

FCC Test Report

Product Name	Intelligent Robot
Model No	Zenbo-K
FCC ID	MSQ-ZENBO-K

Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Beitou, Taipei, Taiwan

Date of Receipt	Jun. 05, 2019
Issued Date	Jul. 04, 2019
Report No.	1960050R-RFUSP52V00
Report Version	V1.0
Hac-MRA	Vesting Laboratory 3023

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.

Test Report

Issued Date: Jul. 04, 2019 Report No.: 1960050R-RFUSP52V00

Product Name	Intelligent Robot			
Applicant	ASUSTeK COMPUTER INC.			
Address	F, No. 150, Li-Te Rd., Beitou, Taipei, Taiwan			
Manufacturer	ASUSTeK COMPUTER INC.			
Model No.	Zenbo-K			
FCC ID.	MSQ-ZENBO-K			
EUT Rated Voltage	AC 100-240V / 50-60Hz or DC 10.8V (Power by battery)			
EUT Test Voltage	AC 120V / 60Hz			
Trade Name	ASUS			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E: 2018			
	ANSI C63.4: 2014, ANSI C63.10: 2013			
	789033 D02 General UNII Test Procedures New Rules v02			
Test Result	Complied			

Documented By :

:

Jinn Chen

(Senior Adm. Specialist / Jinn Chen)

Tested By

Ivan Chuang

(Senior Engineer / Ivan Chuang)

Approved By :

(Director / Vincent Lin)

TABLE OF CONTENTS

	Desc	ription	Page
1.	GEN	NERAL INFORMATION	5
	1.1.	EUT Description	5
	1.2.	Operational Description	7
	1.3.	Tested System Datails	8
	1.4.	Configuration of tested System	8
	1.5.	EUT Exercise Software	
	1.6.	Test Facility	9
	1.7.	List of Test Equipment	10
2.	Con	ducted Emission	
	2.1.	Test Setup	
	2.2.	Limits	
	2.3.	Test Procedure	
	2.4.	Uncertainty	
	2.5.	Test Result of Conducted Emission	
3.	Max	ximun conducted output power	29
	3.1.	Test Setup	
	3.2.	Limits	
	3.3.	Test Procedure	
	3.4.	Uncertainty	
	3.5.	Test Result of Maximum conducted output power	
4.	Peal	k Power Spectral Density	58
	4.1.	Test Setup	
	4.2.	Limits	
	4.3.	Test Procedure	
	4.4.	Uncertainty	
	4.5.	Test Result of Peak Power Spectral Density	60
5.	Rad	iated Emission	
	5.1.	Test Setup	
	5.2.	Limits	90
	5.3.	Test Procedure	91
	5.4.	Uncertainty	
	5.5.	Test Result of Radiated Emission	
6.	Ban	d Edge	211
	6.1.	Test Setup	
	6.2.	Limits	
	6.3.	Test Procedure	

DEKRA

	6.4.	Uncertainty	213
	6.5.	Test Result of Band Edge	
7.	Occu	pied Bandwidth	290
	7.1.	Test Setup	
	7.2.	Limits	
	7.3.	.Test Procedure	
	7.4.	Uncertainty	
	7.5.	Test Result of Occupied Bandwidth	
8.	Duty	Cycle	
	8.1.	Test Setup	
	8.2.	Test Procedure	
	8.3.	Uncertainty	
	8.4.	Test Result of Duty Cycle	
9.	EMI	Reduction Method During Compliance Testing	
Attach	ment 1:	EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Intelligent Robot
Trade Name	ASUS
FCC ID.	MSQ-ZENBO-K
Model No.	Zenbo-K
Frequency Range	802.11a/n-20MHz: 5180-5320MHz, 5500-5700MHz, 5745-5825MHz
	802.11n-40MHz: 5190-5310, 5510-5670MHz, 5755-5795MHz
	802.11ac-20MHz: 5720, 802.11ac-40MHz: 5710
	802.11ac-80MHz: 5210-5290MHz, 5530-5690MHz, 5775MHz
Number of Channels	802.11a/n-20MHz: 24; 802.11n-40MHz: 11
	802.11ac-20MHz: 1, 802.11ac-40MHz: 1, 802.11ac-80MHz: 6
Data Rate	802.11a: 6 - 54Mbps
	802.11n: up to 150Mbps
	802.11ac-80MHz: up to 433.3Mbps
Channel Control	Auto
Type of Modulation	802.11a/n/ac: OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM
Antenna type	PIFA Antenna
Antenna Gain	Refer to the table "Antenna List"
Power Adapter	MFR: DELTA, M/N: ADP-33AW X
	Input: AC 100-240V~1A, 50-60Hz
	Output: DC 19V, 1.75A
	Cable Out: Non-shielded, 2.25m

Antenna List

No.	Manufacturer	Part No.	ASUS No.	Antenna Type	Peak Gain
1	INPAQ	WA-F-LB-02-165	14008-02060100	PIFA	0.4dBi For 5.15~5.25GHz
					1.1dBi For 5.25~5.35GHz
					1.6dBi For 5.47~5.725GHz
					0.1dBi For 5.725~5.825GHz

Note: The antenna of EUT is conforming to FCC 15.203.

802.11a/n-20MHz Center Working Frequency of Each Channel:

		\mathcal{O} I	5				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 36:	5180 MHz	Channel 40:	5200 MHz	Channel 44:	5220 MHz	Channel 48:	5240 MHz
Channel 52:	5260 MHz	Channel 56:	5280 MHz	Channel 60:	5300 MHz	Channel 64:	5320 MHz
Channel 100:	5500 MHz	Channel 104:	5520 MHz	Channel 108:	5540 MHz	Channel 112:	5560 MHz
Channel 116:	5580 MHz	Channel 120:	5600 MHz	Channel 124:	5620 MHz	Channel 128:	5640 MHz
Channel 132:	5660 MHz	Channel 136:	5680 MHz	Channel 140:	5700 MHz	Channel 149:	5745 MHz
Channel 153:	5765 MHz	Channel 157:	5785 MHz	Channel 161:	5805 MHz	Channel 165:	5825 MHz

802.11n-40MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 38:	5190 MHz	Channel 46:	5230 MHz	Channel 54:	5270 MHz	Channel 62:	5310 MHz
Channel 102:	5510 MHz	Channel 110:	5550 MHz	Channel 118:	5590 MHz	Channel 126:	5630 MHz
Channel 134:	5670 MHz	Channel 151:	5755 MHz	Channel 159:	5795 MHz		

802.11ac-20MHz Center Working Frequency of Each Channel: Channel Frequency Channel 144: 5720 MHz

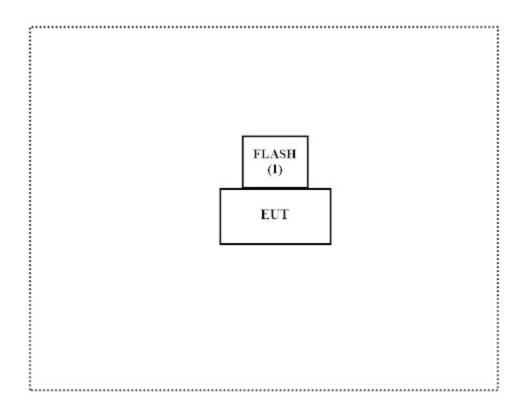
802.11ac-40MHz Center Working Frequency of Each Channel:ChannelFrequencyChannel 142:5710 MHz

802.11ac-80MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 42:	5210 MHz	Channel 58:	5290 MHz	Channel 106:	5530 MHz	Channel 122:	5610 MHz
Channel 138:	5690 MHz	Channel 155:	5775 MHz				

- 1. This device is an Intelligent Robot with a built-in WLAN (802.11a/b/g/n/ac) with Bluetooth V4.0 V2.1+EDR transceiver, this report for 5GHz WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report.
- 4. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance of transmitter with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.

Test Mode	Mode 1: Transmit (802.11a 6Mbps)
	Mode 2: Transmit (802.11n-20BW 7.2Mbps)
	Mode 3: Transmit (802.11n-40BW 15Mbps)
	Mode 4: Transmit (802.11ac-20BW 7.2Mbps)
	Mode 5: Transmit (802.11ac-40BW 15Mbps)
	Mode 6: Transmit (802.11ac-80BW 32.5Mbps)


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord	Power Cord	
1	FLASH	Transcend	JetFlash 700	N/A	N/A		

Signal Cable Type	Signal cable Description
N	/A

1.4. Configuration of tested System

1.5. EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "Wlan Rf Test v1.0" on the EUT.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from DEKRA Testing and Certification Co., Ltd. Web Site:

http://www.dekra.com.tw/english/about/certificates.aspx?bval=5

The address and introduction of DEKRA Testing and Certification Co., Ltd. laboratories can be founded in our Web site: <u>http://www.dekra.com.tw/index_en</u>

Site Description:	Accredited by TAF Accredited Number: 3023
Site Name:	DEKRA Testing and Certification Co., Ltd.
Site Address:	No.159, Sec. 2, Wenhua 1st Rd., Linkou Dist.,
	New Taipei City 24457, Taiwan.
	TEL: 886-2-2602-7968 / FAX : 866-2-2602-3286
	E-Mail: info.tw@dekra.com

FCC Accreditation Number: TW0023

1.7. List of Test Equipment

For Conduction measurements /ASR1

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
Х	EMI Test Receiver	R&S	ESR7	101601	2019.05.13	2020.05.12
Х	Two-Line V-Network	R&S	ENV216	101306	2019.03.11	2020.03.10
Х	Two-Line V-Network	R&S	ENV216	101307	2019.04.03	2020.04.02
Х	Coaxial Cable	Quietek	RG400_BNC	RF001	2019.05.24	2020.05.23

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : QuieTek EMI System V2.1.113.

For Conducted measurements /ASR2

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
Х	Spectrum Analyzer	R&S	FSV30	103464	2019.01.25	2020.01.24
Х	Power Meter	Anritsu	ML2496A	1548003	2018.12.19	2019.12.18
Х	Power Sensor	Anritsu	MA2411B	1531024	2018.12.19	2019.12.18
Х	Power Sensor	Anritsu	MA2411B	1531025	2018.12.19	2019.12.18
	Bluetooth Tester	R&S	CBT	101238	2019.01.21	2020.01.20

Note:

1. All equipments are calibrated every one year.

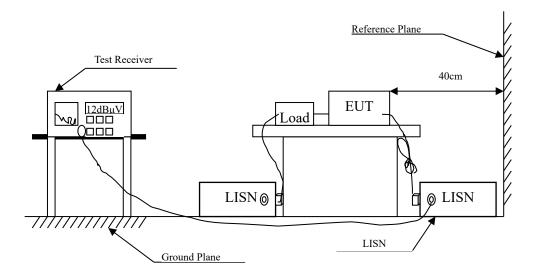
2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : DEKRA Conduction Test System V9.0.5.

For Radiated measurements /ACB1

	Equipment	Manufacturer	Model No.	Serial No.	Cali. Data	Due. Data
Х	Loop Antenna	AMETEK	HLA6121	49611	2019.02.22	2020.02.21
Х	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-674	2019.04.23	2020.04.22
Х	Horn Antenna	ETS-Lindgren	3117	00203800	2018.12.11	2019.12.10
Х	Horn Antenna	Com-Power	AH-840	101087	2019.05.30	2020.05.29
Х	Pre-Amplifier	EMCI	EMC001330	980316	2019.06.14	2020.06.13
Х	Pre-Amplifier	EMCI	EMC051835SE	980311	2019.06.13	2020.06.12
Х	Pre-Amplifier	EMCI	EMC05820SE	980285	2019.06.06	2020.06.05
Х	Pre-Amplifier	EMCI	EMC184045SE	980314	2019.05.28	2020.05.27
	Filter	MICRO TRONICS	BRM50702	G251	2018.09.04	2019.09.03
Х	Filter	MICRO TRONICS	BRM50716	G188	2018.09.04	2019.09.03
Х	EMI Test Receiver	R&S	ESR7	101602	2018.12.17	2019.12.16
Х	Spectrum Analyzer	R&S	FSV40	101148	2019.02.20	2020.02.19
Х	Coaxial Cable	SUHNER	SUCOFLEX 106	RF002	2019.05.25	2020.05.24
Х	Mircoflex Cable	HUBER SUHNER	SUCOFLEX 102	MY3381/2	2019.05.28	2020.05.27

Note:


1. All equipments are calibrated every one year.

- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : QuieTek EMI System V2.1.113.

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit							
Frequency	Limits						
MHz	QP	AV					
0.15 - 0.50	66-56	56-46					
0.50-5.0	56	46					
5.0 - 30	60	50					

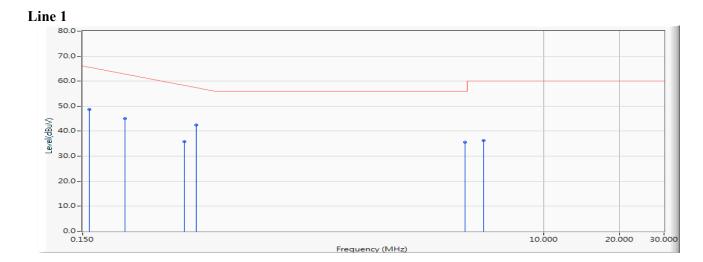
Remarks : In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.


2.4. Uncertainty

±2.35dB

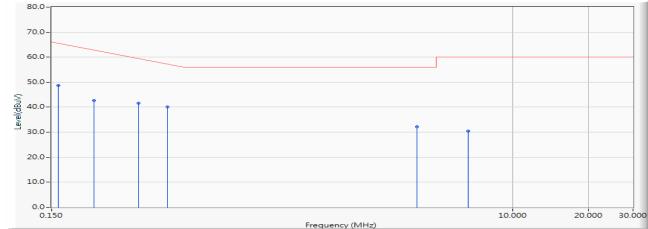
2.5. Test Result of Conducted Emission

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/25

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	39.204	48.764	-16.979	65.743	QUASIPEAK
2		0.220	9.564	35.529	45.094	-18.906	64.000	QUASIPEAK
3		0.380	9.592	26.300	35.892	-23.537	59.429	QUASIPEAK
4	*	0.422	9.595	32.803	42.398	-15.831	58.229	QUASIPEAK
5		4.900	9.730	25.977	35.707	-20.293	56.000	QUASIPEAK
6		5.800	9.748	26.477	36.225	-23.775	60.000	QUASIPEAK

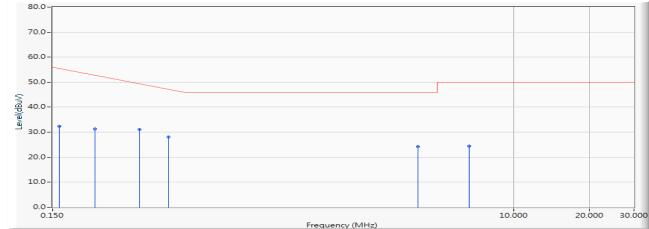
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	23.842	33.402	-22.341	55.743	AVERAGE
2		0.220	9.564	24.542	34.106	-19.894	54.000	AVERAGE
3		0.380	9.592	15.834	25.426	-24.003	49.429	AVERAGE
4		0.422	9.595	19.586	29.181	-19.048	48.229	AVERAGE
5	*	4.900	9.730	18.981	28.712	-17.288	46.000	AVERAGE
6		5.800	9.748	20.504	30.252	-19.748	50.000	AVERAGE

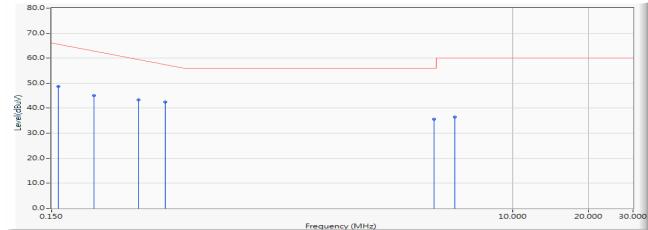
- 1. All Reading Levels are Quasi-Peak and average value.
 - 2. "*" means the worst emission level.
 - 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1	*	0.159	9.552	39.071	48.623	-17.120	65.743	QUASIPEAK
2		0.220	9.564	33.059	42.623	-21.377	64.000	QUASIPEAK
3		0.330	9.595	32.078	41.673	-19.184	60.857	QUASIPEAK
4		0.430	9.588	30.599	40.187	-17.813	58.000	QUASIPEAK
5		4.200	9.722	22.529	32.251	-23.749	56.000	QUASIPEAK
6		6.700	9.777	20.604	30.381	-29.619	60.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.552	22.816	32.368	-23.375	55.743	AVERAGE
2		0.220	9.564	21.784	31.349	-22.651	54.000	AVERAGE
3	*	0.330	9.595	21.523	31.118	-19.739	50.857	AVERAGE
4		0.430	9.588	18.589	28.177	-19.823	48.000	AVERAGE
5		4.200	9.722	14.523	24.245	-21.755	46.000	AVERAGE
6		6.700	9.777	14.611	24.388	-25.612	50.000	AVERAGE

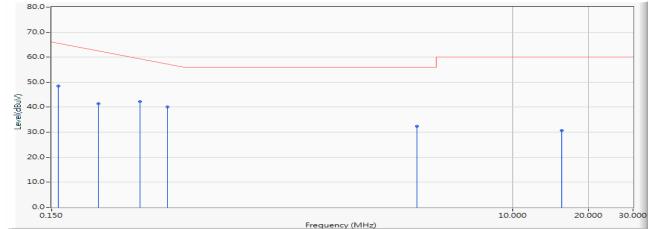
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	39.068	48.628	-17.115	65.743	QUASIPEAK
2		0.220	9.564	35.534	45.098	-18.902	64.000	QUASIPEAK
3		0.330	9.598	33.639	43.237	-17.620	60.857	QUASIPEAK
4	*	0.423	9.595	32.863	42.457	-15.743	58.200	QUASIPEAK
5		4.900	9.730	25.871	35.601	-20.399	56.000	QUASIPEAK
6		5.900	9.749	26.628	36.377	-23.623	60.000	QUASIPEAK

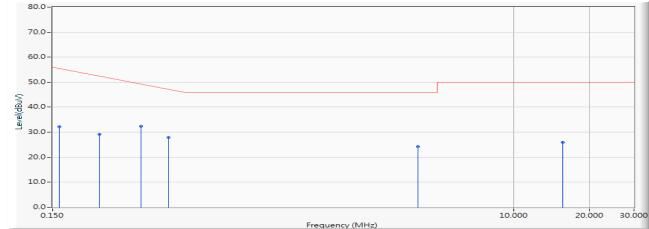
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	23.850	33.410	-22.333	55.743	AVERAGE
2		0.220	9.564	24.593	34.158	-19.842	54.000	AVERAGE
3		0.330	9.598	23.730	33.328	-17.529	50.857	AVERAGE
4		0.423	9.595	19.280	28.875	-19.325	48.200	AVERAGE
5	*	4.900	9.730	18.918	28.648	-17.352	46.000	AVERAGE
6		5.900	9.749	20.604	30.353	-19.647	50.000	AVERAGE

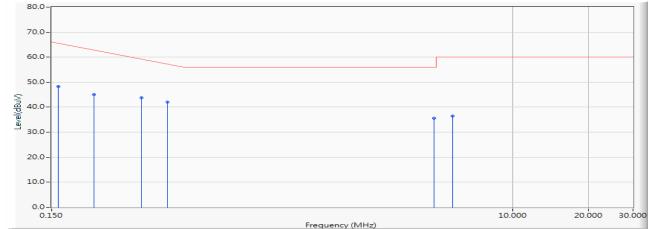
- 1. All Reading Levels are Quasi-Peak and average value.
 - 2. "*" means the worst emission level.
 - 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1	*	0.159	9.552	39.001	48.553	-17.190	65.743	QUASIPEAK
2		0.230	9.568	31.925	41.493	-22.221	63.714	QUASIPEAK
3		0.336	9.593	32.593	42.186	-18.500	60.686	QUASIPEAK
4		0.430	9.588	30.571	40.159	-17.841	58.000	QUASIPEAK
5		4.200	9.722	22.600	32.322	-23.678	56.000	QUASIPEAK
6		15.670	9.930	20.690	30.620	-29.380	60.000	QUASIPEAK

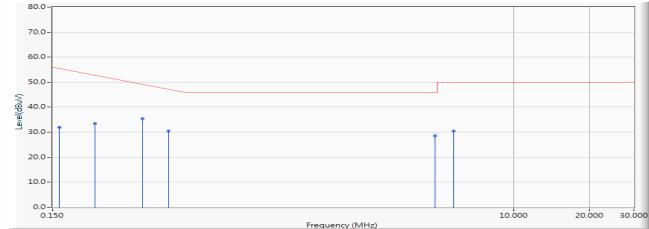
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.552	22.718	32.270	-23.473	55.743	AVERAGE
2		0.230	9.568	19.650	29.218	-24.496	53.714	AVERAGE
3	*	0.336	9.593	22.884	32.476	-18.210	50.686	AVERAGE
4		0.430	9.588	18.242	27.830	-20.170	48.000	AVERAGE
5		4.200	9.722	14.546	24.268	-21.732	46.000	AVERAGE
6		15.670	9.930	16.053	25.983	-24.017	50.000	AVERAGE

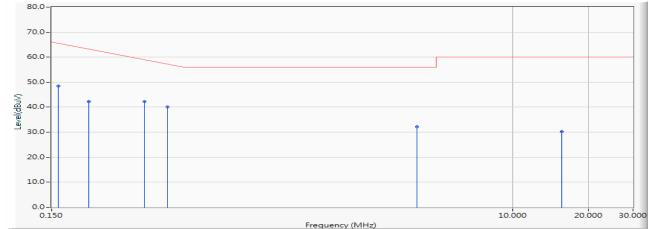
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	38.701	48.261	-17.482	65.743	QUASIPEAK
2		0.220	9.564	35.552	45.117	-18.883	64.000	QUASIPEAK
3		0.340	9.595	34.180	43.775	-16.796	60.571	QUASIPEAK
4	*	0.430	9.595	32.352	41.947	-16.053	58.000	QUASIPEAK
5		4.900	9.730	25.834	35.564	-20.436	56.000	QUASIPEAK
6		5.800	9.748	26.720	36.468	-23.532	60.000	QUASIPEAK

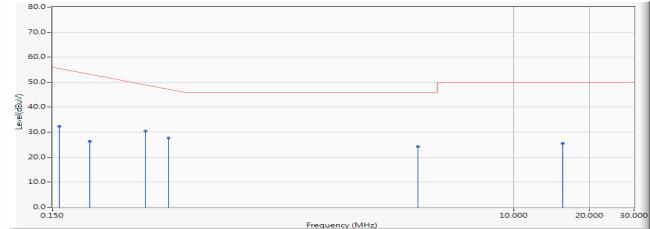
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	22.330	31.890	-23.853	55.743	AVERAGE
2		0.220	9.564	23.806	33.371	-20.629	54.000	AVERAGE
3	*	0.340	9.595	25.695	35.291	-15.280	50.571	AVERAGE
4		0.430	9.595	20.855	30.450	-17.550	48.000	AVERAGE
5		4.900	9.730	18.845	28.576	-17.424	46.000	AVERAGE
6		5.800	9.748	20.605	30.353	-19.647	50.000	AVERAGE

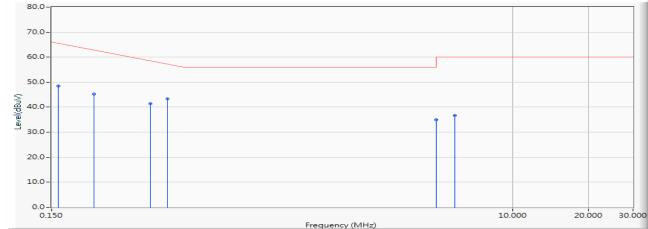
- 1. All Reading Levels are Quasi-Peak and average value.
 - 2. "*" means the worst emission level.
 - 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1	*	0.159	9.552	38.978	48.530	-17.213	65.743	QUASIPEAK
2		0.210	9.560	32.723	42.283	-22.003	64.286	QUASIPEAK
3		0.350	9.588	32.569	42.157	-18.129	60.286	QUASIPEAK
4		0.430	9.588	30.464	40.053	-17.947	58.000	QUASIPEAK
5		4.200	9.722	22.487	32.209	-23.791	56.000	QUASIPEAK
6		15.720	9.931	20.205	30.136	-29.864	60.000	QUASIPEAK

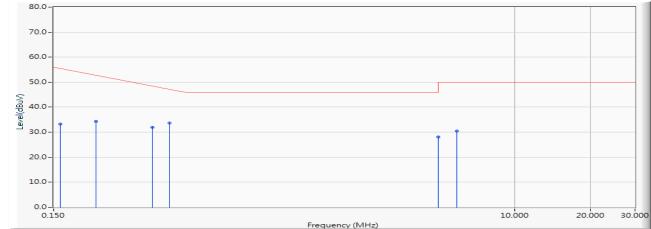
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.552	22.798	32.350	-23.393	55.743	AVERAGE
2		0.210	9.560	16.774	26.334	-27.952	54.286	AVERAGE
3	*	0.350	9.588	20.913	30.501	-19.785	50.286	AVERAGE
4		0.430	9.588	18.107	27.695	-20.305	48.000	AVERAGE
5		4.200	9.722	14.474	24.196	-21.804	46.000	AVERAGE
6		15.720	9.931	15.485	25.416	-24.584	50.000	AVERAGE

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

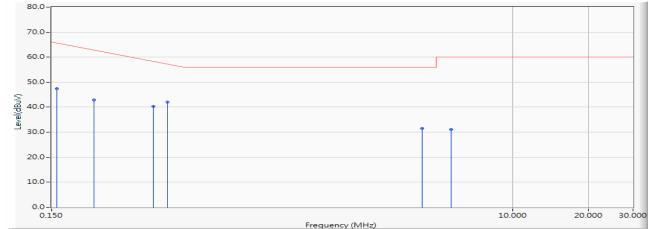
Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	38.938	48.498	-17.245	65.743	QUASIPEAK
2		0.220	9.564	35.717	45.282	-18.718	64.000	QUASIPEAK
3		0.370	9.591	31.708	41.299	-18.415	59.714	QUASIPEAK
4	*	0.430	9.595	33.719	43.314	-14.686	58.000	QUASIPEAK
5		5.000	9.740	25.323	35.063	-20.937	56.000	QUASIPEAK
6		5.900	9.749	26.876	36.625	-23.375	60.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

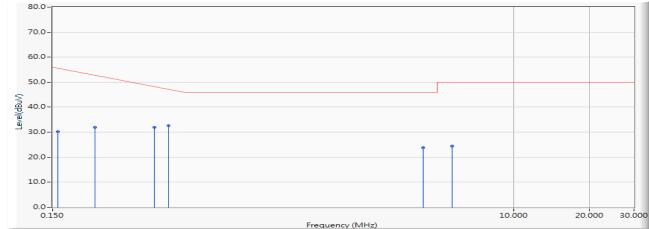
Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)
Test Date	:	2019/06/25

Line 1


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.159	9.560	23.673	33.233	-22.510	55.743	AVERAGE
2		0.220	9.564	24.708	34.273	-19.727	54.000	AVERAGE
3		0.370	9.591	22.406	31.997	-17.717	49.714	AVERAGE
4	*	0.430	9.595	24.103	33.698	-14.302	48.000	AVERAGE
5		5.000	9.740	18.416	28.156	-17.844	46.000	AVERAGE
6		5.900	9.749	20.739	30.488	-19.512	50.000	AVERAGE

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

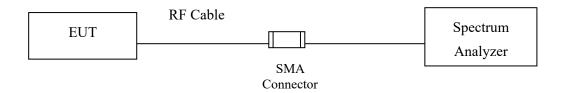
Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)
Test Date	:	2019/06/25


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.157	9.552	37.849	47.401	-18.399	65.800	QUASIPEAK
2		0.220	9.564	33.309	42.873	-21.127	64.000	QUASIPEAK
3		0.380	9.586	30.775	40.361	-19.068	59.429	QUASIPEAK
4	*	0.430	9.588	32.414	42.002	-15.998	58.000	QUASIPEAK
5		4.400	9.724	21.875	31.599	-24.401	56.000	QUASIPEAK
6		5.700	9.747	21.246	30.993	-29.007	60.000	QUASIPEAK

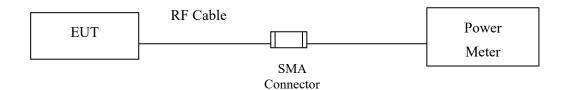
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	Intelligent Robot
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)
Test Date	:	2019/06/25

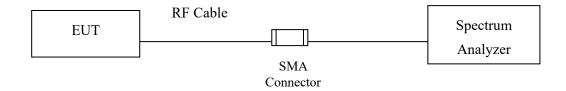
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	Туре
1		0.157	9.552	20.604	30.156	-25.644	55.800	AVERAGE
2		0.220	9.564	22.295	31.860	-22.140	54.000	AVERAGE
3		0.380	9.586	22.265	31.851	-17.578	49.429	AVERAGE
4	*	0.430	9.588	23.036	32.624	-15.376	48.000	AVERAGE
5		4.400	9.724	14.047	23.771	-22.229	46.000	AVERAGE
6		5.700	9.747	14.697	24.444	-25.556	50.000	AVERAGE


- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Maximun conducted output power


3.1. Test Setup

99% Occupied Bandwidth



Conduction Power Measurement

Conduction Power Measurement (for 802.11an)

Conduction Power Measurement (for 802.11ac)

3.2. Limits

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 99% emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

3.3. Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater the 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW \leq 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter) <u>Note: the power meter have a video bandwidth that is greater than or equal to the measurement</u> <u>bandwidth, (Anritsu/MA2411B video bandwidth: 65MHz)</u>

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D03 section D) procedure is used for measurements.

3.4. Uncertainty

Power Meter: ±0.95dB Spectrum Analyzer: ±1.30dB

3.5. Test Result of Maximum conducted output power

Product	:	Intelligent Robot
Test Item	:	Maximum conducted output power
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps)
Test Date	:	2019/06/18

Cab	le loss=3dB	Maximum conducted output power							
]	Data Rat	e (Mbps))		
Channel No.	Frequency (MHz)	6	9	12	18	24	36	48	54
				Meas	surement	Level (a	lBm)		
36	5180	13.92							
44	5220	14.28	14.25	14.22	14.19	14.15	14.11	14.07	14.05
48	5240	14.33							
52	5260	14.02							
60	5300	14.11	14.09	14.06	14.02	13.98	13.96	13.92	13.88
64	5320	14.27							
100	5500	13.53							
116	5580	13.78	13.75	13.71	13.69	13.65	13.62	13.58	13.55
140	5700	13.51							
149	5745	13.75				-			
157	5785	13.45	13.41	13.38	13.35	13.31	13.28	13.25	13.22
165	5825	13.43							

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

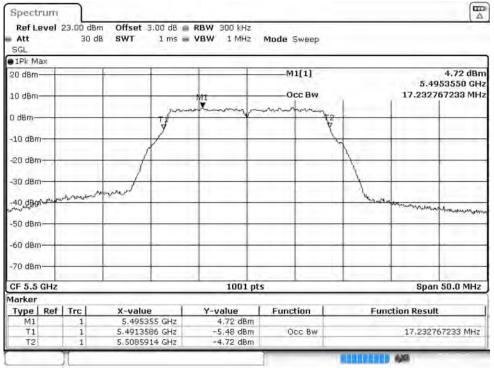
Maximum conducted output power Measurement:

Channel No	Frequency Range	99% Bandwidth	Output Power	Output	Power Limit
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)
36	5180		13.92	24	
44	5220		14.28	24	
48	5240		14.33	24	
52	5260	17.232	14.02	24	23.36
60	5300	17.282	14.11	24	23.38
64	5320	17.232	14.27	24	23.36
100	5500	17.232	13.53	24	23.36
116	5580	17.282	13.78	24	23.38
140	5700	17.282	13.51	24	23.38
149	5745		13.75	30	
157	5785		13.45	30	
165	5825		13.43	30	

99% Occupied Bandwidth: Channel 52:

Spect	um										
Ref Le Att SGL	evel	23.00 d 30			RBW 300 kH VBW 1 MH		Mode Sv	меер			
• 1Pk Ma	эх					_					
20 dBm- 10 dBm-					M1		M1	1] : Bw	2		4.97 dBr 584020 GH 67233 MH
0 dBm—	-	-		ty m	monday	C	m	m to	-		-
-10 dBm	-		/	/	-	-		(4		
-20 dBm	+	_	+ A	_		-	-	_	A		
-30 dBm	+		-	-		_	-		1		-
-40 dBm	-	under	-von-at			-		-	mark	Allemany	wennesdere
-50 dBm	_	-		-	-	_	_	_	-		
-60 dBm					-	-		_	-		
-70 dBm	-	-	+ +			_	-	-	-	-	
CF 5.26	5 GHz	5			1001	pts				Spar	1 50.0 MHz
Marker	1	1. T. Q.								1.1.2.1.2	
Type	Ref	Trc	X-value		Y-value	1	Function	on	Function Result		
M1 T1		1	5.258402 GHz 5.2513586 GHz		4,97 dB -4,89 dB		0~	BW		17 0007	67233 MHz
T2		1	5.2685914		-4,09 dB		000	- D 14		11,2321	01233 MHZ
		М						-	CLARE DE	6,00	

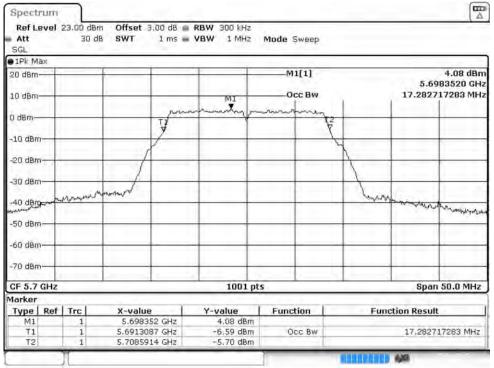
Channel 60:


Spectra	um									
Ref Le					RBW 300 kHz				14	
SGL		30 d	IB SWT	1 ms =	VBW 1 MHz	Mode Sweep				
1Pk Ma	×									
20 dBm-	-		1			M1[1]		5.29	5.05 dBm 54050 GHz	
10 dBm—	-	-	-		M1 X	Occ Bw	1		17283 MHz	
0 dBm—				T	manut		<u>f</u> 2	-		
-10 dBm-	-			/			4	-		
-20 dBm-	-		/		-		-1-	-		
-30 dBm-	-		- /-	-						
-40 dBm-	-	annon the	do an Maria	-			~	month	- umulutand	
-50 dBm-			-	_				-		
-60 d8m-			-	-	-		-	-		
-70 dBm-	-	_						-		
CF 5.3 G	Hz				1001 p	ts		Span	50.0 MHz	
Marker						1.000		1.114		
	Ref	Trc	X-value		Y-value	Function	Fi	inction Result		
M1 T1	-	1	1 5.295405 GHz 1 5.2913586 GHz		5.05 dBm -5.53 dBm	and the second sec		17,282717283 MHz		
T2		1	5.308641	and the second s	-4,58 dBm		1	111100		
	J							6,00		

Channel 64:

● 1Pk Max							
20 dBm			M1	M1[1]	1		4.88 dBr 184020 GH 767233 MH
0 dBm		Tarn	month				
-10 dBm	_				1		
-30 dBm							
-40 dBm-	لمنسب	mont			him	Marchan Allow	and when
-50 dBm	Warning				-		- a start
-60 dBm					-		
-70 dBm	_						
CF 5.32 GH	e		1001 pt:	s		Span	1 50.0 MHz
Marker Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result	
M1	1	5.318402 GHz	4.88 dBm	1 direction	1.00	contraction Netsun	
T1	1	5.3113586 GHz 5.3285914 GHz	-5,25 dBm -4,13 dBm	Occ BW		17,2327	67233 MHz

Channel 100:



Channel 116:

a station of the state	_	18 SWT 1 ms =	VBW 1 MHz	Mode Sweep		
• 1Pk Max 20 dBm 10 dBm			M1	M1[1] Occ Bw		4.65 dBr 5.5783520 GH 17.282717283 MH
0 dBm		T.	minuty	munt		
-10 dBm					1	
-30 dBm -40 dBm	markant	mount			hund	
-50 dBm						man market the market work
-60 dBm					-	
-70 dBm			1001 pt:	5		Span 50.0 MHz
Marker	1.1.1.1					1.7
	Trc	X-value	Y-value	Function	Func	tion Result
M1 T1 T2	1 1 1	5.578352 GHz 5.5713087 GHz 5.5885914 GHz	4,65 dBm -6,16 dBm -4,68 dBm	Occ Bw		17.282717283 MHz

Channel 140:

Product	:	Intelligent Robot
Test Item	:	Maximum conducted output power
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps)
Test Date	:	2019/06/18

Cable loss=3dB		Maximum conducted output power							
		Data Rate (Mbps)							
Channel No.	Frequency (MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2
		Measurement Level (dBm)							
36	5180	13.93							
44	5220	14.08	14.05	14.01	13.99	13.95	13.92	13.88	13.86
48	5240	14.16							
52	5260	14.02							
60	5300	14.16	14.13	14.08	14.05	14.01	13.97	13.96	13.92
64	5320	14.09							
100	5500	13.86							
116	5580	13.67	13.63	13.59	13.55	13.52	13.48	13.45	13.41
140	5700	13.44							
149	5745	13.41							
157	5785	13.22	13.19	13.15	13.12	13.08	13.04	13.02	12.97
165	5825	13.28							

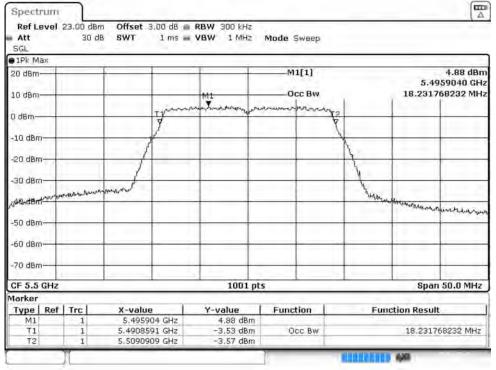
Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

Channel No	Frequency Range	99% Bandwidth	Output Power	Output Power Limit			
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)		
36	5180		13.93	24			
44	5220		14.08	24			
48	5240		14.16	24			
52	5260	18.231	14.02	24	23.61		
60	5300	18.281	14.16	24	23.62		
64	5320	18.231	14.09	24	23.61		
100	5500	18.231	13.86	24	23.61		
116	5580	18.281	13.67	24	23.62		
140	5700	18.281	13.44	24	23.62		
149	5745		13.41	30			
157	5785		13.22	30			
165	5825		13.28	30			

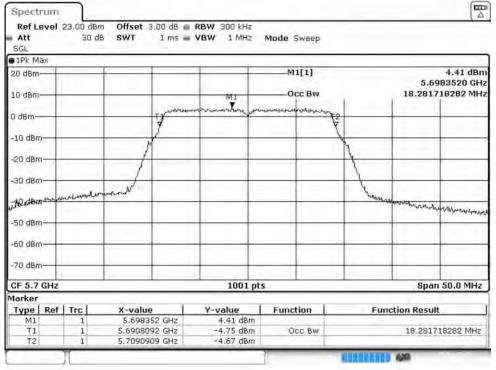
99% Occupied Bandwidth: Channel 52

SGL	_	30 d	B SWT	1 ms ==	VBW 1 MH	2 Mode S	weep					
●1Pk M	эх											
20 dBm					MI		L[1] C BW			5.27 dBm 5.2577020 GHz 18.231768232 MHz		
10.000						w. out the second		1	1			
0 dBm—	-			Tyme			T	2 Y	-			
-10 dBm			1	pr				X		-		
-20 dBm	-	-	1		-	_	_	1				
-30 dBr		-	1	-	-			1		-		
-40 dBm	Ander	Julanooce	-		-			Ves		tentromentudance		
-50 dBm		-	-		-			-	1	-		
-60 dBn			-	-	-		-		-	-		
-70 dBm			-	-			_			-		
CF 5.2	GHZ		-	-	1001	pts			Spa	n 50.0 MHz		
Marker	-											
Type	Ref	Trc	X-value		Y-value	Funct	Function		Function Result			
M1		1	5.257702 GHz		5,27 dB	and the second sec						
T1	_	1 5.2508591 GHz 1 5.2690909 GHz		-2,53 dB	m Od	Occ BW		18.231768232 MHz				


Channel 60

Spect	um									
Ref Le Att SGL	evel 1	23.00 dB 30 c			RBW 300 kHz VBW 1 MHz	Mode Sweep				
• 1Pk Ma	эх		-							
20 dBm- 10 dBm-						M1[1]		6.13 dBn 5.3022980 GH: 18.281718282 MH:		
0 dBm—	-		-	T	- Marine Marine Marine	whenter	¥2. Y	-	-	
-10 dBm	-		1	pr-			X	-		
-20 dBm	-	-	1	-	+ +		1		-	
-30 dBm	-		- /	-			1		1	
-40 dBm	-number	maria	conner	-	+ +		Mount	menumeristandurgel	howtownersh	
-50 dBm	-	-	-		+ +			-		
-60 dBm	-		-				-	-	-	
-70 dBm	+		-							
CF 5.3	GHz	_	-		1001 p	ts		Spar	n 50.0 MHz	
Marker		1.11	1.0			1.		1.1.1.1		
Type	Ref		X-value		Y-value	Function	Fu	Function Result		
M1 T1 T2			6.13 dBm -3.19 dBm -2.73 dBm	Occ Bw	18.281718282 M					
		π					CALIFIC	4,43		

Channel 64


Spectrum		_								
Ref Level Att SGL	23.00 dB 30 d	the second second second second		RBW 300 KH VBW 1 MH		Mode Sw	eep			
• 1Pk Max										
20 dBm				M1		M1[:				5.20 dBn 171030 GH: 768232 MH:
0 dBm		T	from	montena	- eve	mariner	ming	2	-	
-10 dBm		, A		-	-	-	-	1	-	
-20 dBm	-	1	-	-	-	-	-	1	-	-
-30 dBm		y y		-	-	-		1		-
-40 dBm	manniham	potenset			-			a alayou	Sichtlen Mary and	Human wan
-50 dBm			-		-				1	-
-60 dBm	-			-	-				1	-
-70 dBm		-	-		-		-		1	-
CF 5.32 GH	z	1		1001	1 pts				Spa	n 50.0 MHz
Marker	0.00				-					
Type Ref	Trc	X-value		Y-value	1	Functio	n	Fu	action Resu	t
M1 T1 T2	1 1	5.317103 5.3108591 5.3290909	GHz	5.20 dE -4.09 dE -3.02 dE	3m	000	BW		18.231	768232 MHz
	Л								1 ,101	

Channel 116

Ref Lo Att SGL	evel 2	3.00 dBr 30 d		3.00 dB 🖷 1 ms 📟	RBW 300 kH VBW 1 MH		Mode Sweep	0			
1Pk M	ах					_					
20 dBm 10 dBm						, ,	M1[1] +1OCC BW	m	1		5,10 dBn 22980 GH 18282 MH
0 dBm-				1				F		1.4	
-10 dBr	1-1-		1	1				1	5		
-20 dBm		-	1		-	-		-	1		
-30 dBr	r		- I and			-	-		4		-
. 10.den	Bernand	de-sametrie	all designed as		-	_		-	Jacquertere	and the manual	when the own of
-50 dBm		_	-		-		_	_			
-60 dBm		_	-		-	_					
-70 dBm		_		-	-	_	_	-			-
CF 5.5	3 GHz		-		1001	pts		-	-	Span	50.0 MHz
Marker		11.0			1000	-				110.00	
Type	Ref	Trc	X-value		Y-value	1	Function		Fund	tion Result	-
M1		1	5.5822		5.10 dB			-			
T1 T2		1	5.57080 5.58909	the second se	-4.61 dB -4.35 dB		Occ BW	-		18.2817	18282 MHz
	Y	-				7		11		630	

Product	:	Intelligent Robot
Test Item	:	Maximum conducted output power
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps)
Test Date	:	2019/06/18

Cab	le loss=3dB		Ν	Maximun	n conduc	ted outpu	ıt power				
				Ι	Data Rate	(Mbps)	-	-			
Channel No.	Frequency (MHz)	15	30	45	60	90	120	135	150		
		Measurement Level (dBm)									
38	5190	13.75									
46	5230	14.02	13.98	13.95	13.92	13.88	13.85	13.81	13.77		
54	5270	14.78									
62	5310	14.93	14.91	14.87	14.85	14.82	14.78	14.76	14.72		
102	5510	12.51									
110	5550	12.33	12.31	12.28	12.26	12.23	12.17	12.15	12.11		
134	5670	12.05									
151	5755	11.39									
159	5795	11.35	11.32	11.29	11.25	11.21	11.19	11.16	11.13		

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

Channel No	Frequency Range	99% Bandwidth	Output Power	Output Pe	ower Limit
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)
38	5190		13.75	24	
46	5230		14.02	24	
54	5270	36.563	14.78	24	26.63
62	5310	36.463	14.93	24	26.62
102	5510	36.563	12.51	24	26.63
110	5550	36.563	12.33	24	26.63
134	5670	36.463	12.05	24	26.62
151	5755		11.39	30	
159	5795		11.35	30	

99% Occupied Bandwidth:

Channel 54

Spect	rum											
Ref L Att SGL	evel	23.00 dB 30 c			RBW 500 kH VBW 2 MH		Mode S	Sweep				
• 1Pk M	ax											
20 dBm 10 dBm	1.1							1[1] 1c Bw				5.28 dBm 796900 GHz 136563 MHz
0 dBm-				Thomas	monum	m		havenue	2	-		
-10 dBn	n			{	-	-			<u>\</u>	-		
-20 dBn	n)		-	-			1		-	-
-30 dBn	march	(American Are	moundserview	-		1	-		hind	LANNON	all styres and all	homenatelitation
-40 dBn	n			-	-	-			-	-	-	-
-50 dBn		-			-	-			-	-		-
-60 dBn	n	-	1	-	-	-		-	-	-		-
-70 dBn	n									_	1.5	L
CF 5.2	7 GHz	b			1001	t pts					Span	100.0 MHz
Marker							-					
	Ref		X-value		Y-value	_	Func	tion		Func	tion Resul	t
M1 T1		1	5.2796	9 GHz	5,28 dE -0,35 dE		0	C BW		_	36 5624	36563 MHz
T2		1	5.288281	and the second se	-0.02 dE	2.1	Ū.	20 DW			3013034	30303 MINE
)I					1		REALIZ	U.L	1,00	

Spectru	m									
100.000	el 23.00				RBW 500 kH		Swinger			14
SGL		10 00 0		1 ms =	The Louis	moue	oweep			
1Pk Max									-	
20 dBm-							1[1] cc Bw			4.97 dBm 176900 GHz 536464 MHz
	111		-	T1 umpu	waneswanning			2	30.403	000404 0012
0 dBm				Y		1		8		
-10 dBm-	-	-	-	1				1	-	-
-20 dBm-	-	-			-		-	1	-	-
-30 dBm-	manum	whening	hard					Lunular	Malon States Tank	hinstrawner way
-50 dBm-		-	_							
-60 d8m-	-	-	-	-	-		-	-	-	-
-70 dBm-	-	_			-			-	-	-
CF 5.31	GHz	-	-		1001	pts			Span	100.0 MHz
Marker		V							1000	2
Type F M1	tef Trc		-value 5.3176	9 GHz	Y-value 4.97 dB	Func	tion	Fu	nction Resu	lt
T1 T2	1	5	.291818	32 GHz	0,33 dB -0,48 dB	m O	CC BW		36,463	536464 MHz
	M							auna	0.00	

Channel 102

● 1Pk Max	_					_			-	
20 dBm	dBmM1Occ Bw						3 5.5052 36.5634365			
0 dBm			Thursday		mining	roundines	2			
-10 dBm			/		-		}		-	
-20 dBm						-	1	-	-	
	almon with and almost	muhummun		-			1			
-30 dBm	ann an the states	minument						menulahadhandistan	pipilongayanayangan	
mounder	herry ^{en} er teller ("se)	return how					- Lawrence	and particular	and a subscription of the	
,producenter -40 dBm	atorr ^a ntellerit.ca)	huduar, handbar					Lincond	, <u>et andal ad Na</u> bala Naba	p.n.t.	
-40 dBm	afrer ^a n selferd _{al} as	f.					Linean	presented and the second s	an a	
-60 dBm-		now man		1001	pts		Linean		100.0 MHz	
-40 dBm -50 dBm -60 dBm -70 dBm CF 5.51 G Marker	Hz							Span	100.0 MHz	
-40 dBm -50 dBm -60 dBm -70 dBm CF 5.51 G Marker Type Re	Hz f Trc	X-value		Y-value	Func	tion			100.0 MHz	
-40 dBm -50 dBm -60 dBm -70 dBm CF 5.51 G Marker	Hz	X-value	2 GHz		Func	tion		Span Span	100.0 MHz	

Spectr	шт	1								
Ref Le Att SGL	vel	23.00 dBm 30 dB		1 ms 🕳	RBW 500 kHz VBW 2 MHz		Sweep			
• 1Pk Ma	ax.									
20 dBm-						_	M1[1] Occ Bw			2.43 dBm 556900 GHz 436563 MHz
0 dBm—	-			Thereman	-	MI	dupin throw	12 .	-	
-10 dBm	+			1		-	-	1	-	-
-20 dBm	+		-	/	-	-	-	1		-
-30 dBm -40 dBm	alterat	CPM apallacen	monitore	-				Lancesde	ynequenderhetmorta	whentreman
-50 dBm	-	-		1	-			-	-	
-60 dBm	-		-		-		-	-	-	-
-70 dBm	-		-	-		_	-		-	
CF 5.55	GH	z	-		1001	pts			Span	100.0 MHz
Marker										
	Ref		X-value		Y-value		ction	Fi	unction Resu	lt
M1 T1 T2		1 1	5.53171	and the second se	2.43 dBr -3.05 dBr -2.73 dBr	n	Occ BW	_	36,563	436563 MHz
		π			2110 001			ELLER	4,40	

Channel 134

Spectrur	n]					
Ref Leve Att SGL	1 23.00 dBr 30 d			Mode Sweep		
●1Pk Max						
20 dBm				M1[1]		2.59 dBr 5.6740000 GH 36.463536464 MH
10 dBm-				M1	1	30.403330404 Min
0 dBm		y y market	monanter	Inclusion and	¥2	1
-10 dBm					1	
-20 dBm		1			1	t
-30 dBm	-	1	-		1	
#40 dBm-	Nuthenauters	construction and			hunden	unanon monore and the second and
-50 dBm-					-	
-60 d8m		-			-	
-70 dBm						
CF 5.67 G	Hz	P. 1	1001 pt:	s		Span 100.0 MHz
Marker	30 C 10					C. I to Z.
	f Trc	X-value	Y-value	Function	Fun	ction Result
M1 T1 T2	1	5.674 GHz 5.6518182 GHz 5.6882817 GHz	2.59 dBm -1.89 dBm -3.70 dBm	Occ Bw		36,463536464 MHz
	T	-1999-94 -010		· · · ·		630

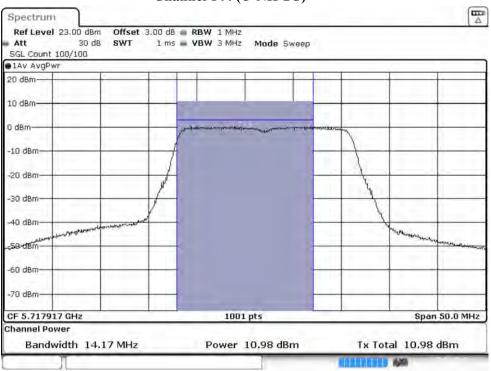
Product	:	Intelligent Robot
Test Item	:	Maximum conducted output power
Test Mode	:	Mode 4: Transmit (802.11ac-20BW 7.2Mbps)
Test Date	:	2019/06/18

Cable los	s=3dB			Max	kimum ec	onducted	output po	ower		
	F				Data	ı Rate (M	bps)			
Channel No.	Frequency	VTH0	VTH1	VTH2	VTH3	VTH4	VTH5	VTH6	VTH7	VTH8
	(MHz)				Measure	ment Lev	el (dBm)		VTH7 10.74 4.93	
144(U-NII-2C)	5720	10.98	10.95	10.91	10.88	10.86	10.83	10.79	10.74	10.72
144(U-NII-3)	5720	5.15	5.13	5.09	5.04	5.01	4.98	4.96	4.93	4.88

Note: Maximum conducted output power Value =Reading value on Spectrum Analyzer + cable loss

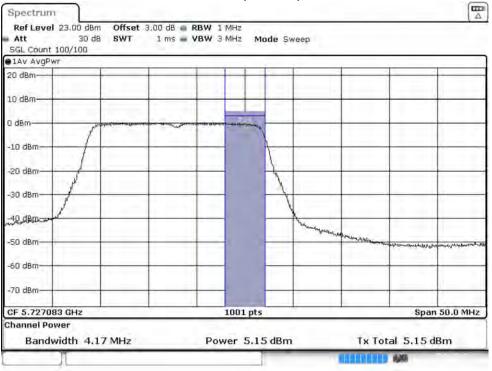
Maximum conducted output power Measurement:

Channel No	Frequency Range	99% Bandwidth	Output Power	Ou	tput Power Limit	Result	
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)		
144(U-NII-2C)	5720	14.166	10.98	24	22.51	Pass	
144(U-NII-3)	5720		5.15	30		Pass	



99% Occupied Bandwidth:

Att	ever a	23.00 dB 30 c			RBW 300 kHz VBW 1 MHz	Mode S	меер			
• 1Pk M 10 dBm 0 dBm-	-			¥		M1 M1 QG	: Bw	2	18.3316	4.44 dBm 26970 GHz 68332 MHz 3.18 dBm 50000 GHz
-10 dBn -20 dBn -30 dBn			/					1 -		
-50 dBn		ndetalannalit	urgaunstanner.					. Annormal	and the second second	malinesser
-60 dBn -70 dBn										
CF 5.7	2 GHZ			_	1001	ots			span	50.0 MHz
Туре	Ref		X-value		Y-value 4.44 dBm	Functi	on	Func	tion Result	
M1 T1		1	5.71080	5.722697 GHz 5.7108092 GHz		000	: BW		18.33166	58332 MHz
T2 D1 M2	M2	1 1		09 GHz 66 MHz 25 GHz	-4.79 dBm -7.32 dB 3.18 dBm	ŝ				



Maximum conducted output power:

Channel 144 (U-NII-2C)

Channel 144 (U-NII-3)

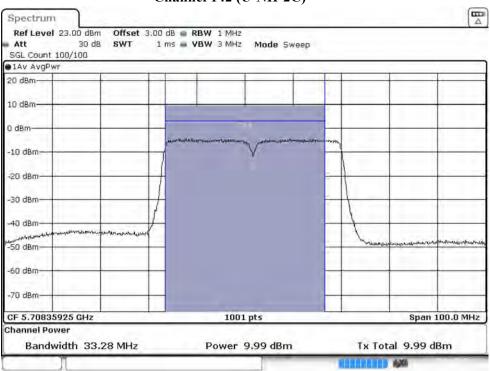
Product	:	Intelligent Robot
Test Item	:	Maximum conducted output power
Test Mode	:	Mode 5: Transmit (802.11ac-40BW 15Mbps)
Test Date	:	2019/06/18

	Cable los	s=3dB		Maximum conducted output power										
	Channel No	Frequency		Data Rate (Mbps)										
		(MHz)	VTH0	VTH1	VTH2	VTH3	VTH4	VTH5	VTH6	VTH7	VTH8	VTH9		
	142(U-NII-2C)	5710	9.99	9.95	9.92	9.88	9.86	9.83	9.79	9.75	9.73	9.67		
	142(U-NII-3)	5710	-0.49	-0.52	-0.55	-0.59	-0.61	-0.65	-0.68	-0.70	-0.74	-0.78		

Note: Maximum conducted output power Value =Reading value on Spectrum Analyzer + cable loss

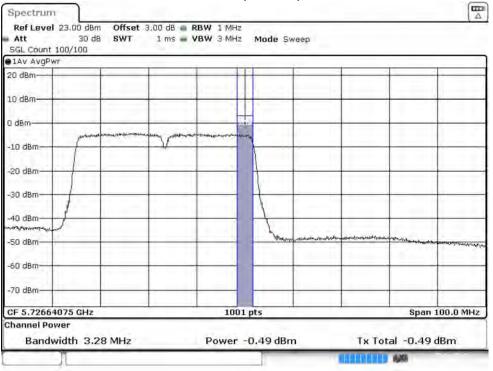
Maximum conducted output power Measurement:

Channel No	Frequency Range	99%OutputBandwidthPower		Out	put Power Limit	Result
	(MHz)	(MHz)	(dBm)	(dBm)	Bm) dBm+10log(BW)	
142(U-NII-2C)	5710	33.281	9.99	24	26.22	Pass
142(U-NII-3)	5710		-0.49	30		Pass



99% Occupied Bandwidth:

Att SGL		30 d	B SWT	1 ms 🕳	VBW 2 MHz	Mode Sweep	0		
●1Pk Ma	ах		_						
10 dBm-				-		M1[1]			.41 dBm 900 GHz 563 MHz
0 dBm—				Ef manner	in manual man	M2[1]	timit2		.04 dBm 000 GHz
-10 dBm				/			1		-
-20 dBm			1				1		
	when when	and we wanted	mourner				1	1	
-40 dBm							Jan Strategy	and the second	eficted analysis
-50 dBm									
-60 dBm	-								
-70 dBm	+		-			_	-		-
CF 5.7	1 GHz	5		-	1001 pt	s		Span 100	.0 MHz
Marker		- 1					1 2		
Type M1	Ref	1	X-value		2.41 dBm	Function	FI	unction Result	_
T1		1	5.71839 GHz 5.6917183 GHz		-2.96 dBm	Occ Bw	1	36.5634365	63 MHz
T2		1	5.7282817 GHz		-3.50 dBm	UN		0010001000	23.00.0
D1	M2	1	-33,281	and the second se	-4.00 dB				
M2		1	5.7	25 GHz	1.04 dBm				



Maximum conducted output power:

Channel 142 (U-NII-2C)

Channel 142 (U-NII-3)

- Product : Intelligent Robot
- Test Item : Maximum conducted output power
- Test Mode : Mode 6: Transmit (802.11ac-80BW 32.5Mbps)
- Test Date : 2019/06/18

Cable los	s=3dB]	Maximu	n condu	cted outp	out powe	r		
	Frequency]	Data Rat	e (Mbps)			
Channel No	(MHz)	VTH0	VTH1	VTH2	VTH3	VTH4	VTH5	VTH6	VTH7	VTH8	VTH9
42	5210	13.01	12.98	12.95	12.91	12.89	12.85	12.83	12.80	12.76	12.73
58	5290	12.62	12.59	12.56	12.53	12.50	12.48	12.45	12.41	12.37	12.33
106	5530	11.36									
122	5610	10.88	10.85	10.80	10.77	10.72	10.68	10.63	10.60	10.57	10.53
138(U-NII-2C)	5690	10.41									
138(U-NII-3)	5690	-4.96									
155	5775	11.51	11.49	11.45	11.42	11.38	11.36	11.32	11.30	11.27	11.25

Note: Maximum conducted output power Value =Reading value on Spectrum Analyzer + cable loss

Maximum conducted output power Measurement

Channel No	Frequency Range	99% Bandwidth	Output Power	Outp	ut Power Limit	Result	
	(MHz)	(MHz)	(dBm) (dBm)		dBm+10log(BW)		
42	5210		13.01	24		Pass	
58	5290	76.123	12.62	24	29.82	Pass	
106	5530	76.123	11.36	24	29.82	Pass	
122	5610	76.123	10.88	24	29.82	Pass	
138(U-NII-2C)	5690	72.962	10.41	24	29.63	Pass	
138(U-NII-3)	5690		-4.96	30		Pass	
155	5775		11.51	30		Pass	

99% Occupied Bandwidth:

Channel 42

Att SGL	evel a	23.00 dBr 30 d			RBW 1 MHz VBW 3 MHz	Mode Sweep				
• 1Pk Ma	эх									
20 dBm- 10 dBm-				T1	M1	——M1[1] ——Occ Bw ——M2[1]			75.9240	5.92 dBn 04010 GH 75924 MH 11.36 dBn
0 dBm—				T	- Alexandre		MZ	1		50000 GH
-10 dBm						-	1			
-20 dBm	214		1				1			1
40 dBm	maril let	mount	Munaranal					-Ann-annormal-	and shares and	mutilities
-50 dBm		-	1	-				-		-
-60 dBm				-	1 1				_	-
-70 dBm	+					_			-	
CF 5.2	L GHz	2			1001 p	ts			Span :	200.0 MHz
Marker			1 × ×							
Type	Ref		X-value		Y-value	Function		Functi	on Result	6 I.I.
M1		1	5.20401 GHz 5.172238 GHz		5,92 dBm		-		75 00.10	
T1 T2		1	5.1722	the second se	0.55 dBm 0.27 dBm	Occ Bw			75,9240	75924 MHz
M2		1		25 GHz	-11,36 dBm					

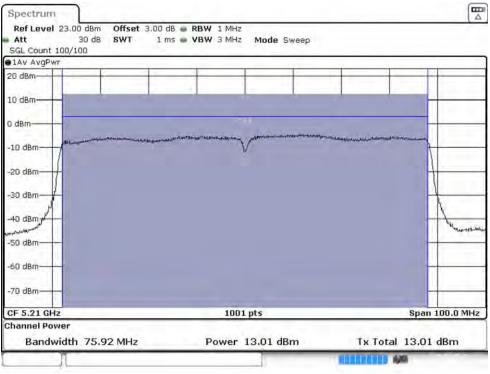
Att	23.00 dBn 30 dB			RBW 1 MHz VBW 3 MHz	Mode Sweep			
SGL			100		5000 - 1100	100		
1Pk Max								
20 dBm					M1[1]			5.34 dBn
								277210 GH
10 dBm			3.	M1	OCC BW	- 1	76.123	876124 MH
			Jugar	man Insuran pro	mannetherense	-molent T2		
0 dBm			1			1		
10 dBm-						1		
TO OPIL								
-20 dBm		1	_					
		1						1
-30 dBm-		1	-			h.t.	un-hurradustana	
manut	Nuppermanent	and more thank				1000	w	reall/ lade milling
40 dBm								
-								
-50 dBm								
60 d8m								
oo oom								
-70 dBm							-	
11000				1			-	
CF 5.29 GH	2			1001 p	ts		Span	200.0 MHz
larker								
	Trc X-value			Y-value	Function	F	unction Resu	lt
	M1 1 5.27721 GHz T1 1 5.252038 GHz		and the second second second	5.34 dBm	and the second sec		76 100	
T1 T2	1	5.25203	the second se	0.29 dBm 0.39 dBm		-	/0,123	376124 MHz

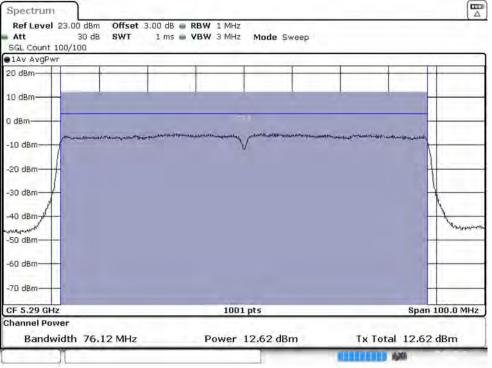
Channel 106

Spectrum Ref Level Att SGL				RBW 1 MHz VBW 3 MHz	Mo	de Swe	эер			
1Pk Max										
20 dBm				M1		M1	[1] c Bw			4.60 dBn 524010 GH 876124 MH
0 dBm			T1	-	Jun	man	howwohlder	IS		
-10 dBm			(-	-	-	-	1		
-20 dBm	-		-		-	-		1		-
-30 dBm	envis whereas	in marine side of		-				martin	Mundulled	a tradenta
-40 dBm				-	-	-				Contraction of the Party of the
-50 dBm				-		-			-	-
-60 dBm		-		-		-		-	-	-
-70 dBm					-				-	
CF 5.53 GH	z		6	1001	pts			-	Span	200.0 MHz
Marker	1								10.00	
and the second second second second	Trc	X-value		Y-value	1	Functi	on	Fi	inction Resu	lt
M1 T1	1	5.5240		4,60 dB -0,36 dB		0.	c BW		76 100	876124 MHz
T2	1	5.49203	the second se	-0,36 dB -0,94 dB		00	CBW		/0,123	670124 MHZ

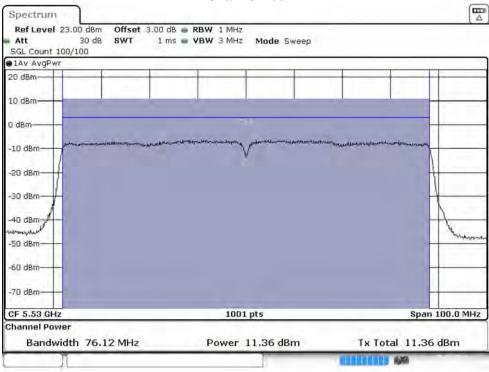
Spect	um									
Ref Le	evel	23.00 dB 30 c			RBW 1 MHz VBW 3 MHz	Mode S	weep			1-
PIPk Ma	ax.									
20 dBm- 10 dBm-						O	11[1] ICC BW			3.52 dBm 622190 GHz 876124 MHz
0 dBm—	+	_		1	manner	minster		72 Y	-	
-10 dBm	-		-	(-		-	1	-	-
-20 dBm	111					_	-	1		-
-30 dBm	halfur	hystorense	البري بري الملاية الملاية المستمر عن و					Muliphas	and month that	holonium hereitering
-50 dBm	-	-							-	
-60 dBm	-		-	-	-		-	-	-	-
-70 dBm	+									
CF 5.61	GHz	5			1001	ots			Span	200.0 MHz
Marker			-							
M1 T1	M1 1 5.62219 GHz		19 GHz	Y-value 3.52 dBm -0.94 dBm	1	Occ Bw		76.123	lt 876124 MHz	
T2		1	5.6481	52 GHz	-2.10 dBm	1				
		M						ELLER	10 ANR	

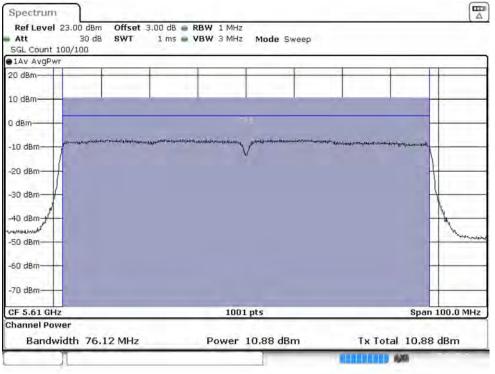
Channel 122


3.00 dBr 30 dI	B SWT		RBW 1 MHz VBW 3 MHz M1		0de Sweep 	Maz		75.924	683210 GH: 075924 MH: 0.05 dBn
Really		¥		,	Occ Bw			75.924	683210 GH 075924 MH 0.05 dBn
Received		<u>}</u>		,	Occ Bw			75.924	3,18 dBn 683210 GH: 075924 MH: 0.05 dBn 725000 GH:
ىرىلەر يىلەر يىلى تىلى		*				T	-	5.	725000 GH
مريد المريد الم				_					
Russen	1						-	-	+
				-		-	Charles Bar		Hun Manhan hand a New
V. and and a							- manazoria	na www.twwn MD	MAN har har har har have
		-							1
				_					
			1001			- 1		0	200.0 111-
			1001	prs		_		span	200.0 MH2
Trc	X-value	1	Y-value	1	Function	1	Fun	nction Resu	lt
1	5.6832	1 GHz	3.18 dB	m		1			10 1 m 13 1 M
1	5.65203	8 GHz	-1.23 dB	m	OCC BW	1		75,9240	075924 MHz
1	5.72796	2 GHz	-1,59 dB	m		1			
1	-72,962	2 MHz	-1.28 d	IB					
1	5.72	5 GHz	0.05 dB	m		1			
	1 1 1 1	1 5.6832 1 5.65203 1 5.72796 1 -72.96	1 5.68321 GHz 1 5.652038 GHz 1 5.727962 GHz 1 -72,962 MHz	X-value Y-value 1 5.68321 GHz 3.18 dB 1 5.652038 GHz -1.23 dB 1 5.727962 GHz -1.29 dB 1 -72.962 MHz -1.28 cd	1 5.68321 GHz 3.18 dBm 1 5.652038 GHz -1.23 dBm 1 5.727962 GHz -1.59 dBm 1 -72.962 MHz -1.28 dB	X-value Y-value Function 1 5.68321 GHz 3.18 dBm 1 5.652038 GHz -1.23 dBm Occ Bw 1 5.727962 GHz -1.59 dBm 1 1 -72.962 MHz -1.28 dB Occ Bw	X-value Y-value Function 1 5.68321 GHz 3.18 dBm 1 5.652038 GHz -1.23 dBm Occ Bw 1 5.727962 GHz -1.59 dBm 1 1 -72.962 MHz -1.28 dB 1	Trc X-value Y-value Function Fur 1 5.68321 GHz 3.18 dBm Function Function Function 1 5.652038 GHz -1.23 dBm Occ Bw Occ Bw Function Function 1 5.727962 GHz -1.59 dBm Occ Bw Function Function Function 1 -72.962 MHz -1.28 dB Function F	Trc X-value Y-value Function Function Result 1 5.68321 GHz 3.18 dBm 1 1 5.652038 GHz -1.23 dBm Occ Bw 75,9240 1 5.727962 GHz -1.59 dBm 1 75,9240 1 -72,962 GHz -1.23 dBm 1 75,9240


Spectru	um	1											
Ref Lev Att SGL	el 23.00) dBm 30 dB			RBW 1 MHz VBW 3 MHz	M	ode Sw	eep					
• 1Pk Max		-							_				-
20 dBm-		M1[1] M1 Occ Bw			4.89 dB 5.766810 Gi 75.924075924 Mi			GHz					
0 dBm	-	_	_	T- mark	- and the state of		mintri		T2		-	-	_
-10 dBm—	-	-		<u> </u>		-		-	+	-		-	-
-20 dBm—	-	-		-	-	-	-		A			-	-
RIABRIN	marrinetae	NAMIWA	Manuel	-	-	_	-		-1	hundliche		ek ul ode e	
-40 dBm-	-	-			-	-		-	+		C Sales	UN CHARGE	*sev/04
-50 dBm-	-	-			-	-			+		-	-	-
-60 dBm-	-	-		-	-	-	_		-			-	-
-70 dBm—	-	-				-	-	_	-	_			-
CF 5.775	GHz	-			1001	pts					Span	200.0 M	IHz
Marker		0										1	
	lef Tro		X-value		Y-value	1	Funct	ion		Fun	ction Resul	t	1
M1 T1 T2		1	5.766 5.7370 5.81290	the second se	4.89 dB 0.20 dB -0.24 dB	m	00	C BW		-	75,9240	075924 N	1Hz
10	π		0.0120	a ante l	5121 40	1			Π		640		-

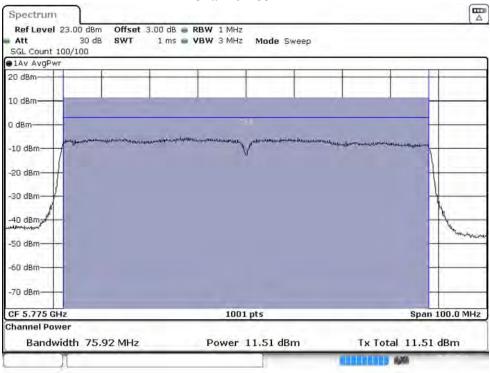
Maximum conducted output power:


Channel 42



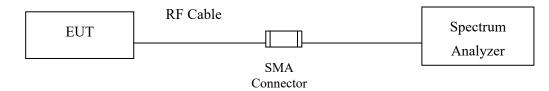
Channel 106

Channel 138 (U-NII-2C)


Spectrum Ref Level 23.00 dBm Off Att 30 dB SW	set 3.00 dB. ■ RBW 1 MHz /T 1 ms ■ VBW 3 MHz Mode	Sweep
SGL Count 100/100		1 2weeh
1Av AvgPwr		
20 dBm		
10 dBm		
0 dBm		
-10 dBm	have a set of the set	mine - here - and a figure
-20 dBm-		
-30 dBm		
-40 dBm		
BUUBHH	- Constant	Murin was plan in planta by the second
-60 dBm-		
-70 dBm		
CF 5.688519 GHz	1001 pts	Span 200.0 MH
Channel Power Bandwidth 72.96 M	Hz Power 10.41	dBm Tx Total 10.41 dBm
The second se		

Channel 138 (U-NII-3)

Att SGL Count	100/100	- 59	- 115 -		Mode Sw	oop.			
1AV AVgP	WF	1	1	1	11	_	1	_	
20 dBm			1						
0 dBm		-	-	-				-	
I dBm	-				<u>+</u>		-	-	
10 dBm	parametrica	n warman and the second	hundren	the new man the ingen					
20 dBm	1		-					-	-
30 dBm	1				+				
40 dBm	/				+				
50 dBm-	-		-	-	January V	reporternation stationer	White phages		
60 dBm			-		-		and the second second	Maringha Kana Kangan ka	an of the second
70 dBm	-		-				-		
F 5.7264	81 GHz	1	1	100	1 pts			Span :	200.0 MHz
hannel Po Band	wer width 2.9	96 MHz		Power	-4.96 dBn	1	Tx Tot	al -4.96 (dBm


Channel 155

4. Peak Power Spectral Density

4.1. Test Setup

4.2. Limits

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.+

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.3. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer.

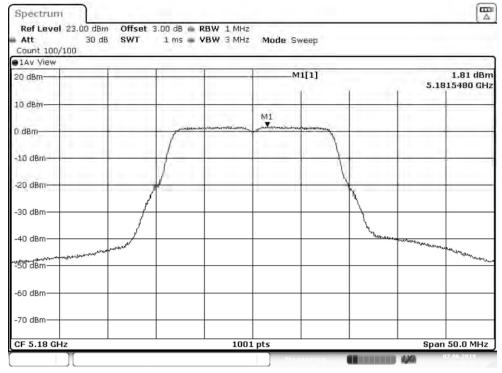
SA-1 method is selected to run the test.

For the band 5.725-5.85 GHz, Scale the observed power level to an equivalent value in 500 kHz by adjusting (increase) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log (500 \text{ kHz}/100 \text{ kHz}) = 6.98 \text{ dB}.$

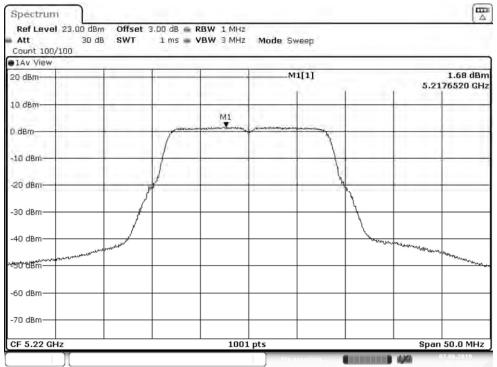
4.4. Uncertainty

±1.30dB

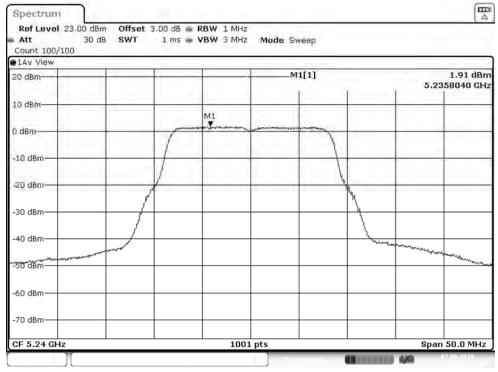
4.5. Test Result of Peak Power Spectral Density


Product	:	Intelligent Robot
Test Item	:	Peak Power Spectral Density
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps)
Test Date	:	2019/06/18

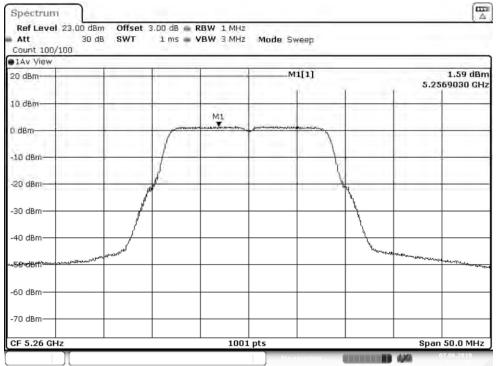
Channel Number	Frequency (MHz)	Data Rata (Mbps)	Measurement Level (dBm)	Required Limit (dBm)	Result
36	5180	6	1.81	<11	Pass
44	5220	6	1.68	<11	Pass
48	5240	6	1.91	<11	Pass
52	5260	6	1.59	<11	Pass
60	5300	6	1.55	<11	Pass
64	5320	6	1.38	<11	Pass
100	5500	6	1.30	<11	Pass
116	5580	6	1.11	<11	Pass
140	5700	6	0.61	<11	Pass


Channel Number	Frequency (MHz)	Data Rata (Mbps)	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
149	5745	6	-7.45	6.98	-0.47	<30	Pass
157	5785	6	-8.42	6.98	-1.44	<30	Pass
165	5825	6	-8.08	6.98	-1.10	<30	Pass

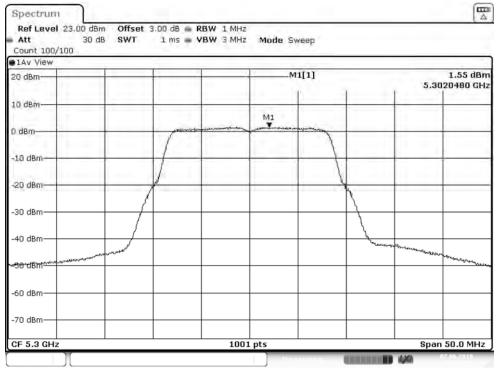
Channel 36:



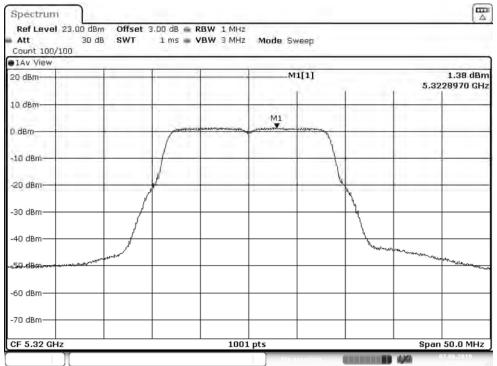
Channel 44:



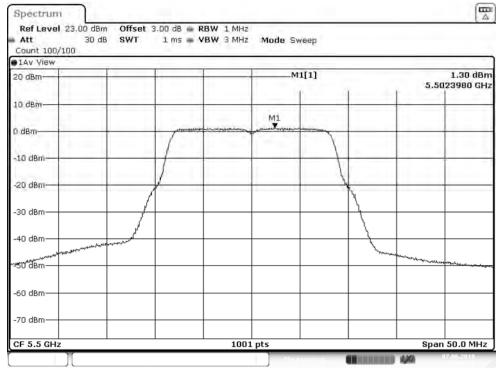
Channel 48:



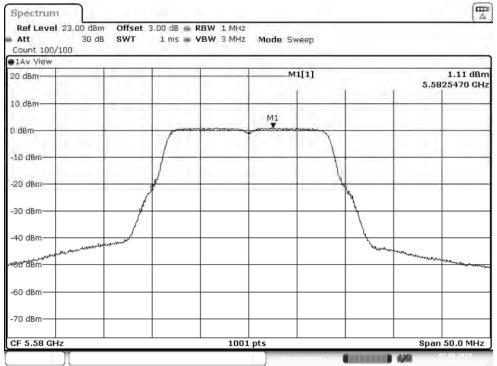
Channel 52:



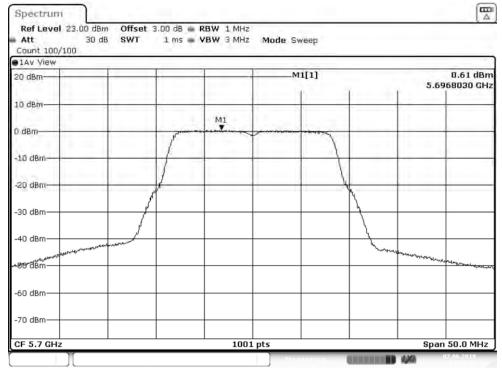
Channel 60:

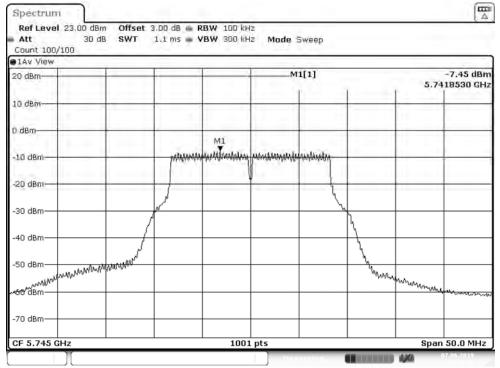


Channel 64:

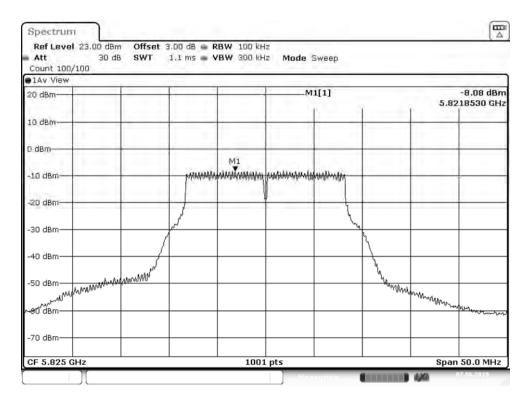


Channel 100:



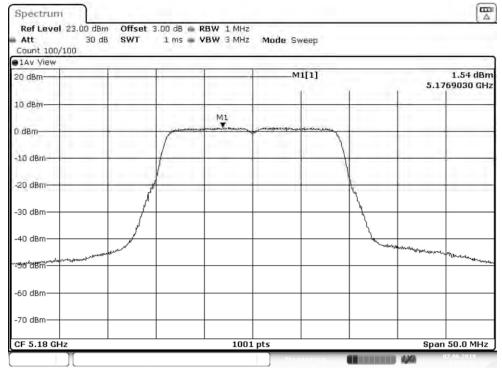

Channel 116:

Channel 140:



Channel 157

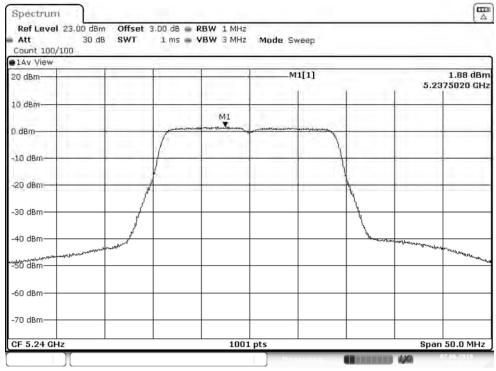
Att Count 100/100	30 dB SWT	1.1 ms =	VBW 300 kH	z Mode :	Sweep				
1Av View	-			-	74.57				
20 dBm	M1[1]						-8,42 dBn 5,7809040 GH		
10 dBm			-	1	-	-	1		
0 dBm	_	-							
-10 dBm	_	portune	M1	MUNHAMANA	www.www.				
-20 dBm	-		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		$\left \right $				
-30 dBm		der la construction de la construction de la construcción de la constr				<u> </u>			
-40 dBm									
-50 dBm 	NAMAN MANY					hunner			
460° aBm							manunun	Mannow	
-70 dBm									
CF 5.785 GHz			1001	Inte			Coord	50.0 MHz	


Product	:	Intelligent Robot
Test Item	:	Peak Power Spectral Density
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps)
Test Date	:	2019/06/18

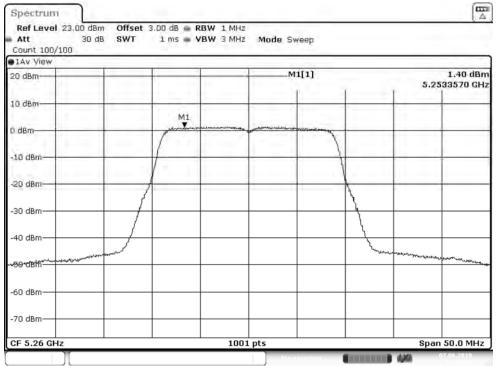
Channel Number	Frequency (MHz)	Data Rata (Mbps)	Measurement Level (dBm)	Required Limit (dBm)	Result
36	5180	7.2	1.54	11	Pass
44	5220	7.2	1.35	11	Pass
48	5240	7.2	1.88	11	Pass
52	5260	7.2	1.40	11	Pass
60	5300	7.2	1.30	11	Pass
64	5320	7.2	1.50	11	Pass
100	5500	7.2	1.01	11	Pass
116	5580	7.2	0.76	11	Pass
140	5700	7.2	0.26	11	Pass

Channel Number	Frequency (MHz)	Data Rata (Mbps)	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
149	5745	7.2	-8.11	6.98	-1.13	<30	Pass
157	5785	7.2	-8.68	6.98	-1.70	<30	Pass
165	5825	7.2	-8.32	6.98	-1.34	<30	Pass

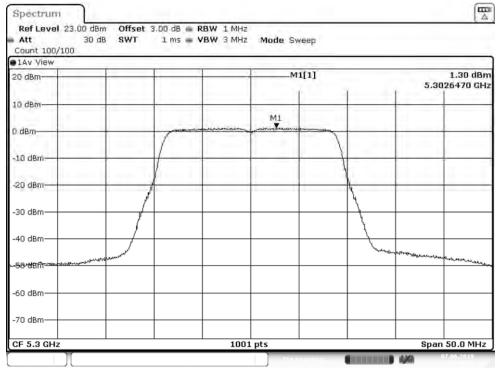
Channel 36:



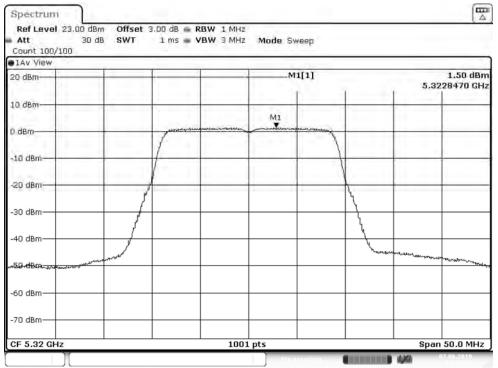
Channel 44:



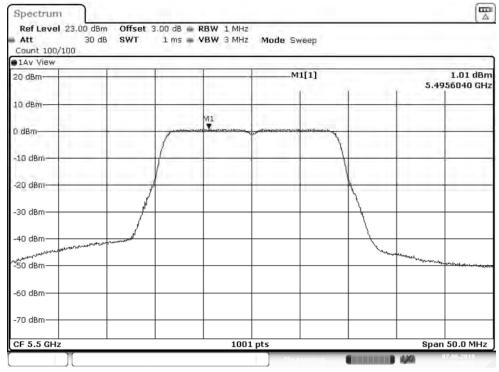
Channel 48:



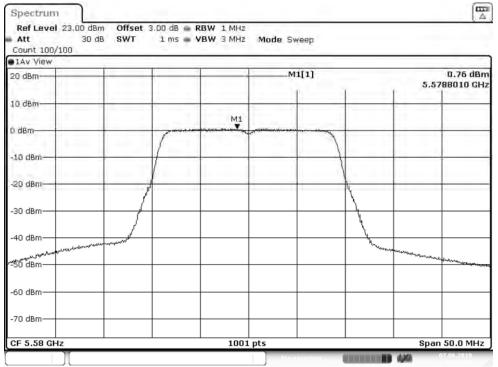
Channel 52:



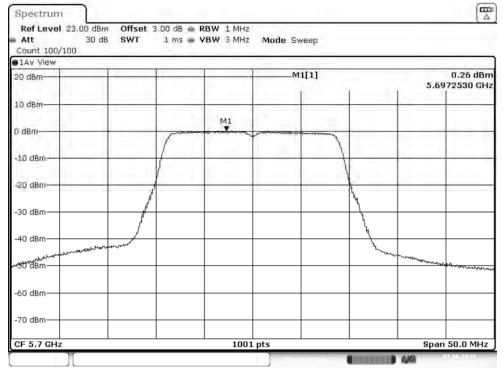
Channel 60:

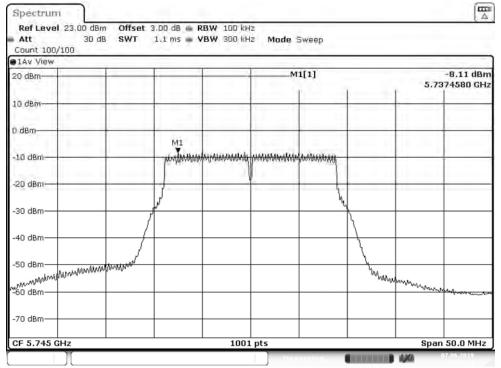


Channel 64:

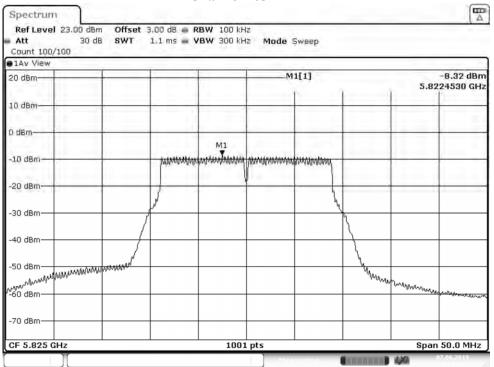


Channel 100:




Channel 116:

Channel 140:



Channel 157

1Av View								
20 dBm				M	1[1]	-8.68 dBn 5.7787060 GH		
10 dBm		1		-	-			
0 dBm								
10 dBm		MI	anter manager	nideliteration	hannanan			
-20 dBm		11	-	-			-	
-30 dBm		N ^V			<u>ኪ</u>	μ h		
-40 dBm						\mathbb{N}		
50 dBm 	mmumm					manya	anananan	
60 dBm							- and the	manne

Product	:	Intelligent Robot
Test Item	:	Peak Power Spectral Density
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps)
Test Date	:	2019/06/18

Channel Number	Frequency (MHz)	Data Rata (Mbps)	Measurement Level (dBm)	Required Limit (dBm)	Result
38	5190	15	-1.84	11	Pass
46	5230	15	-1.71	11	Pass
54	5270	15	-1.17	11	Pass
62	5310	15	-1.39	11	Pass
102	5510	15	-3.65	11	Pass
110	5550	15	-3.70	11	Pass
134	5670	15	-4.26	11	Pass

Channel Number	Frequency (MHz)	Data Rata (Mbps)	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
151	5755	15	-13.18	6.98	-6.20	<30	Pass
159	5795	15	-13.42	6.98	-6.44	<30	Pass

Channel 38

1Av View								
20 dBm				M	1[1]		5.1	-1.84 dBn 971900 GH;
10 dBm				-		-	-	
0 dBm	-		and The destrict	MI	warmet-way,		_	-
-10 dBm	_		1	<u> </u>		-		
-20 dBm								-
-30 dBm								
-40 dBm		A				Lunalwolm	- January and the	ad and for a company address
-50 dBm	**************************************	<u></u>						
-60 dBm								
I								

20 dBm				N	11[1]		5.2	-1.71 dBm 351900 GHz
10 dBm		-	-					
0 dBm		ال له العد سار سال		MI				
-10 dBm				Υ				
-20 dBm			-					
-30 dBm						1		
-40 dBm		<u> </u>				Lummun	and a state of the	and the second
-50 dBm								
-60 dBm								
	1							

Channel 54

1Av View								
20 dBm				M	1[1]		5.27	-1.17 dBn 753900 GH:
10 dBm			-					
0 dBm		mindentriande	Lucianan	M1	amonutary			-
-10 dBm	_)	/				
-20 dBm	_							
-30 dBm		1						
-40 dBm	Marana	<i>,</i> /				Lacomercia		and the second and and a
-50 dBm								
-60 dBm								
					1	1 1		1

Channel 62

1Av View									
20 dBm				N	11[1]		-1.39 de 5,3146000 G		
10 dBm	-	-	-	-	1	-	-		
D dBm	-	مىيىدەللە م ىمىيەر	derate many services	M1	and the second designed and				
10 dBm	-			¥		-			
20 dBm									
30 dBm									
40 dBm						Lawrence war	and a state of the	we shall be and in the	
50 dBm									
60 dBm									
70 dBm									

Channel 102

lode Sweep	
1.00.00	
M1[1]	-3.65 dBn 5.5234900 GH;
MI	
<u>\</u>	

	<u> </u>

Count 100/100 1Av View						-
20 dBm			M1[1]	r v	-3.7 5.546400	0 dBn 10 GH:
10 dBm	-		-	_		_
D dBm			M1			
-10 dBm		f the second sec	Y			_
-20 dBm						_
-30 dBm						
40 dBm	A			<u>_</u>		
50 dBm	and and and a start of the star			humanan	gelen and the set of t	Summer
-60 dBm						
					1	

Channel 134

Att 30 dB SWT Count 100/100	1 ms 🕳 VBW 3	MHz Mode Sw	леер		
20 dBm		M	1[1]	5.65	-4.26 dBm 575100 GHz
10 dBm-		_		-	
D dBm	MI				-
-10 dBm				-	
-20 dBm				_	
30 dBm	1				
40 dBm-	A				
50 dBm			- V.	anderman for first and for the first state of the second state of	and a share a s
-60 dBm					
70 dBm					
CF 5.67 GHz		1001 pts		Span	 100.0 MHz

	-								
20 dBm					M	1[1]			-13.18 dBm 500000 GHz
10 dBm	-	-			1				
0 dBm		-	-						
-10 d8m	-	_	undudanellas	0.11 สาราชสาราชสาราชสาราช	usattal disa data aktu re	o ulmhathada a at a	-		
-20 dBm			and all the states	Warnion and Marin	ADD-04D -41041-	Printer and Control of			
-30 dBm					h.				
-40 dBm			1				1		
-50 dBm							<u> </u>		
all when the support of the second seco	name and the second	uther grant and the states of the							wallharderare
-60 dBm							- month party	Prevaluum (Procession)	
-70 dBm									
CF 5.755 Gł	-17			1001	L pts			Snan	100.0 MHz

Channel 159

1Av View	~		_						
20 dBm					M	1[1]			13,42 dBr 62100 GH
10 dBm	-				-		-		
0 dBm	-	_							-
-10 d8m			onat	M1.					
-20 dBm			here and the second s	and the second second second	Automotivelyayayay	epondethicology of the		-	-
-30 dBm			}		}				
-40 dBm									
-50 dBm							<u> </u>		
60 dBm	องกูปหมาสหุลงสะจุประกันห	and and a second se					H. Huphonisco	KA NUMPIN MANUTATION	hter her here were
-70 dBm									

Product	:	Intelligent Robot
Test Item	:	Peak Power Spectral Density
Test Mode	:	Mode 4: Transmit (802.11ac-20BW 7.2Mbps)
Test Date	:	2019/06/18

	Channel Number	Frequency (MHz)	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)1	Required Limit (dBm)	Result
1	44(U-NII-2C)	5720	0.14		0.14	<11	Pass
	144(U-NII-3)	5720	-8.52	6.98	-1.54	<30	Pass

Channel 144 (U-NII-2C)

1Av View	1. C								
20 dBm						[1] [1]		5.7250	.73 dBn 000 GH: .14 dBn
10 0011				M2	M	1		5.7173	500 GH:
0 dBm	-		1	- Young					
-10 dBm			/	-					_
-20 dBm		/	(1		
-30 dBm	-	1	-	-			1		
-40 dBm							N.		
-50 dBm	- to a second						The man	mer more more and	
-50 dBm									and the second second
-60 dBm									
-70 dBm							_		
CF 5.72 GH	z			1001	pts			Span 50	.0 MHz
Marker									
	Trc	X-value		Y-value	Funct	ion	Fun	ction Result	
M1 M2	1		25 GHz 35 GHz	-0.73 dBr 0.14 dBr					

Channel 144 (U-NII-3)

Spectrum										
Ref Level Att Count 100/	23.00 dBr 30 d			RBW 100 kH VBW 300 kH		Sweep				
1Av View	100	_								
20 dBm						M1[1] M2[1]				-8.72 dBm 250000 GHz -9.52 dBm 262500 GHz
0 dBm			AAMAM	manipana	MANAMANA	M1M2	AND			2 - 1
-20 dBm			<i>,</i>							A
-30 dBm		/					-	1		
-50 dBm	NWWWWW	Anorman						4 donier	withmanness	Maddenne
~=60 dBm										
CF 5.72 GH	Iz			1001	pts				Spa	n 50.0 MHz
Marker	6 T un	V	1	V .uslus	1 5.00	ation		E	ation Door	4
Type Ref M1 M2	f Trc 1		25 GHz 25 GHz	<u>Y-value</u> -8.72 dB -8.52 dB	m	ction		Fur	nction Resu	IL
)[[_] M	asuring.			140	07.06.2019

Product	:	Intelligent Robot
Test Item	:	Peak Power Spectral Density
Test Mode	:	Mode 5: Transmit (802.11ac-40BW 15Mbps)
Test Date	:	2019/06/18

Channel Number	Frequency (MHz)	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)1	Required Limit (dBm)	Result
142(U-NII-2C)	5710	-4.32		-4.32	<11	Pass
142(U-NII-3)	5710	-13.17	6.98	-6.19	<30	Pass

Channel 142 (U-NII-2C)

			-	-		
20 dBm				M1[1]		-5.76 dBn 5.7250000 GH -4.32 dBn 5.6982000 GH
0 dBm	_	Ma	-	M		
-10 dBm			Y		7	
-20 dBm		1				
-30 dBm	_	1			1	
-40 dBm	and a grad a star and a star	A				
-50 dBm					herewe	***
-60 dBm						
-70 dBm						
				-		
CF 5.71 GHz Marker			1001 pt	.5		Span 100.0 MHz

Channel 142 (U-NII-3)

Spectrum											
Ref Level : Att Count 100/1	30 de			RBW 100 kH VBW 300 kH		Mode Sv	кеер				
1Av View	S										
20 dBm						M1				5.7	-13.17 dBm 250000 GHz -13.17 dBm 250000 GHz
0 dBm	_					-		+			
-10 dBm	_		Manyand	land galanda second and a state of the second	pant/Life	aluturini dala faria bi	MR	ulin			
-20 dBm		_	And the second		-						
-30 dBm			1-	-	-			+			
-40 dBm								\neg			
-50 dBm	nullipleaternation	and and and and and and							-	-	4.4.4.2.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.
-60 dBm											
-70 dBm											
CF 5.71 GHz	2			1001	pts					Span	100.0 MHz
Marker											
	Trc	X-value		Y-value		Functi	on		Fund	ction Resul	t
M1 M2	1		25 GHz 25 GHz	-13.17 dB -13.17 dB							
	1					Meas	ring			4,49	07.06.2019

- Intelligent Robot Product :
- Test Item Peak Power Spectral Density :
- Test Mode

.

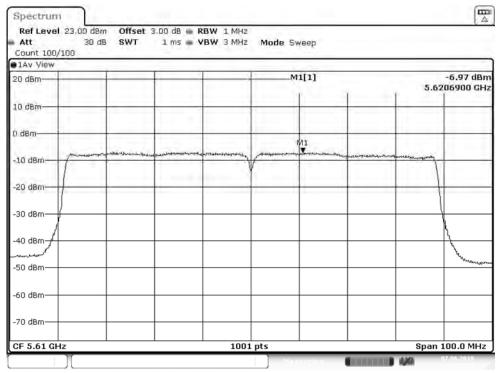
- Mode 6: Transmit (802.11ac-80BW 32.5Mbps) :
- Test Date

2019/06/18 :

Channel Number	Frequency (MHz)	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)1	Result
42	5210	-5.01		-5.01	<11
58	5290	-5.13		-5.13	<11
106	5530	-6.58		-6.58	<11
122	5610	-6.97		-6.97	<11
138(U-NII-2C)	5690	-7.03		-7.03	<11
138(U-NII-3)	5690	-17.24	6.98	-10.26	<30
155	5775	-13.49	6.98	-6.51	<30

Channel 42

Att 30 dB Count 100/100 • 1Av View	SWT 1 ms = VBW 3 M	/Hz Mode Sweep	
20 dBm		M1[1]	-5.01 dBm 5.2214900 GHz
10 dBm			5.2214900 GHZ
0 dBm		M1	
-10 dBm	and a second	and have a second a second of the second of	
-20 dBm-			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 5.21 GHz	1	.001 pts	Span 100.0 MHz


Channel 58

				14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		THE OWNER
20 dBm			M	(1)	5.30	-5.13 dBn 124900 GH
10 dBm	_					
0 dBm				M1		
10 dBm		ورواونا بعالا مهانا معمد معيدين	www.	and the second state of the second states	and the second second	
20 dBm						
30 dBm						
40 dBm						1
50 dBm						much
60 dBm						

Channel 106

and the second second			 			
20 dBm			M1[1]			-6.58 dBn 20900 GH
10 dBm				-		
0 dBm	-		 M1			
-10 dBm	والمحادثة والمعادية والمعادية والمعادية والمعادين	and provident and the second second	 ustore in contraction of the	en ale and a second	manning	
20 dBm	-				\rightarrow	
30 dBm			 			
40 dBm						<u> </u>
50 dBm			 			a conserved
60 dBm			 			
		1 1		1 1		

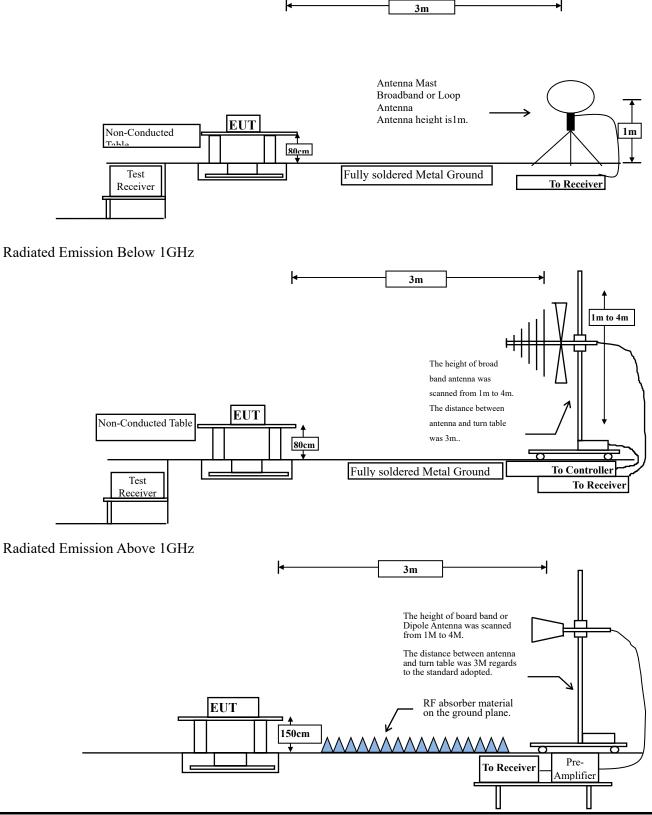
Channel 138 (U-NII-2C)

Spectrum									
Ref Level Att Count 100/	3	dBm Offset D dB SWT		RBW 1 MHz VBW 3 MHz	Mode	s Sweep			(m
AV View	100								
20 dBm						M1[1] M2[1]		5.72	-9.79 dBm 50000 GHz -7.03 dBm 35000 GHz
0 dBm			M2		-			M1	
-10 dBm	1	an lither and a second s		- Andrew A	P		the second s	- I want	
-20 dBm	1				1				
-30 dBm		-							
-40 dBm									A horas
-50 dBm									
-60 dBm									
-70 dBm									
CF 5.69 GH	z			1001	pts			Span 1	.00.0 MHz
Marker									
Type Ref		X-value		Y-value		unction	Funct	tion Result	
M1 M2	1		25 GHz 35 GHz	-9.79 dBr -7.03 dBr					
	1					Measuring	(International Contents)	400	7.06.2019

Channel 138 (U-NII-3)

Spectrum	1									
Ref Level Att Count 100,	3			RBW 100 kH		Mode 5	Sweep			f as
AV VIEW						_				
20 dBm 10 dBm							1[1] 2[1]		5.72	17.79 dBm 50000 GHz 17.24 dBm 75000 GHz
0 dBm			-	-		1	-		+	
-10 dBm	pildana	upaiisgentududeelleitseuma	evender (mission)	latha san san san san san san san san san sa	Patte	anylangrisis	(identer of the state	ศษณะประเทศสารกระด	M1M2	
-30 dBm	/		1			_				
-50 dBm	r 									Longenerated
-70 dBm										
CF 5.69 GH	lz			100	l pts	5			Span 1	100.0 MHz
Marker Type Re	f Trc	X-value		Y-value		Fund	tion	Fun	ction Result	
M1 M2	1		25 GHz 75 GHz	-17.79 dE -17.24 dE						
	1					Mee	suring		444	07.06.2019

Channel 155


1Av View		-		-	-				
20 dBm					M	1[1]			13,49 dBr 75000 GH
10 dBm	-	-	-			-			
) dBm	-		-		-				-
10 dBm				1	MI				_
20 dBm	phaloshowning	apartabilities and the second	nannannannan	tepplaynanynan lanti	population and a second	uston bullapino playe	enternetister and the second second	arautadulutadu	
30 dBm	<u> </u>				1				
40 dBm —									
50 dBmp									<u>\</u>
իմեսիկ//" 60 dBm									Wageland agence of
oo ubiii									

5. Radiated Emission

5.1. Test Setup

Radiated Emission Under 30MHz

5.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	Field strength	Measurement distance					
	(microvolts/meter)	(meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

5.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement

antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

RBW and VBW Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz. $VBW \ge 3MHz.$

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \ge 98 %

VBW $\geq 1/T$, when duty cycle < 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

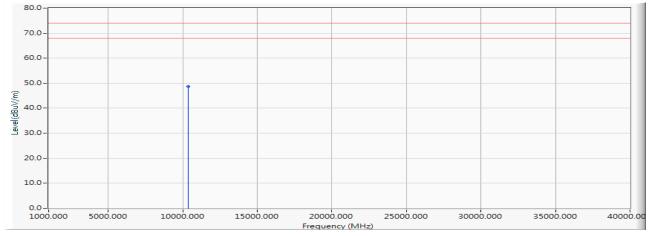
5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	94.12	1.4400	694	1k
802.11n20	94.08	1.3500	741	1k
802.11n40	87.60	0.6780	1475	2k
802.11ac20	93.80	1.3562	737	1k
802.11ac40	87.73	0.6762	1479	2k
802.11ac80	78.75	0.3410	2933	3k

Note: Duty Cycle Refer to Section 8

5.4. Uncertainty

Horizontal polarization :

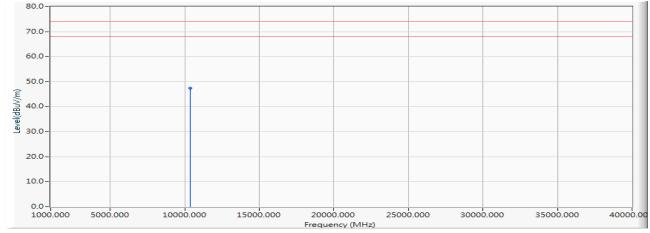
30-300MHz: ±4.08dB ; 300M-1GHz: ±3.86dB ; 1-18GHz: ±3.77dB ; 18-40GHz: ±3.98dB Vertical polarization :


30-300MHz: ±4.81dB; 300M-1GHz: ±3.87dB; 1-18GHz: ±3.83dB; 18-40GHz: ±3.98dB

5.5. Test Result of Radiated Emission

Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5180MHz)
Test Date	:	2019/06/26

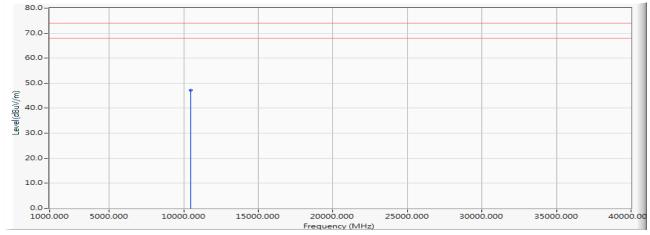
Horizontal



		Frequency	Correct Factor	tor Reading Level Measure Level		Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10360.000	0.180	48.530	48.710	-25.290	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

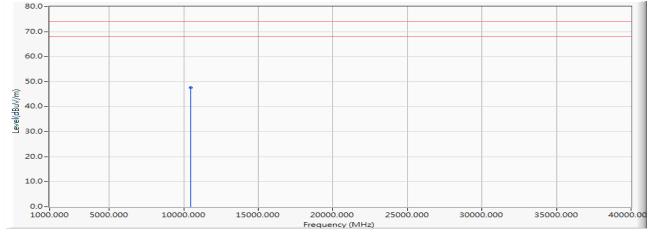
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5180MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	0.180	47.230	47.410	-26.590	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

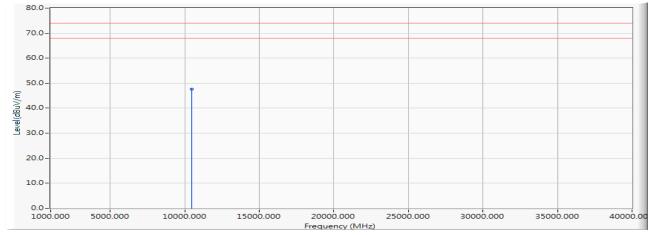
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5220MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	0.233	46.880	47.114	-26.886	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

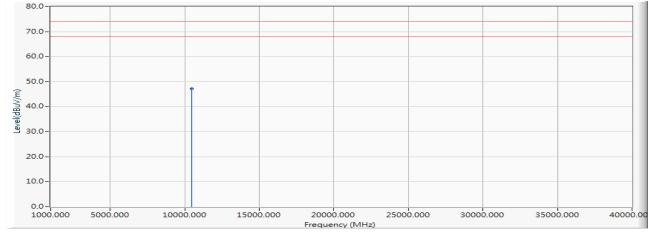
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5220MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	0.233	47.390	47.624	-26.376	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

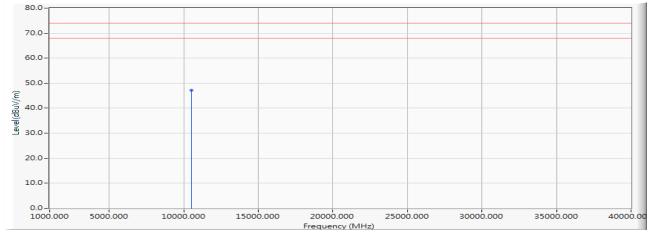
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5240MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	0.269	47.330	47.599	-26.401	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

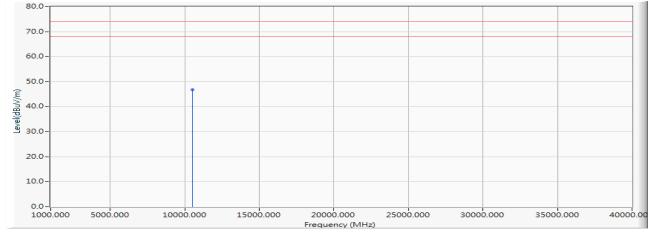
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5240MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	0.269	46.880	47.149	-26.851	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

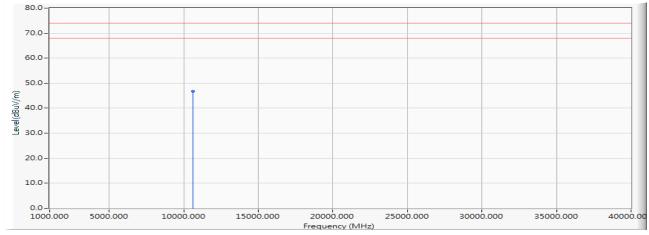
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5260MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	0.293	46.820	47.113	-26.887	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

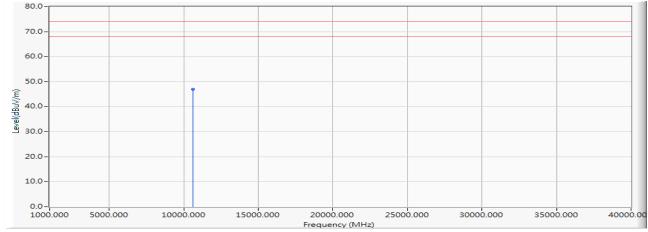
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5260MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10520.000	0.293	46.380	46.673	-27.327	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

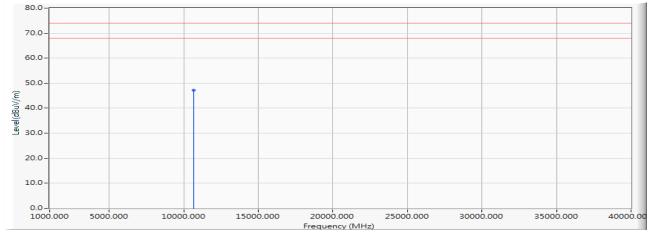
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5300MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	0.462	46.290	46.752	-27.248	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

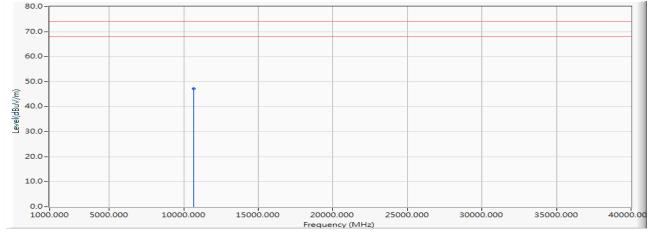
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5300MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type	
1	*	10600.000	0.462	46.550	47.012	-26.988	74.000	PEAK	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

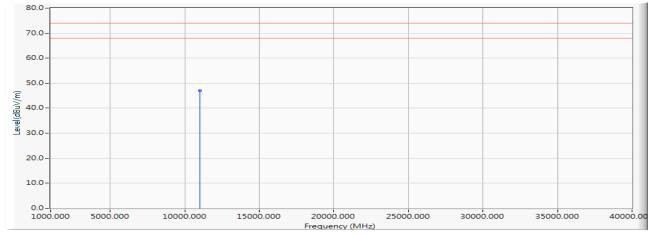
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5320MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	0.598	46.590	47.188	-26.812	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

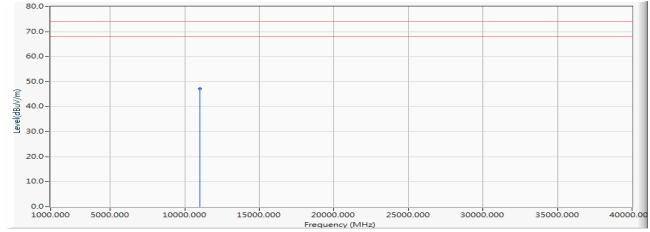
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5320MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type	
1	*	10640.000	0.598	46.520	47.118	-26.882	74.000	PEAK	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

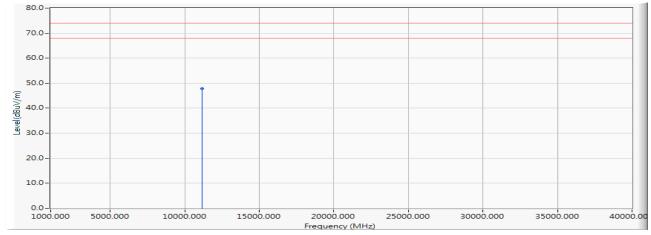
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
:	2019/06/26
	:



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	1.166	45.730	46.896	-27.104	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

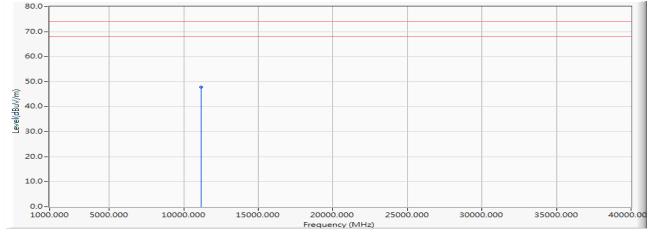
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	C	Limit (dBuV/m)	Detector Type
1	*	11000.000	1.166	45.920	47.086	-26.914	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

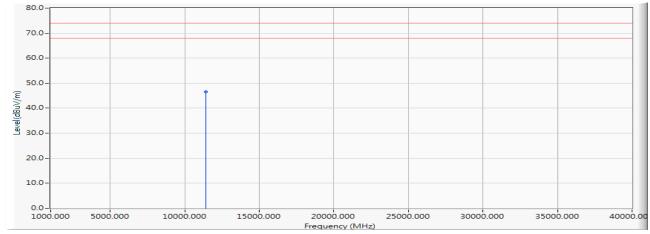
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5580MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	1.203	46.590	47.793	-26.207	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

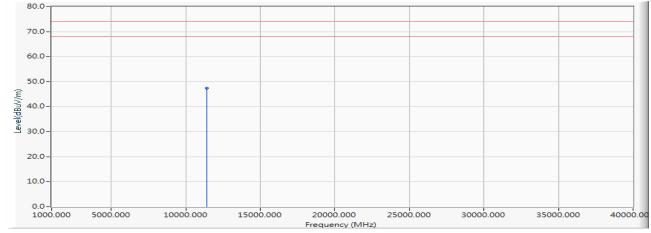
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5580MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	1.203	46.520	47.723	-26.277	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

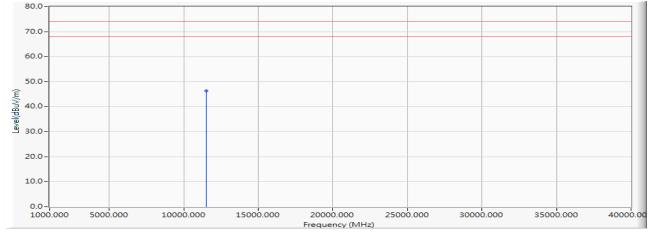
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 1: Transmit (802.11a 6Mbps) (5700MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	1.624	44.820	46.444	-27.556	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5700MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11400.000	1.624	45.690	47.314	-26.686	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

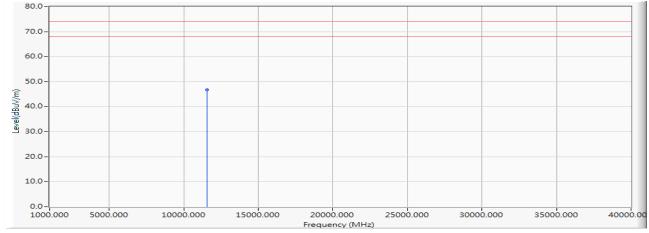
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5745MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11490.000	1.894	44.520	46.414	-27.586	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

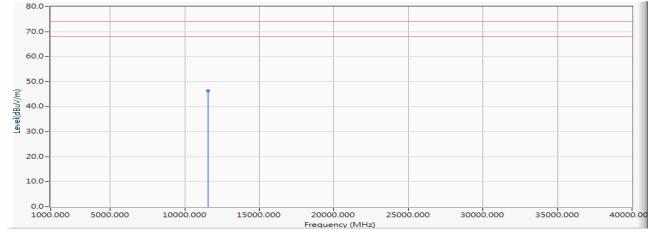
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5745MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	1.894	44.580	46.474	-27.526	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

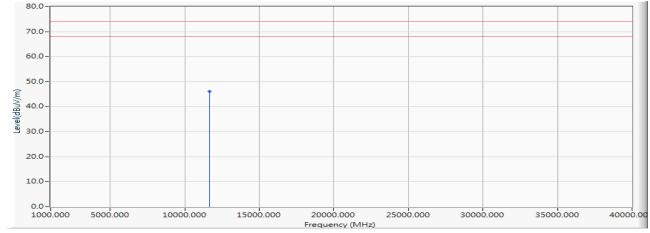
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5785MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	C	Limit (dBuV/m)	Detector Type
1	*	11570.000	1.993	44.800	46.793	-27.207	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

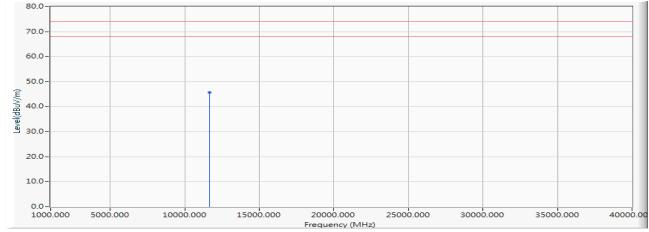
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5785MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11570.000	1.993	44.290	46.283	-27.717	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

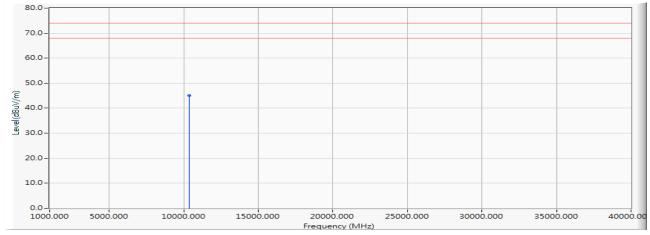
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5825MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	C	Limit (dBuV/m)	Detector Type
1	*	11650.000	2.093	44.010	46.103	-27.897	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

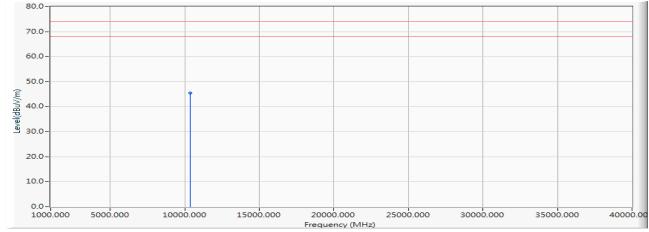
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5825MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	2.093	43.620	45.713	-28.287	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

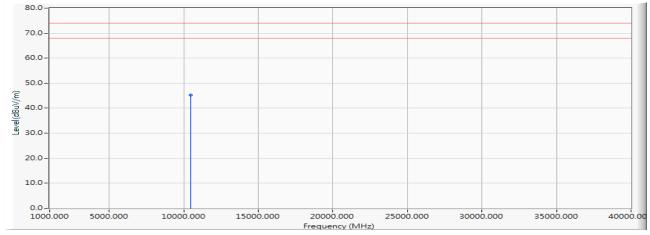
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	0.180	44.760	44.940	-29.060	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

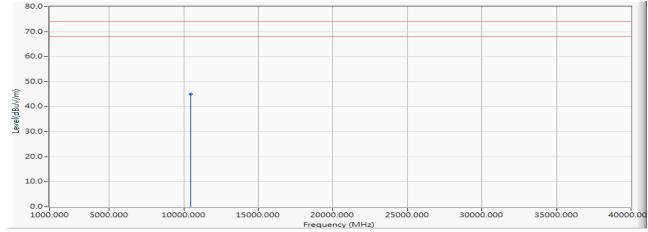
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	0.180	45.370	45.550	-28.450	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

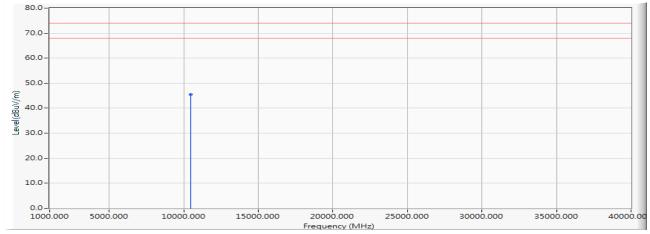
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	0.233	45.100	45.334	-28.666	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

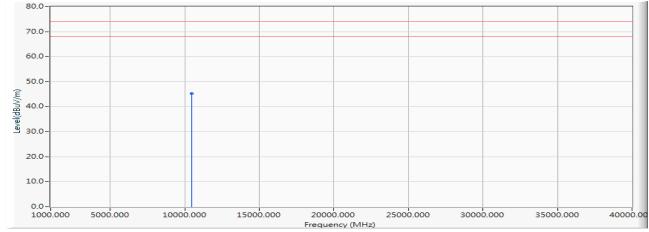
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	0.233	44.890	45.124	-28.876	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

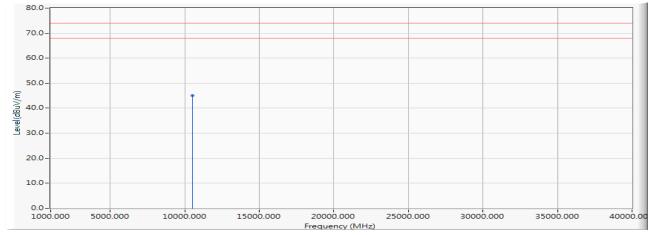
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5240MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	0.269	45.200	45.469	-28.531	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5240MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10480.000	0.269	44.930	45.199	-28.801	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5260MHz)
:	2019/06/26
	: :

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	0.293	44.740	45.033	-28.967	74.000	PEAK

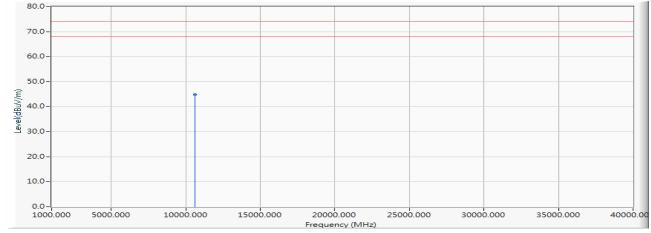
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5260MHz)
Test Date	:	2019/06/26

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10520.000	0.293	45.300	45.593	-28.407	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

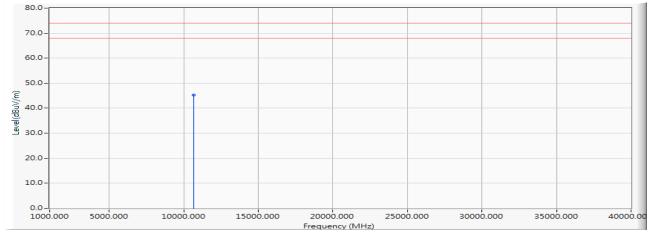
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	0.462	44.830	45.292	-28.708	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

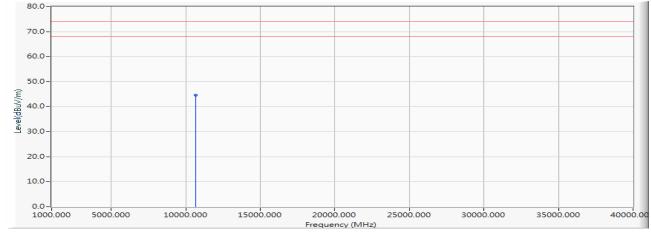
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10600.000	0.462	44.260	44.722	-29.278	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

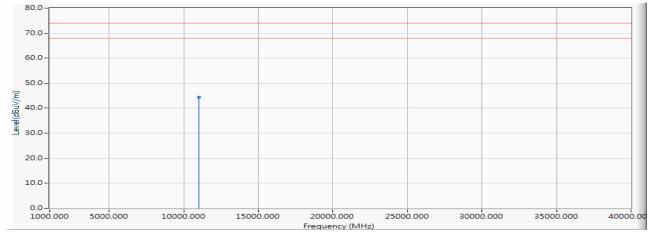
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	0.598	44.750	45.348	-28.652	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

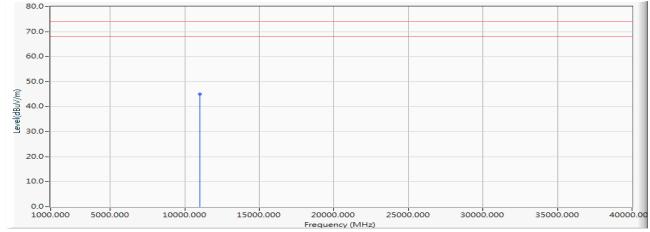
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	0.598	44.070	44.668	-29.332	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

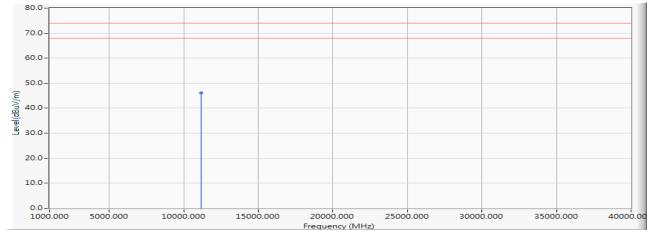
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	1.166	43.170	44.336	-29.664	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

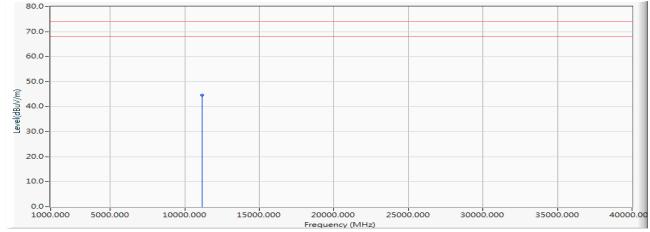
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	1.166	43.870	45.036	-28.964	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

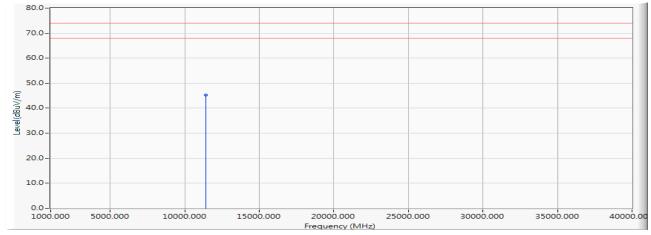
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	1.203	44.880	46.083	-27.917	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

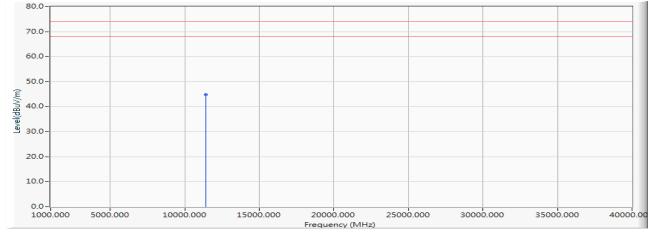
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	1.203	43.330	44.533	-29.467	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

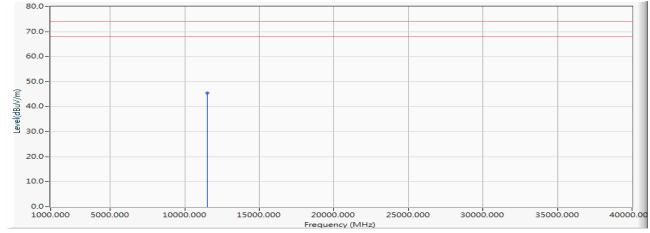
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5700MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	1.624	43.620	45.244	-28.756	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

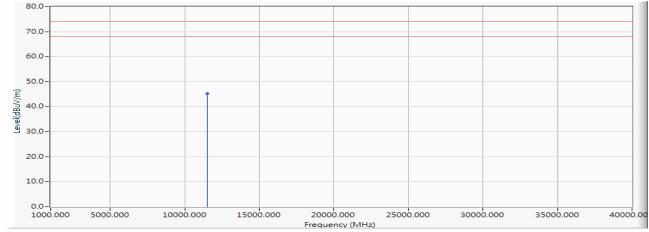
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5700MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	1.624	43.140	44.764	-29.236	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

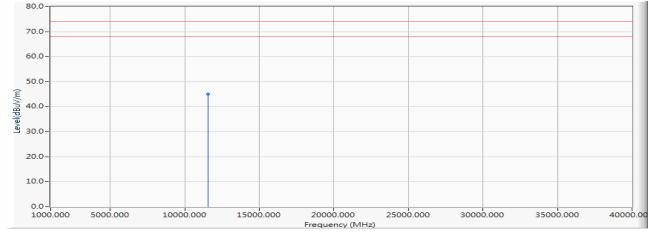
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5745MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	1.894	43.500	45.394	-28.606	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

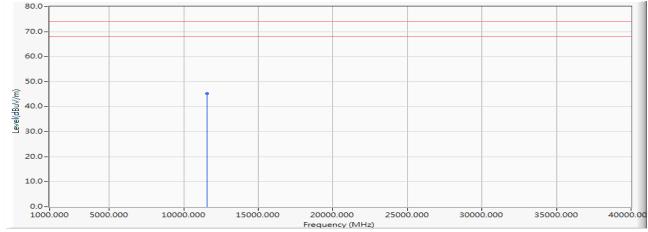
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5745MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	1.894	43.300	45.194	-28.806	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

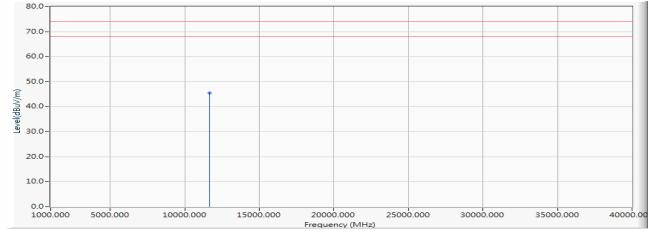
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5785MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11570.000	1.993	43.120	45.113	-28.887	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

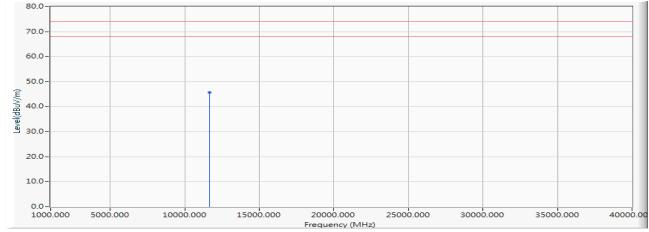
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5785MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	1.993	43.280	45.273	-28.727	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

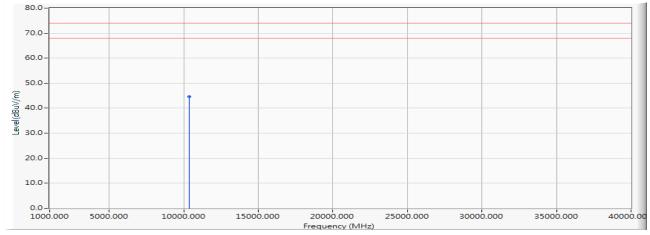
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5825MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11650.000	2.093	43.430	45.523	-28.477	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

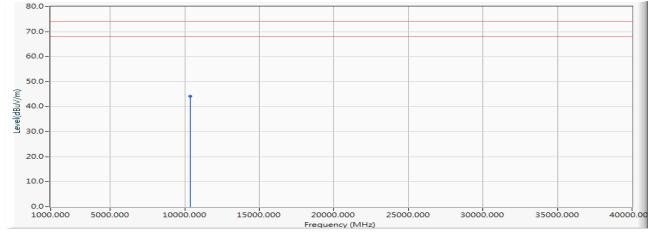
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5825MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11650.000	2.093	43.690	45.783	-28.217	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

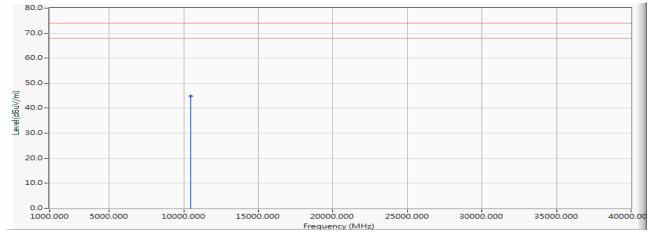
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
:	2019/06/26
	:


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10380.000	0.211	44.460	44.671	-29.329	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Intelligent RobotTest Item:Harmonic Radiated Emission DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)Test Date:2019/06/26

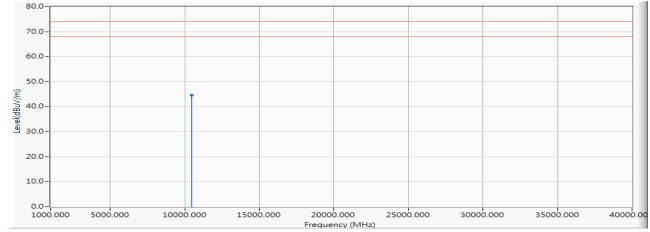
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10380.000	0.211	43.870	44.081	-29.919	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

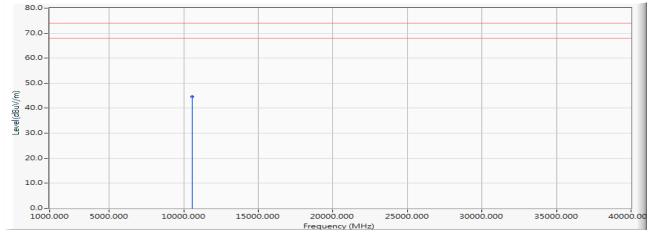
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5230MHz)
Test Date	:	2019/06/26
Test Date		2019/06/20



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	0.236	44.510	44.746	-29.254	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

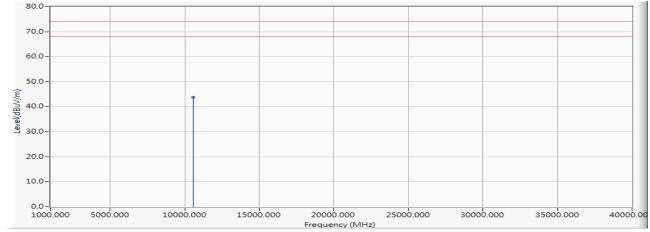
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5230MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10460.000	0.236	44.360	44.596	-29.404	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

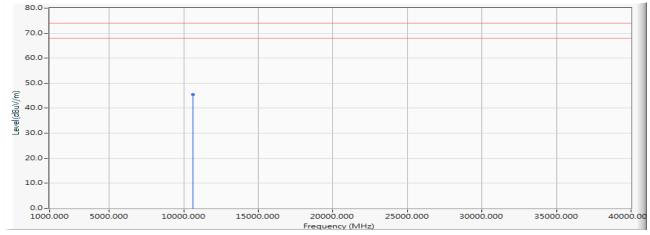
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5270MHz)
:	2019/06/26
	:



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10540.000	0.382	44.280	44.662	-29.338	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

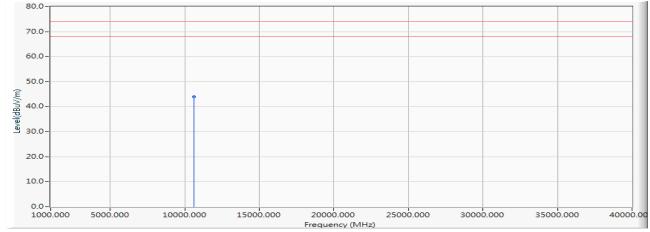
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5270MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10540.000	0.382	43.320	43.702	-30.298	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

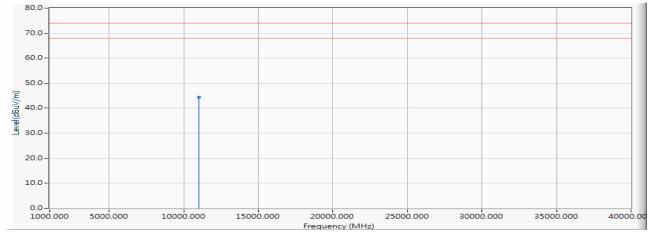
Intelligent Robot
Harmonic Radiated Emission Data
Mode 3: Transmit (802.11n-40BW 15Mbps) (5310MHz)
2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10620.000	0.527	44.850	45.377	-28.623	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

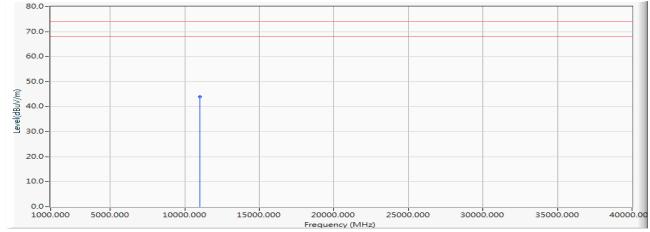
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5310MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10620.000	0.527	43.530	44.057	-29.943	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

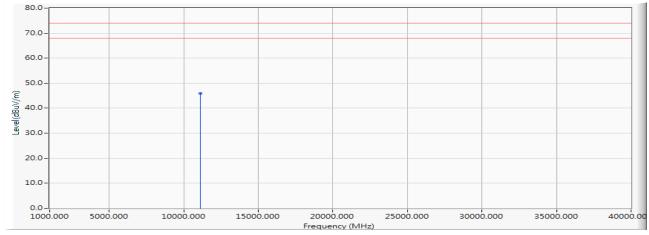
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)
Test Date	:	2019/06/26


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11020.000	1.170	43.260	44.430	-29.570	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Intelligent RobotTest Item:Harmonic Radiated Emission DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)Test Date:2019/06/26

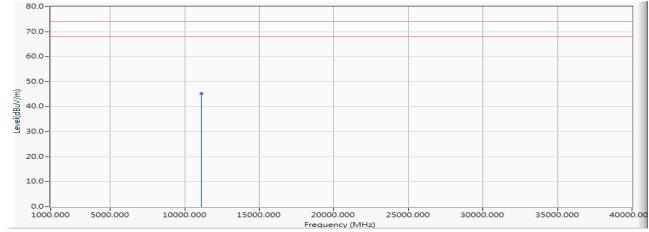
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11020.000	1.170	42.830	44.000	-30.000	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

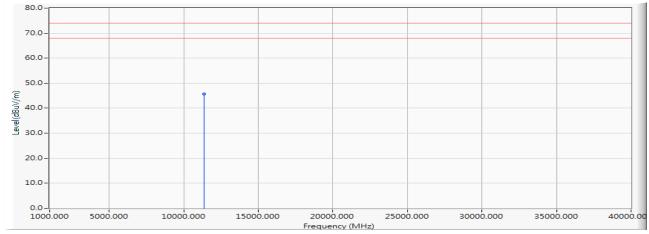
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5550MHz)
Test Date	:	2019/06/26


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11100.000	1.190	44.620	45.810	-28.190	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Intelligent RobotTest Item:Harmonic Radiated Emission DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5550MHz)Test Date:2019/06/26

Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11100.000	1.190	44.160	45.350	-28.650	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

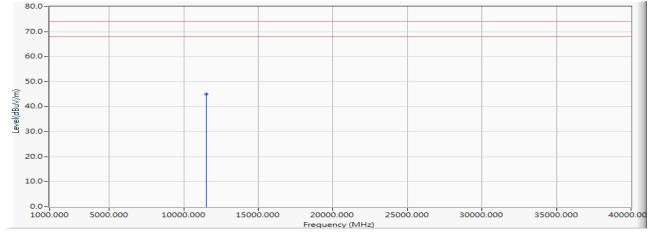
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5670MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11340.000	1.482	44.110	45.591	-28.409	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

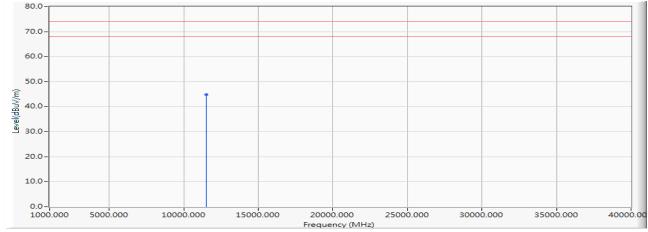
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5670MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11340.000	1.482	43.060	44.541	-29.459	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

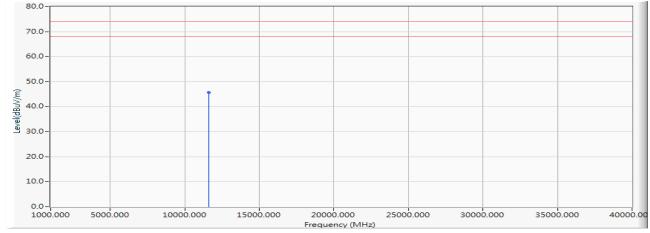
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5755MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11510.000	1.898	43.230	45.129	-28.871	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

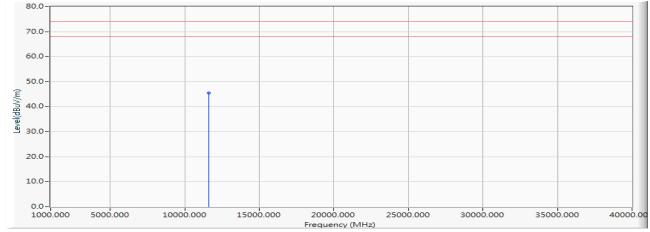
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5755MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11510.000	1.898	42.840	44.739	-29.261	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

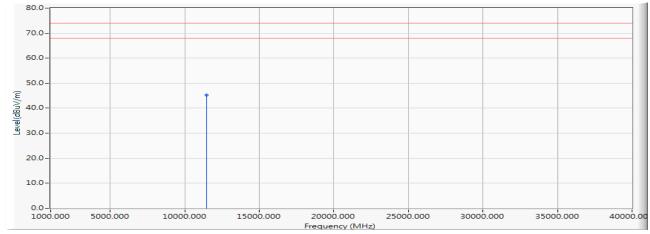
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5795MHz)
Test Date	:	2019/06/26


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11590.000	2.014	43.660	45.673	-28.327	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Intelligent RobotTest Item:Harmonic Radiated Emission DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5795MHz)Test Date:2019/06/26

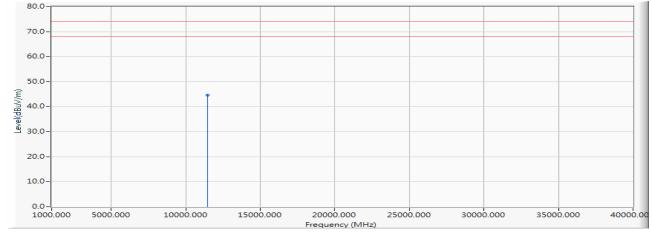
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11590.000	2.014	43.390	45.403	-28.597	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

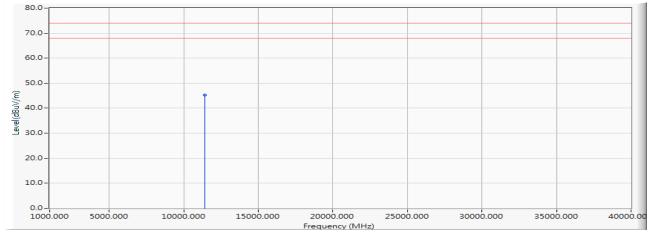
:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 4: Transmit (802.11ac-20BW 7.2Mbps) (5720MHz)
:	2019/06/26
	:



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11440.000	1.767	43.520	45.287	-28.713	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

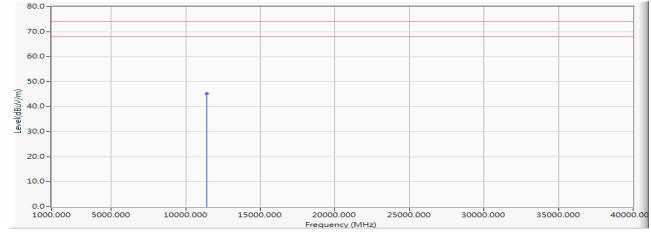
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 4: Transmit (802.11ac-20BW 7.2Mbps) (5720MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11440.000	1.767	42.870	44.637	-29.363	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

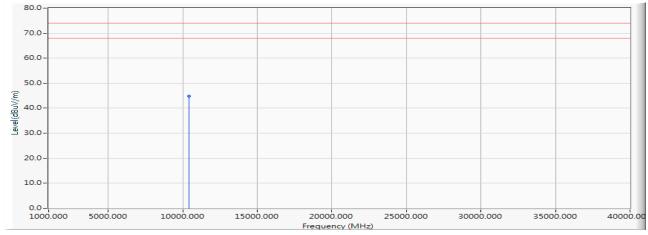
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 5: Transmit (802.11ac-40BW 15Mbps) (5710MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11420.000	1.708	43.640	45.348	-28.652	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

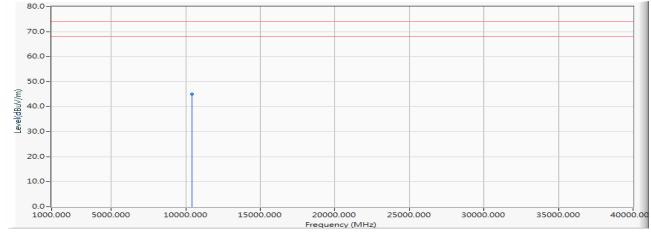
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 5: Transmit (802.11ac-40BW 15Mbps) (5710MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11420.000	1.708	43.520	45.228	-28.772	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

:	Intelligent Robot
:	Harmonic Radiated Emission Data
:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
:	2019/06/26
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	10420.000	0.191	44.690	44.881	-29.119	74.000	PEAK

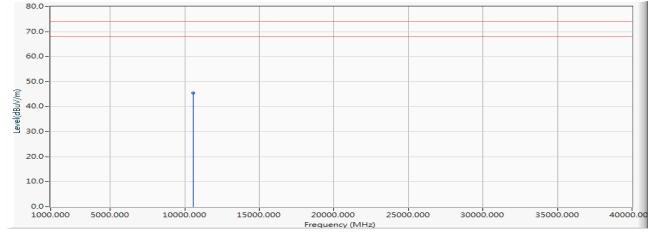
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/26

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10420.000	0.191	44.770	44.961	-29.039	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

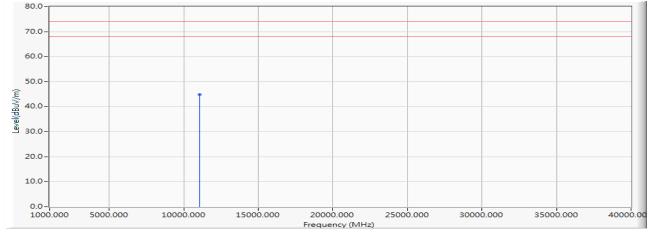
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10580.000	0.463	44.510	44.973	-29.027	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

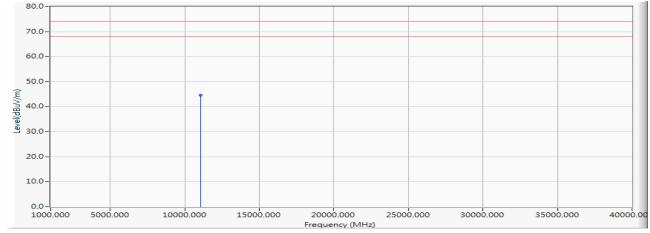
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10580.000	0.463	44.910	45.373	-28.627	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

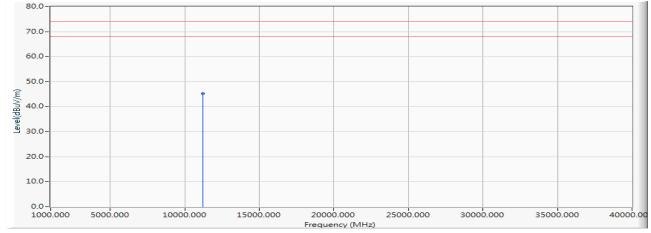
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11060.000	1.130	43.660	44.791	-29.209	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

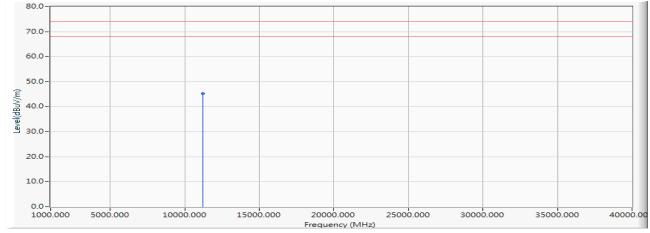
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11060.000	1.130	43.530	44.661	-29.339	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

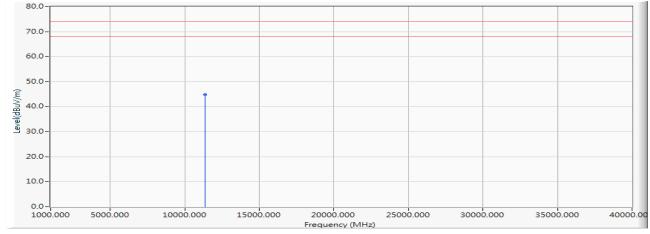
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5610MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11220.000	1.247	44.100	45.347	-28.653	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

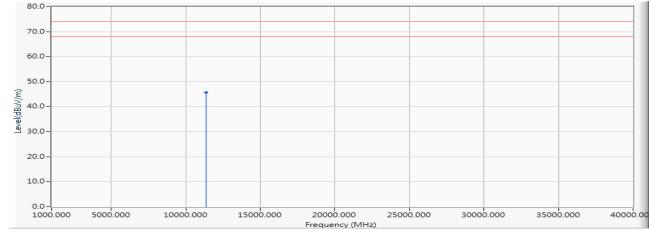
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5610MHz)
Test Date	:	2019/06/26



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11220.000	1.247	44.060	45.307	-28.693	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

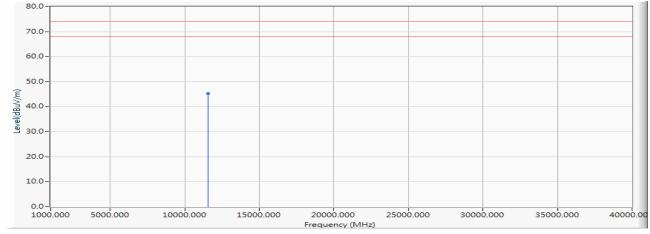
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5690MHz)
Test Date	:	2019/06/26


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11380.000	1.604	43.250	44.853	-29.147	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Intelligent RobotTest Item:Harmonic Radiated Emission DataTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5690MHz)Test Date:2019/06/26

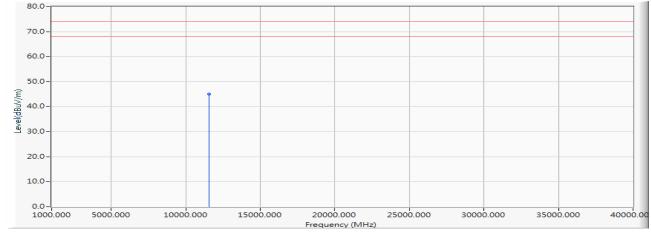
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11380.000	1.604	44.070	45.673	-28.327	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

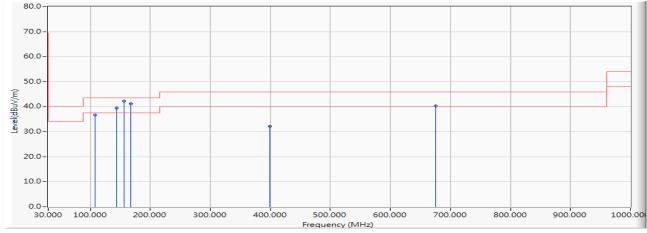
Product	:	Intelligent Robot
Test Item	:	Harmonic Radiated Emission Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)
Test Date	:	2019/06/26


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11550.000	1.987	43.190	45.177	-28.823	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Intelligent RobotTest Item:Harmonic Radiated Emission DataTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)Test Date:2019/06/26

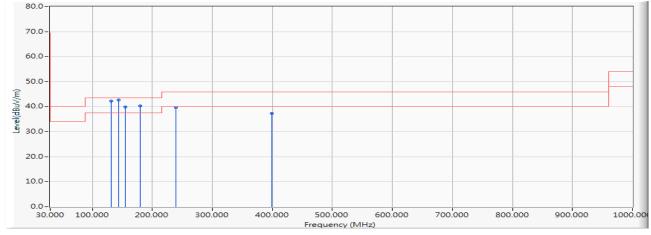
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1	*	11550.000	1.987	43.060	45.047	-28.953	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

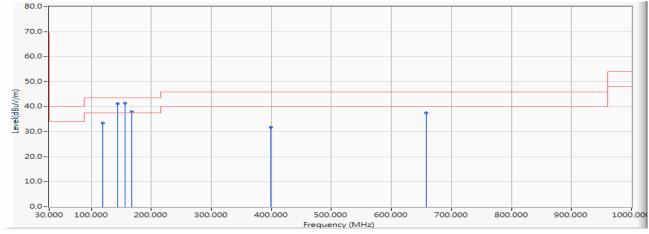
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5220MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	51.426	36.575	-6.925	43.500	QUASIPEAK
2		143.490	-11.340	50.852	39.512	-3.988	43.500	QUASIPEAK
3	*	156.100	-10.938	53.184	42.246	-1.254	43.500	QUASIPEAK
4		167.740	-11.095	52.322	41.227	-2.273	43.500	QUASIPEAK
5		399.570	-8.176	40.310	32.134	-13.866	46.000	QUASIPEAK
6		676.020	-3.338	43.691	40.353	-5.647	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

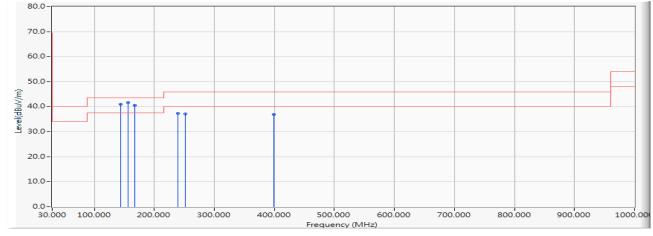
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 1: Transmit (802.11a 6Mbps) (5220MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	54.419	42.152	-1.348	43.500	QUASIPEAK
2	*	143.490	-11.340	53.990	42.650	-0.850	43.500	QUASIPEAK
3		155.130	-10.964	50.949	39.985	-3.515	43.500	QUASIPEAK
4		179.380	-12.456	52.702	40.246	-3.254	43.500	QUASIPEAK
5		239.520	-12.256	52.020	39.764	-6.236	46.000	QUASIPEAK
6		399.570	-8.176	45.599	37.423	-8.577	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

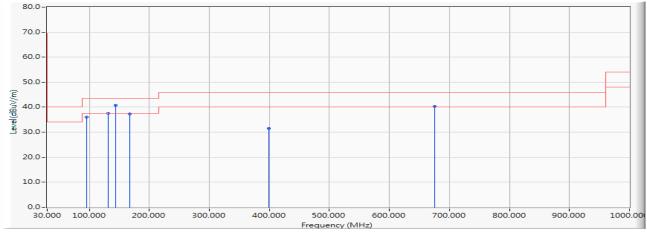
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5300MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	47.088	33.519	-9.981	43.500	QUASIPEAK
2		143.490	-11.340	52.566	41.226	-2.274	43.500	QUASIPEAK
3	*	156.100	-10.938	52.408	41.470	-2.030	43.500	QUASIPEAK
4		167.740	-11.095	48.965	37.870	-5.630	43.500	QUASIPEAK
5		399.570	-8.176	39.956	31.780	-14.220	46.000	QUASIPEAK
6		657.590	-3.622	41.255	37.633	-8.367	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

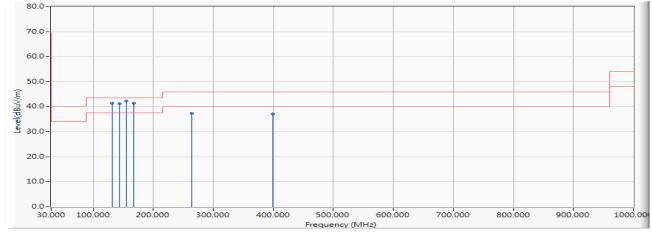
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 1: Transmit (802.11a 6Mbps) (5300MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.490	-11.340	52.329	40.989	-2.511	43.500	QUASIPEAK
2	*	156.100	-10.938	52.528	41.590	-1.910	43.500	QUASIPEAK
3		167.740	-11.095	51.536	40.441	-3.059	43.500	QUASIPEAK
4		239.520	-12.256	49.590	37.334	-8.666	46.000	QUASIPEAK
5		252.130	-12.093	49.115	37.022	-8.978	46.000	QUASIPEAK
6		399.570	-8.176	45.170	36.994	-9.006	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

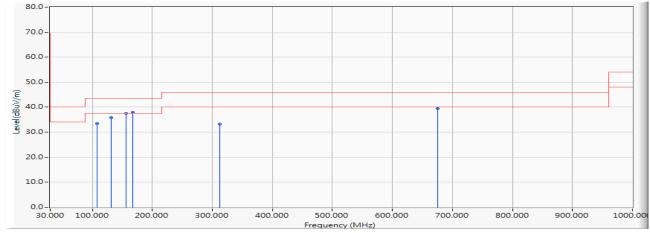
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5580MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	52.804	36.028	-7.472	43.500	QUASIPEAK
2		131.850	-12.267	49.703	37.436	-6.064	43.500	QUASIPEAK
3	*	143.490	-11.340	52.154	40.814	-2.686	43.500	QUASIPEAK
4		167.740	-11.095	48.372	37.277	-6.223	43.500	QUASIPEAK
5		399.570	-8.176	39.765	31.589	-14.411	46.000	QUASIPEAK
6		676.020	-3.338	43.553	40.215	-5.785	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

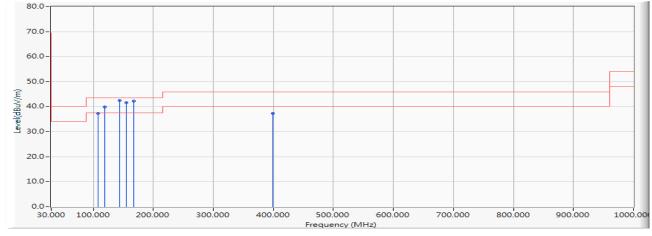
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 1: Transmit (802.11a 6Mbps) (5580MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	53.745	41.478	-2.022	43.500	QUASIPEAK
2		143.490	-11.340	52.440	41.100	-2.400	43.500	QUASIPEAK
3	*	155.130	-10.964	53.264	42.300	-1.200	43.500	QUASIPEAK
4		167.740	-11.095	52.414	41.319	-2.181	43.500	QUASIPEAK
5		263.770	-11.804	49.086	37.282	-8.718	46.000	QUASIPEAK
6		399.570	-8.176	45.236	37.060	-8.940	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 1: Transmit (802.11a 6Mbps) (5785MHz)Test Date:2019/06/18

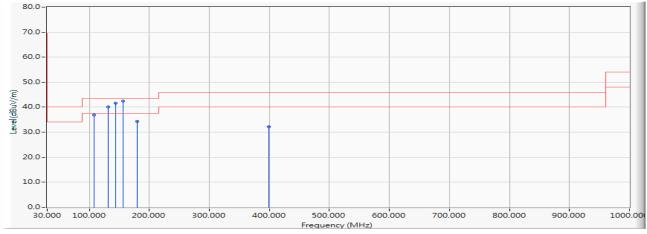
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	48.276	33.425	-10.075	43.500	QUASIPEAK
2		131.850	-12.267	48.099	35.832	-7.668	43.500	QUASIPEAK
3		156.100	-10.938	48.556	37.618	-5.882	43.500	QUASIPEAK
4	*	167.740	-11.095	49.124	38.029	-5.471	43.500	QUASIPEAK
5		312.270	-10.259	43.499	33.240	-12.760	46.000	QUASIPEAK
6		676.020	-3.338	42.872	39.534	-6.466	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

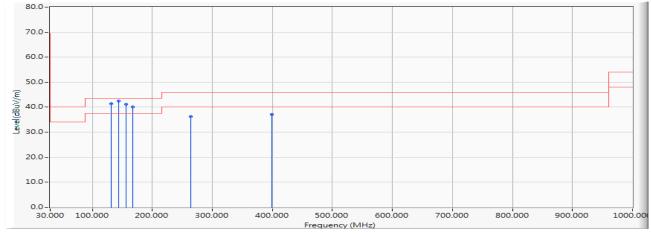
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 1: Transmit (802.11a 6Mbps) (5785MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	52.142	37.291	-6.209	43.500	QUASIPEAK
2		119.240	-13.569	53.374	39.805	-3.695	43.500	QUASIPEAK
3	*	143.490	-11.340	53.717	42.377	-1.123	43.500	QUASIPEAK
4		155.130	-10.964	52.523	41.559	-1.941	43.500	QUASIPEAK
5		167.740	-11.095	53.304	42.209	-1.291	43.500	QUASIPEAK
6		399.570	-8.176	45.515	37.339	-8.661	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

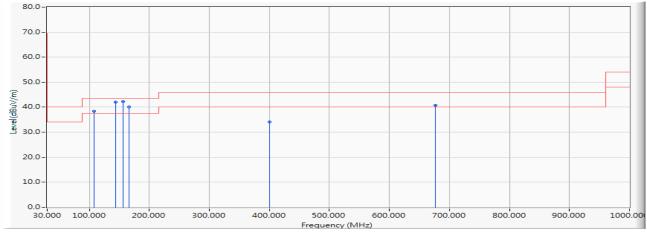
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	51.634	36.783	-6.717	43.500	QUASIPEAK
2		131.850	-12.267	52.334	40.067	-3.433	43.500	QUASIPEAK
3		143.490	-11.340	53.001	41.661	-1.839	43.500	QUASIPEAK
4	*	156.100	-10.938	53.454	42.516	-0.984	43.500	QUASIPEAK
5		179.380	-12.456	46.710	34.254	-9.246	43.500	QUASIPEAK
6		399.570	-8.176	40.266	32.090	-13.910	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

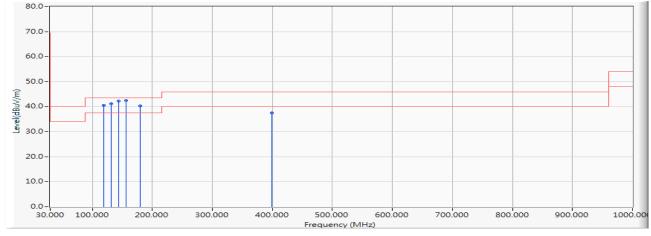
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	53.754	41.487	-2.013	43.500	QUASIPEAK
2	*	143.490	-11.340	53.817	42.477	-1.023	43.500	QUASIPEAK
3		156.100	-10.938	52.015	41.077	-2.423	43.500	QUASIPEAK
4		167.740	-11.095	51.147	40.052	-3.448	43.500	QUASIPEAK
5		263.770	-11.804	48.038	36.234	-9.766	46.000	QUASIPEAK
6		399.570	-8.176	45.175	36.999	-9.001	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

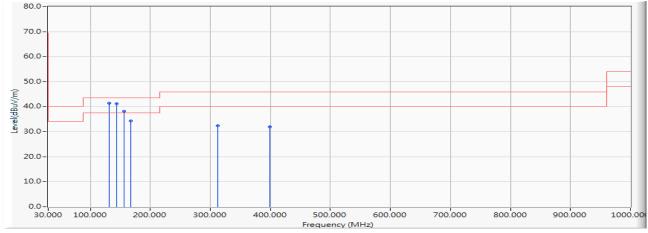
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.500	-14.831	53.260	38.429	-5.071	43.500	QUASIPEAK
2		144.510	-11.272	53.260	41.988	-1.512	43.500	QUASIPEAK
3	*	156.020	-10.928	53.211	42.283	-1.217	43.500	QUASIPEAK
4		166.841	-11.068	51.124	40.056	-3.444	43.500	QUASIPEAK
5		400.510	-8.023	42.151	34.128	-11.872	46.000	QUASIPEAK
6		676.051	-3.329	44.174	40.845	-5.155	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

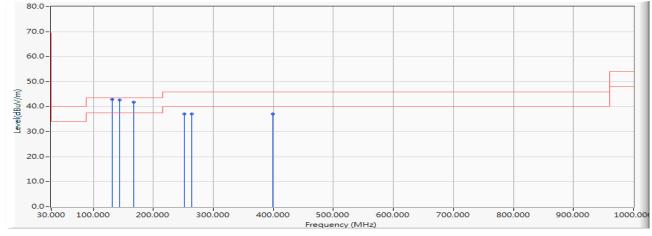
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5300MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	54.031	40.462	-3.038	43.500	QUASIPEAK
2		131.850	-12.267	53.406	41.139	-2.361	43.500	QUASIPEAK
3		143.490	-11.340	53.671	42.331	-1.169	43.500	QUASIPEAK
4	*	156.100	-10.938	53.376	42.438	-1.062	43.500	QUASIPEAK
5		179.380	-12.456	52.743	40.287	-3.213	43.500	QUASIPEAK
6		399.570	-8.176	45.800	37.624	-8.376	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

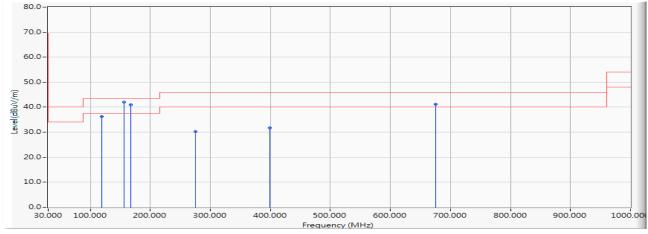
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	131.850	-12.267	53.694	41.427	-2.073	43.500	QUASIPEAK
2		143.490	-11.340	52.491	41.151	-2.349	43.500	QUASIPEAK
3		156.100	-10.938	49.056	38.118	-5.382	43.500	QUASIPEAK
4		167.740	-11.095	45.320	34.225	-9.275	43.500	QUASIPEAK
5		312.270	-10.259	42.607	32.348	-13.652	46.000	QUASIPEAK
6		399.570	-8.176	40.229	32.053	-13.947	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

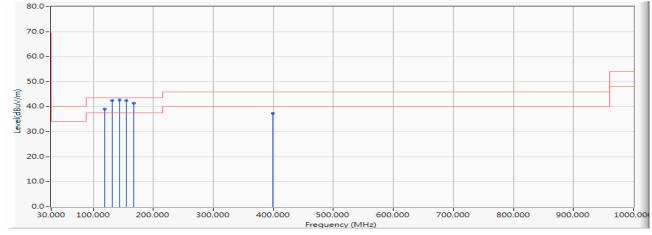
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5580MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	131.850	-12.267	55.086	42.819	-0.681	43.500	QUASIPEAK
2		143.490	-11.340	53.942	42.602	-0.898	43.500	QUASIPEAK
3		167.740	-11.095	53.025	41.930	-1.570	43.500	QUASIPEAK
4		252.130	-12.093	49.098	37.005	-8.995	46.000	QUASIPEAK
5		263.770	-11.804	48.810	37.006	-8.994	46.000	QUASIPEAK
6		399.570	-8.176	45.279	37.103	-8.897	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

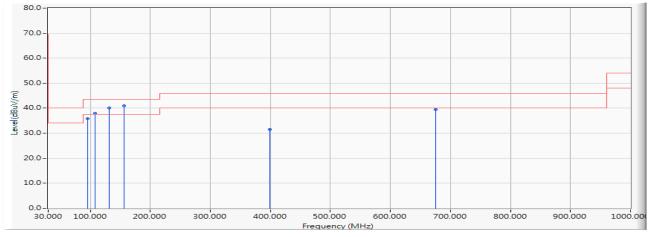
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5785MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	49.759	36.190	-7.310	43.500	QUASIPEAK
2	*	156.100	-10.938	52.971	42.033	-1.467	43.500	QUASIPEAK
3		167.740	-11.095	52.109	41.014	-2.486	43.500	QUASIPEAK
4		275.410	-11.230	41.569	30.339	-15.661	46.000	QUASIPEAK
5		399.570	-8.176	40.021	31.845	-14.155	46.000	QUASIPEAK
6		676.020	-3.338	44.492	41.154	-4.846	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

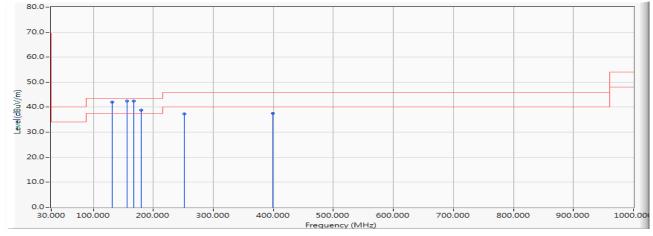
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5785MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	52.547	38.978	-4.522	43.500	QUASIPEAK
2		131.850	-12.267	54.685	42.418	-1.082	43.500	QUASIPEAK
3	*	143.490	-11.340	54.042	42.702	-0.798	43.500	QUASIPEAK
4		155.130	-10.964	53.468	42.504	-0.996	43.500	QUASIPEAK
5		167.740	-11.095	52.468	41.373	-2.127	43.500	QUASIPEAK
6		399.570	-8.176	45.490	37.314	-8.686	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

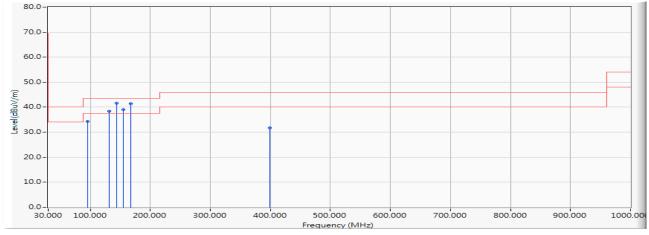
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	52.650	35.874	-7.626	43.500	QUASIPEAK
2		107.600	-14.851	52.730	37.879	-5.621	43.500	QUASIPEAK
3		131.850	-12.267	52.448	40.181	-3.319	43.500	QUASIPEAK
4	*	156.100	-10.938	51.815	40.877	-2.623	43.500	QUASIPEAK
5		399.570	-8.176	39.734	31.558	-14.442	46.000	QUASIPEAK
6		676.020	-3.338	42.701	39.363	-6.637	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

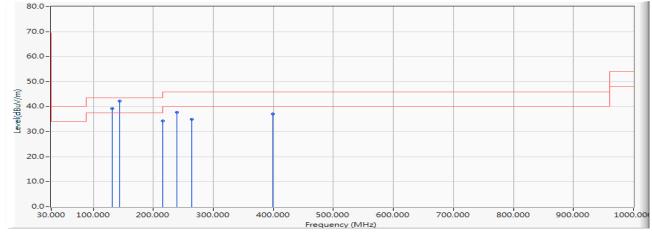
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	54.361	42.094	-1.406	43.500	QUASIPEAK
2		156.100	-10.938	53.460	42.522	-0.978	43.500	QUASIPEAK
3	*	167.740	-11.095	53.660	42.565	-0.935	43.500	QUASIPEAK
4		179.380	-12.456	51.364	38.908	-4.592	43.500	QUASIPEAK
5		252.130	-12.093	49.308	37.215	-8.785	46.000	QUASIPEAK
6		399.570	-8.176	45.670	37.494	-8.506	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

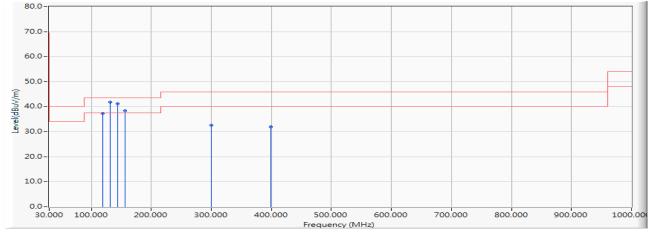
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5270MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	51.053	34.277	-9.223	43.500	QUASIPEAK
2		131.850	-12.267	50.678	38.411	-5.089	43.500	QUASIPEAK
3	*	143.490	-11.340	52.971	41.631	-1.869	43.500	QUASIPEAK
4		155.130	-10.964	49.979	39.015	-4.485	43.500	QUASIPEAK
5		167.740	-11.095	52.484	41.389	-2.111	43.500	QUASIPEAK
6		399.570	-8.176	39.893	31.717	-14.283	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

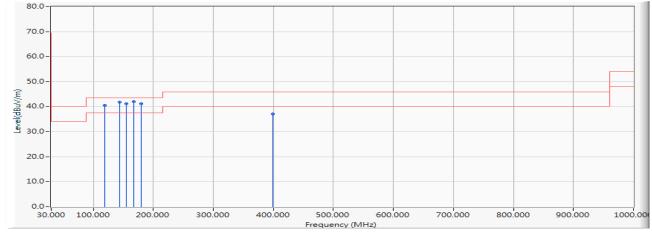
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 3: Transmit (802.11n-40BW 15Mbps) (5270MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	51.536	39.269	-4.231	43.500	QUASIPEAK
2	*	143.490	-11.340	53.583	42.243	-1.257	43.500	QUASIPEAK
3		215.270	-13.406	47.683	34.277	-9.223	43.500	QUASIPEAK
4		239.520	-12.256	49.901	37.645	-8.355	46.000	QUASIPEAK
5		263.770	-11.804	46.857	35.053	-10.947	46.000	QUASIPEAK
6		399.570	-8.176	45.287	37.111	-8.889	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

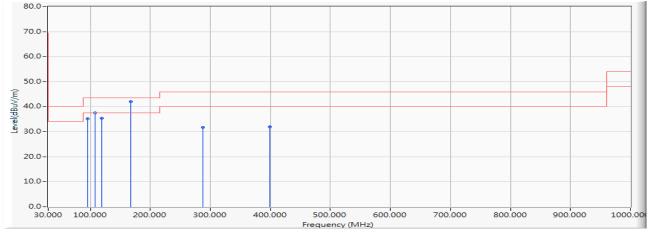
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5550MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	50.963	37.394	-6.106	43.500	QUASIPEAK
2	*	131.850	-12.267	54.174	41.907	-1.593	43.500	QUASIPEAK
3		143.490	-11.340	52.418	41.078	-2.422	43.500	QUASIPEAK
4		156.100	-10.938	49.376	38.438	-5.062	43.500	QUASIPEAK
5		299.660	-10.551	43.090	32.539	-13.461	46.000	QUASIPEAK
6		399.570	-8.176	40.137	31.961	-14.039	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

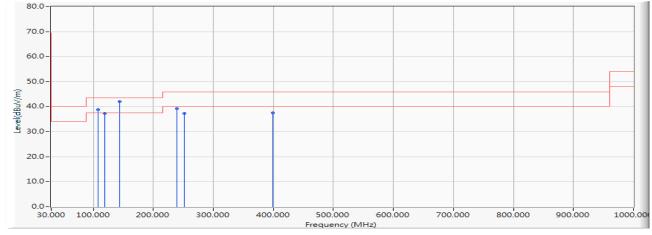
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 3: Transmit (802.11n-40BW 15Mbps) (5550MHz)
- Test Date : 2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	54.148	40.579	-2.921	43.500	QUASIPEAK
2		143.490	-11.340	53.136	41.796	-1.704	43.500	QUASIPEAK
3		155.130	-10.964	52.087	41.123	-2.377	43.500	QUASIPEAK
4	*	167.740	-11.095	53.041	41.946	-1.554	43.500	QUASIPEAK
5		179.380	-12.456	53.584	41.128	-2.372	43.500	QUASIPEAK
6		399.570	-8.176	45.384	37.208	-8.792	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

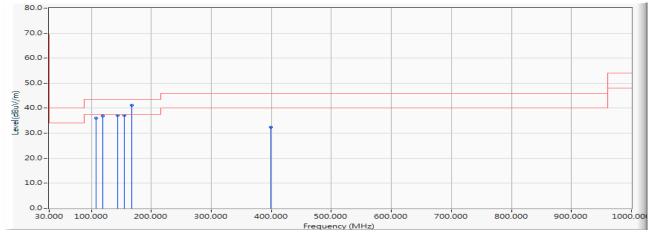
Product	:	Intelligent Robot
Test Item	:	General Radiated Emission
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5755MHz)
Test Date	:	2019/06/18



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	51.885	35.109	-8.391	43.500	QUASIPEAK
2		107.600	-14.851	52.307	37.456	-6.044	43.500	QUASIPEAK
3		119.240	-13.569	48.948	35.379	-8.121	43.500	QUASIPEAK
4	*	167.740	-11.095	53.142	42.047	-1.453	43.500	QUASIPEAK
5		288.020	-10.900	42.665	31.765	-14.235	46.000	QUASIPEAK
6		399.570	-8.176	40.171	31.995	-14.005	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

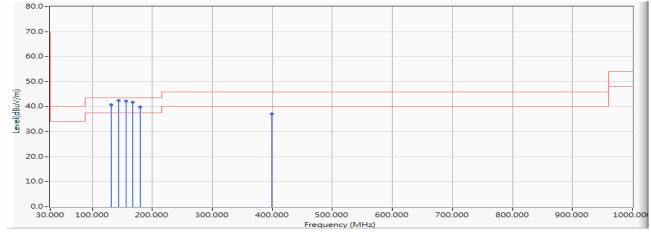
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 3: Transmit (802.11n-40BW 15Mbps) (5755MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	53.685	38.834	-4.666	43.500	QUASIPEAK
2		119.240	-13.569	50.858	37.289	-6.211	43.500	QUASIPEAK
3	*	143.490	-11.340	53.452	42.112	-1.388	43.500	QUASIPEAK
4		239.520	-12.256	51.596	39.340	-6.660	46.000	QUASIPEAK
5		252.130	-12.093	49.376	37.283	-8.717	46.000	QUASIPEAK
6		399.570	-8.176	45.674	37.498	-8.502	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 4: Transmit (802.11ac-20BW 7.2Mbps) (5720MHz)Test Date:2019/06/18

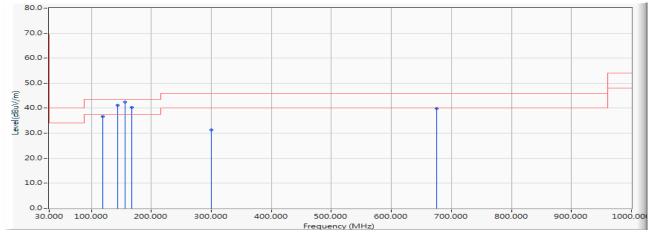
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	50.828	35.977	-7.523	43.500	QUASIPEAK
2		119.240	-13.569	50.388	36.819	-6.681	43.500	QUASIPEAK
3		143.490	-11.340	48.381	37.041	-6.459	43.500	QUASIPEAK
4		155.130	-10.964	48.052	37.088	-6.412	43.500	QUASIPEAK
5	*	167.740	-11.095	52.273	41.178	-2.322	43.500	QUASIPEAK
6		399.570	-8.176	40.533	32.357	-13.643	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

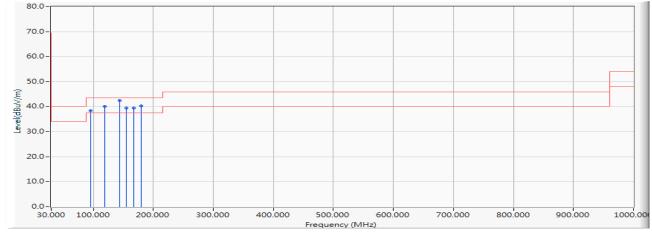
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 4: Transmit (802.11ac-20BW 7.2Mbps) (5720MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	53.104	40.837	-2.663	43.500	QUASIPEAK
2	*	143.490	-11.340	53.798	42.458	-1.042	43.500	QUASIPEAK
3		156.100	-10.938	53.289	42.351	-1.149	43.500	QUASIPEAK
4		167.740	-11.095	52.833	41.738	-1.762	43.500	QUASIPEAK
5		179.380	-12.456	52.345	39.889	-3.611	43.500	QUASIPEAK
6		399.570	-8.176	45.367	37.191	-8.809	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 5: Transmit (802.11ac-40BW 15Mbps) (5710MHz)Test Date:2019/06/18

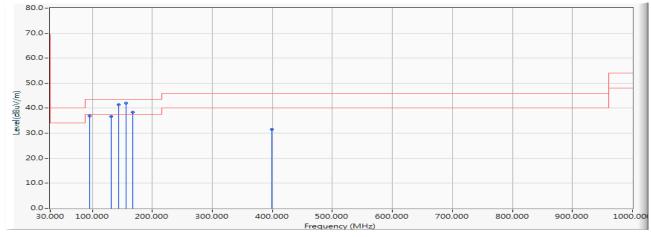
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		119.240	-13.569	50.182	36.613	-6.887	43.500	QUASIPEAK
2		143.490	-11.340	52.470	41.130	-2.370	43.500	QUASIPEAK
3	*	156.100	-10.938	53.456	42.518	-0.982	43.500	QUASIPEAK
4		167.740	-11.095	51.376	40.281	-3.219	43.500	QUASIPEAK
5		299.660	-10.551	41.779	31.228	-14.772	46.000	QUASIPEAK
6		676.020	-3.338	43.203	39.865	-6.135	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

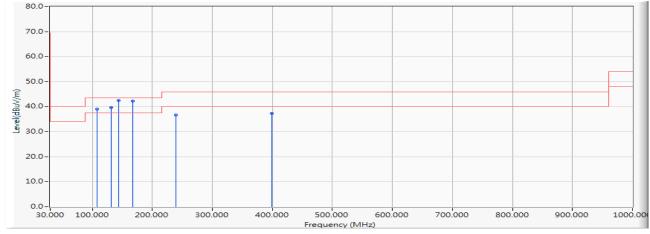
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 5: Transmit (802.11ac-40BW 15Mbps) (5710MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	55.196	38.420	-5.080	43.500	QUASIPEAK
2		119.240	-13.569	53.698	40.129	-3.371	43.500	QUASIPEAK
3	*	143.490	-11.340	53.871	42.531	-0.969	43.500	QUASIPEAK
4		155.130	-10.964	50.466	39.502	-3.998	43.500	QUASIPEAK
5		167.740	-11.095	50.662	39.567	-3.933	43.500	QUASIPEAK
6		179.380	-12.456	52.743	40.287	-3.213	43.500	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)Test Date:2019/06/18

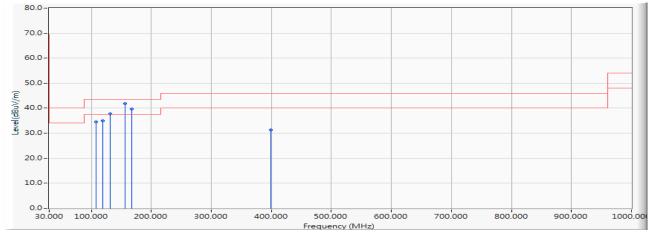
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	53.762	36.986	-6.514	43.500	QUASIPEAK
2		131.850	-12.267	48.991	36.724	-6.776	43.500	QUASIPEAK
3		143.490	-11.340	52.700	41.360	-2.140	43.500	QUASIPEAK
4	*	156.100	-10.938	53.028	42.090	-1.410	43.500	QUASIPEAK
5		167.740	-11.095	49.495	38.400	-5.100	43.500	QUASIPEAK
6		399.570	-8.176	39.637	31.461	-14.539	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

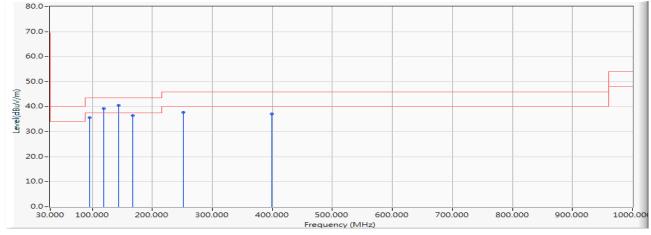
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	53.960	39.109	-4.391	43.500	QUASIPEAK
2		131.850	-12.267	51.884	39.617	-3.883	43.500	QUASIPEAK
3	*	143.490	-11.340	53.903	42.563	-0.937	43.500	QUASIPEAK
4		167.740	-11.095	53.326	42.231	-1.269	43.500	QUASIPEAK
5		239.520	-12.256	49.027	36.771	-9.229	46.000	QUASIPEAK
6		399.570	-8.176	45.405	37.229	-8.771	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)Test Date:2019/06/18

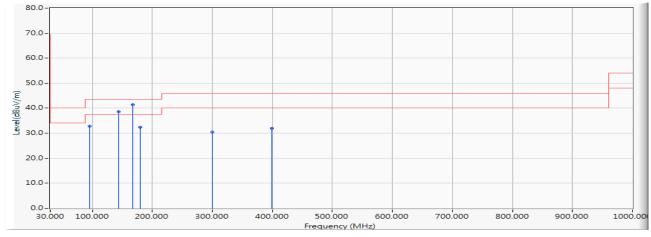
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	49.471	34.620	-8.880	43.500	QUASIPEAK
2		119.240	-13.569	48.430	34.861	-8.639	43.500	QUASIPEAK
3		131.850	-12.267	49.938	37.671	-5.829	43.500	QUASIPEAK
4	*	156.100	-10.938	52.663	41.725	-1.775	43.500	QUASIPEAK
5		167.740	-11.095	50.833	39.738	-3.762	43.500	QUASIPEAK
6		399.570	-8.176	39.498	31.322	-14.678	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

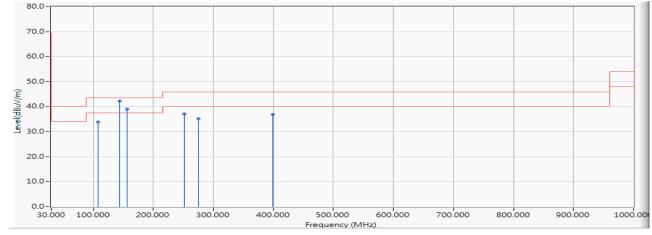
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	52.355	35.579	-7.921	43.500	QUASIPEAK
2		119.240	-13.569	52.839	39.270	-4.230	43.500	QUASIPEAK
3	*	143.490	-11.340	51.965	40.625	-2.875	43.500	QUASIPEAK
4		167.740	-11.095	47.502	36.407	-7.093	43.500	QUASIPEAK
5		252.130	-12.093	49.815	37.722	-8.278	46.000	QUASIPEAK
6		399.570	-8.176	45.216	37.040	-8.960	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)Test Date:2019/06/18

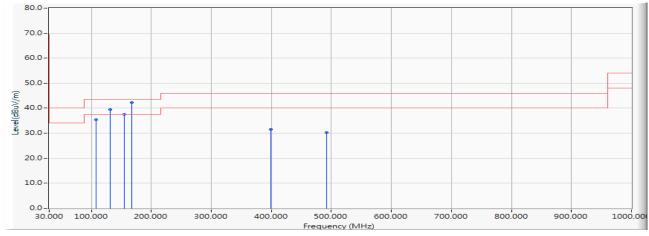
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		95.960	-16.776	49.514	32.738	-10.762	43.500	QUASIPEAK
2		143.490	-11.340	49.996	38.656	-4.844	43.500	QUASIPEAK
3	*	167.740	-11.095	52.444	41.349	-2.151	43.500	QUASIPEAK
4		179.380	-12.456	44.747	32.291	-11.209	43.500	QUASIPEAK
5		299.660	-10.551	41.038	30.487	-15.513	46.000	QUASIPEAK
6		399.570	-8.176	40.061	31.885	-14.115	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

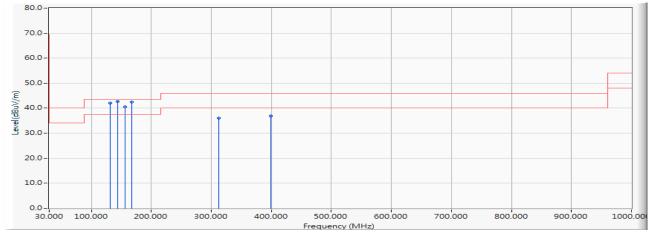
- Product : Intelligent Robot
- Test Item : General Radiated Emission
- Test Mode : Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
- Test Date : 2019/06/18


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	48.749	33.898	-9.602	43.500	QUASIPEAK
2	*	143.490	-11.340	53.614	42.274	-1.226	43.500	QUASIPEAK
3		156.100	-10.938	49.894	38.956	-4.544	43.500	QUASIPEAK
4		252.130	-12.093	49.139	37.046	-8.954	46.000	QUASIPEAK
5		275.410	-11.230	46.497	35.267	-10.733	46.000	QUASIPEAK
6		399.570	-8.176	45.057	36.881	-9.119	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)Test Date:2019/06/18

Horizontal

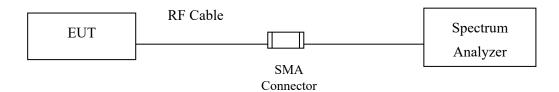

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.600	-14.851	50.187	35.336	-8.164	43.500	QUASIPEAK
2		131.850	-12.267	51.782	39.515	-3.985	43.500	QUASIPEAK
3		155.130	-10.964	48.589	37.625	-5.875	43.500	QUASIPEAK
4	*	167.740	-11.095	53.292	42.197	-1.303	43.500	QUASIPEAK
5		399.570	-8.176	39.632	31.456	-14.544	46.000	QUASIPEAK
6		492.690	-6.334	36.658	30.324	-15.676	46.000	QUASIPEAK

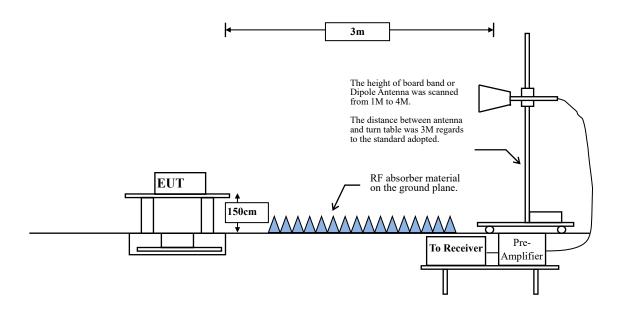
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

Product:Intelligent RobotTest Item:General Radiated EmissionTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)Test Date:2019/06/18

Vertical

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.850	-12.267	54.373	42.106	-1.394	43.500	QUASIPEAK
2	*	143.490	-11.340	54.025	42.685	-0.815	43.500	QUASIPEAK
3		156.100	-10.938	51.455	40.517	-2.983	43.500	QUASIPEAK
4		167.740	-11.095	53.464	42.369	-1.131	43.500	QUASIPEAK
5		312.270	-10.259	46.240	35.981	-10.019	46.000	QUASIPEAK
6		399.570	-8.176	45.032	36.856	-9.144	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.


6. Band Edge

6.1. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

6.2. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209 Limits								
Frequency MHz	uV/m @3m	dBµV/m@3m							
30-88	100	40							
88-216	150	43.5							
216-960	200	46							
Above 960	500	54							

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

RBW and VBW Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz. $VBW \ge 3MHz.$

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \ge 98 %

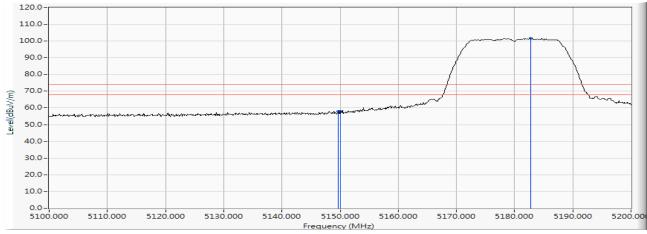
VBW $\geq 1/T$, when duty cycle < 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	94.12	1.4400	694	1k
802.11n20	94.08	1.3500	741	1k
802.11n40	87.60	0.6780	1475	2k
802.11ac20	93.80	1.3562	737	1k
802.11ac40	87.73	0.6762	1479	2k
802.11ac80	78.75	0.3410	2933	3k

Note: Duty Cycle Refer to Section 8

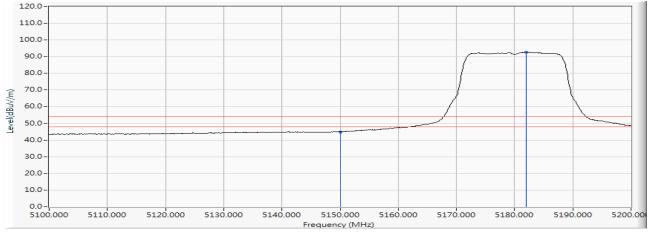
6.4. Uncertainty


Conducted: ±1.23dB Radiated: Horizontal polarization : 1-18GHz: ±3.77dB Vertical polarization : 1-18GHz : ±3.83dB

6.5. Test Result of Band Edge

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5180MHz)
Test Date	:	2019/06/19

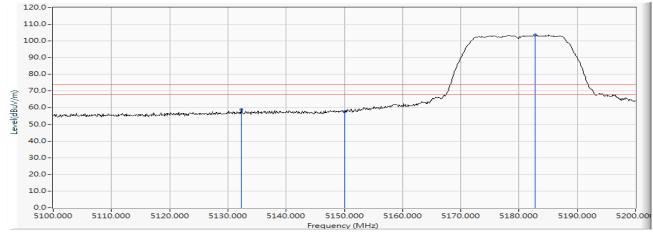
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5149.700	15.305	42.557	57.862	-16.138	74.000	PEAK
2		5150.000	15.307	42.500	57.807	-16.193	74.000	PEAK
3	*	5182.800	15.405	86.296	101.700			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

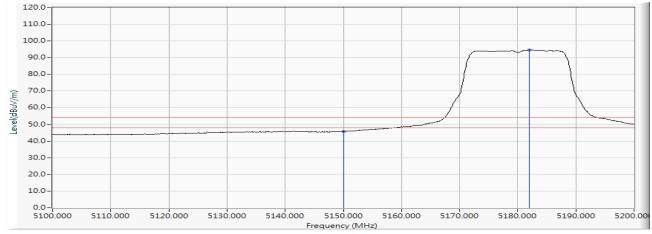
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5150.000	15.307	29.563	44.870	-9.130	54.000	AVERAGE
2	*	5182.000	15.401	77.301	92.702			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

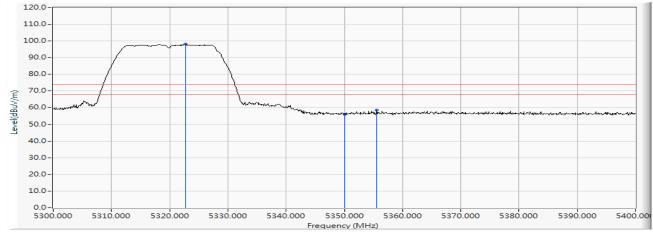
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5132.300	15.210	43.684	58.894	-15.106	74.000	PEAK
2		5150.000	15.307	42.377	57.684	-16.316	74.000	PEAK
3	*	5182.800	15.405	88.199	103.603			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

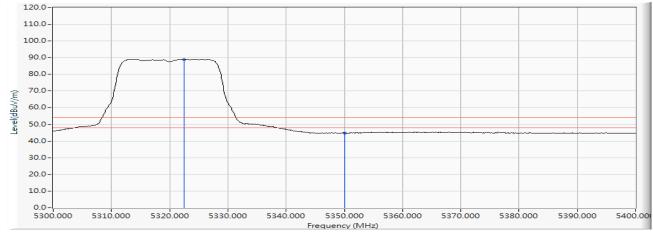
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		5150.000	15.307	30.518	45.825	-8.175	54.000	AVERAGE
2	*	5182.000	15.401	79.168	94.569			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

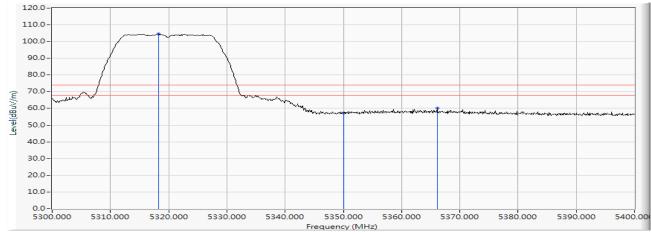
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5320MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5322.700	15.858	82.121	97.980			PEAK
2		5350.000	15.912	40.216	56.128	-17.872	74.000	PEAK
3		5355.600	15.930	42.469	58.399	-15.601	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

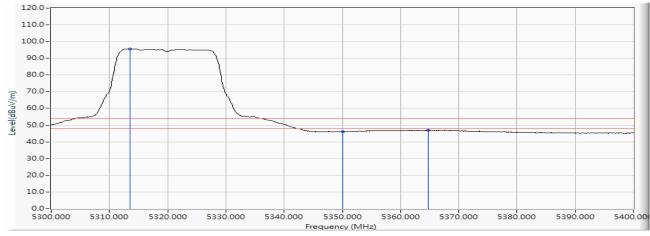
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5320MHz)
Test Date	:	2019/06/19



				Correct Factor Reading Level Measure Level		0	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5322.500	15.858	73.092	88.950			AVERAGE
2		5350.000	15.912	28.867	44.779	-9.221	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

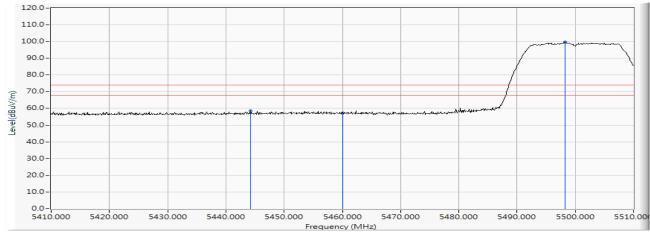
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5320MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5318.200	15.844	88.625	104.469			PEAK
2		5350.000	15.912	41.505	57.417	-16.583	74.000	PEAK
3		5366.100	15.963	44.100	60.063	-13.937	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

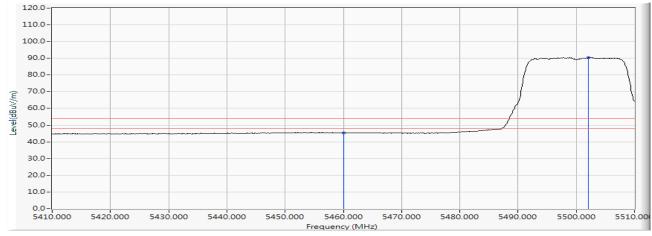
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5320MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5313.600	15.829	79.847	95.676			AVERAGE
2		5350.000	15.912	30.232	46.144	-7.856	54.000	AVERAGE
3		5364.700	15.958	30.962	46.920	-7.080	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

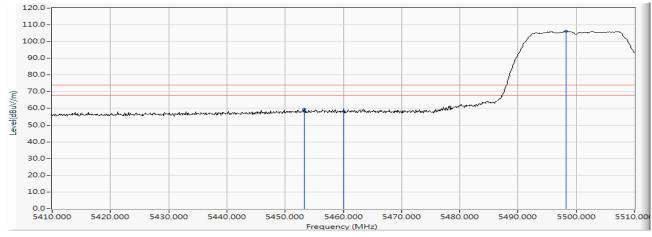
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5444.200	16.138	42.516	58.654	-15.346	74.000	PEAK
2		5460.000	16.185	41.134	57.319	-16.681	74.000	PEAK
3	*	5498.200	16.268	83.449	99.717			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

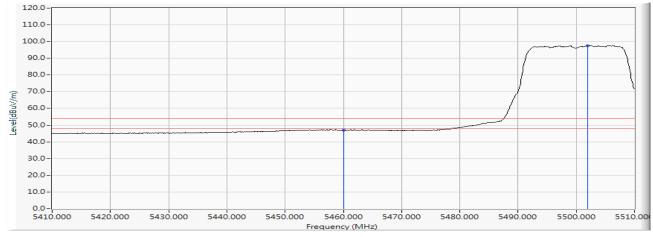
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	e	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	29.248	45.433	-8.567	54.000	AVERAGE
2	*	5502.100	16.273	74.081	90.354			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

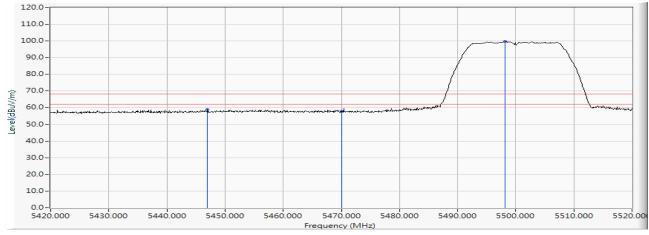
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5453.300	16.168	43.324	59.492	-14.508	74.000	PEAK
2		5460.000	16.185	41.932	58.117	-15.883	74.000	PEAK
3	*	5498.200	16.268	90.038	106.306			PEAK

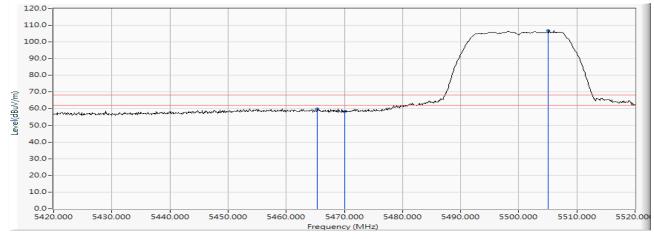
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/19

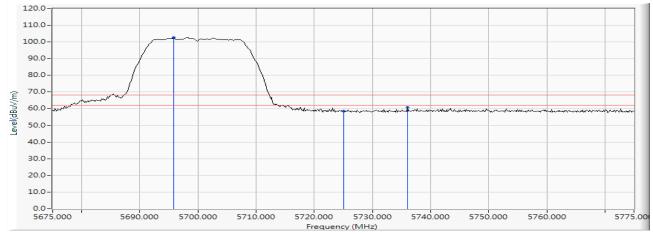


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	ding Level Measure Level dBuV) (dBuV/m)		Limit (dBuV/m)	Detector Type
1		5460.000	16.185	30.768	46.953	-7.047	54.000	AVERAGE
2	*	5501.900	16.272	81.258	97.531			AVERAGE

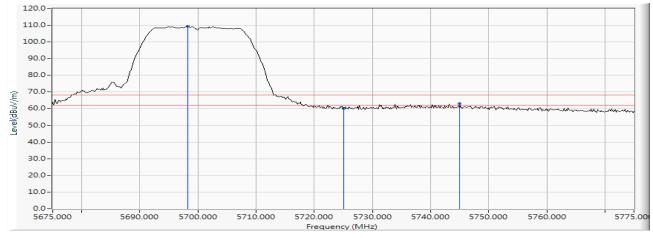
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/19

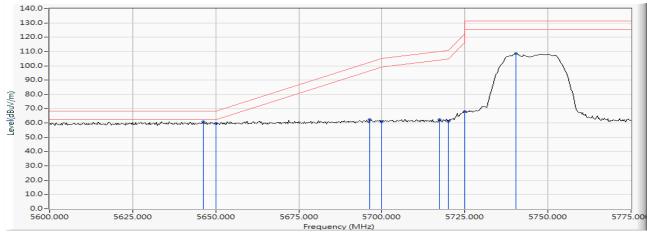
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5447.000	16.147	42.766	58.913	-9.307	68.220	PEAK
2		5470.000	16.200	41.718	57.918	-10.302	68.220	PEAK
3	*	5498.200	16.268	83.517	99.785			PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5500MHz)
Test Date	:	2019/06/19

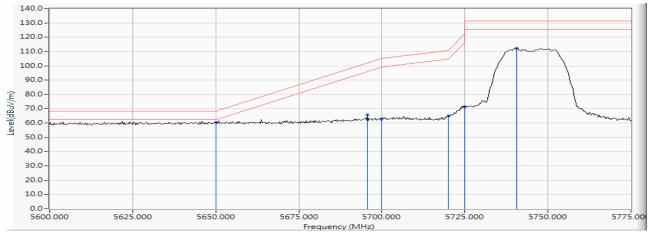
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5465.400	16.193	43.753	59.945	-8.275	68.220	PEAK
2		5470.000	16.200	42.172	58.372	-9.848	68.220	PEAK
3	*	5505.100	16.272	90.697	106.970			PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5700MHz)
Test Date	:	2019/06/19

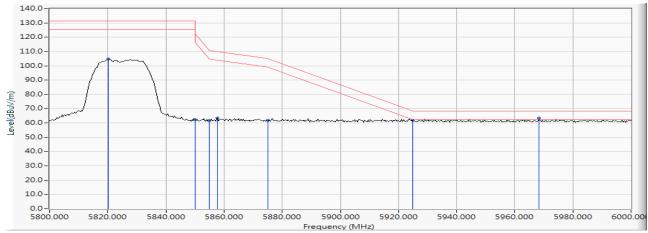
			Correct Factor	0		0	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5695.870	16.497	86.247	102.743			PEAK
2		5725.000	16.544	42.100	58.644	-9.576	68.220	PEAK
3		5736.015	16.553	44.341	60.894	-7.326	68.220	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5700MHz)
Test Date	:	2019/06/19

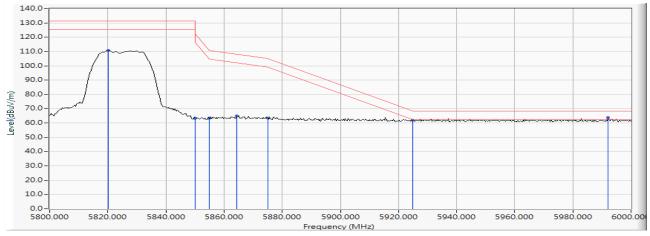
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5698.188	16.500	92.947	109.446			PEAK
2		5725.000	16.544	43.567	60.111	-8.109	68.220	PEAK
3		5745.000	16.560	46.631	63.191	-5.029	68.220	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5745MHz)
Test Date	:	2019/06/19

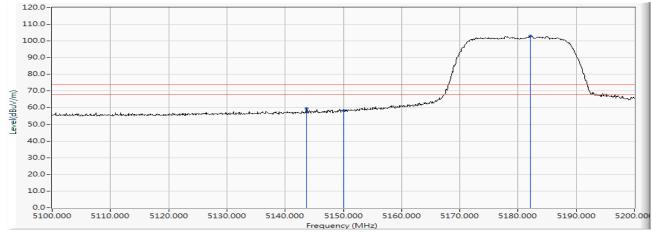
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5646.159	16.436	44.208	60.644	-7.576	68.220	PEAK
2		5650.000	16.447	43.052	59.499	-8.721	68.220	PEAK
3		5696.377	16.496	45.744	62.241	-40.279	102.520	PEAK
4		5700.000	16.502	44.366	60.868	-44.332	105.200	PEAK
5		5717.428	16.530	45.870	62.400	-47.680	110.080	PEAK
6		5720.000	16.535	44.700	61.235	-49.565	110.800	PEAK
7		5725.000	16.544	51.373	67.917	-54.283	122.200	PEAK
8		5740.254	16.556	91.783	108.339			PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5745MHz)
Test Date	:	2019/06/19

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	16.447	44.143	60.590	-7.630	68.220	PEAK
2		5695.616	16.496	49.086	65.582	-36.376	101.958	PEAK
3		5700.000	16.502	46.174	62.676	-42.524	105.200	PEAK
4		5720.000	16.535	48.337	64.872	-45.928	110.800	PEAK
5		5725.000	16.544	54.890	71.434	-50.766	122.200	PEAK
6		5740.507	16.556	95.687	112.243			PEAK

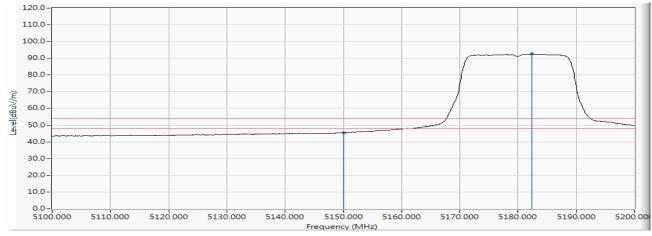

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5825MHz)
Test Date	:	2019/06/19

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		5820.290	16.706	87.925	104.630			PEAK
2		5850.000	16.748	45.475	62.223	-59.977	122.200	PEAK
3		5855.000	16.758	44.829	61.587	-49.213	110.800	PEAK
4		5857.681	16.764	46.812	63.577	-46.472	110.049	PEAK
5		5875.000	16.807	45.039	61.847	-43.353	105.200	PEAK
6		5925.000	16.920	44.855	61.775	-6.425	68.200	PEAK
7	*	5968.406	16.994	46.619	63.613	-4.587	68.200	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps) (5825MHz)
Test Date	:	2019/06/19

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		5820.290	16.706	94.130	110.835			PEAK
2		5850.000	16.748	46.683	63.431	-58.769	122.200	PEAK
3		5855.000	16.758	46.559	63.317	-47.483	110.800	PEAK
4		5864.348	16.781	48.136	64.917	-43.266	108.183	PEAK
5		5875.000	16.807	46.510	63.318	-41.882	105.200	PEAK
6		5925.000	16.920	45.019	61.939	-6.261	68.200	PEAK
7	*	5992.174	17.039	46.635	63.674	-4.526	68.200	PEAK

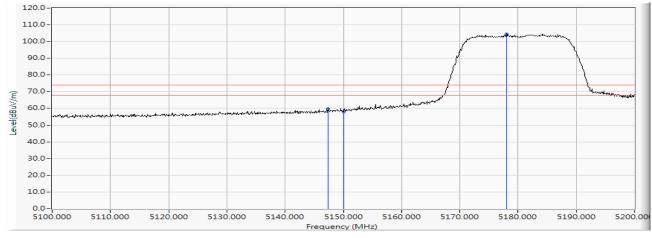
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5143.700	15.270	44.353	59.624	-14.376	74.000	PEAK
2		5150.000	15.307	42.801	58.108	-15.892	74.000	PEAK
3	*	5182.100	15.401	87.578	102.979			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

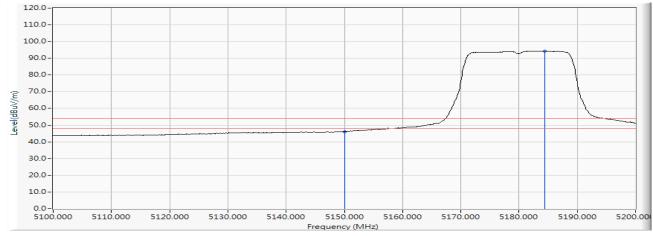
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	15.307	30.062	45.369	-8.631	54.000	AVERAGE
2	*	5182.400	15.403	77.157	92.560			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

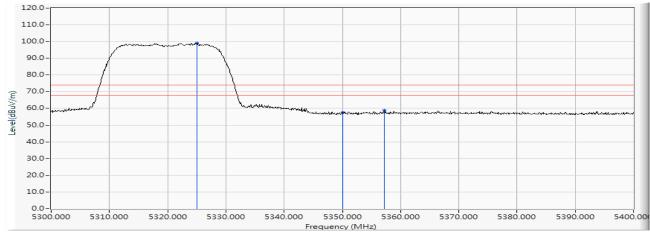
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5147.400	15.292	44.507	59.799	-14.201	74.000	PEAK
2		5150.000	15.307	42.698	58.005	-15.995	74.000	PEAK
3	*	5178.000	15.383	89.084	104.467			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

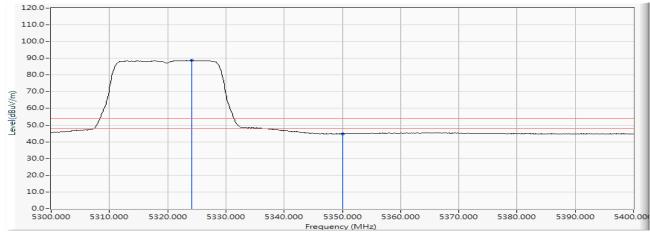
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	15.307	30.850	46.157	-7.843	54.000	AVERAGE
2	*	5184.400	15.412	79.005	94.417			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

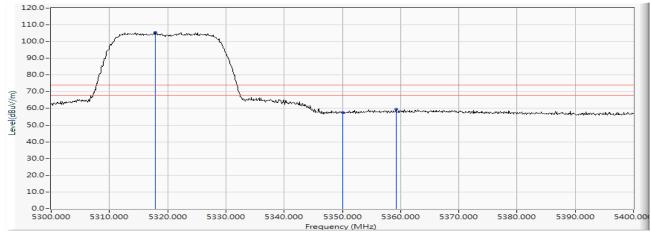
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5325.000	15.866	83.132	98.998			PEAK
2		5350.000	15.912	41.740	57.652	-16.348	74.000	PEAK
3		5357.200	15.935	42.782	58.717	-15.283	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

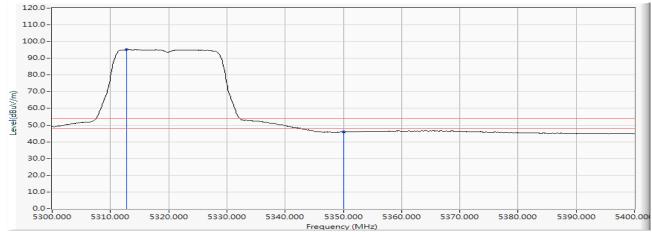
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)
Test Date	:	2019/06/19



				0	Measure Level	0	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5324.200	15.863	72.848	88.711			AVERAGE
2		5350.000	15.912	28.929	44.841	-9.159	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

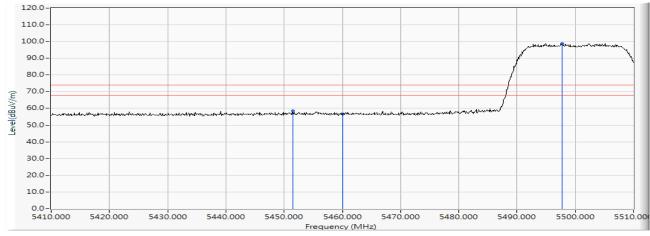
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5317.900	15.843	89.702	105.545			PEAK
2		5350.000	15.912	41.536	57.448	-16.552	74.000	PEAK
3		5359.200	15.941	43.711	59.652	-14.348	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

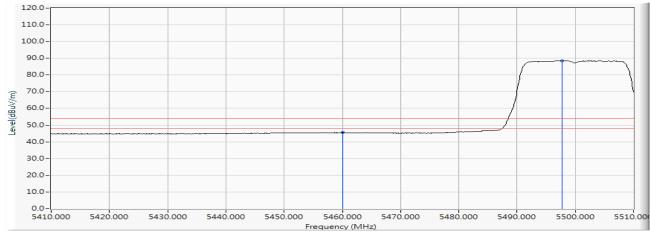
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5320MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5312.800	15.827	79.442	95.269			AVERAGE
2		5350.000	15.912	29.947	45.859	-8.141	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

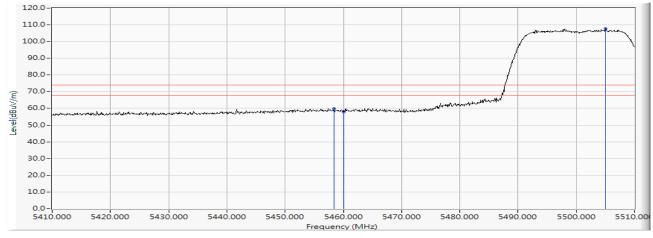
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5451.500	16.162	42.377	58.539	-15.461	74.000	PEAK
2		5460.000	16.185	40.331	56.516	-17.484	74.000	PEAK
3	*	5497.800	16.266	82.642	98.909			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

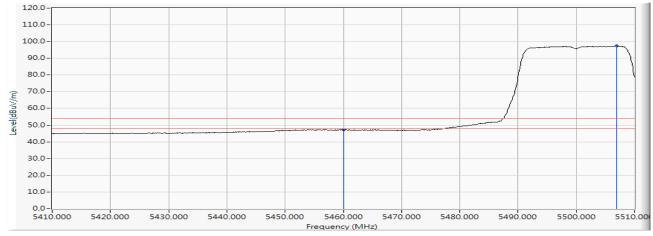
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	29.449	45.634	-8.366	54.000	AVERAGE
2	*	5497.800	16.266	72.331	88.598			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

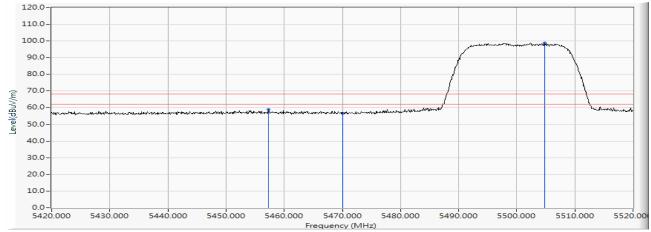
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5458.400	16.183	43.656	59.838	-14.162	74.000	PEAK
2		5460.000	16.185	41.711	57.896	-16.104	74.000	PEAK
3	*	5505.000	16.272	91.347	107.619			PEAK

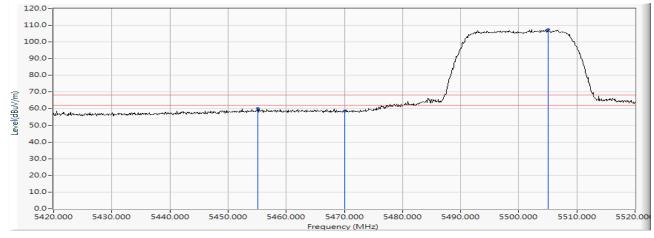
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/19

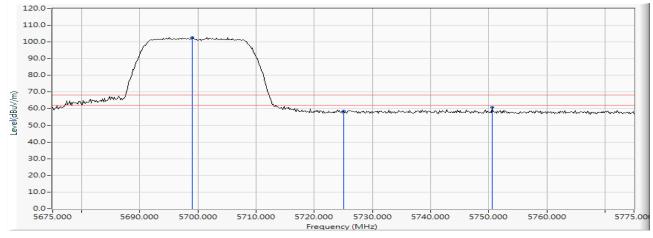


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	31.043	47.228	-6.772	54.000	AVERAGE
2	*	5506.900	16.273	81.083	97.356			AVERAGE

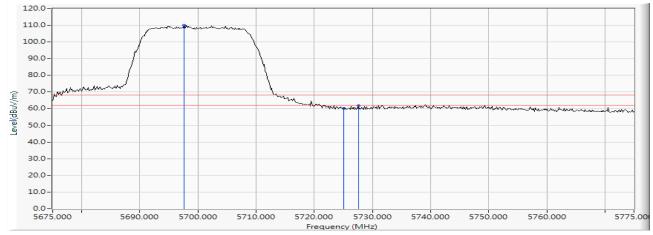
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/19

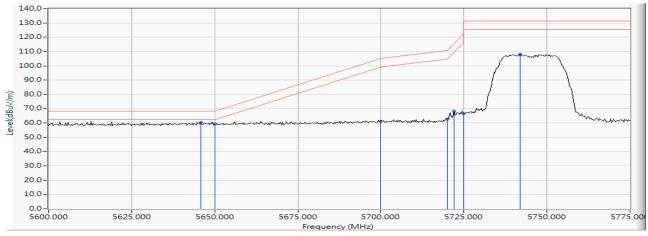
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5457.300	16.181	42.764	58.945	-9.275	68.220	PEAK
2		5470.000	16.200	40.516	56.716	-11.504	68.220	PEAK
3	*	5504.800	16.273	82.489	98.762			PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5500MHz)
Test Date	:	2019/06/19

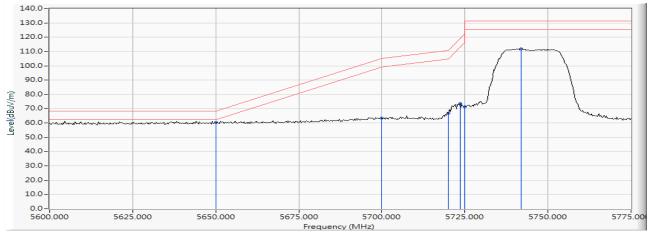
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5455.100	16.174	44.102	60.276	-7.944	68.220	PEAK
2		5470.000	16.200	42.306	58.506	-9.714	68.220	PEAK
3	*	5505.100	16.272	91.274	107.547			PEAK


Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5700MHz)Test Date:2019/06/19

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5699.058	16.500	86.276	102.776			PEAK
2		5725.000	16.544	41.894	58.438	-9.782	68.220	PEAK
3		5750.652	16.570	44.246	60.815	-7.405	68.220	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5700MHz)
Test Date	:	2019/06/19

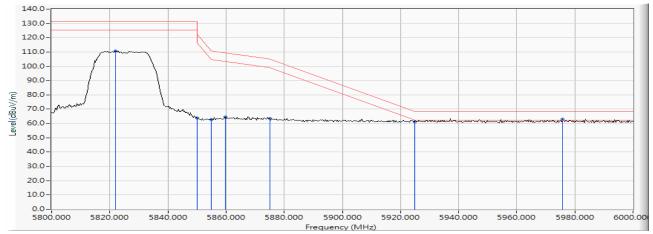
				0	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector
		(MHz)	(dB)	(dBuV)	(uðu v/m)	(dB)	(ubu v/m)	Туре
1	*	5697.609	16.499	93.507	110.006			PEAK
2		5725.000	16.544	43.477	60.021	-8.199	68.220	PEAK
3		5727.609	16.548	45.229	61.777	-6.443	68.220	PEAK


Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5745MHz)Test Date:2019/06/19

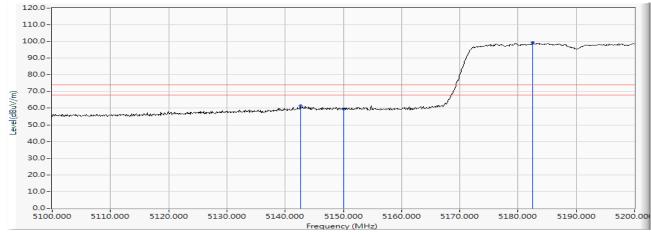
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1	*	5645.906	16.436	43.975	60.411	-7.809	68.220	PEAK
2		5650.000	16.447	42.985	59.432	-8.788	68.220	PEAK
3		5700.000	16.502	44.809	61.311	-43.889	105.200	PEAK
4		5720.000	16.535	46.088	62.623	-48.177	110.800	PEAK
5		5721.993	16.539	51.686	68.225	-47.119	115.344	PEAK
6		5725.000	16.544	49.972	66.516	-55.684	122.200	PEAK
7		5742.029	16.557	91.554	108.111			PEAK

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5745MHz)
Test Date	:	2019/06/19

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	16.447	43.934	60.381	-7.839	68.220	PEAK
2		5700.000	16.502	46.865	63.367	-41.833	105.200	PEAK
3		5720.000	16.535	50.411	66.946	-43.854	110.800	PEAK
4		5723.514	16.541	57.205	73.746	-45.066	118.812	PEAK
5		5725.000	16.544	54.942	71.486	-50.714	122.200	PEAK
6		5742.029	16.557	95.329	111.886			PEAK

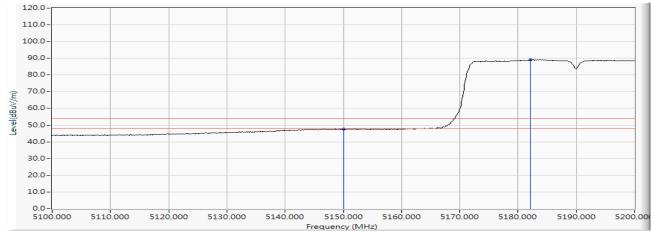

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5825MHz)
Test Date	:	2019/06/19

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5821.739	16.707	87.767	104.474			PEAK
2		5850.000	16.748	45.320	62.068	-60.132	122.200	PEAK
3		5855.000	16.758	45.052	61.810	-48.990	110.800	PEAK
4		5861.739	16.774	45.976	62.750	-46.163	108.913	PEAK
5		5875.000	16.807	44.979	61.787	-43.413	105.200	PEAK
6	*	5925.000	16.920	44.760	61.680	-6.520	68.200	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps) (5825MHz)
Test Date	:	2019/06/19

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		5822.029	16.708	93.934	110.641			PEAK
2		5850.000	16.748	47.012	63.760	-58.440	122.200	PEAK
3		5855.000	16.758	46.037	62.795	-48.005	110.800	PEAK
4		5859.710	16.769	47.816	64.585	-44.896	109.481	PEAK
5		5875.000	16.807	46.791	63.599	-41.601	105.200	PEAK
6		5925.000	16.920	44.297	61.217	-6.983	68.200	PEAK
7	*	5975.652	17.012	45.945	62.956	-5.244	68.200	PEAK

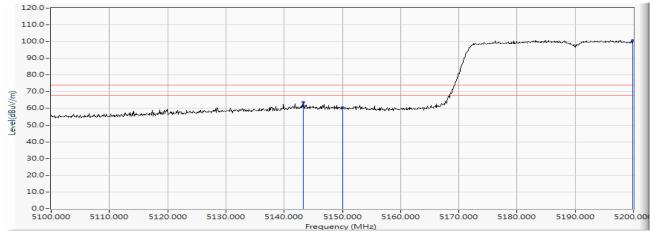
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5142.600	15.264	46.207	61.472	-12.528	74.000	PEAK
2		5150.000	15.307	44.371	59.678	-14.322	74.000	PEAK
3	*	5182.500	15.403	84.137	99.540			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

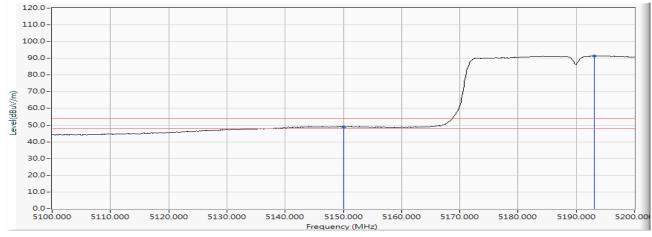
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	15.307	32.340	47.647	-6.353	54.000	AVERAGE
2	*	5182.100	15.401	73.723	89.124			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

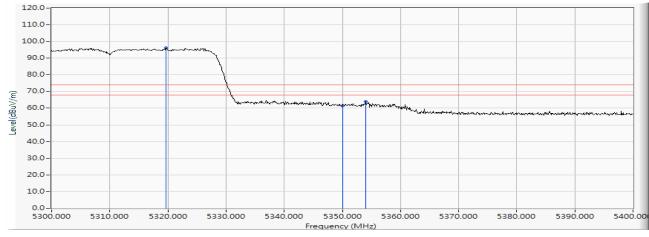
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5143.300	15.270	48.356	63.625	-10.375	74.000	PEAK
2		5150.000	15.307	45.055	60.362	-13.638	74.000	PEAK
3	*	5199.900	15.472	85.364	100.837			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

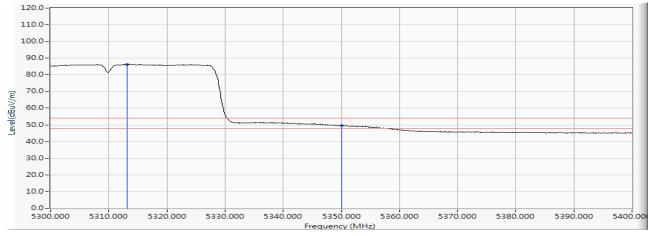
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5190MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	15.307	33.621	48.928	-5.072	54.000	AVERAGE
2	*	5193.100	15.446	76.074	91.521			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

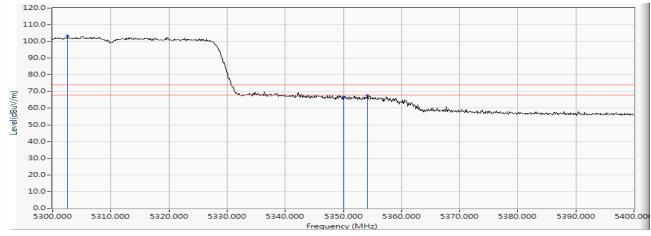
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5310MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5319.700	15.848	80.238	96.087			PEAK
2		5350.000	15.912	45.636	61.548	-12.452	74.000	PEAK
3		5354.000	15.925	48.060	63.985	-10.015	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

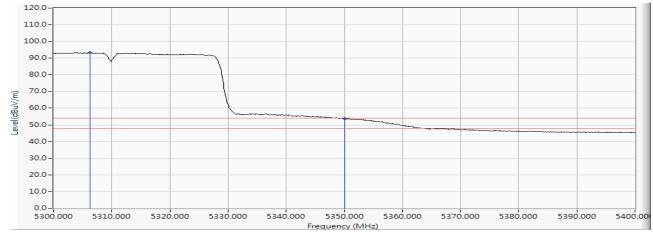
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5310MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	5313.100	15.827	70.531	86.359			AVERAGE
2		5350.000	15.912	33.613	49.525	-4.475	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

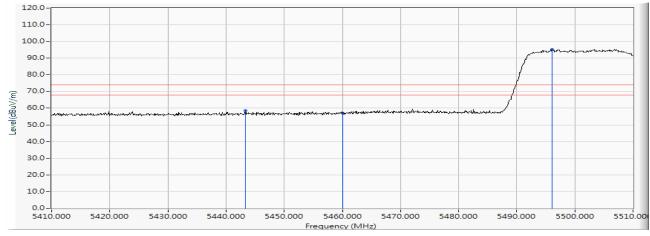
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5310MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5302.600	15.802	87.476	103.279			PEAK
2		5350.000	15.912	50.602	66.514	-7.486	74.000	PEAK
3		5354.200	15.925	51.529	67.454	-6.546	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

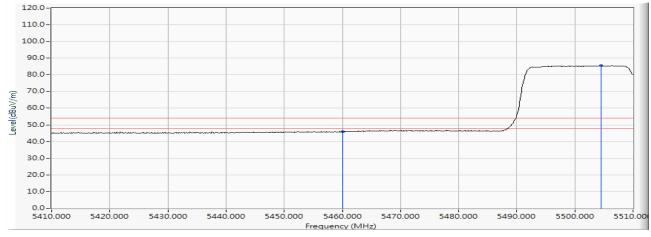
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5310MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5306.300	15.812	77.601	93.413			AVERAGE
2		5350.000	15.912	37.897	53.809	-0.191	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

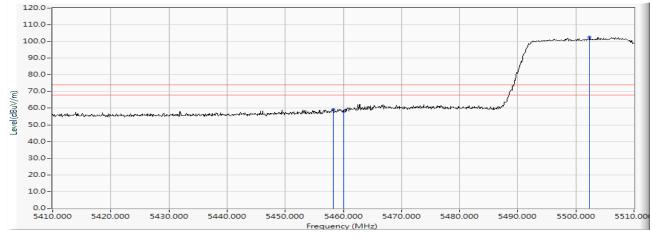
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5443.300	16.136	42.321	58.456	-15.544	74.000	PEAK
2		5460.000	16.185	40.648	56.833	-17.167	74.000	PEAK
3	*	5496.100	16.265	78.932	95.197			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

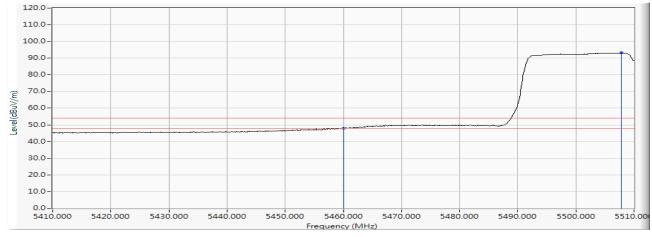
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	29.868	46.053	-7.947	54.000	AVERAGE
2	*	5504.500	16.273	69.213	85.486			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

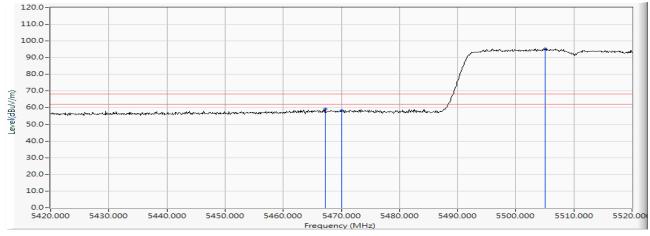
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5458.300	16.182	43.118	59.300	-14.700	74.000	PEAK
2		5460.000	16.185	41.606	57.791	-16.209	74.000	PEAK
3	*	5502.400	16.273	86.278	102.551			PEAK

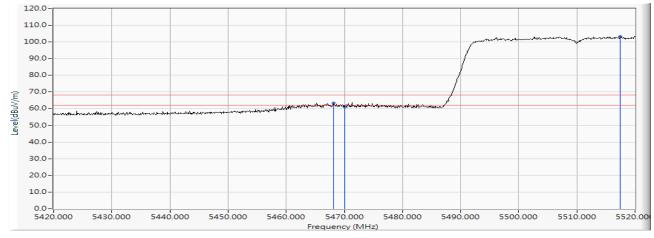
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)
Test Date	:	2019/06/19

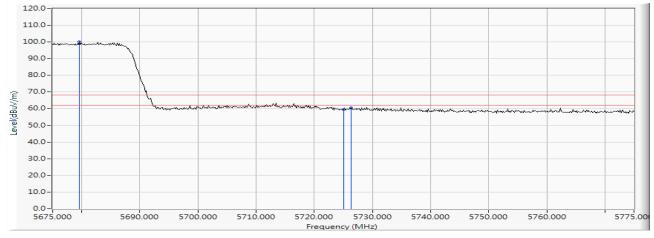

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	31.672	47.857	-6.143	54.000	AVERAGE
2	*	5507.800	16.274	76.896	93.170			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)Test Date:2019/06/19

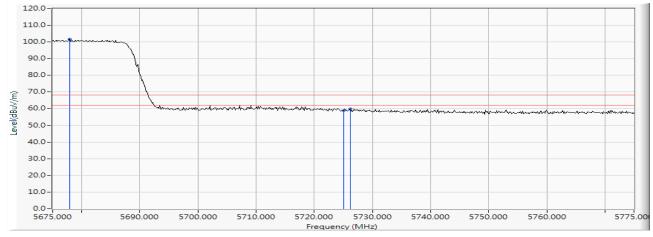

Horizontal

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5467.200	16.195	42.938	59.133	-9.087	68.220	PEAK
2		5470.000	16.200	41.870	58.070	-10.150	68.220	PEAK
3	*	5505.100	16.272	78.948	95.221			PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5510MHz)
Test Date	:	2019/06/19

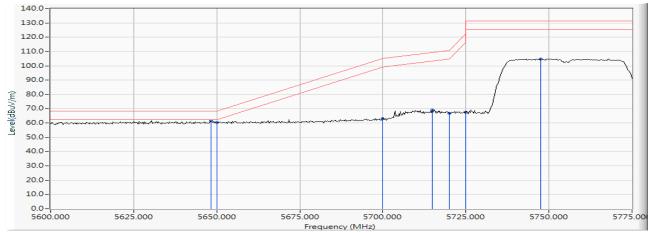
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5468.200	16.196	47.112	63.309	-4.911	68.220	PEAK
2		5470.000	16.200	44.959	61.159	-7.061	68.220	PEAK
3	*	5517.400	16.288	87.125	103.413			PEAK

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5670MHz)
Test Date	:	2019/06/19

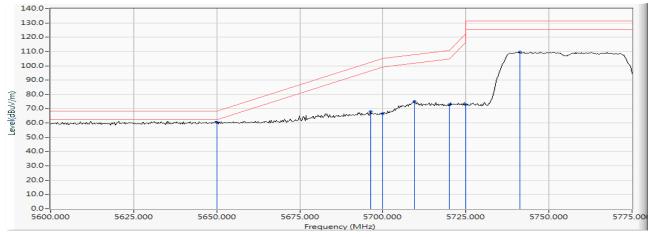


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5679.638	16.477	83.434	99.911			PEAK
2		5725.000	16.544	43.033	59.577	-8.643	68.220	PEAK
3		5726.304	16.547	43.970	60.517	-7.703	68.220	PEAK

Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5670MHz)Test Date:2019/06/19

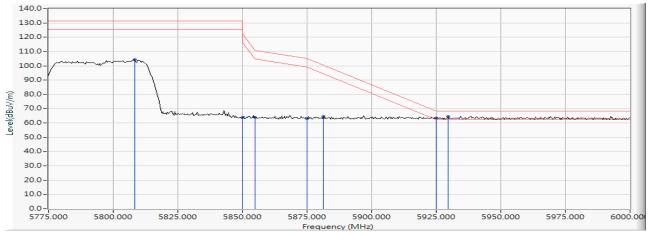

Vertical

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5677.899	16.475	85.130	101.605			PEAK
2		5725.000	16.544	42.317	58.861	-9.359	68.220	PEAK
3		5726.159	16.546	43.346	59.892	-8.328	68.220	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5755MHz)
Test Date	:	2019/06/19

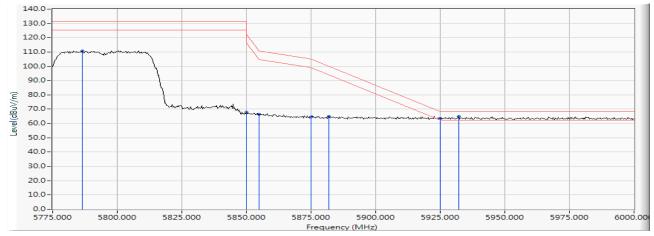
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5648.188	16.442	45.088	61.530	-6.690	68.220	PEAK
2		5650.000	16.447	43.902	60.349	-7.871	68.220	PEAK
3		5700.000	16.502	46.422	62.924	-42.276	105.200	PEAK
4		5714.891	16.525	52.677	69.202	-40.167	109.369	PEAK
5		5720.000	16.535	50.204	66.739	-44.061	110.800	PEAK
6		5725.000	16.544	51.198	67.742	-54.458	122.200	PEAK
7		5747.609	16.565	88.278	104.842			PEAK

Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5755MHz)
Test Date	:	2019/06/19

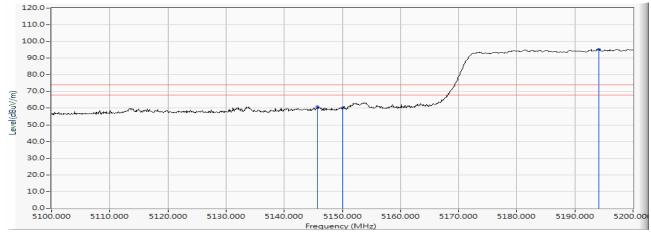


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	16.447	43.817	60.264	-7.956	68.220	PEAK
2		5696.377	16.496	51.295	67.792	-34.728	102.520	PEAK
3		5700.000	16.502	50.089	66.591	-38.609	105.200	PEAK
4		5709.565	16.515	58.494	75.009	-32.869	107.878	PEAK
5		5720.000	16.535	56.168	72.703	-38.097	110.800	PEAK
6		5725.000	16.544	56.150	72.694	-49.506	122.200	PEAK
7		5741.268	16.556	92.862	109.419			PEAK

Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 3: Transmit (802.11n-40BW 15Mbps) (5795MHz)Test Date:2019/06/19

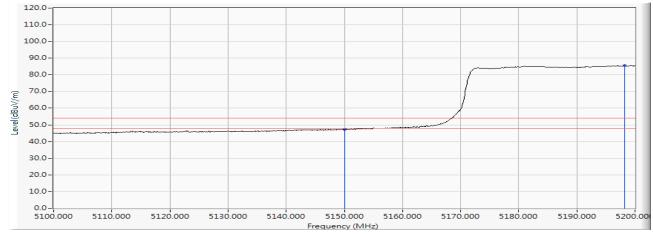

Horizontal

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		5808.261	16.681	87.671	104.351			PEAK
2		5850.000	16.748	47.229	63.977	-58.223	122.200	PEAK
3		5855.000	16.758	47.086	63.844	-46.956	110.800	PEAK
4		5875.000	16.807	46.103	62.911	-42.289	105.200	PEAK
5		5881.304	16.825	47.732	64.557	-35.978	100.535	PEAK
6		5925.000	16.920	46.552	63.472	-4.728	68.200	PEAK
7	*	5929.565	16.924	47.654	64.578	-3.622	68.200	PEAK


Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps) (5795MHz)
Test Date	:	2019/06/19

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		5786.413	16.623	94.207	110.831			PEAK
2		5850.000	16.748	51.098	67.846	-54.354	122.200	PEAK
3		5855.000	16.758	49.611	66.369	-44.431	110.800	PEAK
4		5875.000	16.807	47.615	64.423	-40.777	105.200	PEAK
5		5881.957	16.827	48.289	65.116	-34.936	100.052	PEAK
6		5925.000	16.920	46.366	63.286	-4.914	68.200	PEAK
7	*	5932.174	16.927	47.819	64.746	-3.454	68.200	PEAK

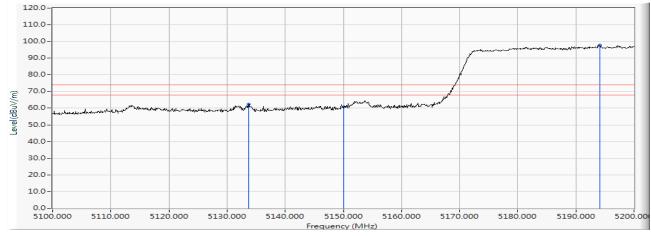
:	Intelligent Robot
:	Band Edge Data
:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
:	2019/06/19
	:



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5145.700	15.282	45.583	60.865	-13.135	74.000	PEAK
2		5150.000	15.307	44.955	60.262	-13.738	74.000	PEAK
3	*	5194.100	15.450	79.912	95.362			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

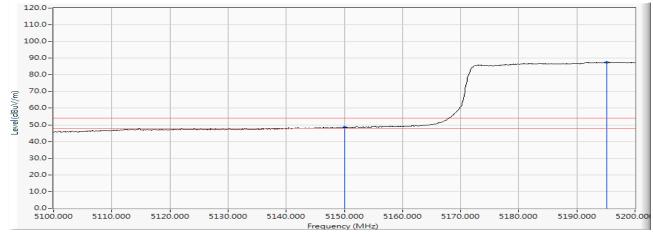
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/19



				0	Measure Level	0	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5150.000	15.307	31.876	47.183	-6.817	54.000	AVERAGE
2	*	5198.200	15.466	70.102	85.568			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

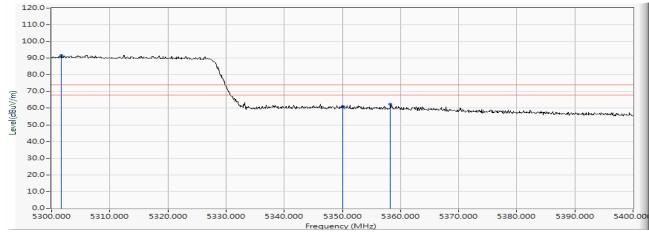
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5133.700	15.214	47.219	62.434	-11.566	74.000	PEAK
2		5150.000	15.307	45.361	60.668	-13.332	74.000	PEAK
3	*	5194.100	15.450	82.289	97.739			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

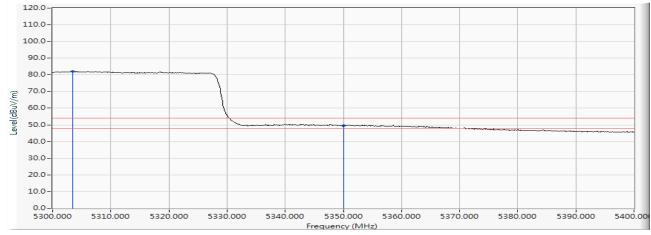
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5210MHz)
Test Date	:	2019/06/19



				0	Measure Level	0	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5150.000	15.307	33.160	48.467	-5.533	54.000	AVERAGE
2	*	5195.200	15.454	72.188	87.642			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

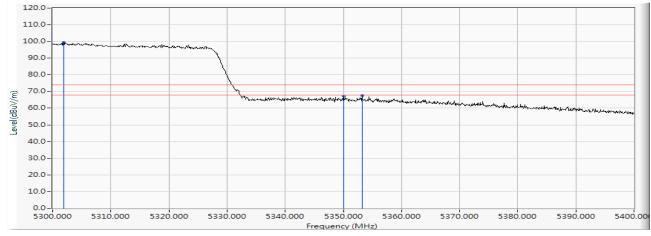
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5301.700	15.800	75.925	91.725			PEAK
2		5350.000	15.912	45.096	61.008	-12.992	74.000	PEAK
3		5358.300	15.938	46.404	62.342	-11.658	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

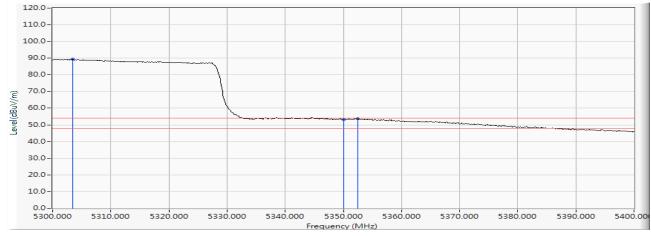
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5303.500	15.805	66.237	82.042			AVERAGE
2		5350.000	15.912	33.496	49.408	-4.592	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

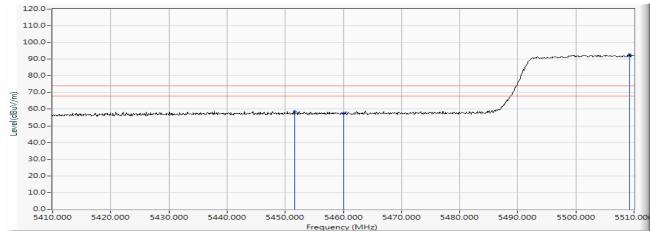
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5301.900	15.801	83.476	99.277			PEAK
2		5350.000	15.912	51.322	67.234	-6.766	74.000	PEAK
3		5353.200	15.922	51.667	67.589	-6.411	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

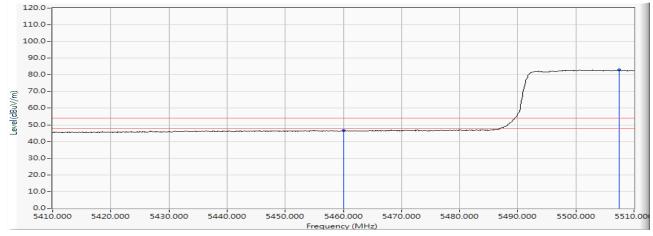
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5290MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5303.500	15.805	73.549	89.354			AVERAGE
2		5350.000	15.912	37.314	53.226	-0.774	54.000	AVERAGE
3		5352.500	15.920	37.867	53.787	-0.213	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

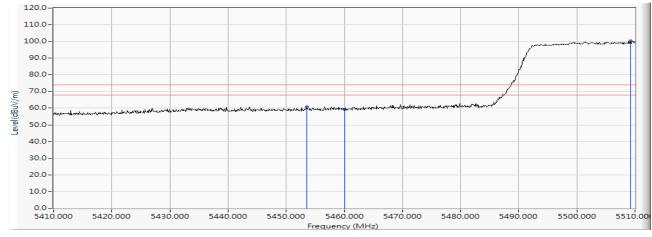
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5451.600	16.162	42.535	58.697	-15.303	74.000	PEAK
2		5460.000	16.185	41.301	57.486	-16.514	74.000	PEAK
3	*	5509.200	16.274	76.399	92.674			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

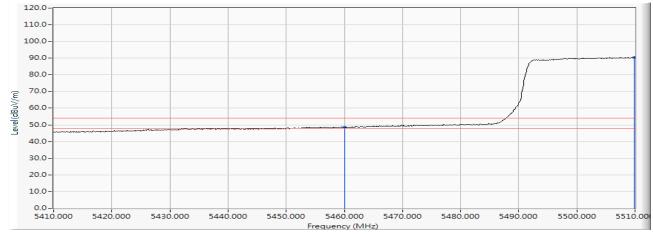
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	30.329	46.514	-7.486	54.000	AVERAGE
2	*	5507.500	16.274	66.754	83.028			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

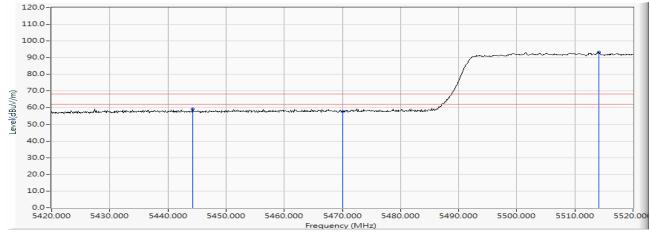
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5453.500	16.169	44.586	60.755	-13.245	74.000	PEAK
2		5460.000	16.185	43.165	59.350	-14.650	74.000	PEAK
3	*	5509.200	16.274	84.104	100.379			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

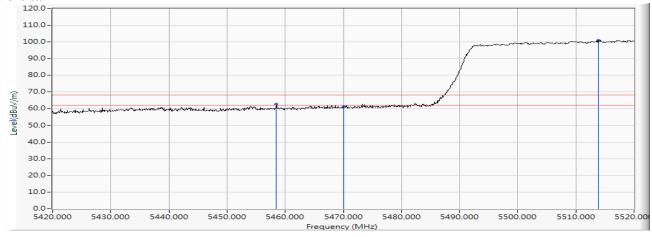
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/19



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	16.185	32.380	48.565	-5.435	54.000	AVERAGE
2	*	5509.900	16.275	74.124	90.399			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

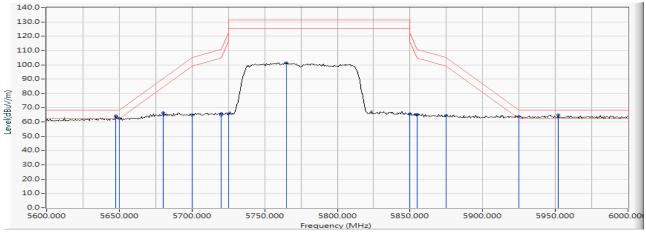
Product	:	Intelligent Robot
Test Item	:	Band Edge Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)
Test Date	:	2019/06/19



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5444.300	16.139	42.994	59.132	-9.088	68.220	PEAK
2		5470.000	16.200	41.412	57.612	-10.608	68.220	PEAK
3	*	5514.100	16.281	76.978	93.259			PEAK

Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5530MHz)Test Date:2019/06/19

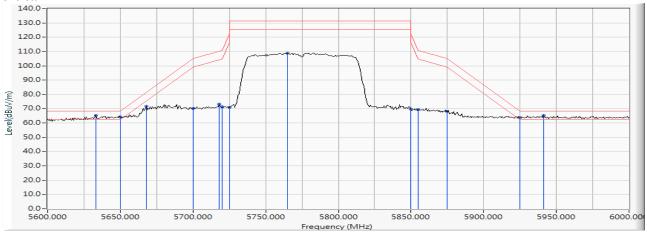
Vertical



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5458.500	16.183	46.588	62.770	-5.450	68.220	PEAK
2		5470.000	16.200	45.006	61.206	-7.014	68.220	PEAK
3	*	5513.900	16.280	84.775	101.056			PEAK

Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)Test Date:2019/06/19

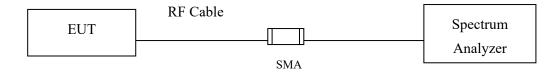
Horizontal



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5647.536	16.440	47.628	64.068	-4.152	68.220	PEAK
2		5650.000	16.447	45.780	62.227	-5.993	68.220	PEAK
3		5680.000	16.478	49.857	66.335	-24.073	90.408	PEAK
4		5700.000	16.502	48.355	64.857	-40.343	105.200	PEAK
5		5720.000	16.535	48.530	65.065	-45.735	110.800	PEAK
6		5725.000	16.544	49.038	65.582	-56.618	122.200	PEAK
7		5765.217	16.591	84.829	101.420			PEAK
8		5850.000	16.748	49.077	65.825	-56.375	122.200	PEAK
9		5855.000	16.758	48.654	65.412	-45.388	110.800	PEAK
10		5875.000	16.807	47.740	64.548	-40.652	105.200	PEAK
11		5925.000	16.920	46.915	63.835	-4.365	68.200	PEAK
12	*	5951.884	16.957	47.824	64.781	-3.419	68.200	PEAK

Product:Intelligent RobotTest Item:Band Edge DataTest Mode:Mode 6: Transmit (802.11ac-80BW 32.5Mbps) (5775MHz)Test Date:2019/06/19

Vertical



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5633.043	16.410	48.784	65.193	-3.027	68.220	PEAK
2		5650.000	16.447	47.729	64.176	-4.044	68.220	PEAK
3		5667.826	16.468	55.344	71.811	-9.593	81.404	PEAK
4		5700.000	16.502	53.584	70.086	-35.114	105.200	PEAK
5		5718.261	16.532	56.493	73.025	-37.288	110.313	PEAK
6		5720.000	16.535	54.675	71.210	-39.590	110.800	PEAK
7		5725.000	16.544	54.255	70.799	-51.401	122.200	PEAK
8		5765.217	16.591	92.348	108.939			PEAK
9		5850.000	16.748	52.898	69.646	-52.554	122.200	PEAK
10		5855.000	16.758	52.637	69.395	-41.405	110.800	PEAK
11		5875.000	16.807	51.012	67.820	-37.380	105.200	PEAK
12		5925.000	16.920	46.882	63.802	-4.398	68.200	PEAK
13		5941.449	16.938	48.226	65.164	-3.036	68.200	PEAK

7. Occupied Bandwidth

7.1. Test Setup

7.2. Limits

For the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

7.3. .Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.4. Uncertainty

 $\pm 671.83 \mathrm{Hz}$

7.5. Test Result of Occupied Bandwidth

Product	:	Intelligent Robot
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 1: Transmit (802.11a 6Mbps)
Test Date	:	2019/06/18

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745	16400	>500	Pass
157	5785	16450	>500	Pass
165	5825	16400	>500	Pass

Spectrun	1	- 17 - A		_			_	
Ref Leve Att	1 23.00 de 30 i	The second s	8 💼 RBW 100 kH s 🕳 VBW 300 kH		Sweep			
1Pk View		1						
20 dBm	-				1[1] 2[1]			1.33 dBn †74980 GH: -5.27 dBn 367500 GH:
0 dBm	D1 -4.670	M2	hatridrictivation		Investmenting	-		
-10 dBm	01 10/0			4	+	-		
-20 dBm	1	- Jui				Jul .		-
-30 dBm	-					1		-
-40 dBm	www.www	whytedall				"Whywen	wannaha	wormanister
								a la marcar a construction de la construction de la construcción de la
-60 dBm								
-70 dBm								
CF 5.745 (Hz		100	1 pts			Spar	n 50.0 MHz
Marker								
	f Trc	X-value	Y-value	Fund	tion	Fun	ction Resul	t
M1	1	5.747498 GH						
M2 M3	1	5.73675 GH 5.75315 GH						
				Me	suring		4,40	07.06.2019

Figure Channel 149:

Att		30	db SWT	1.1 ms 🖶	VBW 300 kHz	Mode S	sweep			
1Pk Vie 20 dBm-	w	_	1	1	1	M	1[1]		-	0.86 dBn
10 dBm-							2[1]			787060 GH: -5.93 dBn
				M				1	5.7	767500 GH
0 dBm—	-01	-5.140	1 dBm	MZ	unfrentrentennen ne	Newhorking	EMINUMPUS			1
-10 dBm-		1.4.6.5		1	+ +			-	-	-
-20 dBm-	-	_	-	y			V	un	-	-
-30 dBm-			1					Ry		
-40 dBm	di C		1. and					1		
	more	Mappine	whether when					Whether	Munder de	
664Bh	1		moundator						Mronally a	to the horas and have
-60 dBm·	_									
-70 dBm	_									
CF 5.78	5 GH	z			1001 p	ts			Spa	n 50.0 MHz
Marker										
	Ref		X-valu		Y-value	Funct	ion	Fun	nction Resul	t
M1		1		06 GHz	0.86 dBm					
M2 M3		1		32 GHz	-5.93 dBm -6.90 dBm					

Figure Channel 157:

Figure Channel 165:

1Pk View	30 (dB SWT 1.1 ms 🕳	VBW 300 kHz	Mode Sweep		
20 dBm		Mi		M1[1] M2[1]		1.22 dBr 5.8187060 GH -5.61 dBr 5.8167509 GH
0 dBm		Malun	untertratintant	untration for the provider	3	-
-10 dBm	01 -4.780	dBm				
-20 dBm		Man			No.	
-30 dBm	_	1			1	
-40 dBm -58 dBm	n Maanda	hopesadolis			- Verrout	Mulurulin house
-60 dBm						
-70 dBm						
CF 5.825 G	Hz		1001 pts	5		Span 50.0 MHz
1arker						
Type Ref		X-value	Y-value	Function	Fur	nction Result
M1	1	5.818706 GHz	1.22 dBm			
M2 M3	1	5.81675 GHz 5.83315 GHz	-5.61 dBm -4.81 dBm			

Product	:	Intelligent Robot
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 2: Transmit (802.11n-20BW 7.2Mbps)
Test Date	:	2019/06/18

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745	17700	>500	Pass
157	5785	17700	>500	Pass
165	5825	17700	>500	Pass

Figure Channel 149:

P1Pk Vi		30	db SWT	1.1 ms 🖷	VBW 300 KHz	Mode	Sweep			
	ew.	_	1	-	1 1		1[1]			1.25 dBn
20 dBm							un u		5.74	1.25 dBn 74980 GH
10 dBm	_	_		-		M	2[1]			-5.82 dBn
10 000				1		M1			5.73	61000 GH
0 dBm-		_	-	MO 8 1	1.11	1 TI	1	мз		A CONTRACTOR OF THE OWNER
	D	1 -4.750	dBm	Equilitary)	norther have been been been been been been been be	almalante	all the search is	-	-	-
-10 dBn	-		-	11			-	1	-	-
	- L.		1	N				2		
-20 dBn	-		1	ť	-		1	A	1	
			1	1	1			1		
-30 dBm			1					1	-	
-40 dBm	-		1 dun	_				1		
m.M	mall	provini	malumont					Hype	Munaniana	
50 dBn	-								1 LOBORA MINING	monum
-60 dBrr	+									
70 40-										
-70 dBr										
CF 5.7	15 GH	Iz			1001 p	ts			Span	50.0 MHz
Marker										
Туре	Ref	Trc	X-valu		Y-value	Func	tion	Fu	nction Result	:
M1		1		98 GHz	1.25 dBm					
M2 M3		1		61 GHz	-5.82 dBm -5.48 dBm					

Figure Channel 157:

Spectrum		-		_				-	
Ref Level Att	23.00 de 30 (288W 100 kHz 288W 300 kHz	Mode	Sweep			
1Pk View			1.1.1						
20 dBm			MI			1[1] 2[1]			1,10 dBr 87060 GH -6,62 dBr 61000 GH
0 dBm		In In	Bertrulay	and minter and us me	harbulow	In herla M3			
-10 dBm	D1 -4.900	GBII				1			
-20 dBm		1 A	-		-	1	14		
-30 dBm		đ	_		-		1		-
-40 dBm 	Nue ann an Ann	Marayan					- Millen	Un workey	Way will more
-60 dBm							-		
-70 dBm									
CF 5.785 G	Hz			1001 p	ts	1		Span	50.0 MHz
Marker									
	f Trc	X-value		Y-value	Func	tion	Fun	ction Result	
M1 M2	1	5.778706		1.10 dBm					
M2 M3	1	5.7761 5.7938		-6.62 dBm -6.29 dBm					
)[Mea	suring		4,44	7.06.2019

Figure Channel 165:

Att	el 23.00 de 30 (· · · · · · · · · · · · · · · · · · ·	RBW 100 kHz VBW 300 kHz	Mode Sw	eep			
1Pk View			10.00			11			
20 dBm			MI		M1[:				1.12 dBn 187060 GH -6.45 dBn 161000 GH
0 dBm	br. no	I N	Benkruly	Justientown on my	weilvalountru	A.L.M3	-	-	1
-10 dBm—	D1 -4.880	dBm		The second se	- Example - Constant and a state				-
-20 dBm—		- ph	-			ų	1		-
-30 dBm		1	-		-	-	1		-
-40 dBm- 	en www.	hard a second					Wand	Monter	aponto mar
-60 dBm—									
-70 dBm—									
CF 5.825	GHz	I		1001 pt	5		1	Spa	n 50.0 MHz
Marker									
	ef Trc	X-value		Y-value	Functio	n	Fun	ction Resu	lt
M1	1	5.818706		1.12 dBm					
M2 M3	1	5.8161 5.8338		-6.45 dBm -6.18 dBm					

Product	:	Intelligent Robot
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 3: Transmit (802.11n-40BW 15Mbps)
Test Date	:	2019/06/18

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	5755	36500	>500	Pass
159	5795	36500	>500	Pass

Figure Channel 151:

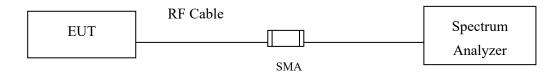
Att	evel	23.00 (30	dBm Offset a		RBW 100 kH: VBW 300 kH:		Sweep			
1Pk Vi	ew									
20 dBm 10 dBm								-3.25 dBn 500000 GH: 10.80 dBn 367000 GH:		
0 dBm-			-		MI			-		
-10 dBm	-D	1 -9.25	50 dBm	Malahilu	hopphahadaladahadang	publishedre	aderbaladants		-	
-20 dBm			_	1	4	-				-
-30 dBm	-			ŕ				-	-	
-40 dBm	-	1.	/					<u> </u>		
whether	nunt	which the	And the all your to brown and					N.	and an and an and and and and and and an	. he has to be here a state of the second
-50 dBr					+ +			"handbellet	4-444 may long an and	de
-60 dBm	-									
-70 dBm	-									
CF 5.7	55 GH	z			1001	pts		I	Span	 100.0 MHz
Marker										
Туре	Ref		X-value		Y-value	Func	tion	Fu	nction Result	t
M1 M2		1		75 GHz 57 GHz	-3.25 dB					
M3		1		32 GHz	-9.58 dB					

Figure	Channel	159:
I Igui C	Channel	10/1

Att	1.17.C	23.00 di 30		and the second	RBW 100 kH /BW 300 kH		Sweep			
1Pk V	ew			100						
20 dBm 10 dBm						1.00	1[1] 2[1]		-	-3.45 dBm 000000 GHz 11.16 dBm 67000 GHz
0 dBm-	-		-		M1		· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · ·	and the second
-10 dBn	T D	1 -9.450) dBm	Malabelshilesh	poliphalantakalang	putititation	aladadadad M3	_		
-20 dBn	 -	-		/		/		-		
-30 dBn		-	-						-	-
-40 dBn (///ՆՔՆԻԴ)թ -50 dBn	wywath	n talused all	rationalternet					L. J.	yanhunglinikishare	lknowskakaselwengenz
-60 dBn	∩									
-70 dBn	n- -									
CF 5.7	95 GH	lz		1	1001	pts			Span	100.0 MHz
Marker										
Туре	Ref	Trc	X-value		Y-value	Func	tion	Func	tion Result	:
M1 M2		1		79 GHz 67 GHz	-3.45 dB					
M2 M3		1		32 GHz	-11.16 dB -9.85 dB					

Product	:	Intelligent Robot
Test Item	:	Occupied Bandwidth Data
Test Mode	:	Mode 6: Transmit (802.11ac-80BW 32.5Mbps)
Test Date	:	2019/06/18

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	5775	76200	>500	Pass


Figure Channel 155:

Spect		23.00 d	Den Offcot	00 da - 0	BW 100 kH	-			-	
Att	ver		dB SWT		BW 300 KH		Sweep			
•1Pk Vi	BW			100						
20 dBm- 10 dBm-						-3.23 dBm 5.767410 GHz -12.07 dBm 5.736600 GHz				
0 dBm-	_				MI		1	-	1	
		1 -9.23	0.48m	HULLULL.		MMMM	Mulum			
-10 dBm	-	1 -9,23					1			
-20 dBm	+	-	-	/						
-30 dBm	-		-				-		-	-
-l40 dBm	_		and the action					4		
加加加	addin-1	, when the state	for dependence of the last					When and while	un de la come	امد و بحا فعلما
-50 dBm	+									The anodicard
-60 dBm	-									
-70 dBm										
05 5 3										
CF 5.73 Marker	75 GF	1Z			1001	l pts			span	200.0 MHz
Type	Ref	Trc	X-value	. 1	Y-value	Func	tion	Eup	ction Result	
M1	NG1	1		41 GHz	-3.23 dB			- T un	cton Kesur	
M2		1		56 GHz	-12.07 dE					
MЗ		1	5.81	28 GHz	-9.82 dB	3m				
						Mea	suring		440	07.06.2019

8. Duty Cycle

8.1. Test Setup

8.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to U-NII test procedure of KDB789033 for compliance to FCC 47CFR 15.407 requirements.

8.3. Uncertainty

± 2.31msec

8.4. Test Result of Duty Cycle

Product	:	Intelligent Robot
Test Item	:	Duty Cycle
Test Mode	:	Transmit

Duty Cycle Formula:

Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)

Results:

5GHz band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
802.11a	1.4400	1.5300	94.12	0.26
802.11n20	1.3500	1.4350	94.08	0.27
802.11n40	0.6780	0.7740	87.60	0.58
802.11ac20	1.3562	1.4458	93.80	0.28
802.11ac40	0.6762	0.7708	87.73	0.57
802.11ac80	0.3410	0.4330	78.75	1.04

Spectr		0.00 dB	pectrum 2	200	W 1M	rum 3	×	Spectru	ım 4			
Att	ver 1		iB 🖬 SWT 5 m		W 1 M							
1Pk Clr	w		1 1	_	-	_					_	
0 dBm—	-	-			-	_	_	2[1]				62.94 dBn 695.00 µ -1.48 di
-10 dBm	+				-			-	_		1	.44000 m
-20 dBm	_				-				_			
-30 dBm	planu	herefore	hatewoodstates	alivillationalise	plibury	Mapula	mannewy	-tutologilidagili	monther	penghan	alcourse of the second	saphykhetrada
-40 dBm	-								-	-		
-50 dBm	-	-		_	-				-	-		
-60 dBm	-	MI	-		DA	5		-				
-70 dBm	-	10		_	4	Ľ		-	-		-	
-80 dBm		-		-	-			-	-	-		
CF 5.18	GHz				1	1001	pts			-		500.0 µs/
Marker												
	Ref		X-value			alue	Fund	tion		Fun	ction Result	
M1		1		5.0 µs	-6	2.94 dBn						
D2 D3	M1 M1	1		44 ms 53 ms	_	-1.48 dE						
	1	1					R	eady	ADDRESS OF	0.00.0		/19/2019 :21:46 AM

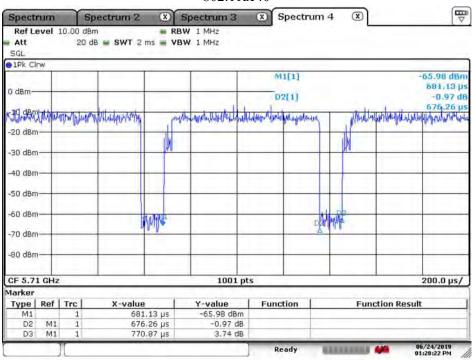
802.11a

Date: 19.JUN.2019 06:21:47

802.11n20

Spectr Ref Le			dBm		0.2.5	RB		1Hz		× S	pectr			×		
SGL		2	u ab	w SW	1 5 m	IS VB	W 1 M	1HZ								
1Pk Clr	w					_				_	_					
0 dBm—		-	-	_			-	M1[1] -53.67 di 800.00 D2[1] -2.75								
-10 dBm			-		-		-		-		-	_			-	1.35000 m
-20 dBm		0		lin r	-									1.00	1.2.2	to the
-30 dBm	hillionus	ytun	MAR .	Abolichup	period and	n. ALLANDAN BURNA	Noutry	1/144	hanha	u.u.u.harah	theyterely	HAAN	4	(MALHAMAS	historyclass	addate Madatelike
-40 dBm	-	_			_	1.01										
-50 dBm	-	_	_		-	_	+ +	_	-	_	_	_	-			
-60 dBm	_	M			_	_			_			_			1	
-70 dBm		W					2	使			1		n			
-70 aBm																
-80 dBm	-		-		-		-	-	1			-		_		
CF 5.18	GHz	-	-			-	ł.	100	1 pts			-		_	1	500.0 µs/
larker							-									
Type	Ref			X-V	alue			alue	-	Func	tion			Fund	tion Result	t
M1 D2	M1	1	_	_		.0 µs 15 ms	-6	3.67 0		-	_	-				_
D2	M1	1				l5 ms		-3.39								
		1	_						1	Re	ady	- 10	11.6	10.043		5/19/2019 135128 AM
			35:28						_							

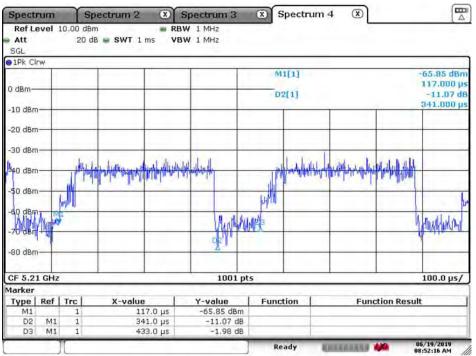
				802.1	1n40					
Spectrur	n	Spectrum 2	×S	pectrum 3	X	Spectr	um 4	×		
Ref Leve Att SGL		dBm D dB 📟 SWT 2 n		1 MHz 1 MHz						
1Pk Clrw										
0 dBm						M1[1]				68.99 dBm 342.00 ps 0.52 dB 678.00 ps
-20 dBm—							-	_		
-30 dBm -40 dBm-	enlift	handrahishiyasirishi M	sturblashudder 199	yberidgebildelighe	4	Yhillhadop	lycashown	uptionlypping	nandalinami	philothy
-50 dBm—							-			
-60 dBm	habit	4			ALLA					Marth
-70 dBm-	1.1.1	-	2	1	R Ik Alter			-		1
-80 dBm	-			-						
CF 5.19 G	Hz		_	1001	pts	-			1	200.0 µs/
Marker										
	f Trc	X-value	_	Y-value		nction		Funct	ion Result	
	1 41 1 41 1	678	2.0 µs 2.0 µs 4.0 µs	-68.99 dB 0.52 d 1.59 d	1B					
	JL					Ready	ALC: N	22243		/19/2019 13:04 AM


Date: 19.JUN.2019 08.13:04

802.11ac20

Spectr			12/10/2	trum 2	200	Spectrum 3	3	× :	Spectr	um 4	×			
Ref Le Att SGL	vel	10.00 d 20		SWT	5 ms = VE	W 1 MHz W 1 MHz								
1Pk Clr	w						_							_
					1.1.1			Q	3[1]					-2,46 df
0 dBm-	-	0.00	-	AL 417		a	-	LM	ini i	2.00	2			
-10 dBm	-walant	ndwaturd	man	Minshill	Winny Winn Play	And the state of t	4	namhfi	Mejarenny	NANADANA	(Lubylai) Habyl	1	an another party	相相相
-20 dBm	-		+	1	-		-	-		-	_	₩		-
-30 dBm	-	-		-	-	-		-	-	-		+	-	-
-40 dBm	-			-	-	-				-			-	-
-50 dBm	+			ML		ő	0	-		-			-	1
-60 dBm	+			W.	-	-	·	-		-	-	be be	_	
-70 dBm	-		-			-	-			-	_	-	-	
-80 dBm	-		+			-	-	-	-	-		+		-
CF 5.72	GHz		1			1001	pt	5			-	-	-	500.0 µs/
larker												_	6	
	Ref	Trc		X-valu		Y-value		Fund	tion		Fu	ncti	on Resu	ilt
M1		1	_		4613 ms	-60.78 dB			_	_	_			
D2 D3	M1 M1	1	_		5626 ms 4587 ms	2.58 0								
		11						R	ady	12.2			6	05/24/2019 01:29:18 PM

Date: 24.JUN.2019 13:29:19



802.11ac40

Date: 24.JUN.2019 13:28:22

802.11ac80

Date: 19.JUN.2019 08:52:16

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.