RF Exposure Evaluation declaration

Product Name :	Intelligent Robot
Model No. :	Zenbo
FCC ID :	MSQ-ZENBO

Applicant : ASUSTeK COMPUTER INC. Address : 4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt:Aug. 15, 2016Date of Declaration:Apr. 26, 2017Report No.::1740337R-RFUSP05V00

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Issued Date: Apr. 26, 2017 Report No.: 1740337R-RFUSP05V00

Product Name	Intelligent Robot	
Applicant	ASUSTeK COMPUTER INC.	
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan	
Manufacturer	ASUSTeK COMPUTER INC.	
Model No.	Zenbo	
FCC ID.	MSQ-ZENBO	
EUT Rated Voltage	DC 14.4V (Power by Battery)	
EUT Test Voltage	AC 120V/60Hz	
Trade Name	ASUS	
Applicable Standard	FCC 47 CFR 1.1310	
Test Result	Complied	

Documented By

:

:

:

Genie Chang

(Senior Adm. Specialist / Genie Chang)

Tested By

ien

(Engineer / Yulin Chen)

Approved By

(Director / Vincent Lin)

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

LIMITS FOR MAXIMUM FERMISSIBLE EXHOSORE (MIL)				
Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Intelligent Robot
Test Item	:	RF Exposure Evaluation
Test Site	:	No.3 OATS

For 2.4GHz

Operation Frequency	2412-2462MHz,2402 – 2480MHz
Maximum Conducted output power	22.61dBm
Antenna gain	0.59dBi for 2.4 GHz

Output Power Into Antenna & RF Exposure Evaluation Distance:

Power Density at $R = 20 \text{ cm} (\text{mW/cm2})$
0.041565

Power density is lower than the limit (1 mW/cm2).

For 5GHz

Г

Operation Frequency	5180-5240MHz, 5260-5320MHz,5500-5700MHz,
	5745-5825MHz, 5190-5230MHz,
	5270-5310MHz,5510-5670MHz, 5755-5795MHz
	5720MHz, 5710MHz, 5210MHz, 5290MHz,
	5530-5690MHz, 5775MHz
Maximum Conducted output power	15.37dBm
Antenna gain	2.51dBi

Output Power Into Antenna & RF Exposure Evaluation Distance:

Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm2)
34.43499308	0.012210

Power density is lower than the limit (1 mW/cm2).