

FCC SAR Test Report

APPLICANT	:	ASUSTek Computer INC.
EQUIPMENT	:	802.11b/g/n USB2.0 Adapter
BRAND NAME	:	ASUS
MODEL NAME	:	WL-167G V3
FCC ID	:	MSQ-WL167GV3
STANDARD	:	FCC 47 CFR Part 2 (2.1093)
		IEEE C95.1-1999
		IEEE 1528-2003
		FCC OET Bulletin 65 Supplement C (Edition 01-01)

The product was received on Dec. 31, 2009 and completely tested on Jan. 13, 2010. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Roy Wu / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Page Number	: 1 of 31	
Report Issued Date	: Mar. 12, 2010	
Report Version	: Rev. 01	

Table of Contents

Rev	vision H	History	
1.	Stater	ment of Compliance	
2.	Admir	nistration Data	
	2.1	Testing Laboratory	
	2.2	Applicant	
	2.3	Application Details	
3.	Gener	ral Information	
	3.1	Description of Device Under Test (DUT)	
	3.2	Product Photos	
	3.3	Applied Standards	
	3.4	Device Category and SAR Limits	
	3.5	Test Conditions	
		3.5.1 Ambient Condition	
		3.5.2 Test Configuration	7
4.	Speci	fic Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	
5.	SAR N	Measurement System	
	5.1	E-Field Probe	
		5.1.1 E-Field Probe Specification	10
		5.1.2 E-Field Probe Calibration	
	5.2	Data Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4	Measurement Server	
	5.5	Phantom	
	5.6	Device Holder	14
	5.7	Data Storage and Evaluation	
		5.7.1 Data Storage	
		5.7.2 Data Evaluation	
	5.8	Test Equipment List	
6.	Tissu	e Simulating Liquids	19
7.	Uncer	rtainty Assessment	21
8.	SAR N	Measurement Evaluation	24
	8.1	Purpose of System Performance check	
	8.2	System Setup	
	8.3	Validation Results	
9.	DUT T	Testing Position	
10.	Measu	urement Procedures	27
	10.1	Spatial Peak SAR Evaluation	
	10.2	Scan Procedures	
	10.3	SAR Averaged Methods	
11.	SAR 1	۲est Results	
	11.1	Conducted Power (Unit: dBm)	
	11.2	Test Records for Body SAR Test	
	11.3	Test Records for Back-Off SAR Test	
12.	Refere	ences	
A			

Appendix A. Plots of System Performance Check Appendix B. Plots of SAR Measurement Appendix C. DASY Calibration Certificate Appendix D. Product Photos Appendix E. Test Setup Photos

Revision History

Rev. 01	Initial issue of report	M 40.0040
		Mar. 12, 2010

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) were found during testing for **ASUSTek Computer INC. 802.11b/g/n USB2.0 Adapter ASUS WL-167G V3**, which is as follow (with expanded uncertainty 21.8 % for 300 MHz to 3 GHz, and 25.6% for 3 GHz to 6 GHz).

Band	Position	SAR _{1g} (W/kg)
802.11b/g/n	Body	0.923

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

2. Administration Data

2.1 Testing Laboratory

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No. SAR02-HY		

2.2 Applicant

Company Name	ASUSTek Computer INC.
Address	No. 150, Li-Te Rd., Peitou, Taipei 112, Taiwan

2.3 Application Details

Date of Receipt of Application	Dec. 31, 2009
Date of Start during the Test	Jan. 13, 2010
Date of End during the Test	Jan. 13, 2010

3. General Information

3.1 Description of Device Under Test (DUT)

Product Feature & Specification			
DUT Type 802.11b/g/n USB2.0 Adapter			
Brand Name	ASUS		
Model Name	WL-167G V3		
FCC ID	MSQ-WL167GV3		
Tx Frequency	2400 MHz ~ 2483.5 MHz		
Rx Frequency	2400 MHz ~ 2483.5 MHz		
	802.11b : 21.33 dBm		
Maximum Output Power to Antenna	802.11g : 22.12 dBm		
Maximum Output Fower to Antenna	802.11n (BW 20MHz) : 22.15 dBm		
	802.11n (BW 40MHz) : 21.14 dBm		
Antenna Type	PCB Antenna		
Type of Modulation	802.11b : DSSS (BPSK / QPSK / CCK)		
	802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)		
DUT Stage	Production Unit		

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

3.2 Product Photos

Please refer to Appendix D.

3.3 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this 802.11b/g/n USB2.0 Adapter is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1999
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 248227 D01 v01r02
- FCC KDB 447498 D01 v04
- FCC KDB 447498 D02 v02

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 Ambient Condition

Ambient Temperature	20 to 24 °C
Humidity	< 60 %

3.5.2 Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

The data rates for WLAN SAR testing were set in 1Mbps for 802.11b, 6Mbps for 802.11g, and MCS 0 for 802.11n(BW 20MHz) and 802.11n(BW 40MHz) with antenna transmit due to the highest RF output power.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement System

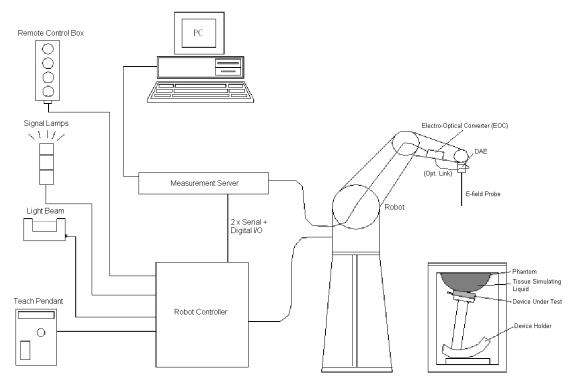


Fig 5.1 SPEAG DASY4 or DASY5 System Configurations

The DASY4 or DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- > A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 or DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- > A device holder
- Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 <u>E-Field Probe</u>

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 E-Field Probe Specification

<et3dv6></et3dv6>			-
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 3 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)		1994
Dynamic Range	5 μ W/g to 100 mW/g; Linearity: ± 0.2 dB		
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	Fig 5.2	Photo of ET3DV6

<EX3DV3 Probe>

Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to		
	organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe		T
	axis)		
	± 0.5 dB in tissue material (rotation		8
	normal to probe axis)		1 1
Dynamic Range	$10 \mu\text{W/g}$ to 100mW/g ; Linearity: $\pm 0.2 \text{dB}$		
	(noise: typically < 1 μ W/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole		
	centers: 1 mm		•
		Fig 5.3	Photo of EX3DV3

5.1.2 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.4 Photo of DAE

5.3<u>Robot</u>

The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : MSQ-WL167GV3 Page Number: 11 of 31Report Issued Date: Mar. 12, 2010Report Version: Rev. 01

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig 5.7 Photo of Server for DASY4

Fig 5.8 Photo of Server for DASY5

5.5<u>Phantom</u>

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;	4
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	The second second
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	<u> </u>
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		Fig 5.9 Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	Fig 5.10 Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

5.6 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.11 Device Holder

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

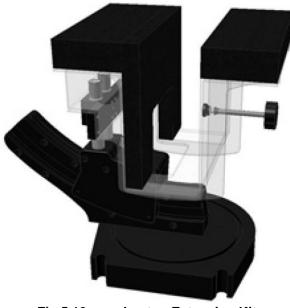


Fig 5.12 Laptop Extension Kit

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	 Diode compression point 	dcpi
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

E-field Probes :
$$\mathbf{E_i} = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes : $\mathbf{H_i} = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with $V_i = \text{compensated signal of channel i, } (i = x, y, z)$ $\text{Norm}_i = \text{sensor sensitivity of channel i, } (i = x, y, z), \mu V/(V/m)^2 \text{ for E-field Probes}$ ConvF = sensitivity enhancement in solution $a_{ij} = \text{sensor sensitivity factors for H-field probes}$ f = carrier frequency [GHz] $E_i = \text{electric field strength of channel i in V/m}$ $H_i = \text{magnetic field strength of channel i in A/m}$

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$\mathbf{E}_{\rm tot} = \sqrt{\mathbf{E}_{\rm x}^2 + \mathbf{E}_{\rm y}^2 + \mathbf{E}_{\rm z}^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

5.8 Test Equipment List

	Name of Freedoment	Tom a (Mandal	O anial Namela a	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	ET3DV6	1787	May 26, 2009	May 25, 2010
SPEAG	Dosimetric E-Field Probe	ET3DV6	1788	Sep. 23, 2009	Sep. 22, 2010
SPEAG	Dosimetric E-Field Probe	EX3DV3	3514	Jan. 21, 2009	Jan. 20, 2010
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 16, 2010
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 21, 2009	Jul. 20, 2011
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	Jul. 20, 2009	Jul. 19, 2011
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 28, 2008	Mar. 27, 2010
SPEAG	2000MHz System Validation Kit	D2000V2	1010	Sep. 17, 2008	Sep. 16, 2010
SPEAG	2300MHz System Validation Kit	D2300V2	1006	Sep. 24, 2009	Sep. 23, 2011
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 20, 2009	Jul. 19, 2011
SPEAG	2600MHz System Validation Kit	D2600V2	1008	Sep. 24, 2009	Sep. 23, 2011
SPEAG	3500MHz System Validation Kit	D3500V2	1014	Sep. 17, 2009	Sep. 16, 2011
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Jan. 24, 2008	Jan. 23, 2010
SPEAG	Data Acquisition Electronics	DAE3	577	Aug. 24, 2009	Aug. 23, 2010
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 18, 2009	Sep. 17, 2010
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1303	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1383	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1446	NCR	NCR
SPEAG	SAM Phantom	QD 000 P40 C	TP-1477	NCR	NCR
SPEAG	ELI4 Phantom	QD 0VA 001 BB	1026	NCR	NCR
SPEAG	ELI4 Phantom	QD 0VA 001 BA	1029	NCR	NCR
Agilent	PNA Series Network Analyzer	E8358A	US40260131	Apr. 17, 2009	Apr. 16, 2010
Agilent	Wireless Communication Test Set	E5515C	MY48360820	Dec. 15, 2008	Dec. 14, 2010
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Feb. 16, 2009	Feb. 15, 2011
R&S	Universal Radio Communication Tester	CMU200	108082	Jun. 08, 2009	Jun. 07, 2010
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
AR	Power Amplifier	5S1G4M2	0328767	NCR	NCR
R&S	Spectrum Analyzer	FSP7	101131	Mar. 17, 2009	Mar. 16, 2010

Table 5.1 Test Equipment List

Note: The calibration certificate of DASY can be referred to appendix C of this report.

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)
				For Head				
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7

The following table gives the recipes for tissue simulating liquid.

Table 6.1 Recipes of Tissue Simulating Liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	±5% Range	Permittivity (ε _r)	±5% Range
2450	Head	1.80	1.71 ~ 1.89	39.2	37.2 ~ 41.2
5200	Head	4.66	4.43 ~ 4.89	36.0	34.2 ~ 37.8
5500	Head	4.96	4.71 ~ 5.21	35.6	33.8 ~ 37.4
5800	Head	5.27	5.01 ~ 5.53	35.3	33.5 ~ 37.1
2450	Body	1.95	1.85 ~ 2.05	52.7	50.1 ~ 55.3
5200	Body	5.30	5.04 ~ 5.57	49.0	46.6 ~ 51.5
5500	Body	5.65	5.37 ~ 5.93	48.6	46.2 ~ 51.0
5800	Body	6.00	5.70 ~ 6.30	48.2	45.8 ~ 50.6

The following table gives the targets for tissue simulating liquid.

Table 6.2 Targets of	Tissue	Simulating	Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency	Liquid	Temperature	Conductivity	Permittivity	Measurement
(MHz)	Type	(℃)	(σ)	(ε _r)	Date
2450	Body	21.3	1.93	53.4	Jan. 13, 2010

Table 6.3 Measuring Results for Simulating Liquid

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Table 7.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 7.2 and Table 7.3.

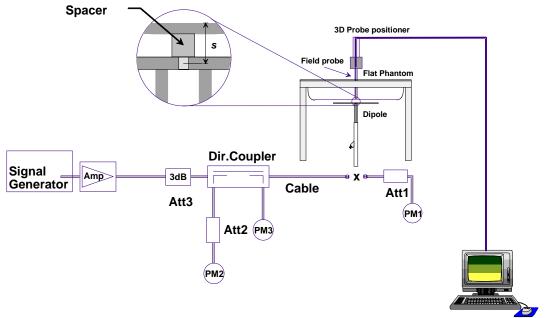
Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (1g)
Measurement System	•	•	-	•	•
Probe Calibration	5.9	Normal	1	1	± 5.9 %
Axial Isotropy	4.7	Rectangular	√3	0.7	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	± 0.6 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	± 0.6 %
Test Sample Related					
Device Positioning	2.9	Normal	1	1	± 2.9 %
Device Holder	3.6	Normal	1	1	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup		•			
Phantom Uncertainty	4.0	Rectangular	√3	1	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	± 1.8 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	± 1.6 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	± 1.7 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	± 1.5 %
Combined Standard Uncertainty					± 10.9 %
Coverage Factor for 95 %					K = 2
Expanded Uncertainty					± 21.8 %

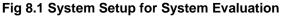
Table 7.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (1g)
Measurement System	•	•	-	•	•
Probe Calibration	6.5	Normal	1	1	± 6.5 %
Axial Isotropy	4.7	Rectangular	√3	0.7	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	± 3.9 %
Boundary Effects	2.0	Rectangular	√3	1	± 1.2 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	± 1.7 %
Probe Positioner	0.8	Rectangular	√3	1	± 0.5 %
Probe Positioning	9.9	Rectangular	√3	1	± 5.7 %
Max. SAR Eval.	4.0	Rectangular	√3	1	± 2.3 %
Test Sample Related					
Device Positioning	2.9	Normal	1	1	± 2.9 %
Device Holder	3.6	Normal	1	1	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup	•				
Phantom Uncertainty	4.0	Rectangular	√3	1	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.43	± 1.8 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.43	± 1.6 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.49	± 1.7 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.49	± 1.5 %
Combined Standard Uncertainty					± 12.8 %
Coverage Factor for 95 %					K = 2
Expanded Uncertainty					± 25.6 %

Table 7.3 Uncertainty Budget of DASY for frequency range 3 GHz to 6 GHz

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.


8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Page Number	: 24 of 31
Report Issued Date	: Mar. 12, 2010
Report Version	: Rev. 01

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

Fig 8.2 Photo of Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Measurement	Frequency	Targeted SAR _{1g}	Measured SAR _{1g}	Deviation
Date	(MHz)	(W/kg)	(W/kg)	(%)
Jan. 13, 2010	2450	53.00	52.90	-0.19

Table 8.1 Target and Measurement SAR after Normalized

9. DUT Testing Position

This DUT was tested in five different USB configurations. They are "direct laptop plug-in for configuration 1 and 4", "USB cable plug-in for configuration 2 and 3", and "direct laptop plug-in for Tip Mode (the tip of the DUT)" shown as below. Both direct laptop plug-in and USB cable plug-in test configurations are tested with 0.5 cm separation between the particular dongle orientation and the flat phantom. Please refer to Appendix E for the test setup photos.

Fig 9.1 Illustration for USB Connector Orientations

10. Measurement Procedures

The measurement procedures are as follows:

- (a) Use engineering software to transmit RF power continuously (continuous Tx) in the middle channel
- (b) Measure output power through RF cable and power meter
- (c) Place the DUT in the positions described in the last section
- (d) Set scan area, grid size and other setting on the DASY software
- (e) Taking data for the middle channel on each testing position
- (f) Find out the largest SAR result on these testing positions of each band
- (g) Measure SAR results for the lowest and highest channels in worst SAR testing position

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

10.2 <u>Scan Procedures</u>

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4.3, 4.3 and 3 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

10.3 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. <u>SAR Test Results</u>

11.1 Conducted Power (Unit: dBm)

Band	802.11b			802.11g		
Channel	1	6	11	1	6	11
Frequency (MHz)	2412	2437	2462	2412	2437	2462
Power	19.24	19.50	21.33	18.00	22.12	19.30

Band	802.11n (BW 20MHz)			802.11n (BW 40MHz)		
Channel	1	6	11	3	6	9
Frequency (MHz)	2412	2437	2462	2422	2437	2452
Power	18.19	22.15	19.93	18.35	21.14	20.18

11.2 Test Records for Body SAR Test

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Channel	SAR _{1g} (W/kg)
#01	802.11b	-	Horizontal Up (Laptop)	0.5	6	0.668
#02	802.11b	-	Horizontal Down (USB Cable)	0.5	6	0.911
#03	802.11b	-	Vertical Front (USB Cable)	0.5	6	0.262
#04	802.11b	-	Vertical Back (Laptop)	0.5	6	0.272
#05	802.11b	-	Tip Mode (Laptop)	0.5	6	0.121
#06	802.11g	-	Horizontal Down (USB Cable)	0.5	6	0.923
#07	802.11n	BW 20MHz	Horizontal Down (USB Cable)	0.5	6	0.873
#08	802.11n	BW 40MHz	Horizontal Down (USB Cable)	0.5	6	0.785
#09	802.11b	-	Horizontal Down (USB Cable)	0.5	1	0.826
#10	802.11b	-	Horizontal Down (USB Cable)	0.5	11	0.879
#11	802.11g	-	Horizontal Down (USB Cable)	0.5	1	0.385
#12	802.11g	-	Horizontal Down (USB Cable)	0.5	11	0.347
#13	802.11n	BW 20MHz	Horizontal Down (USB Cable)	0.5	1	0.425
#14	802.11n	BW 20MHz	Horizontal Down (USB Cable)	0.5	11	0.41
#15	802.11n	BW 40MHz	Horizontal Down (USB Cable)	0.5	3	0.429
#16	802.11n	BW 40MHz	Horizontal Down (USB Cable)	0.5	9	0.524

11.3 Test Records for Back-Off SAR Test

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Channel	SAR _{1g} (W/kg)
#17	802.11g	-	Horizontal Down (USB Cable)	1.0	6	0.477
#18	802.11g	-	Horizontal Down (USB Cable)	1.5	6	0.267

Test Engineer : Eric Huang and A-Rod Chen

12. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 447498 D02 v02, "SAR Measurement Procedures for USB Dongle Transmitters", November 2009
- [9] FCC KDB 616217 D01 v01r01, "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens", November 2009
- [10] FCC KDB 616217 D03 v01, "SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers", November 2009
- [11] FCC KDB 648474 D01 v01r05, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", September 2008
- [12] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [13] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008

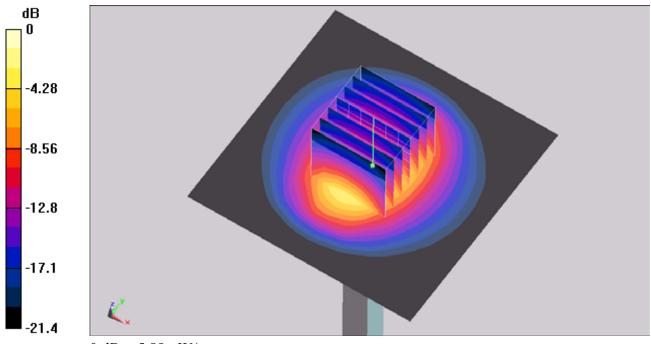
Appendix A. Plots of System Performance Check

The plots are shown as follows.

System Check_2450MHz_100113

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2450 MHz; $\sigma = 1.93$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³


Ambient Temperature: 22.3 ; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.11 mW/g

 $\label{eq:product} \begin{array}{l} \mbox{Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.6 V/m; Power Drift = 0.011 dB \\ \mbox{Peak SAR (extrapolated) = 12.3 W/kg} \\ \mbox{SAR(1 g) = 5.29 mW/g; SAR(10 g) = 2.44 mW/g} \\ \mbox{Maximum value of SAR (measured) = 5.89 mW/g} \end{array}$

0 dB = 5.89 mW/g

Appendix B. Plots of SAR Measurement

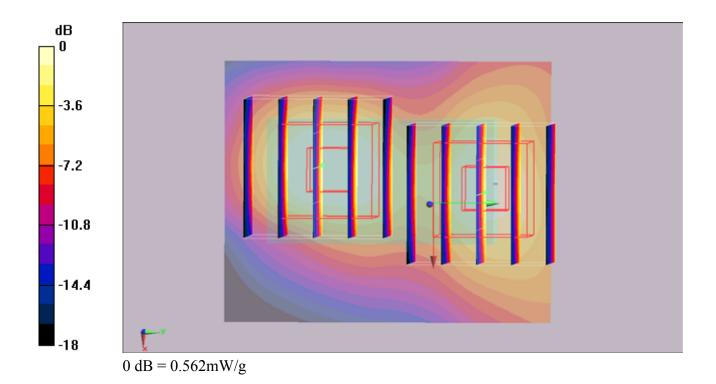
The plots are shown as follows.

#01 802.11b_Horizontal Up_0.5cm_Ch6

DUT: 9D3130

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 ; Liquid Temperature : 21.3


DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch6/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.779 mW/g

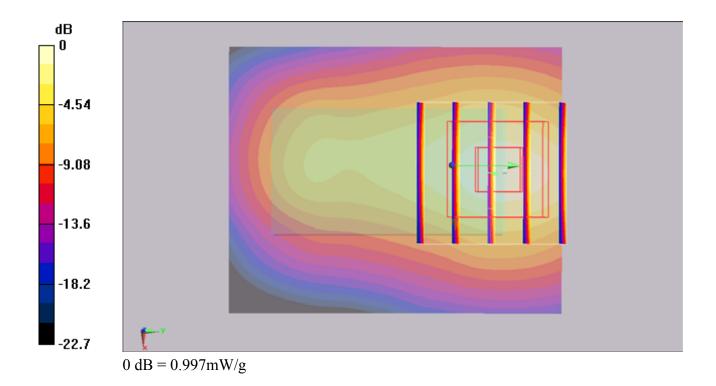
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.3 V/m; Power Drift = 0.154 dB Peak SAR (extrapolated) = 1.84 W/kg SAR(1 g) = 0.668 mW/g; SAR(10 g) = 0.294 mW/g Maximum value of SAR (measured) = 0.671 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.3 V/m; Power Drift = 0.154 dB Peak SAR (extrapolated) = 1.21 W/kg SAR(1 g) = 0.507 mW/g; SAR(10 g) = 0.236 mW/g Maximum value of SAR (measured) = 0.562 mW/g

#06 802.11g_Horizontal Down_0.5cm_Ch6

DUT: 9D3130

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³


Ambient Temperature : 22.4 ; Liquid Temperature : 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch6/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.969 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.2 V/m; Power Drift = 0.145 dB Peak SAR (extrapolated) = 2.11 W/kg SAR(1 g) = 0.923 mW/g; SAR(10 g) = 0.448 mW/g Maximum value of SAR (measured) = 0.997 mW/g

#06 802.11g_Horizontal Down_0.5cm_Ch6_2D

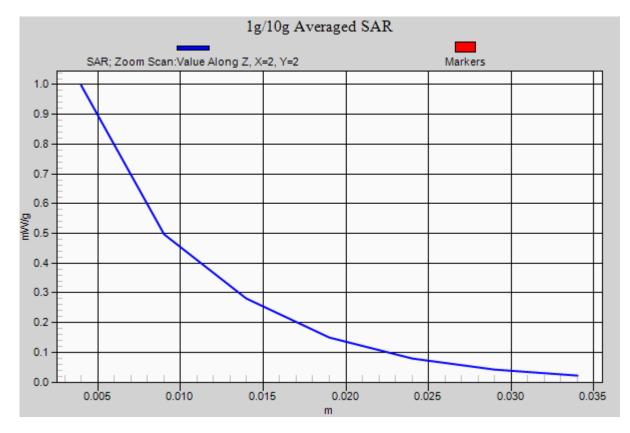
DUT: 9D3130

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 ; Liquid Temperature : 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125


Ch6/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.969 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.2 V/m; Power Drift = 0.145 dB Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.923 mW/g; SAR(10 g) = 0.448 mW/g

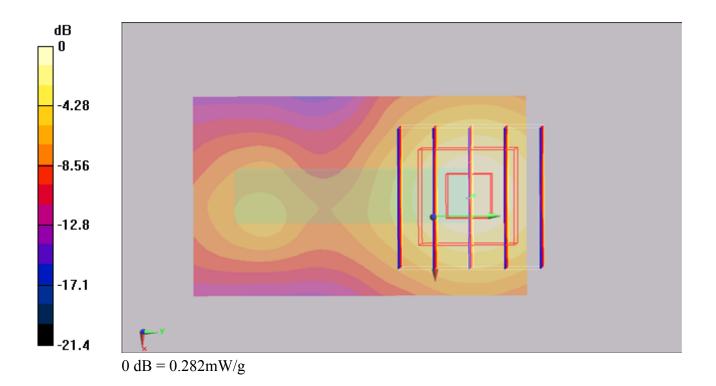
Maximum value of SAR (measured) = 0.997 mW/g

#03 802.11b_Vertical Front_0.5cm_Ch6

DUT: 9D3130

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³


Ambient Temperature : 22.4 ; Liquid Temperature : 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch6/Area Scan (31x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.276 mW/g

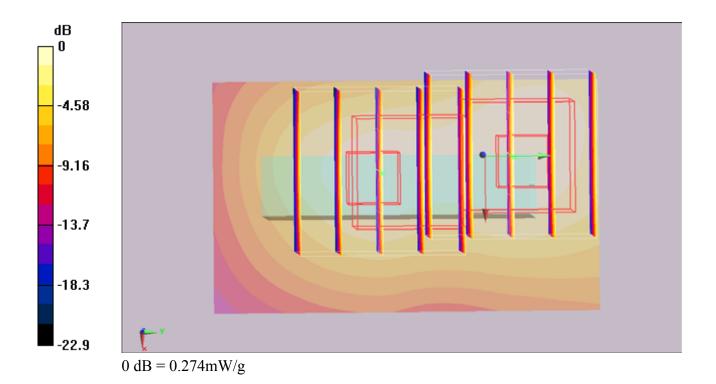
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.6 V/m; Power Drift = 0.074 dB Peak SAR (extrapolated) = 0.604 W/kg SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.129 mW/g Maximum value of SAR (measured) = 0.282 mW/g

#04 802.11b_Vertical Back_0.5cm_Ch6

DUT: 9D3130

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 ; Liquid Temperature : 21.3


DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch6/Area Scan (31x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.297 mW/g

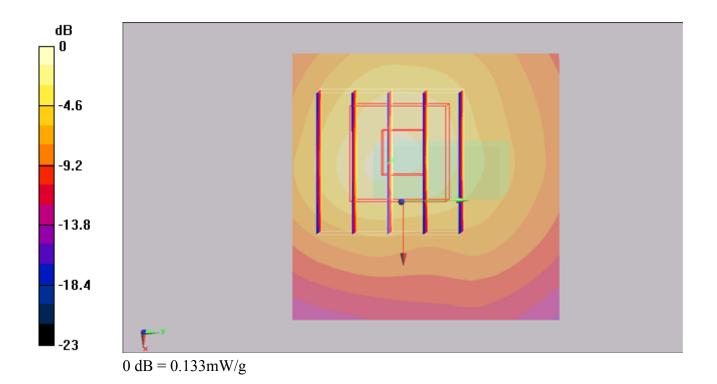
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = 0.172 dB Peak SAR (extrapolated) = 0.577 W/kg SAR(1 g) = 0.272 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.291 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = 0.172 dB Peak SAR (extrapolated) = 0.608 W/kg SAR(1 g) = 0.257 mW/g; SAR(10 g) = 0.129 mW/g Maximum value of SAR (measured) = 0.274 mW/g

#05 802.11b_Tip Mode_0.5cm_Ch6

DUT: 9D3130

Communication System: 802.11b ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³


Ambient Temperature : 22.5 ; Liquid Temperature : 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch6/Area Scan (41x41x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.103 mW/g

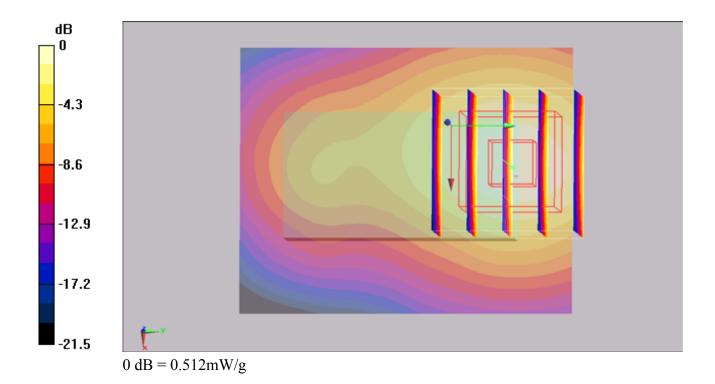
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.08 V/m; Power Drift = 0.112 dB Peak SAR (extrapolated) = 0.311 W/kg SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.054 mW/g Maximum value of SAR (measured) = 0.133 mW/g

#17 802.11g_Horizontal Down_1cm_Ch6

DUT: 9D3130

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$

kg/m³


Ambient Temperature : 22.4 ; Liquid Temperature : 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

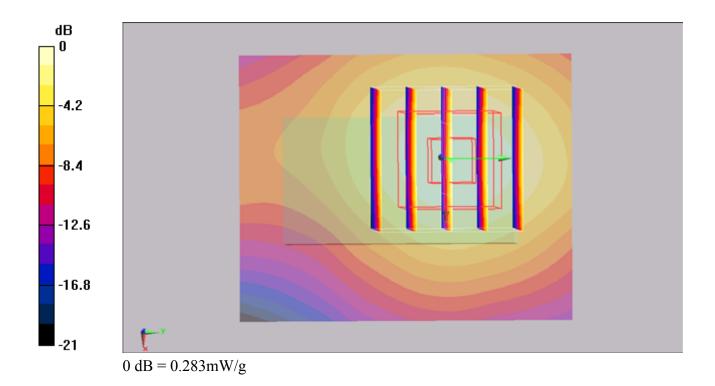
Ch6/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.515 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17 V/m; Power Drift = -0.051 dBPeak SAR (extrapolated) = 1.05 W/kgSAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.243 mW/gMaximum value of SAR (measured) = 0.512 mW/g

#18 802.11g_Horizontal Down_1.5cm_Ch6

DUT: 9D3130

Communication System: 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: MSL_2450_100113 Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³


Ambient Temperature: 22.4 ; Liquid Temperature: 21.3

DASY5 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.19, 4.19, 4.19); Calibrated: 2009/9/23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2009/9/18
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 125; SEMCAD X Version 13.4 Build 125

Ch6/Area Scan (41x51x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.291 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.9 V/m; Power Drift = -0.138 dB Peak SAR (extrapolated) = 0.572 W/kg SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.283 mW/g

Appendix C. DASY Calibration Certificate

The DASY calibration certificates are shown as follows.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

V

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

ient Sporton (Aude	n)	Certific	ate No: D2450V2-736_Jul09
ALIBRATION C	ERTIFICATE		
Dbject	D2450V2 - SN: 7	36	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	ŝ
Calibration date:	July 20, 2009		
Condition of the calibrated item	In Tolerance		
		onal standards, which realize the physi robability are given on the following pag	
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22	± 3)°C and humidity < 70%.
Calibration Equipment used (M&1	E critical for calibration)		
Primary Standards	ID #	Cal Date (Calibrated by, Certificate N	No.) Scheduled Calibration
ower meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
ower sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
leference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
ype-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	30-Apr-09 (No. ES3-3025_Apr09)	Apr-10
AE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
ower sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
letwork Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	Ugh
Approved by:	Katja Pokovic	Technical Manager	del the
			Issued: July 22, 2009
This calibration certificate shall no	t be reproduced except in	full without written approval of the labo	ratory.

Certificate No: D2450V2-736_Jul09

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
	v 1
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-736_Jul09

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.2 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	54.2 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
	250 mW input power	6.33 mW / g
SAR measured SAR normalized	250 mW input power normalized to 1W	6.33 mW / g 25.3 mW / g

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D2450V2-736_Jul09

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

_

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	53.0 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	24.9 mW/g ± 16.5 % (k

² Correction to nominal TSL parameters according to d), chapter *SAR Sensitivities"

Certificate No: D2450V2-736_Jul09

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω + 2.2 jΩ	
Return Loss	- 27.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 4.2 jΩ	
Return Loss	- 27.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 26, 2003

Certificate No: D2450V2-736_Jul09

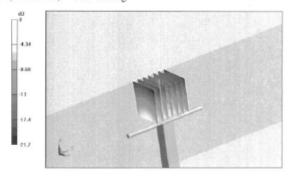
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 20.07.2009 17:44:29

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

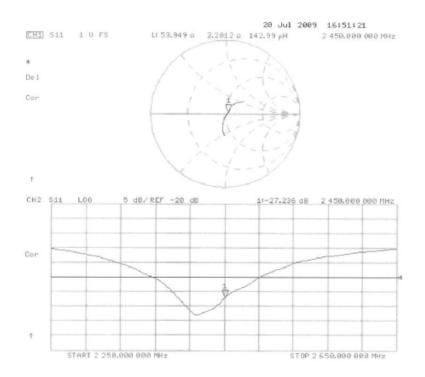

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.78 mho/m; ϵ_r = 40.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.35, 4.35, 4.35); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.6 V/m; Power Drift = 0.037 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.33 mW/g Maximum value of SAR (measured) = 16.9 mW/g



0 dB = 16.9mW/g

Certificate No: D2450V2-736_Jul09

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-736_Jul09

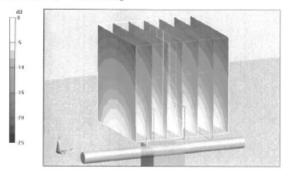
Page 7 of 9

DASY5 Validation Report for Body TSL

Date/Time: 14.07.2009 17:46:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

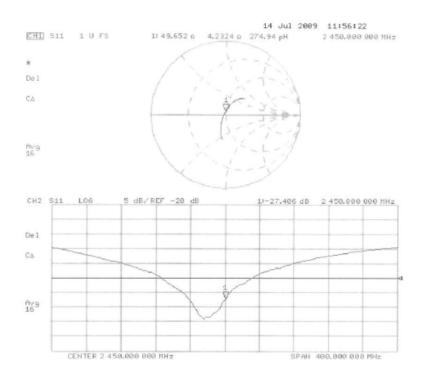

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 2$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.06, 4.06, 4.06); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.26 mW/g Maximum value of SAR (measured) = 17.8 mW/g



0 dB = 17.8mW/g

Certificate No: D2450V2-736_Jul09

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-736_Jul09

Page 9 of 9

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS S C Z Z PRIBRIST

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: DAE4-778_Sep09

	ERTIFICATE		
Dbject	DAE4 - SD 000 D	04 BJ - SN: 778	
Calibration procedure(s)	QA CAL-06.v20 Calibration proced	lure for the data acquisition e	electronics (DAE)
alibration date:	September 18, 20	09	
ondition of the calibrated item	In Tolerance		
	-	facility: environment temperature (22 ±	: 3)°C and humidity < 70%.
		Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	ID # SN: 0810278	Cal Date (Certificate No.) 30-Sep-08 (No: 7670)	Scheduled Calibration Sep-09
rimary Standards eithley Multimeter Type 2001	ID #		
alibration Equipment used (M&T rimary Standards eithley Multimeter Type 2001 econdary Standards alibrator Box V1.1	ID # SN: 0810278 ID #	30-Sep-08 (No: 7670)	Sep-09
rimary Standards eithley Multimeter Type 2001 econdary Standards	ID # SN: 0810278 ID #	30-Sep-08 (No: 7670) Check Date (in house)	Sep-09 Scheduled Check
rimary Standards eithley Multimeter Type 2001 econdary Standards alibrator Box V1.1	ID # SN: 0810278 ID # SE UMS 006 AB 1004	30-Sep-08 (No: 7670) Check Date (in house) 05-Jun-09 (in house check) Function	Sep-09 Scheduled Check
rimary Standards eithley Multimeter Type 2001 econdary Standards alibrator Box V1.1	ID # SN: 0810278 ID # SE UMS 006 AB 1004	30-Sep-08 (No: 7670) Check Date (in house) 05-Jun-09 (in house check)	Sep-09 Scheduled Check In house check: Jun-10 Signature
rimary Standards eithley Multimeter Type 2001 econdary Standards	ID # SN: 0810278 ID # SE UMS 006 AB 1004	30-Sep-08 (No: 7670) Check Date (in house) 05-Jun-09 (in house check) Function	Sep-09 Scheduled Check In house check: Jun-10

Certificate No: DAE4-778_Sep09

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-778_Sep09

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	z
High Range	404.759 ± 0.1% (k=2)	$403.533 \pm 0.1\%$ (k=2)	405.087 ± 0.1% (k=2)
Low Range	3.98990 ± 0.7% (k=2)	3.96736 ± 0.7% (k=2)	3.99650 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	308.5 ° ± 1 °
---	---------------

Certificate No: DAE4-778_Sep09

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199989.9	-19.33	-0.01
Channel X + Input	19998.71	-1.49	-0.01
Channel X - Input	-19997.52	2.48	-0.01
Channel Y + Input	200005.5	-2.55	-0.00
Channel Y + Input	19998.69	-1.31	-0.01
Channel Y - Input	-20000.77	-1.07	0.01
Channel Z + Input	199996.6	-1.53	-0.00
Channel Z + Input	19995.31	-4.89	-0.02
Channel Z - Input	-20004.85	0.02	0.02

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X +	Input	1999.2	-0.67	-0.03
Channel X +	Input	198.75	-1.25	-0.62
Channel X -	Input	-202.40	-2.40	1.20
Channel Y +	Input	1999.9	-0.34	-0.02
Channel Y +	Input	198.02	-2.08	-1.04
Channel Y -	Input	-202.77	-2.77	1.38
Channel Z +	Input	1998.9	-1.13	-0.06
Channel Z +	Input	197.15	-2.65	-1.33
Channel Z -	Input	-202.66	-2.76	1.38

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-11.65 -	-12.94
	- 200	5.27	4.21
Channel Y	200	-1.68	-2.17
	- 200	0.94	0.50
Channel Z	200	-10.40	-10.34
	- 200	7.99	8.37

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	3.78	0.43
Channel Y	200	2.72	19 2 -1	3.55
Channel Z	200	1.91	-1.15	-

Certificate No: DAE4-778_Sep09

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16047	16291
Channel Y	16164	15200
Channel Z	16419	16616

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M \Omega$

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.27	-1.21	0.66	0.34
Channel Y	-1.11	-2.22	0.27	0.51
Channel Z	-1.33	-2.34	-0.31	0.45

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	203.5
Channel Y	0.2000	203.3
Channel Z	0.2000	203.9

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton (Auden)

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: ET3-1788_Sep09

Accreditation No.: SCS 108

bject	ET3DV6 - SN:1788				
alibration procedure(s)	QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes				
alibration date:	September 23, 2009				
ondition of the calibrated item	item In Tolerance				
	cted in the closed laborate	probability are given on the following pages an ory facility: environment temperature $(22 \pm 3)^{\circ}$ C			
and anon Equipment used (Mo	TE childar for calibration)				
500	ID#	Cal Date (Certificate No.)	Scheduled Calibration		
mary Standards	1	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10		
mary Standards wer meter E4419B	ID#				
mary Standards wer meter E4419B wer sensor E4412A	ID # GB41293874	1-Apr-09 (No. 217-01030)	Apr-10		
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A	ID # GB41293874 MY41495277	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10		
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Apr-10 Apr-10 Apr-10		
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	Apr-10 Apr-10 Apr-10 Mar-10		
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 20 dB Attenuator ference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10		
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A derence 3 dB Attenuator ference 20 dB Attenuator ference 30 dB Attenuator ference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b)	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10		
imary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID #	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10		
imary Standards wer meter E4419B over sensor E4412A wer sensor E4412A eference 3 dB Attenuator oference 20 dB Attenuator oference 30 dB Attenuator oference Probe ES3DV2 AE4 condary Standards generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-860_Sep08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09		
imary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator oference 20 dB Attenuator oference 30 dB Attenuator oference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 660 ID #	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check		
timary Standards ower meter E4419B ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09		
timary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C etwork Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09		
timary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A elerence 3 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards F generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5026 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) Function	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09		

Certificate No: ET3-1788_Sep09

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C D Z PEIBRAT

S

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788_Sep09

Page 2 of 9

September 23, 2009

Probe ET3DV6

SN:1788

Manufactured: Last calibrated: Recalibrated: May 28, 2003 September 23, 2008 September 23, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep09

Page 3 of 9

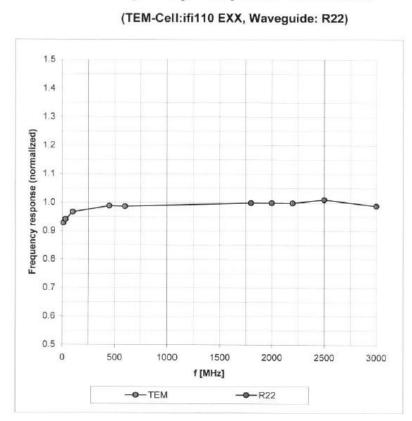
September 23, 2009

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free Space ^A Diode Compression ^B						
NormX NormY NormZ	 1.79 ± 10.1% 1.68 ± 10.1% 1.74 ± 10.1% 	μV/(V/m) ² μV/(V/m) ² μV/(V/m) ²	DCP X DCP Y DCP Z	95 m∨ 98 m∨ 91 m∨		
Sensitivity in Tissue Simulating Liquid (Conversion Factors)						
Please see Page 8.						
Boundary Effect						
TSL	835 MHz Typical S	SAR gradient: 5 % pe	r mm			
Sensor Cer SAR _{be} [%] SAR _{be} [%]	nter to Phantom Surface Without Correction With Correction Alg	Algorithm	3.7 mm 10.4 0.8	4.7 mm 6.8 0.5		
TSL	1750 MHz Typical S	SAR gradient: 10 % p	er mm			
SAR _{be} [%] SAR _{be} [%]	nter to Phantom Surface Without Correction With Correction Alg	Algorithm	3.7 mm 12.5 0.8	4.7 mm 8.3 0.4		
Sensor Offset						
Probe Tip t	Probe Tip to Sensor Center		2.7 mm			

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

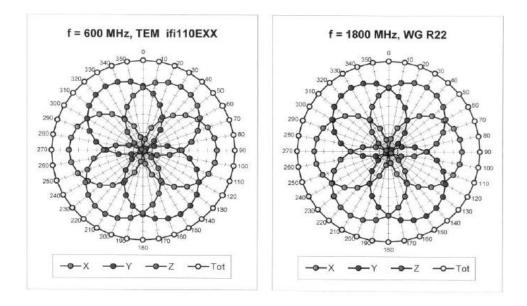

^B Numerical linearization parameter: uncertainty not required.

Certificate No: ET3-1788_Sep09

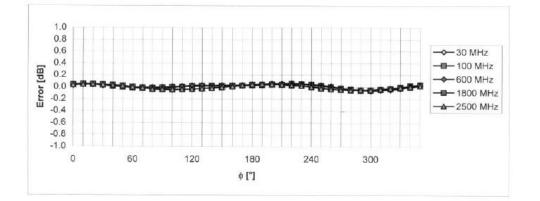
Page 4 of 9

September 23, 2009

Frequency Response of E-Field

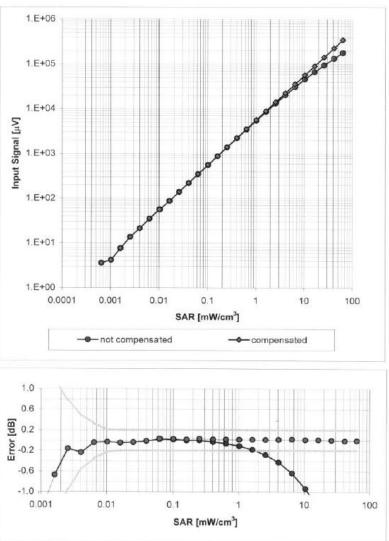

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep09


Page 5 of 9

September 23, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

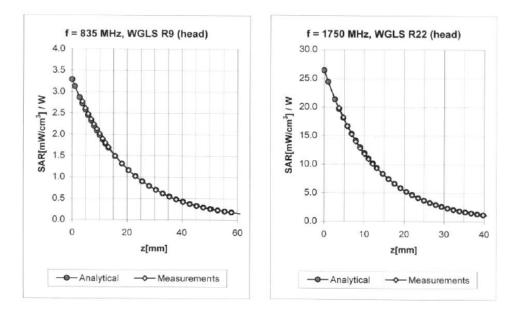


Certificate No: ET3-1788_Sep09

Page 6 of 9

September 23, 2009

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1788_Sep09

Page 7 of 9

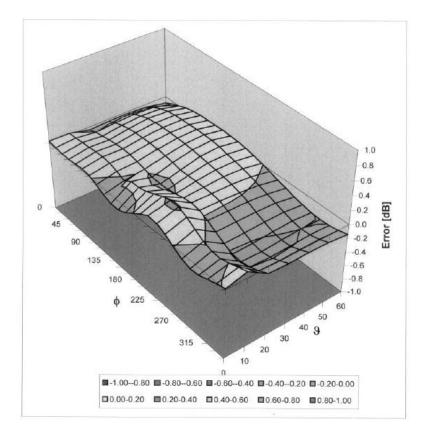
September 23, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.35	2.50	6.30 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.50	2.63	5.40 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.68	2.24	5.11 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.99	1.77	4.48 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.33	2.65	6.08 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.58	3.48	4.77 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	$53.3 \pm 5\%$	1.52 ± 5%	0.75	2.85	4.52 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	1.54	4.19 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

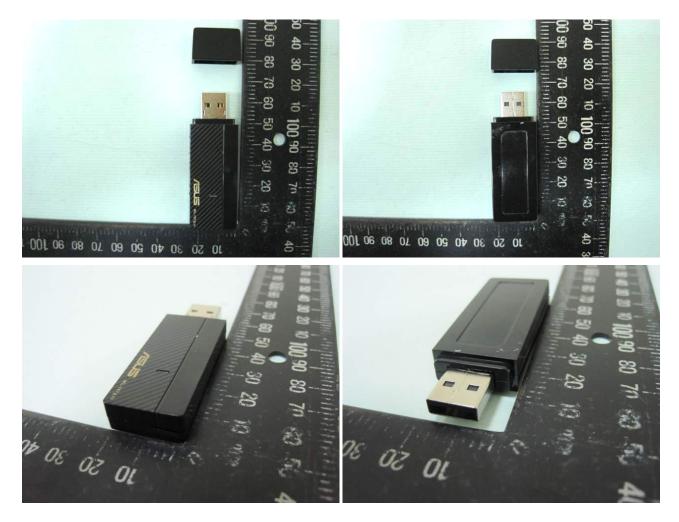
Certificate No: ET3-1788_Sep09


Page 8 of 9

September 23, 2009

Deviation from Isotropy in HSL

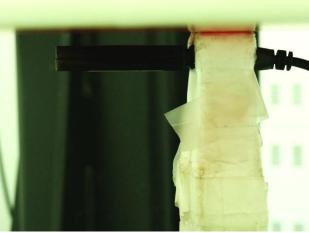
Error (φ, ϑ), f = 900 MHz


Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep09

Page 9 of 9

Appendix D. Product Photos




Appendix E. Test Setup Photos

Direct Laptop Plug-in for USB Configuration 1 (Horizontal Up with Phantom 0.5 cm Gap)

USB Cable Plug-in for USB Configuration 2 (Horizontal Down with Phantom 0.5 cm Gap)

USB Cable Plug-in for USB Configuration 3 (Vertical Front with Phantom 0.5 cm Gap)

Direct Laptop Plug-in USB Configuration 4 (Vertical Back with Phantom 0.5 cm Gap)

Direct Laptop Plug-in for Tip Mode (Tip Mode with Phantom 0.5 cm Gap)

Page Number: E1 of E1Report Issued Date: Mar. 12, 2010Report Version: Rev. 01

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : MSQ-WL167GV3