.552	-18.448	46.000
918.520	6.718	24.418	31.136	-14.864	46.000
Vertical					
Peak Detector					
45.520	-10.625	39.307	28.682	-11.318	40.000
159.980	-5.120	30.378	25.257	-18.243	43.500
386.960	-0.708	29.262	28.554	-17.446	46.000
617.820	0.958	25.638	26.596	-19.404	46.000

Note:

786.600

939.860

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

26.254

29.876

-19.746

-16.124

46.000

46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

23.529

26.476

4. Measurement Level = Reading Level + Correct Factor.

2.724

3.400

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: General Radiated Emission						
Test Site	: No.3 OAT	S					
Test Mode	: Mode 3: T	ransmit (802.11	n-40BW 30Mbps) (52	270MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
39.700	-3.625	31.149	27.524	-12.476	40.000		
350.100	-1.298	30.361	29.063	-16.937	46.000		
456.800	2.432	25.134	27.566	-18.434	46.000		
613.940	3.132	24.037	27.169	-18.831	46.000		
844.800	6.442	25.604	32.046	-13.954	46.000		
930.160	7.530	24.289	31.819	-14.181	46.000		
Vertical							
Peak Detector							
159.980	-5.120	30.905	25.784	-17.716	43.500		
381.140	0.816	30.030	30.846	-15.154	46.000		
511.120	0.783	25.077	25.860	-20.140	46.000		
610.060	2.087	24.433	26.520	-19.480	46.000		
771.080	2.766	25.054	27.821	-18.179	46.000		
967.020	3.889	28.146	32.035	-21.965	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: 7	Fransmit (802.11	n-40BW 30Mbps) (5	590MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
39.700	-3.625	30.717	27.092	-12.908	40.000		
396.660	0.771	27.311	28.082	-17.918	46.000		
606.180	4.196	23.211	27.407	-18.593	46.000		
788.540	6.144	23.416	29.560	-16.440	46.000		
891.360	6.265	23.936	30.201	-15.799	46.000		
984.480	8.098	26.828	34.926	-19.074	54.000		
Vertical							
Peak Detector							
43.580	-10.919	39.461	28.542	-11.458	40.000		
159.980	-5.120	30.009	24.888	-18.612	43.500		
383.080	0.195	28.854	29.049	-16.951	46.000		
610.060	2.087	24.187	26.274	-19.726	46.000		
792.420	2.681	25.284	27.965	-18.035	46.000		
961.200	3.310	28.205	31.515	-22.485	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter					
Test Item	: General Radiated Emission					
Test Site	: No.3 OA	ГS				
Test Mode	: Mode 4: 7	Fransmit (802.11	ac-20BW) (5720MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
39.700	-3.625	31.557	27.932	-12.068	40.000	
239.520	-6.878	28.569	21.691	-24.309	46.000	
346.220	-1.347	30.341	28.994	-17.006	46.000	
513.060	3.186	24.802	27.988	-18.012	46.000	
722.580	3.823	24.099	27.922	-18.078	46.000	
943.740	6.843	25.522	32.365	-13.635	46.000	
Vertical						
Peak Detector						
43.580	-10.919	39.757	28.838	-11.162	40.000	
158.040	-5.172	29.496	24.324	-19.176	43.500	
383.080	0.195	30.497	30.692	-15.308	46.000	
606.180	2.246	25.069	27.315	-18.685	46.000	
784.660	2.736	24.541	27.277	-18.723	46.000	
963.140	3.581	26.792	30.373	-23.627	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter					
Test Item	: General Radiated Emission					
Test Site	: No.3 OA	ATS				
Test Mode	: Mode 5:	Transmit (802.11	ac-40BW) (5710MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
39.700	-3.625	31.379	27.754	-12.246	40.000	
363.680	0.189	29.120	29.309	-16.691	46.000	
470.380	3.550	23.202	26.752	-19.248	46.000	
600.360	3.472	24.009	27.481	-18.519	46.000	
831.220	7.121	23.806	30.927	-15.073	46.000	
937.920	6.750	26.609	33.359	-12.641	46.000	
Vertical						
Peak Detector						
43.580	-10.919	38.524	27.605	-12.395	40.000	
156.100	-5.217	30.779	25.562	-17.938	43.500	
381.140	0.816	29.974	30.790	-15.210	46.000	
507.240	0.429	24.556	24.985	-21.015	46.000	
617.820	0.958	26.067	27.025	-18.975	46.000	
939.860	3.400	28.225	31.625	-14.375	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter					
Test Item	: General Radiated Emission					
Test Site	: No.3 OA	TS				
Test Mode	: Mode 6:	Transmit (802.11	ac-80BW) (5210MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
39.700	-3.625	31.564	27.939	-12.061	40.000	
253.100	-5.669	27.908	22.239	-23.761	46.000	
398.600	0.879	29.246	30.125	-15.875	46.000	
608.120	3.925	23.461	27.386	-18.614	46.000	
854.500	7.380	24.644	32.024	-13.976	46.000	
996.120	8.107	27.860	35.967	-18.033	54.000	
Vertical						
Peak Detector						
45.520	-10.625	40.416	29.791	-10.209	40.000	
158.040	-5.172	30.447	25.275	-18.225	43.500	
383.080	0.195	29.196	29.391	-16.609	46.000	
617.820	0.958	26.222	27.180	-18.820	46.000	
804.060	3.371	23.154	26.525	-19.475	46.000	
968.960	3.936	28.186	32.122	-21.878	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter					
Test Item	: General Radiated Emission					
Test Site	: No.3 OA	TS				
Test Mode	: Mode 6:	Transmit (802.11	ac-80BW) (5290MH	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector						
47.460	-12.245	38.718	26.473	-13.527	40.000	
332.640	-3.895	25.186	21.291	-24.709	46.000	
437.400	0.819	26.387	27.206	-18.794	46.000	
546.040	4.386	23.401	27.787	-18.213	46.000	
677.960	2.830	23.545	26.375	-19.625	46.000	
854.500	7.380	23.527	30.907	-15.093	46.000	
Vertical						
Peak Detector						
45.520	-10.625	38.449	27.824	-12.176	40.000	
159.980	-5.120	29.038	23.917	-19.583	43.500	
383.080	0.195	27.139	27.334	-18.666	46.000	
544.100	1.503	22.162	23.665	-22.335	46.000	
691.540	2.092	21.472	23.564	-22.436	46.000	
996.120	-1.323	28.953	27.630	-26.370	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Model 7260HMW Wireless Network Adapter						
Test Item	: General Radiated Emission						
Test Site	: No.3 OA	TS					
Test Mode	: Mode 6:	Transmit (802.11	ac-80BW) (5610MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
49.400	-11.553	36.795	25.242	-14.758	40.000		
154.160	-8.002	28.596	20.594	-22.906	43.500		
437.400	0.819	26.167	26.986	-19.014	46.000		
594.540	3.555	23.699	27.254	-18.746	46.000		
850.620	6.773	23.829	30.602	-15.398	46.000		
998.060	8.838	31.861	40.699	-13.301	54.000		
Vertical							
Peak Detector							
177.440	-1.248	23.224	21.976	-21.524	43.500		
381.140	0.816	28.470	29.286	-16.714	46.000		
542.160	1.855	22.040	23.895	-22.105	46.000		
749.740	2.023	21.525	23.548	-22.452	46.000		
887.480	1.283	22.039	23.322	-22.678	46.000		
963.140	3.581	22.667	26.248	-27.752	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

4. Band Edge

4.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2013
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2013
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
		Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2013
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2013
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Χ	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Χ	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

4.2. Test Setup

RF Radiated Measurement:

4.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209(a) Limits		
Frequency MHz	Field strength (microvolts/meter)	Measurement distance (meter)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remarks : 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

4.5. Uncertainty

- \pm 3.8 dB below 1GHz
- \pm 3.9 dB above 1GHz
4.6. Test Result of Band Edge

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5149.200	16.768	41.814	58.582	74.00	54.00	Pass
36 (Peak)	5150.000	16.762	40.551	57.314	74.00	54.00	Pass
36 (Peak)	5184.800	16.826	82.291	99.117			Pass
36 (Average)	5150.000	16.762	27.523	44.286	74.00	54.00	Pass
36 (Average)	5183.800	16.823	71.643	88.466			Pass

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5150.000	16.762	43.330	60.093	74.00	54.00	Pass
36 (Peak)	5184.000	16.823	84.339	101.163			Pass
36 (Average)	5150.000	16.762	27.955	44.718	74.00	54.00	Pass
36 (Average)	5183.400	16.822	73.320	90.142			Pass

Figure Channel 36:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5323.600	17.095	82.743	99.838			Pass
64 (Peak)	5350.000	17.133	39.032	56.165	74.00	54.00	Pass
64 (Peak)	5356.400	17.180	39.652	56.832	74.00	54.00	Pass
64 (Average)	5327.000	17.096	72.660	89.755			Pass
64 (Average)	5350.000	17.133	26.708	43.841	74.00	54.00	Pass

Figure Channel 64:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5324.200	17.095	85.872	102.967			Pass
64 (Peak)	5350.000	17.133	40.494	57.627	74.00	54.00	Pass
64 (Average)	5324.000	17.095	75.327	92.422			Pass
64 (Average)	5350.000	17.133	27.376	44.509	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5459.000	17.232	39.579	56.811	74.00	54.00	Pass
100 (Peak)	5460.000	17.241	38.325	55.566	74.00	54.00	Pass
100 (Peak)	5493.400	17.329	82.388	99.718			Pass
100 (Average)	5460.000	17.241	26.332	43.573	74.00	54.00	Pass
100 (Average)	5493.200	17.328	71.937	89.265			Pass

Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5458.000	17.223	43.666	60.889	74.00	54.00	Pass
100 (Peak)	5460.000	17.241	42.390	59.631	74.00	54.00	Pass
100 (Peak)	5503.800	17.406	86.437	103.842			Pass
100 (Average)	5460.000	17.241	27.582	44.823	74.00	54.00	Pass
100 (Average)	5496.200	17.350	75.588	92.938			Pass

Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

:	Model 7260HMW Wireless Network Adapter
:	Band Edge Data
:	No.3 OATS
:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100
	: : :

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-77.244	-58.910	-31.910	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-64.320	-44.985	-17.985	-27.000	Pass

:	Model 7260HMW Wireless Network Adapter
:	Band Edge Data
:	No.3 OATS
:	Mode 1: Transmit (802.11a-6Mbps) -Channel 140
	: : :

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-76.880	-58.231	-31.231	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-71.080	-51.708	-24.708	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Channal No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5149.000	16.770	39.848	56.617	74.00	54.00	Pass
36 (Peak)	5150.000	16.762	37.751	54.514	74.00	54.00	Pass
36 (Peak)	5172.600	16.786	83.097	99.883			Pass
36 (Average)	5150.000	16.762	26.607	43.370	74.00	54.00	Pass
36 (Average)	5183.600	16.823	70.891	87.714			Pass

Figure Channel 36:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
36 (Peak)	5149.800	16.764	44.698	61.462	74.00	54.00	Pass
36 (Peak)	5150.000	16.762	43.299	60.062	74.00	54.00	Pass
36 (Peak)	5184.600	16.826	90.155	106.980			Pass
36 (Average)	5150.000	16.762	29.080	45.843	74.00	54.00	Pass
36 (Average)	5176.400	16.799	77.128	93.927			Pass

Figure Channel 36:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

64

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5324.200	17.095	83.704	100.799			Pass
64 (Peak)	5350.000	17.133	38.210	55.343	74.00	54.00	Pass
64 (Average)	5327.000	17.096	71.431	88.526			Pass
64 (Average)	5350.000	17.133	26.385	43.518	74.00	54.00	Pass

Figure Channel 64:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
64 (Peak)	5316.800	17.095	87.938	105.033			Pass
64 (Peak)	5350.000	17.133	40.763	57.896	74.00	54.00	Pass
64 (Peak)	5355.800	17.175	41.727	58.902	74.00	54.00	Pass
64 (Average)	5318.600	17.095	74.833	91.928			Pass
64 (Average)	5350.000	17.133	27.521	44.654	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

Figure Channel 64:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Descult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5460.000	17.241	39.154	56.395	74.00	54.00	Pass
100 (Peak)	5504.000	17.407	83.046	100.453			Pass
100 (Average)	5460.000	17.241	26.157	43.398	74.00	54.00	Pass
100 (Average)	5503.600	17.404	70.664	88.068			Pass

Figure Channel 100:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
100 (Peak)	5460.000	17.241	40.226	57.467	74.00	54.00	Pass
100 (Peak)	5503.800	17.406	89.053	106.458			Pass
100 (Average)	5460.000	17.241	27.346	44.587	74.00	54.00	Pass
100 (Average)	5495.800	17.347	76.475	93.822			Pass

Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

<u>RF</u> Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-76.850	-58.516	-31.516	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	18.334	-68.740	-50.406	-23.406	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 140

<u>RF</u> Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-78.410	-59.761	-32.761	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-73.550	-54.178	-27.178	-27.000	Pass

Product	:	Model /260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
38 (Peak)	5150.000	16.762	40.783	57.546	74.00	54.00	Pass
38 (Peak)	5196.800	16.996	81.720	98.716			Pass
38 (Average)	5150.000	16.762	28.560	45.323	74.00	54.00	Pass
38 (Average)	5196.600	16.993	68.710	85.702			Pass

Figure Channel 38:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
38 (Peak)	5150.000	16.762	46.770	63.533	74.00	54.00	Pass
38 (Peak)	5179.200	16.809	87.960	104.768			Pass
38 (Average)	5150.000	16.762	32.666	49.429	74.00	54.00	Pass
38 (Average)	5183.400	16.822	73.926	90.748			Pass

Figure Channel 38:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
62 (Peak)	5312.000	17.093	81.480	98.574			Pass
62 (Peak)	5350.000	17.133	41.960	59.093	74.00	54.00	Pass
62 (Average)	5313.400	17.097	68.444	85.541			Pass
62 (Average)	5350.000	17.133	27.897	45.030	74.00	54.00	Pass

Figure Channel 62:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
62 (Peak)	5317.200	17.096	86.815	103.910			Pass
62 (Peak)	5350.000	17.133	43.478	60.611	74.00	54.00	Pass
62 (Average)	5318.600	17.095	72.576	89.671			Pass
62 (Average)	5350.000	17.133	29.995	47.128	74.00	54.00	Pass

Figure Channel 62:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
102 (Peak)	5457.800	17.221	40.244	57.465	74.00	54.00	Pass
102 (Peak)	5460.000	43.341	39.231	56.472	74.00	54.00	Pass
102 (Peak)	5505.000	43.514	81.928	99.342			Pass
102 (Average)	5460.000	17.241	26.980	44.221	74.00	54.00	Pass
102 (Average)	5503.200	17.401	68.282	85.683			Pass

Figure Channel 102:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
102 (Peak)	5457.600	17.219	42.558	59.777	74.00	54.00	Pass
102 (Peak)	5460.000	17.241	40.903	58.144	74.00	54.00	Pass
102 (Peak)	5508.800	17.441	87.490	104.932			Pass
102 (Average)	5460.000	17.241	28.995	46.236	74.00	54.00	Pass
102 (Average)	5503.400	17.402	73.560	90.963			Pass

Figure Channel 102:

Vertical (Peak)

Figure Channel 102:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5460.000	18.275	-78.670	-60.395	-33.395	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5460.000	19.288	-62.770	-43.482	-16.482	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-77.660	-59.011	-32.011	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-73.840	-54.468	-27.468	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-20BW) -Channel 144

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-83.778	-64.795	-47.795	-17.000	Pass
Horizontal	5835.000	19.106	-84.820	-65.714	-38.714	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-82.340	-62.135	-45.135	-17.000	Pass
Vertical	5835.000	20.326	-83.490	-63.164	-36.164	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11ac-40BW) -Channel 142

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-86.711	-67.728	-50.728	-17.000	Pass
Horizontal	5835.000	19.106	-87.640	-68.534	-41.534	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-83.160	-62.955	-45.955	-17.000	Pass
Vertical	5835.000	20.326	-84.710	-64.384	-37.384	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
42 (Peak)	5112.600	16.737	43.898	60.636	74.00	54.00	Pass
42 (Peak)	5150.000	16.762	40.281	57.044	74.00	54.00	Pass
42 (Peak)	5200.000	17.052	78.322	95.373			Pass
42 (Average)	5150.000	16.762	27.991	44.754	74.00	54.00	Pass
42 (Average)	5199.000	17.034	63.534	80.568			Pass

Figure Channel 42:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model /260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 42

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
42 (Peak)	5145.200	16.792	47.787	64.579	74.00	54.00	Pass
42 (Peak)	5150.000	16.762	43.444	60.207	74.00	54.00	Pass
42 (Peak)	5197.400	17.006	84.440	101.446			Pass
42 (Average)	5150.000	16.762	30.713	47.476	74.00	54.00	Pass
42 (Average)	5194.800	16.962	68.850	85.811			Pass

Figure Channel 42:

Vertical (Peak)

Figure Channel 42:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 58

Channel No.	Frequency (MHz)	Correct Factor	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit	Result
	(11112)	(uD)	(uDu V)	(uDu V/III)		(uDu V/III)	
58 (Peak)	5300.000	5301.200	17.063	78.596	74.00	54.00	Pass
58 (Peak)	5350.000	5350.000	17.133	40.822			Pass
58 (Average)	5302.400	17.067	63.765	80.832	74.00	54.00	Pass
58 (Average)	5350.000	17.133	27.818	44.951			Pass

Figure Channel 155:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model /260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 58

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Desult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesult
58 (Peak)	5302.200	17.067	83.327	100.393	74.00	54.00	Pass
58 (Peak)	5350.000	17.133	43.713	60.846			Pass
58 (Average)	5301.200	17.063	67.567	84.630	74.00	54.00	Pass
58 (Average)	5350.000	17.133	30.708	47.841			Pass

Figure Channel 155:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
106 (Peak)	5452.600	17.215	44.251	61.467	74.00	54.00	Pass
106 (Peak)	5460.000	17.241	41.964	59.205	74.00	54.00	Pass
106 (Peak)	5509.400	17.446	76.715	94.161			Pass
106 (Average)	5460.000	17.241	28.437	45.678	74.00	54.00	Pass
106 (Average)	5505.600	17.419	62.189	79.608			Pass

Figure Channel 155:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model /260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 106

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
106 (Peak)	5457.000	17.214	48.255	65.469	74.00	54.00	Pass
106 (Peak)	5460.000	17.241	46.302	63.543	74.00	54.00	Pass
106 (Peak)	5506.400	17.425	82.060	99.484			Pass
106 (Average)	5460.000	17.241	31.191	48.432	74.00	54.00	Pass
106 (Average)	5505.400	17.417	66.450	83.867			Pass

Figure Channel 155:

Vertical (Peak)

Figure Channel 155:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 106

<u>RF</u> Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-80.211	-61.877	-34.877	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	18.334	-80.211	-61.877	-34.877	-27.000	Pass

Product	:	Model 7260HMW Wireless Network Adapter
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW)-Channel 138

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-82.440	-63.457	-46.457	-17.000	Pass
Horizontal	5835.000	19.106	-84.930	-65.824	-38.824	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-84.310	-64.105	-47.105	-17.000	Pass
Vertical	5835.000	20.326	-84.930	-64.604	-37.604	-27.000	Pass

5. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs
Attachment 2: EUT Detailed Photographs