

FCC Test Report

Product Name	:	Wireless-AC450 USB Adapter
Model No.	:	USB-AC50
FCC ID.	:	MSQ-USBAC50

Applicant : ASUSTeK COMPUTER INC.Address : 4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	: 2013/10/08							
Issued Date	: 2013/12/23							
Report No.	: 13A0185R-RFUSP42V01							
Report Version	: V1.0							

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Testing Laboratory 1313

	Issued Date : 2013/12/23 Report No. : 13A0185R-RFUSP42
	QuieTek
Product Name	: Wireless-AC450 USB Adapter
Applicant	: ASUSTeK COMPUTER INC.
Address	∶ 4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan
Manufacturer	ASUSTeK COMPUTER INC.
Model No.	: USB-AC50
FCC ID.	: MSQ-USBAC50
EUT Test Voltage	: DC 5V(Power by PC)
Trade Name	: ASUS
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2012
	ANSI C63.4: 2009
Test Result test results relate only to test report shall not be re	: Complied
test results relate only to	: Complied the samples tested.
test results relate only to test report shall not be re	Complied the samples tested. produced except in full without the written approval of QuieTek Corporation.
test results relate only to test report shall not be re	Complied to the samples tested. produced except in full without the written approval of QuieTek Corporation. The samples tested of the samples tested. The samples tested of the samples tested of the samples tested of the samples tested. The samples tested of the samples tested of the samples tested of the samples tested. The samples tested of the samples tested. The samples tested of
test results relate only to test report shall not be re Documented By	Complied to the samples tested. produced except in full without the written approval of QuieTek Corporation. $ \frac{1}{10000000000000000000000000000000000$
test results relate only to test report shall not be re Documented By	Complied to the samples tested. produced except in full without the written approval of QuieTek Corporation. $ \frac{1}{1000} = 1000000000000000000000000000000000000$

Laboratory Information

We, **QuieTek Corporation**, are an independent RF consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted (audited or listed) by the following related bodies in compliance with ISO 17025 specified testing scopes:

Taiwan R.O.C.	:	TAF, Accreditation Number: 1313 NCC, Certificate No : NCC-RCB-07
USA	:	FCC, Registration Number: 365520
Canada	:	IC, Submission No: 150981

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site:<u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u>

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

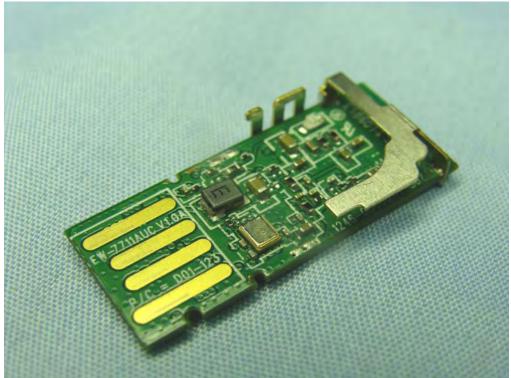
TABLE OF CONTENTS

Descrip	tion	Page
1.	General Information	6
1.1.	EUT Description	6
1.2.	Operational Description	11
1.3.	Test Mode	
1.4.	Tested System Details	
1.5.	Configuration of tested System	14
1.6.	EUT Exercise Software	15
1.7.	Test Facility	
2.	Conducted Emission	17
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Test Specification	
2.6.	Uncertainty	
2.7.	Test Result	
2.8.	Test Photo	21
3.	Peak Power Output	22
3.1.	Test Equipment	22
3.2.	Test Setup	22
3.3.	Test procedures	22
3.4.	Limits	
3.5.	Test Specification	22
3.6.	Uncertainty	
3.7.	Test Result	23
4.	Radiated Emission	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Test Specification	
4.6.	Uncertainty	
4.7.	Test Result	
4.8.	Test Photo	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	81

5.4.	Test Procedure	81
5.5.	Test Specification	81
5.6.	Uncertainty	
5.7.	Test Result	82
6.	Radiated Emission Band Edge	93
6.1.	Test Equipment	93
6.2.	Test Setup	93
6.3.	Limits	94
6.4.	Test Procedure	94
6.5.	Test Specification	94
6.6.	Uncertainty	94
6.7.	Test Result	
7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Test Procedures	
7.4.	Limits	
7.5.	Test Specification	
7.6.	Uncertainty	
7.7.	Test Result	
8.	Power Density	133
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedures	
8.5.	Test Specification	
8.6.	Uncertainty	
8.7.	Test Result	
Attacher	ment	
	EUT Photograph	

1. General Information

1.1. EUT Description


Product Name	Wireless-AC450 USB Adapter						
Product Type	VLAN(1TX,1RX)						
Trade Name	ASUS						
Model No.	USB-AC50						
Frequency Range/	IEEE 802.11a/	5745~5825MHz / 5 Channels					
Channel Number	IEEE 802.11n (20MHz)_5.8GHz/						
	IEEE 802.11ac (20MHz)						
	IEEE 802.11n (40MHz)_5.8GHz/	5755~5795MHz / 2 Channels					
	IEEE 802.11ac (40MHz)						
	IEEE 802.11ac (80MHz)	5775~5775MHz / 1 Channel					
Type of Modulation	IEEE 802.11a/n/ac	Orthogonal Frequency Division Multiplexing					
Data Speed	IEEE 802.11a	6, 9, 18, 24, 36, 48,54Mbps					
	IEEE 802.11n	Support a subset of the combination of GI,					
		MCS 0~MCS 7 and bandwidth defined in					
		802.11n					
	IEEE 802.11ac	Support a subset of the combination of GI,					
		MCS 0~MCS 9 and bandwidth defined in					
		802.11ac					
Antenna Gain	4.56dBi						
Antenna Type	PIFA Antenna						

ANT-TX / RX & Bandwidth

ANT-TX / RX		ТΧ		RX			
Mode/ Channel Bandwidth	20MHz	40MHz	80MHz	20MHz	40MHz	80MHz	
IEEE802.11a	\checkmark			\checkmark			
IEEE802.11n	\checkmark	\checkmark		\checkmark	\checkmark		
IEEE802.11ac	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

<u>1TX1RX</u>

IEEE 802.11n

			Nc	N _{CBPS} N _{DBPS}			Data Rate(Mb/s)				
MCS	Modulation	R	N _{BPSCS}	201411-	(0)	20MHz 40MHz		800ns GI		400ns GI	
Index				20MHz	40MHz		20MHz	40MHz	20MHz	40MHz	
0	BPSK	1/2	1	52	108	26	54	6.5	13.5	7.2	15.0
1	QPSK	1/2	2	104	216	52	108	13.0	27.0	14.4	30.0
2	QPSK	3/4	2	104	216	78	162	19.5	40.5	21.7	45.0
3	16-QAM	1/2	4	208	432	104	216	26.0	54.0	28.9	60.0
4	16-QAM	3/4	4	208	432	156	324	39.0	81.0	43.3	90.0
5	64-QAM	2/3	6	312	648	208	432	52.0	108.0	57.8	120.0
6	64-QAM	3/4	6	312	648	234	486	58.5	121.5	65.0	135.0
7	64-QAM	5/6	6	312	648	260	540	65.0	135.0	72.2	150.0
Noto 1	· Support of A	0000	CL is opt	ional on tr	anomit and	l rocoivo	<u>I</u>	1		1	

Note 1: Support of 400ns GI is optional on transmit and receive.

Table 1 – MCS parameters for TX Antenna number = 1

Symbol	Explanation
R	Code rate
N _{BPSC}	Number of coded bits per single carrier
N _{CBPS}	Number of coded bits per symbol
N _{DBPS}	Number of data bits per symbol
GI	guard interval

Draft IEEE 802.11ac Data Rate

Spotial		Modulation			Data Rate(Mb/s)								
Spatial	MCS		Coding	20 N	ЛНz	40 N	40 MHz		80 MHz		160 MHz		
Streams	Index	type	rate	Guard	Interval	Guard	Interval	Guard	Interval	Guard	Interval		
(Note1)				800ns	400ns	800ns	400ns	800ns	400ns	800ns	400ns		
	0	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5	58.5	65		
	1	QPSK	1/2	13	14.4	27	30	58.5	65	117	130		
	2	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5	175.5	195		
	3	16-QAM	1/2	26	28.9	54	60	117	130	234	260		
	4	16-QAM	3/4	39	43.3	81	90	175.5	195	351	390		
1	5	64-QAM	2/3	52	57.8	108	120	234	260	468	520		
	6	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5	526.5	585		
	7	64-QAM	5/6	65	72.2	135	150	292.5	325	585	650		
	8	256-QAM	3/4	78	86.7	162	180	351	390	702	780		
	9	256-QAM	5/6	N/A	N/A	180	200	390	433.3	780	866.7		

IEEE 802.11a & IEEE 802.11n (20MHz) & IEEE 802.11ac (20MHz) - 5.8GHz

Working Frequency of Each Channel									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequenc								
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz		
165	5825 MHz								

IEEE 802.11n (40MHz) & IEEE 802.11ac (40MHz) - 5.8GHz

	Working Frequency of Each Channel					
Channel Frequency			Channel	Frequency		
	151	5755 MHz	159	5795 MHz		

IEEE 802.11ac (80MHz) - 5.8GHz

Working Frequency of Each Channel				
Channel	Frequency			
155	5775 MHz			

Note:

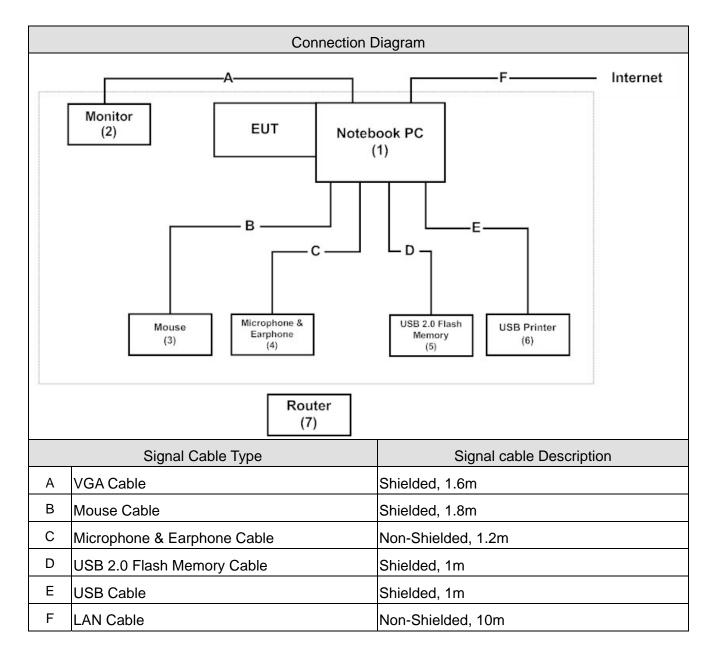
- 1. This device are the Wireless-AC450 USB Adapter, including 5GHz (1x1) a/n/ac transmitting and receiving function.
- These test results on a sample of the device are for the purpose of demonstrating Compliance with Part 15 Subpart C Paragraph 15.247.
- Regards to the frequency band operation; the lowest
 middle and highest frequency of channel were selected to perform the test, and then shown on this report.
- This device is a composite device in accordance with Part 15 regulations. The receiving function receiving was tested and its test report number is 13A0185R-RFUSP37V02 under Declaration of Conformity.

1.3. Test Mode

Г

QuieTek has verified the construction and function in typical operation. The preliminary tests were performed in different data rate, and to find the worst condition, which was shown in this test report. The following table is the final test mode.

ТХ		Mode '	1: Transmit		
Test Items	Modul	ation Channel		Antenna	Result
Conducted Emission	11ac(801	MHz)	155	0	Complies
Peak Power Output	а		149/157/165	0	Complies
	11n/ac(20)MHz)	149/157/165	0	Complies
	11n/ac(40)MHz)	151/159	0	Complies
	11ac(801	MHz)	155	0	Complies
Radiated Emission	а		149/157/165	0	Complies
	11n/ac(20)MHz)	149/157/165	0	Complies
	11n/ac(40)MHz)	151/159	0	Complies
	11ac(80MHz)		155	0	Complies
RF antenna	а		149/ 165	0	Complies
conducted test	11n/ac(20MHz)		149/165	0	Complies
	11n/ac(40)MHz)	151/159	0	Complies
	11ac(80MHz)		155	0	Complies
Radiated Emission	а		149/165	0	Complies
Band Edge	11n/ac(20)MHz)	149/165	0	Complies
	11n/ac(40)MHz)	151/159	0	Complies
	11ac(801	MHz)	155	0	Complies
Occupied Bandwidth	а		149/ 157/ 165	0	Complies
	11n/ac(20)MHz)	149/157/165	0	Complies
	11n/ac(40)MHz)	151/159	0	Complies
	11ac(801	MHz)	155	0	Complies
Power Density	а		149/ 157/ 165	0	Complies
	11n/ac(20)MHz)	149/157/165	0	Complies
	11n/ac(40	MHz)	151/159	0	Complies
	11ac(801	MHz)	155	0	Complies


1.4. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Notebook PC	DELL	PP26L	66TLZ1S	DoC	Non-Shielded, 1.8m
2	Monitor	DELL	U2410f	082WXD-7287	DoC	Non-Shielded, 1.8m
				2-16R-0V7L		
3	Mouse	Logitech	M-SBF83	HCA52200185	DoC	
4	Microphone &	Fujiei	SBZ-38	N/A	DoC	
	Earphone					
5	USB 2.0 Flash	Apacer	AH223	N/A	DoC	
	Memory					
6	USB Printer	HP	Deskjet5652	N/A	DoC	
7	Router	Asus	RT-N10	N/A	DoC	

1.5. Configuration of tested System

1.6. EUT Exercise Software

1	Test system is in accord with EUT user manual (refer to 1.5 configuration of tested system)			
2	2 Turn on the power of all equipment.			
3	3 Execute the MT76xxU QA V2.0.5.0" on the EUT.			
4	4 Configure the test mode, the test channel, and the data rate.			
5	5 Press "Start TX" to start the continuous transmitting.			
6	6 Verify that the EUT works properly.			

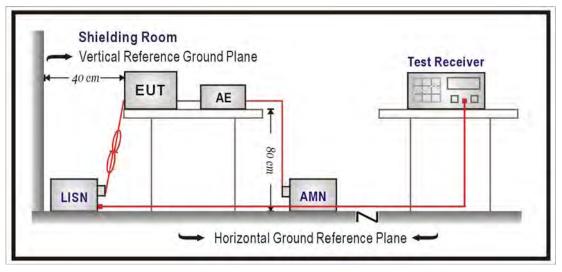
1.7. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required (IEC 68-1)	Actual
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.207 Conducted Emission	25 - 75	50
Barometric pressure (mbar)	Conducted Emission	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	Peak Power Output	860 - 1060	950-1000
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)	Radiated Emission	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	RF antenna conducted test	860 - 1060	950-1000
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)	Band Edge	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	Occupied Bandwidth	860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)	Power Density	860 - 1060	950-1000

2. Conducted Emission

2.1. Test Equipment


The following test equipments are used during the test:

Conducted	Emission	/ SR2
Conductou		

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Artificial Mains Network	R&S	ENV4200	848411/010	2014/01/24
LISN	R&S	ENV216	100092	2014/08/08
Test Receiver	R&S	ESCS 30	825442/014	2014/07/30

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 Limits (dBuV)						
Frequency MHz	QP	AV				
0.15 - 0.50	66-56	56-46				
0.50 - 5.0	56	46				
5.0 - 30	60	50				

Remarks: In the above table, the tighter limit applies at the band edges.

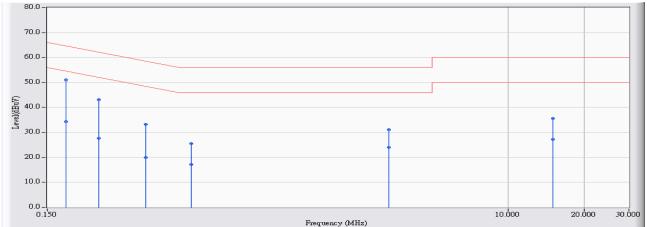
2.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs.)

was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

2.5. Test Specification

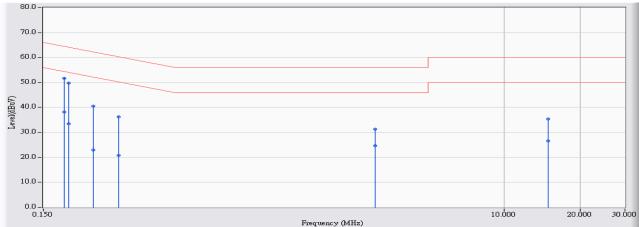

According to FCC Part 15 Subpart C Paragraph 15.207: 2012

2.6. Uncertainty

The measurement uncertainty is defined as ± 2.26 dB.

2.7. Test Result

Site : SR2	Time : 2013/09/14 - 19:50
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR2_LISN(16A)-3_0822 - Line1	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz



-	rrequency (MHZ)							
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.177	9.640	41.300	50.940	-13.669	64.609	QUASIPEAK
2		0.177	9.640	24.630	34.270	-20.339	54.609	AVERAGE
3		0.240	9.655	33.530	43.185	-18.916	62.102	QUASIPEAK
4		0.240	9.655	18.070	27.725	-24.376	52.102	AVERAGE
5		0.369	9.692	23.610	33.302	-25.227	58.529	QUASIPEAK
6		0.369	9.692	10.200	19.892	-28.637	48.529	AVERAGE
7		0.556	9.733	15.830	25.563	-30.437	56.000	QUASIPEAK
8		0.556	9.733	7.470	17.203	-28.797	46.000	AVERAGE
9		3.365	9.902	21.280	31.182	-24.818	56.000	QUASIPEAK
10		3.365	9.902	14.170	24.072	-21.928	46.000	AVERAGE
11		14.990	10.240	25.300	35.540	-24.460	60.000	QUASIPEAK
12		14.990	10.240	17.040	27.280	-22.720	50.000	AVERAGE

Note:

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. " * ", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor ${\scriptstyle \circ}$

Site : SR2	Time : 2013/09/14 - 19:55
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR2_LISN(16A)-3_0822 - Line2	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

		Frequency Correct Fac		Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.181	9.629	42.160	51.789	-12.640	64.428	QUASIPEAK
2		0.181	9.629	28.490	38.119	-16.310	54.428	AVERAGE
3		0.189	9.631	40.100	49.731	-14.347	64.078	QUASIPEAK
4		0.189	9.631	23.920	33.551	-20.527	54.078	AVERAGE
5		0.236	9.642	30.950	40.593	-21.645	62.238	QUASIPEAK
6		0.236	9.642	13.360	23.003	-29.235	52.238	AVERAGE
7		0.298	9.657	26.640	36.297	-23.989	60.286	QUASIPEAK
8		0.298	9.657	11.150	20.807	-29.479	50.286	AVERAGE
9		3.072	9.877	21.390	31.266	-24.734	56.000	QUASIPEAK
10		3.072	9.877	14.770	24.646	-21.354	46.000	AVERAGE
11		14.912	10.287	25.120	35.407	-24.593	60.000	QUASIPEAK
12		14.912	10.287	16.410		-23.303	50.000	AVERAGE

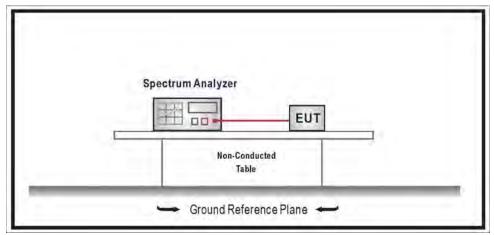
Note:

1. All Reading Levels are Quasi-Peak and average value.

- 2. " * ", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor •

3. Peak Power Output

3.1. Test Equipment


The following test equipments are used during the test:

Peak	Power	/ SR7
гean	FUWEI	

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2014/08/05

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

3.2. Test Setup

3.3. Test procedures

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074, Section 5.2.1.2 Measurement Procedure PK2 for compliance to FCC 47CFR 15.247 requirements.

3.4. Limits

The maximum peak power shall be less 1 Watt.

3.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

3.6. Uncertainty

The measurement uncertainty is defined as \pm 1.27 dB.

3.7. Test Result

Product	Wireless-AC450 USB Adapter						
Test Item	eak Power Output						
Test Mode	Mode 1: Transmit	Mode 1: Transmit					
Date of Test	2013/11/26	Test Site	SR7				

IEEE 802.11a, ANT 0									
Channel Ne	Frequency	Measure Level Limit		Desult					
Channel No.	(MHz)	(dBm)	(dBm)	Result					
149	5745	16.65							
157	5785	17.02	≦30	Pass					
165	5825	16.31	≦30	Pass					

The worst emission of data rate is 6Mbps.

	Peak Power Output (dBm)										
Channel	Channel Frequency Data Rate								Required		
No	(MHz)	6	12	18	24	36	48	54	Limit		
149	5745	16.65							1 Watt=30dBm		
157	5785	17.02	16.90	16.80	16.58	16.46	16.22	16.08	1 Watt=30dBm		
165	5825	16.31							1 Watt=30dBm		

Note: Measure Level =Reading value + cable loss

			Ullalill				
M Agilent Spect	rum Analyzer - Ch	annel Power					
134	50 Q	AC	SENSE:INT	ALIGN	JAUTO 10:45:22	AM Nov 26, 2013	
Span 26.0	Span 26.000 MHz Input: RF #IFGain:Low			Center Freq: 5.745000000 GHz Trig: Free Run Avg Hold:>100/100 #Atten: 30 dB Ext Gain: -3.50 dB			Trace/Detector
10 dB/div Log	Ref 30 dE	sm	1	_	-		
20							Clear Write
0	- Alan				and the second second		
-10 -20 						Mart Martin	Average
-30							Max Hold
-60							
Center 5.7 #Res BW		- 0	#VBW 3 M	Hz	Spa Swi	an 26 MHz eep 1 ms	Min Hold
Chann	el Power			er Spectral [Detector Peak▶ Auto <u>Man</u>
	16.65	dBm/ 16.41 M	Hz	-55.51	dBm/Hz		
MSG					STATUS		

D Agilent Speci		zer - Channel P	ower								
ntegratio	50 Ω n BW	16.410 MH	z	Center F	req: 5.7850	00000 GHz Avg Hold		10:49:31 Radio St	AMNov 26, 2013 d: None	M	eas Setup
10 dB/div	Ref	Input: RF	¥IFGain:Low	#Atten: 3		Ext Gain:		Radio De	vice: BTS	Av On	g/Hold Num 100 Off
20 20 10					h					Exp	Avg Mode Repeat
-10 -20 pmm/~1	T							- North	Marghar Harperton		Integ BW 16.410 MHz
-30 -40 -50		-									
-60 Center 5.7 #Res BW		5		#VI	BW 3MF	iz		Sp Sw	an 26 MHz eep 1 ms		
Chann			m/ 16.41 N	A11-	Powe	r Spect	ral Dens 13 dB				
	14		(1) 10.41 N	// 172		-00.	13 08	invriz			More 1 of 2
MSG							STATUS	5			

💭 Agilent Spectrum Analyzer - Channel Power								
Marker 1 5.8205 GHz	AC SENSE:INT Center Freq: 5.825000000 G		10:52:04 Al Radio Std:	MNov 26, 2013 None	Marker			
Input: RF Trig: Free Run Avg Hold:>100/100 #IFGain:Low #Atten: 30 dB Ext Gain: -3.50 dB Radio Device: BTS								
10 dB/div Ref 30 dBm	1 1	1	-					
20					Normal			
0			- North					
-10 -20				Cree Manager	Delta			
-30					Off			
-60								
Center 5.825 GHz #Res BW 1 MHz	#VBW 3 MHz		Spai Swe	n 26 MHz ep 1 ms				
Channel Power	Power Spo				Properties▶			
16.31 dBm/ 16.4	12 MHz -5	55.84 de	3m/Hz		More 1 of 2			
MSG		STATU	IS					

Product	Wireless-AC450 USB Adapter					
Test Item	Peak Power Output					
Test Mode	Mode 1: Transmit					
Date of Test	2013/11/26	Test Site	SR7			

IEEE 802.11n(20MHz), ANT 0										
Channel No.	Limit (dBm)	Result								
149	5745	16.58	≦30	Pass						
157	5785	16.99	≦30	Pass						
165	5825	16.31	≦30	Pass						

The worst emission of data rate is 6.5Mbps.

	Peak Power Output (dBm)											
MCS Index 0 1 2 3 4 5 6 7								Required				
Channel	Frequency				Data	Rate				Limit		
No	(MHz)	6.5	13	19.5	26	39	52	58.5	65			
149	5745	16.58								1 Watt=30dBm		
157	5785	16.99	16.77	16.67	16.57	16.33	16.21	16.06	15.94	1 Watt=30dBm		
165	5825	16.31								1 Watt=30dBm		

Note: Measure Level =Reading value + cable loss

um Analyzer - Ch	annel Power				
	¢	Center Freq: 5.745	000000 GHz	10:58:53 AMNov 26, 2013 Radio Std: None	Measurements
Inpu	#IFGain:Low	┘ Trig: Free Run #Atten: 30 dB	Avg Hold:>100/100 Ext Gain: -3.50 dB	Radio Device: BTS	Swept SA
Ref 30 dE	sm	T	TT		
					Channel Power
					-
					Occupied BW
F				Andrew	
					ACP
					AUF
					Power Stat
	_ n	#VBW 3 M	Hz	Span 26 MHz Sweep 1 ms	CCDF
				BurstPower	
16.58	dBm/ 17.47 M	/IHz	-55.85 dE	3m/Hz	The second
			More 1 of 2		
			STATU	IS	1.0
	SO Q OO MHZ Inpu Ref 30 dE	00 MHz Input: RF #IFGain:Low Ref 30 dBm Input: RF #IFGBM Ref 30 dBm Ref 3	Ac SENSE:INT SO Q AC SENSE:INT OO MHz Center Freq: 5.745 Input: RF #IFGain:Low #Atten: 30 dB Ref 30 dBm Center Freq: 5.745 Trig: Free Run #Atten: 30 dB Center Freq: 5.745 Center Freq: 5.745 Cent	wer Analyzer - Channel Power Sense::INT ALGANAUTO OO MHz Center Freq: 5.745000000 GHz Input: RF #IFGain:Low Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Act colspan="2">Center Freq: 5.745000000 GHz Input: RF Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Act colspan="2">Act colspan="2">Center Freq: 5.745000000 GHz Input: RF Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Act colspan="2">Center Freq: 5.745000000 GHz Ref 30 dBm Ref 30 dBm Act colspan="2">Center Freq: 5.745000000 GHz Act colspan="2">Center Freq: 5.74500000000000000000000000000000000000	SO 2 AC SENSE:INT ALCRIAUTC ID:SE:53 AMNOV 26, 2013 OD MHZ Center Freq: 5.745000000 GHz Radio Std: None Input: RF ////////////////////////////////////

🗊 Agilent Spec	strum Analyzer - C					
Span 26.			AC SENSE:INT Center Freq: 5.785		11:01:28 AMNov 26, 2013 Radio Std: None	Span
	Inp	ut: RF #IFGain:Low	#Atten: 30 dB	Avg Hold:>100/100 Ext Gain: -3.50 dB	Radio Device: BTS	Span
10 dB/div Log	Ref 30 d	Bm	-			26.000 MHz
20						
10						
-10 -20 http://	Barrow					Full Span
-30						
-40						
-60 Center 5.	795 CH2				Enon 26 Milia	Last Span
#Res BW			#VBW 3 M	Hz	Span 26 MHz Sweep 1 ms	
Chanr	nel Power		Powe	er Spectral Den	sity	
	16.99	dBm/ 17.54	MHz	-55.45 de	3m/Hz	
MSG				STATU	JS	

🗊 Agilent Sper	ctrum Analyzer - C	hannel Power				
Span 26.		A	Center Freq: 5.8250	ALIGNAUTO	11:04:48 AMNov 26, 2013 Radio Std: None	Span
		ut: RF #IFGain:Low	J Trig: Free Run #Atten: 30 dB	Avg Hold>100/100 Ext Gain: -3.50 dB	Radio Device: BTS	Span 26.000 MHz
10 dB/div Log 20	Ref 30 d	Bm				
10 <u> </u>				************		
-10 -20	perfect				The states	Full Span
-30						
-50 -60					-	-
Center 5. #Res BW		^	#VBW 3 M	Hz	Span 26 MHz Sweep 1 ms	Last Span
Chanr	nel Power		Powe			
	16.31	dBm/ 17.49 N	1Hz	-56.12 de	3m/Hz	
MSG				STATL	JS	

Product	Wireless-AC450 USB Adapter						
Test Item	Peak Power Output						
Test Mode	Mode 1: Transmit						
Date of Test	2013/11/26	Test Site	SR7				

IEEE 802.11n(40MHz), ANT 0

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
151	5755	15.83	≦30	Pass
159	5795	15.82	≦30	Pass

The worst emission of data rate is 13.5 Mbps.

	Peak Power Output (dBm)											
MCS	MCS Index 0 1 2 3 4 5 6 7						Required					
Channel	el Frequency Data Rate									Limit		
No	(MHz)	13.5	27	40.5	54	81	108	121	135			
151	5755	15.83								1 Watt=30dBm		
159	5795	15.82	15.72	15.52	15.32	15.22	15.10	14.98	14.74	1 Watt=30dBm		

Note: Measure Level =Reading value + cable loss

			<u> </u>	silalillet 13					
🗊 Agilent Spe	ectrum Analyzer - (hannel Power							
120	50 Q			NSE;INT	ALIGNAUTO		AMNov 26, 2013	Span	
Span 52	.000 MHz		Center Fr Trig: Free	eq: 5.755000000 0	GHz Hold:>100/100	Radio Sto	d: None	apan	
-	ing	out: RF #IFGain:Lo			Gain: -3.50 dB	Radio De	vice: BTS		
<u></u>		#II Gam.Lt		990	-0.0.1111.24		1	Span	
the and the state								52.000 MHz	
10 dB/div	Ref 30 d	Bm			1				
Log			and the second			Press, and			
20	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				-			
10									
	-			Providence and		to			
0	1					1		1	
-10	1	· · · · · · · · · · · · · · · · · · ·				1			
	JA.					1		Full Span	
-20 -30 #***(1*1*	Allunit						way way		
-30	¥						WK UMAN	1	
	- A distance of	0.0				1.10	1 - 1 - 1		
-40									
-50									
60									
-60							1		
	755 811					-	60.000	Last Span	
Center 5			40 (5)	W BANG		sp	an 52 MHz		
#Res BW	1 IVIHZ		#VB	W 3 MHz		SW	eep 1 ms		
Chan	nel Power			Power Sp	ectral Den	sitv			
- And Control	1010 001101			2		0000			
	45.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-0.2-			
	15.83	dBm/ 36.	29 MHz		59.77 dE	3m/Hz			
to all					A		1		
MSG	SG STATUS								

🗊 Agilent Spe	ectrum Analyzer - C	hannel Power		_		-				
Span 52	50 Ω .000 MHz		A	Center Fr		00000 GHz	ALIGNAUTO	11:08:37 Radio Ste	AMNov 26, 2013 d: None	Span
	Inp	:Low		Trig: Free Run Avg Hold:>100/100 #Atten: 30 dB Ext Gain: -3.50 dB			Radio De	vice: BTS	Span 52.000 MHz	
10 dB/div Log	Ref 30 d	Bm	-1		-	1	1			52,000 WH 12
20								-		
10	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		and and the						
-10	1				_			1		Full Span
-20 -30 • ***/*/11	m								A MANUTAL	
-40	-						1			
-50										
Center 5.								Sp	an 52 MHz	Last Span
#Res BW	1 MHz			#VE	W 3 MI	Hz	_	Sw	eep 1 ms	
Chan	nel Power				Powe	r Specti	al Den	sity		
	15.82	dBm/ 30	6.36 N	IHz		-59.	79 dB	m/Hz		
lo el								1		
MSG							STATU	S		

Product	Wireless-AC450 USB Adapter						
Test Item	Peak Power Output						
Test Mode	Mode 1: Transmit						
Date of Test	2013/11/26	Test Site	SR7				

IEEE 802.11ac (80MHz), ANT 0

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
155	5775	16.55	≦30	Pass

The worst emission of data rate is 29.3 Mbps.

	Peak Power Output (dBm)										
MCS Index 0 1 2 3 4 5 6 7 8						9					
Channel	Frequency		Data Rate								
No	(MHz)	29.3	58.5	87.8	117	175.5	234	263.3	292.5	351	390
155	5775	16.55	16.35	16.25	16.15	16.05	15.85	15.61	15.37	15.13	15.01

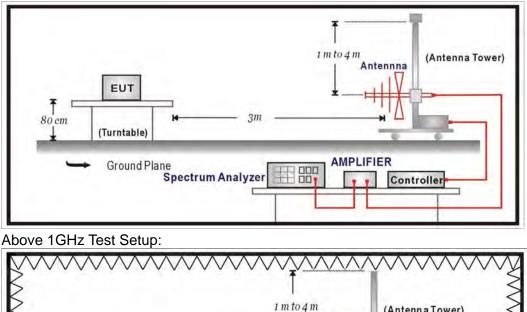
Note: Measure Level =Reading value + cable loss

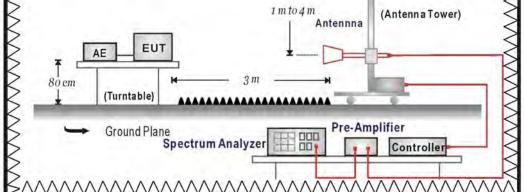
				Cillai					
🗊 Agilent Spe	ctrum Analyzer -	Channel Power							
(24	50 Ω	1	AC	SENSE:INT		ALIGNAUTO		AMNov 26, 2013	Span
Span 10	4.00 MHz			Center Freq: 5.7 Trig: Free Run	75000000 GHz Avg Hold	- 400/400	Radio Sto	1: None	opan
a series of the	lr	iput: RF #IEGa		Atten: 30 dB	Ext Gain:		Radio De	vice: BTS	
		111 00	inite of the second sec			1017.25	1000.0000	111111111	Span
an interest		all and a second							104.00 MHz
10 dB/div Log	Ref 30	dBm				-	-		
20									
10	× •								
		mannam	man and the second	many	-	and a state	m		
0	1						1	· · · · · · · · · · · · · · · · · · ·	
-10		-			-	-	1		
	1	1.000					3		Full Span
-20	New W						-		
-30	W							withmanstraps	1
-40		10.000						1 million (1997)	
-40									
-50						-			
-60	and the second s								
-60		10000						1	-
Conton 6	775 011-						0	104 1011-	Last Span
Center 5.				41/D14/ 9	040-		Spar	n 104 MHz	and the second second
#Res BW				#VBW 3			SW	eep 1 ms	
1000									
Chanr	nel Power	r:		Po	wer Specti	ral Den	sity		
Property :					a construction				
	40.5	ē			00	00			
	16.5	5 dBm/	76.3 MH	z	-62.	28 dB	sm/Hz		
to al						5			
MSG	ISG STATUS								

4. Radiated Emission

4.1. Test Equipment

The following test equipments are used during the test:


Radiated Emission / CB1


Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Bilog Antenna	SCHAFFNER	CBL6112B	2895(CB1)	2014/08/14
Double Ridged				
Guide Horn Antenna	Schwarzback	BBHA 9120	D743	2014/02/17
Pre-Amplifier	MITEQ	AMF-4D-005180-24-10P	888003	2014/06/09
Pre-Amplifier	QuieTek	AP-025C	CHM-0706049	2014/02/19
Spectrum Analyzer	Agilent	E4440A	MY46187335	2014/01/27
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2014/02/21

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

4.2. Test Setup

Under 1GHz Test Setup:

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	uV/m	dBuV/m	Measurement Distance(meter)		
0.009-0.490	2400/F(KHz)	67.60	300		
0.490-1.705	2400/F(KHz)	87.60	30		
1.705-30.0	30	29.5	30		
30-88	100	40	3		
88-216	150	43.5	3		
216-960	200	46	3		
Above 960	500	54	3		

Remarks: E field strength (dBuV/m) = 20 log E field strength (uV/m)

4.4. Test Procedure

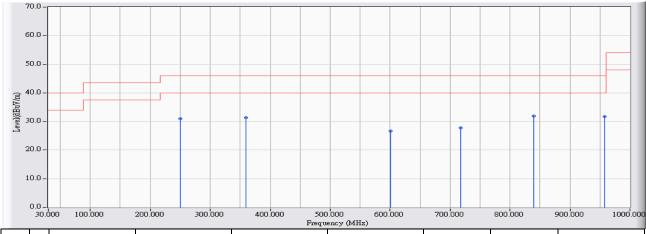
The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. The bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

4.5. Test Specification

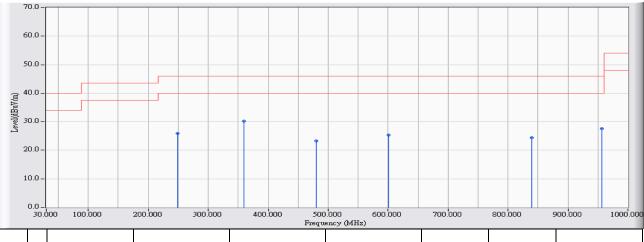
According to FCC Part 15 Subpart C Paragraph 15.247: 2012


4.6. Uncertainty

The measurement uncertainty $30MHz \sim 1GHz$ as $\pm 3.43dB$ $1GHz \sim 26.5Ghz$ as $\pm 3.65dB$

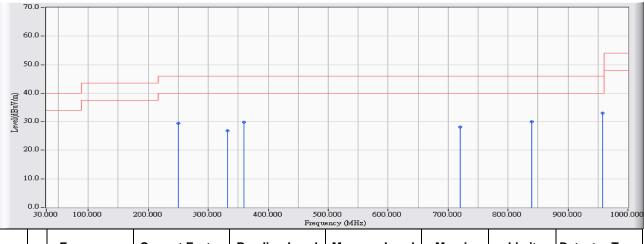
4.7. Test Result

30MHz-1GHz Spurious


Site : CB1	Time : 2013/10/09 - 15:45
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5785MHz

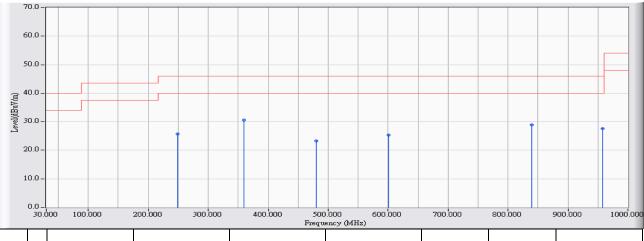
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		250.190	-20.648	51.571	30.923	-15.077	46.000	QUASIPEAK
2		359.800	-18.475	49.785	31.310	-14.690	46.000	QUASIPEAK
3		600.360	-14.857	41.465	26.608	-19.392	46.000	QUASIPEAK
4		717.730	-14.195	42.052	27.858	-18.142	46.000	QUASIPEAK
5	*	839.950	-12.961	44.816	31.855	-14.145	46.000	QUASIPEAK
6		958.290	-12.135	43.933	31.798	-14.202	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor •


Site : CB1	Time : 2013/10/09 - 15:47
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5785MHz

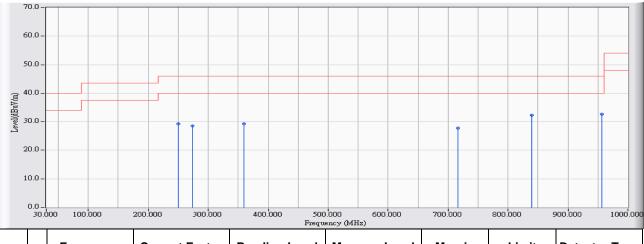
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		249.220	-20.719	46.532	25.814	-20.186	46.000	QUASIPEAK
2	*	359.800	-18.475	48.696	30.221	-15.779	46.000	QUASIPEAK
3		480.080	-16.004	39.240	23.237	-22.763	46.000	QUASIPEAK
4		600.360	-14.857	40.214	25.357	-20.643	46.000	QUASIPEAK
5		839.950	-12.961	37.343	24.382	-21.618	46.000	QUASIPEAK
6		956.350	-12.152	39.693	27.541	-18.459	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor •


Site : CB1	Time : 2013/10/09 - 15:50
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5785MHz

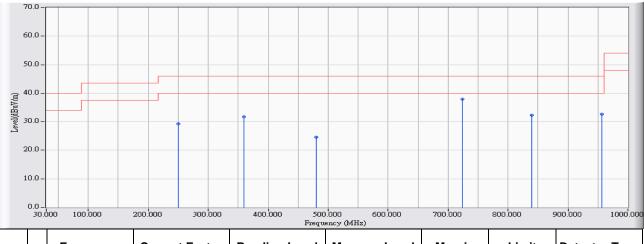
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		250.190	-20.648	50.166	29.518	-16.482	46.000	QUASIPEAK
2		332.640	-19.247	46.066	26.819	-19.181	46.000	QUASIPEAK
3		359.800	-18.475	48.368	29.893	-16.107	46.000	QUASIPEAK
4		719.670	-14.170	42.362	28.192	-17.808	46.000	QUASIPEAK
5		839.950	-12.961	42.931	29.970	-16.030	46.000	QUASIPEAK
6	*	957.320	-12.144	45.235	33.091	-12.909	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor \circ


Site : CB1	Time : 2013/10/09 - 16:00
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5785MHz

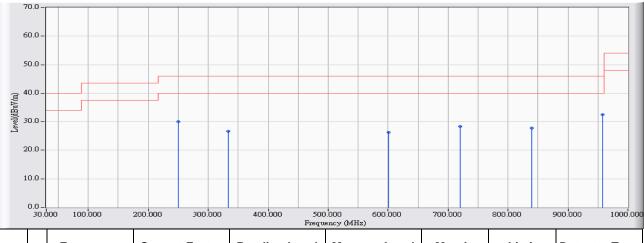
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		249.220	-20.719	46.436	25.718	-20.282	46.000	QUASIPEAK
2	*	359.800	-18.475	49.023	30.548	-15.452	46.000	QUASIPEAK
3		480.080	-16.004	39.187	23.184	-22.816	46.000	QUASIPEAK
4		600.360	-14.857	40.191	25.334	-20.666	46.000	QUASIPEAK
5		839.950	-12.961	41.841	28.880	-17.120	46.000	QUASIPEAK
6		957.320	-12.144	39.642	27.498	-18.502	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor \circ


Site : CB1	Time : 2013/10/09 - 16:05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

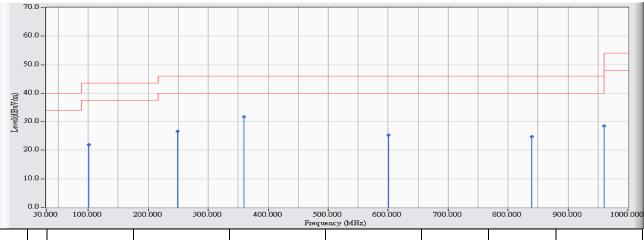
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		250.190	-20.648	49.950	29.302	-16.698	46.000	QUASIPEAK
2		273.470	-20.426	48.885	28.458	-17.542	46.000	QUASIPEAK
3		359.800	-18.475	47.814	29.339	-16.661	46.000	QUASIPEAK
4		716.760	-14.206	42.007	27.801	-18.199	46.000	QUASIPEAK
5		839.950	-12.961	45.299	32.338	-13.662	46.000	QUASIPEAK
6	*	956.350	-12.152	44.826	32.674	-13.326	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor \circ


Site : CB1	Time : 2013/10/09 - 16:06
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		250.190	-20.648	49.950	29.302	-16.698	46.000	QUASIPEAK
2		359.800	-18.475	50.270	31.795	-14.205	46.000	QUASIPEAK
3		480.080	-16.004	40.598	24.595	-21.405	46.000	QUASIPEAK
4	*	723.550	-14.121	52.054	37.933	-8.067	46.000	QUASIPEAK
5		839.950	-12.961	45.299	32.338	-13.662	46.000	QUASIPEAK
6		956.350	-12.152	44.826	32.674	-13.326	46.000	QUASIPEAK

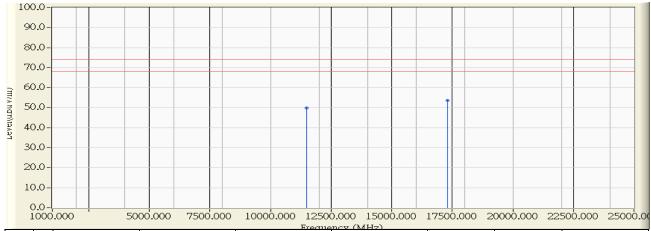
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor •


Site : CB1	Time : 2013/10/09 - 16:16
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		250.190	-20.648	50.716	30.068	-15.932	46.000	QUASIPEAK
2		333.610	-19.219	45.897	26.677	-19.323	46.000	QUASIPEAK
3		600.360	-14.857	41.072	26.215	-19.785	46.000	QUASIPEAK
4		719.670	-14.170	42.592	28.422	-17.578	46.000	QUASIPEAK
5		839.950	-12.961	40.734	27.773	-18.227	46.000	QUASIPEAK
6	*	957.320	-12.144	44.597	32.453	-13.547	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor •

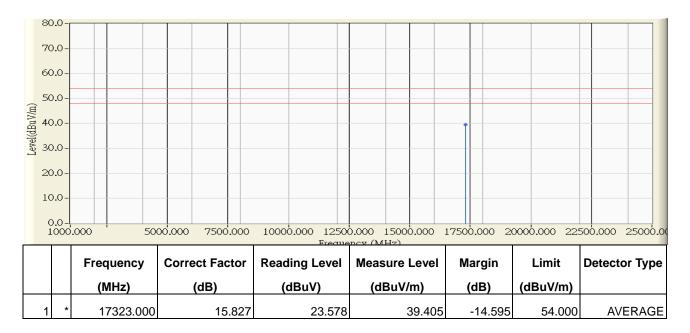
Site : CB1	Time : 2013/10/09 - 16:19
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB1_FCC_EFS_30-1G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		100.810	-23.486	45.495	22.009	-21.491	43.500	QUASIPEAK
2		249.220	-20.719	47.406	26.688	-19.312	46.000	QUASIPEAK
3	*	359.800	-18.475	50.189	31.714	-14.286	46.000	QUASIPEAK
4		600.360	-14.857	40.204	25.347	-20.653	46.000	QUASIPEAK
5		839.950	-12.961	37.757	24.796	-21.204	46.000	QUASIPEAK
6		960.230	-12.117	40.581	28.463	-25.537	54.000	QUASIPEAK

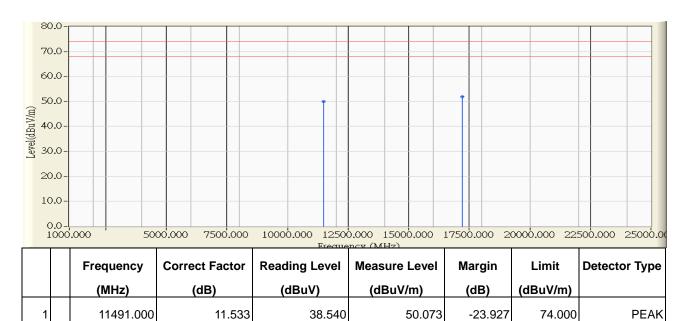
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measure Level = Reading Level + Correct Factor •

Above 1GHz Spurious


Site : CB1	Time : 2013/09/12 - 18:58
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		11488.000	11.534	38.235	49.769	-24.231	74.000	PEAK
2	*	17323.000	15.827	37.686	53.513	-20.487	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.


Site : CB1	Time : 2013/09/12 - 18:59
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:00
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

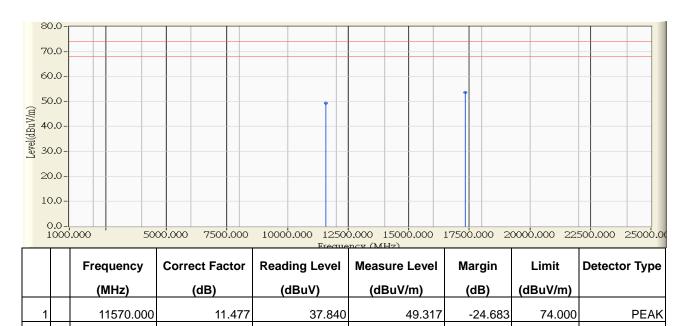
Note:

17230.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

51.949

-22.051


36.550

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

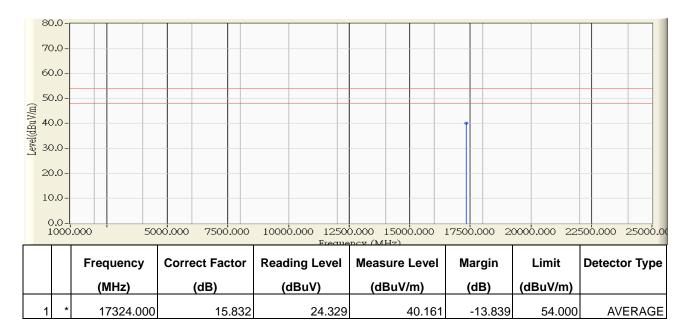
Site : CB1	Time : 2013/09/12 - 19:02
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5785MHz

Note:

17348.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

53.653

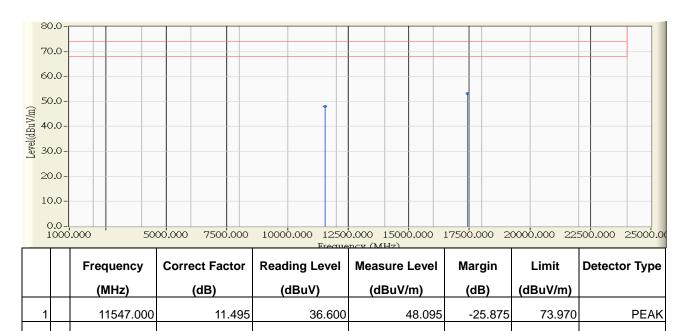

-20.347

37.711

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:03
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5785MHz


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

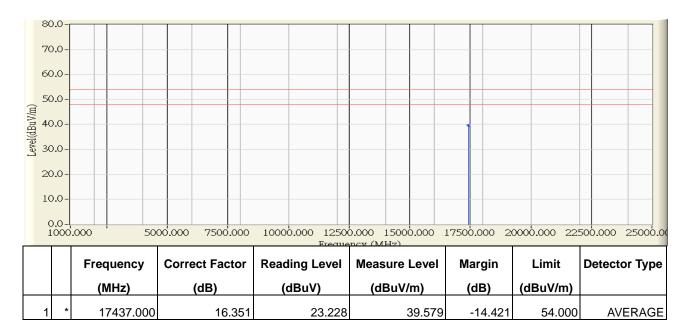
Site : CB1	Time : 2013/09/12 - 19:07
Limit : FCC_SpartC_15.249_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5785MHz

Note:

17437.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

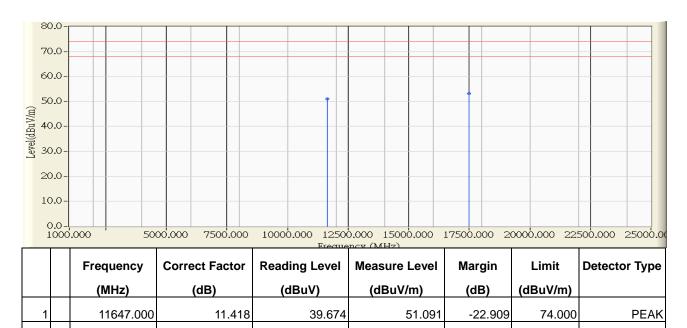
53.260


-20.710

36.909

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.


Site : CB1	Time : 2013/09/12 - 19:08
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5785MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:10
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

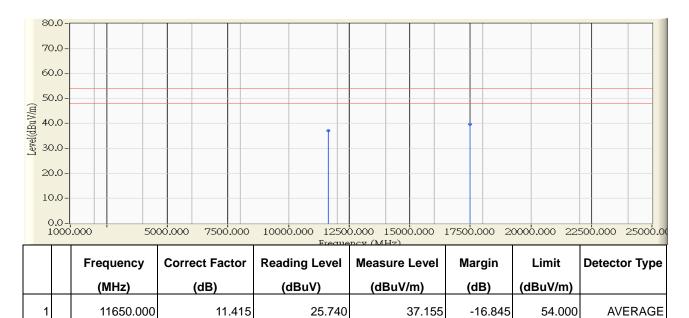
Note:

17485.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

53.266

-20.734


36.694

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

AVERAGE

Site : CB1	Time : 2013/09/12 - 19:11
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

Note:

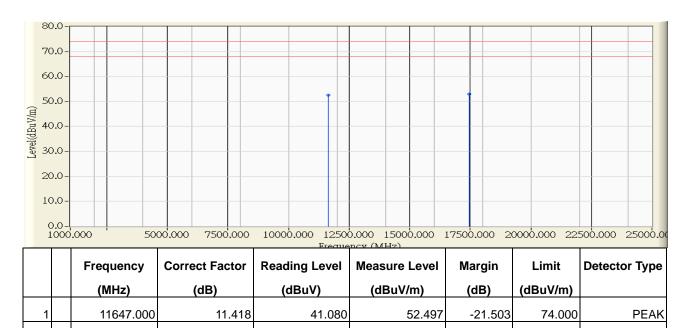
2

17483.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

23.170

39.733


-14.267

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:12
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

Note:

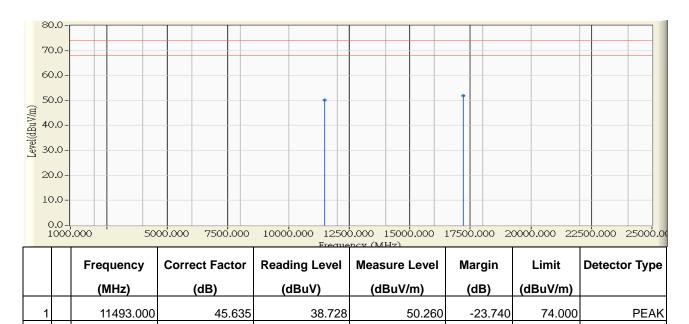
2

17465.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

36.437

52.917


-21.083

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:14
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5745MHz

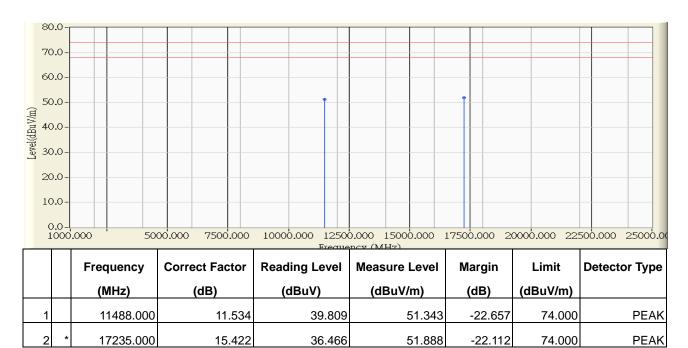
Note:

2

17230.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

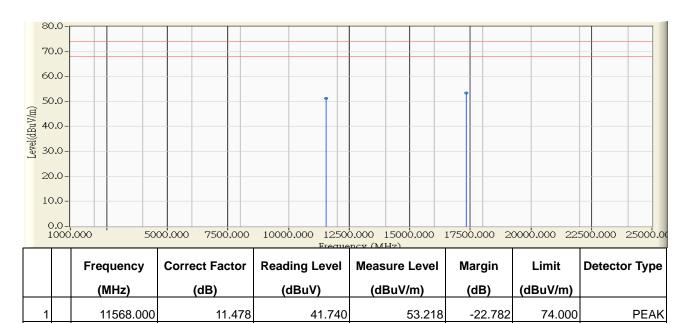
36.570


51.969

-22.031

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.


Site : CB1	Time : 2013/09/12 - 19:16
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5745MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

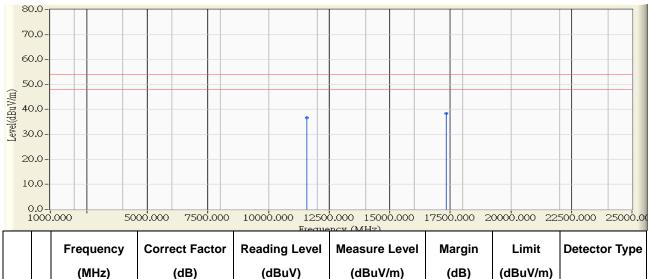
Site : CB1	Time : 2013/09/12 - 19:18
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5785MHz

Note:

17351.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

53.457

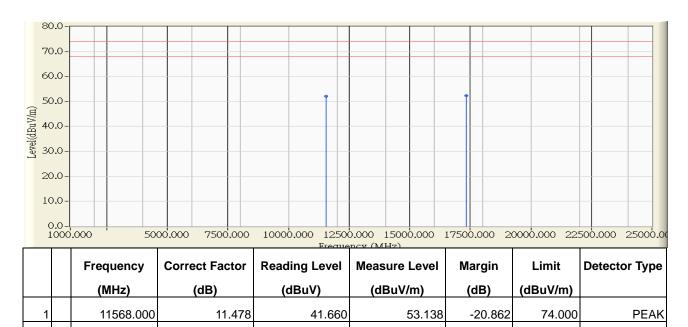

-20.543

37.501

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:19
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	weasure Level	wargin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		11570.000	11.477	25.269	36.746	-17.254	54.000	AVERAGE
2	*	17347.000	15.937	22.550	38.487	-15.513	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:20
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5785MHz

Note:

17348.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

53.432

-20.568


37.490

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

AVERAGE

Site : CB1	Time : 2013/09/12 - 19:21
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5785MHz

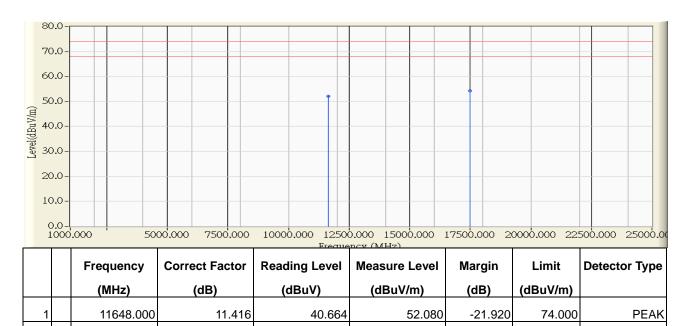
Note:

17346.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

38.668

-15.332


22.735

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

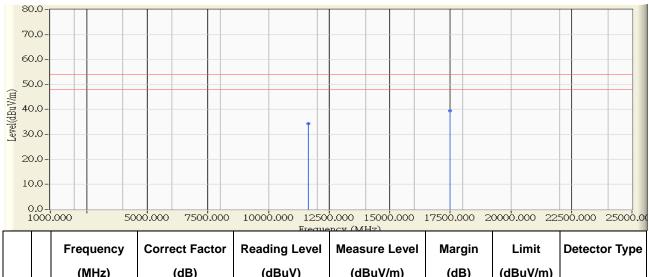
Site : CB1	Time : 2013/09/12 - 19:22
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz

Note:

17485.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

54.259

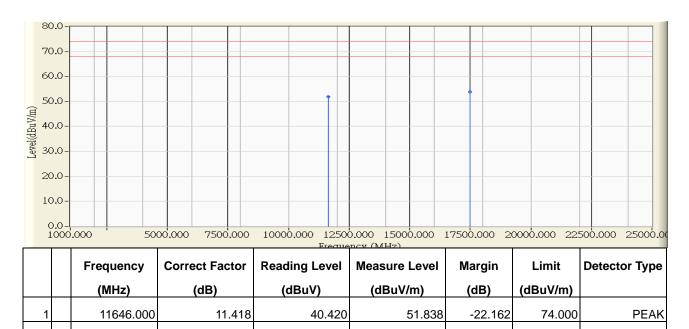

-19.741

37.687

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:23
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		11650.000	11.415	22.870	34.285	-19.715	54.000	AVERAGE
2	*	17482.000	16.558	22.840	39.398	-14.602	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:23
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz

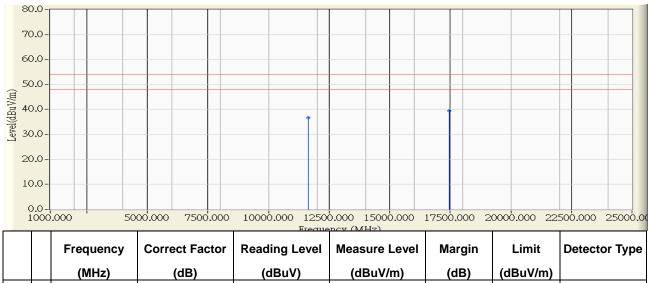
Note:

17482.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

53.808

-20.192

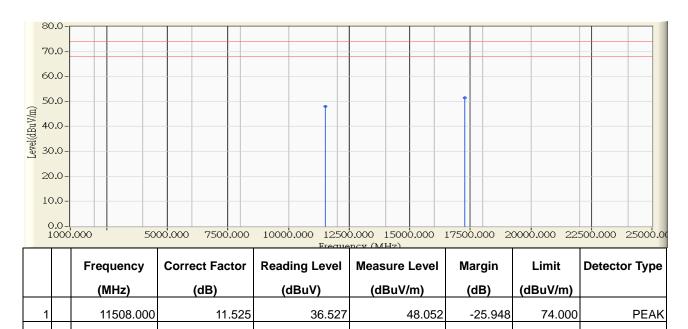

37.250

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

AVERAGE

Site : CB1	Time : 2013/09/12 - 19:24
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz



		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		11650.000	11.415	25.340	36.755	-17.245	54.000	
2	*	17464.000	16.475	22.890	39.365	-14.635	54.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

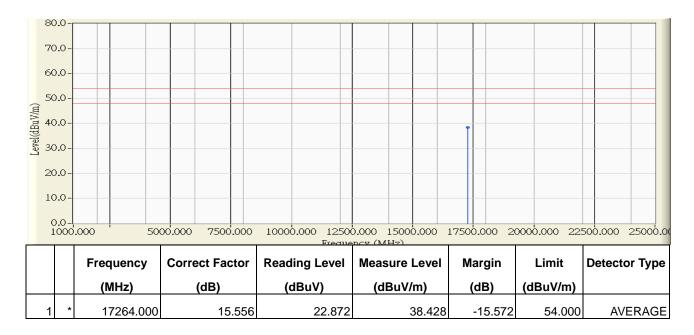
Site : CB1	Time : 2013/09/12 - 19:25
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

Note:

17264.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

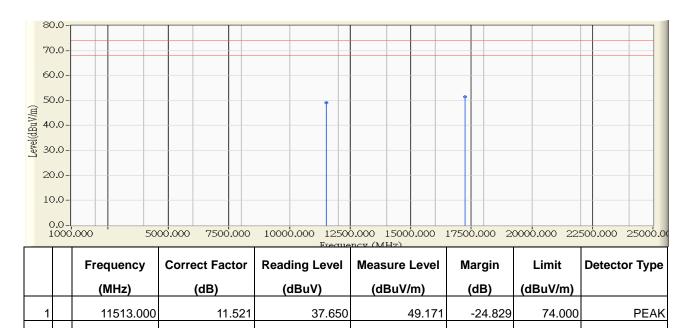
51.476


-22.524

35.920

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.


Site : CB1	Time : 2013/09/12 - 19:25
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor \circ
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

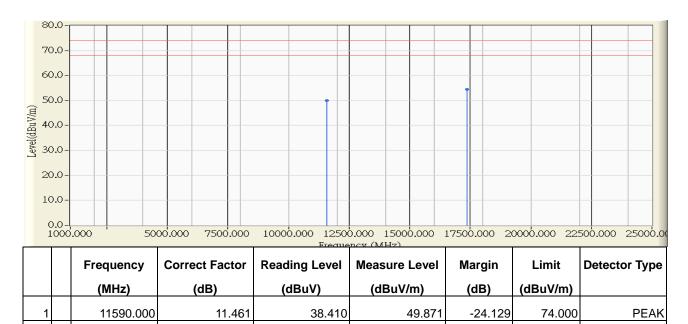
Site : CB1	Time : 2013/09/12 - 19:26
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

Note:

17259.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

51.513


-22.487

35.980

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:29
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

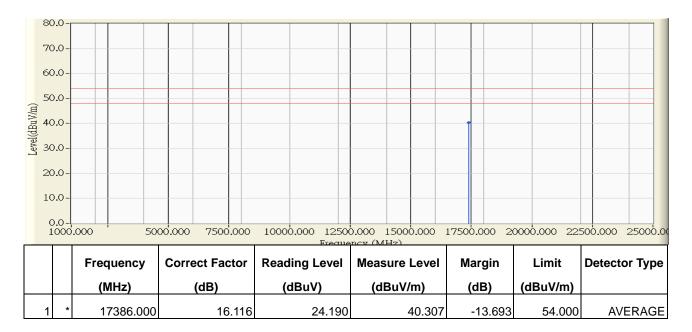
17357.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

54.493

-19.507

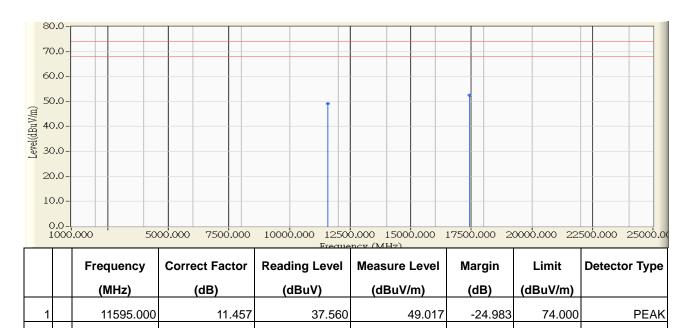
74.000


PEAK

38.510

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.


Site : CB1	Time : 2013/09/12 - 19:29
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

PEAK

Site : CB1	Time : 2013/09/12 - 19:30
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

Note:

17416.000

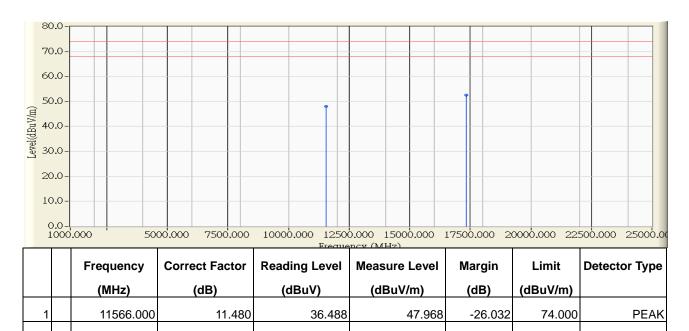
1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

52.585

-21.415

36.330

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.


- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:30
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:31
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

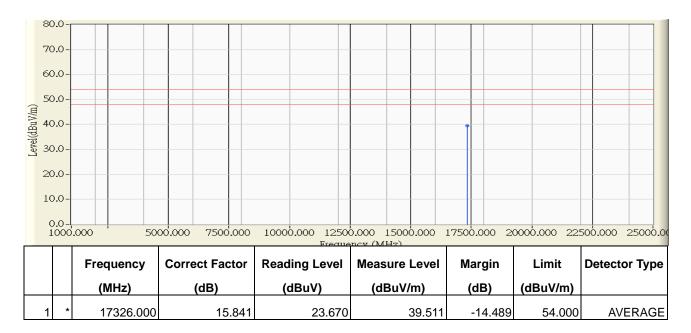
17324.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

36.689

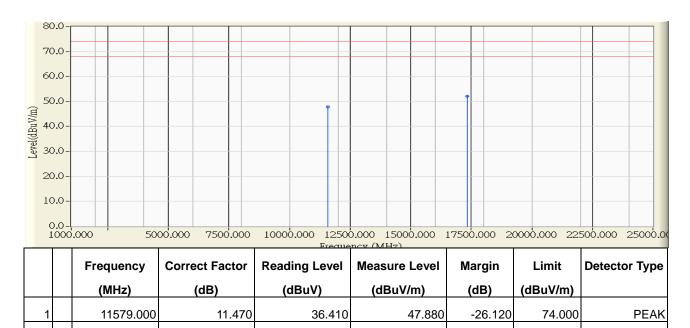
52.521

-21.479


74.000

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.


- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:32
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:33
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

17344.000

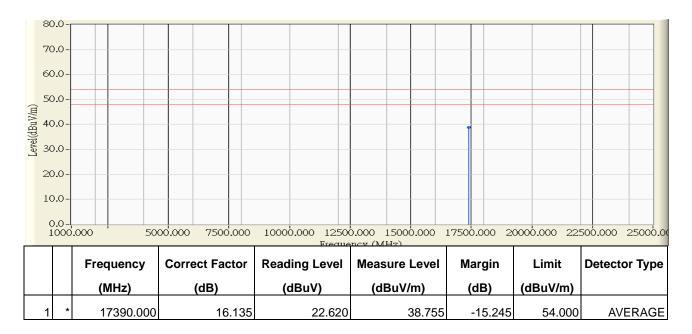
1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

36.240

-21.837

52.163

74.000


PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

15.924

- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB1	Time : 2013/09/12 - 19:33
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

5. RF antenna conducted test

5.1. Test Equipment

The following test equipments are used during the test:

RF antenna conducted test / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2014/08/05

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

5.2. Test Setup

RF Antenna Conducted Measurement:

S	pectrum Analyzer	
1	Non-Conducted	1
	Table → Ground Reference Plane →	

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on an RF conducted or radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

5.6. Uncertainty

Conducted is defined as ± 1.27 dB

5.7. Test Result

Product	Wireless-AC450 USB Adapter		
Test Item	RF antenna conducted test		
Test Mode	Mode 1: Transmit		
Date of Test	2013/09/03	Test Site	SR7

IEEE 802.11a, ANT 0,	Duty Cycle: 1			
Channel Ne	Frequency	Measure Level	Limit	Decult
Channel No.	(MHz)	(dBc)	(dBc)	Result
149	5745	38.66	≧20	Pass
165	5825	45.62	≧20	Pass

Channel 149 (5745MHz)

Agilent Spectrum Analyzer - Swept SA 50 Ω	A	c l ce	NSE:INT	_	ALIGNAUTO	02:09:170	M Sep 03, 2013	
Marker 1 & 21.30000000					: Log-Pwr	TRAC	E123456	Peak Search
Input: RF	PNO: Fast 😱 IFGain:Low	¹ Trig: Free #Atten: 30		Avg Hold Ext Gain:		TY	PE MWWWWW ET P N N N N N	NextPeak
o dB/div Ref 21.00 dBm					Δ		1.3 MHz .659 dB	NextPeak
-og		1			<u>1Δ2</u>			Next Right
11.0				LA. L. H. L. L.	ALILL			1.010-013
1.00		$t \equiv t$	12					Next Lef
9.00		1.111		1	l			
19.0,			1 print	h ^{ir}	-	Mun		Marker Delta
29.0			R.			····/1644	4.1	
19.0 29.0 39.0 49.0 19.0 19.0	لماد	Marrie Pars					Wald And And And And And And And And And An	Mkr→C
49.0 Home Martin Martin Martin Martin Martin Martin	+0-00 may have							
59.0		1.11						Mkr→RefLv
69.0			-				-	initia internationali
								More
Center 5.72500 GHz #Res BW 100 kHz	#VBW	300 kHz			Sweep		00.0 MHz 1001 pts)	1 of 2
sg					STATUS	5		

			(302314)						
Agilent Spectrum Analyzer - Swept SA 50 Ω		ENSE:INT	-	ALIGNAUTO	02:15:25 PM Sep 03, 2013				
Marker 1 & -24.6000000 Input: RF	0000 MHz RF PNO: Fast C Trig: Free Run		Avg Hold	e: Log-Pwr > 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search			
ΔMkr1 -24.6 MHz 10 dB/div Ref 21.00 dBm 45.622 dB									
-og	1Δ2					Next Righ			
1.00 000	Ash Achelal					Next Lef			
19.0 .29.0 .39.0 Hold Mark Mark Mark Mark Mark Mark Mark Mark	Manshinghuku					Marker Delta			
39.0 m ² /m ² /m ²	""Ant. M	W WORK WAYN	Walnas,		shafnywany, traty prywywy ywyddan	Mkr→Cl			
59.0			rr office datase	าให้คะไปแก่งไทย	shiphipaining trade of the spinist for the second	Mkr→RefLv			
-69.0					Span 100.0 MHz	More 1 of 2			
#Res BW 100 kHz	#VBW 300 kH	-	_	Sweep	9.60 ms (1001 pts)				

Channel 165 (5825MHz)

Product	Wireless-AC450 USB Adapter		
Test Item	RF antenna conducted test		
Test Mode	Mode 1: Transmit		
Date of Test	2013/09/04	Test Site	SR7

IEEE 802.11n(20MHz), ANT 0, Duty Cyc	le: 1		
Channel No	Frequency	Measure Level	Limit	Decult
Channel No.	(MHz)	(dBc)	(dBc)	Result
149	5745	36.54	≧20	Pass
165	5825	44.13	≧20	Pass

Channel 149 (5745MHz)

								r - Swept SA	Speetrum Analyze	Agiler
Peak Search	M Sep 03, 2013	TRAC	Log-Pwr		NSE:INT	C I SE	H7	0000000 M	50 Ω r 1 Δ 23.70	Marke
Next Pez		TYP	-3.50 dB	Avg Hold: Ext Gain:		Trig: Free #Atten: 30	NO: Fast 😱 Gain:Low	Input: RF P	20110	
NextPeak	541 dB		Δ					0 dBm	iv Ref 21.0	0 dB/
Next Rig		-				1	T Ti	1,15.1		Γ
Next Rigi			1Δ2 −	0.00	-					11.0
		_	elaberty .	philalphilo				-		1.00 -
Next Le						1-1				9.00 —
			1			1.084				19.0 —
Marker Det		With .			work					
	MALLE	1 Stateship			Pur mit	X				29.0 —
Mkr→C	Hiphul -					And the former			Annual marchine	39.0 —
1000							ANN MARKAN MARKA	unau trackant	James produced	19.0 M
Mkr→RefL										59.0
WKI→Rei L					-					
Mo		-						1		69.0 —
1 of:	00.0 MHz	Span 1	Church (200 60-		z	5.72500 GH	
	1001 pts)	9.00 MS (1	Sweep S			300 kHz	#VBW	_	3W 100 kHz	sg

Agilent Spectrum Analyzer - Swept												
50 Ω Marker 1 Δ -25.0000000	00 MHz	C SE	NSE:INT	Avg Type	ALIGNAUTO 02:14:37 PM Sep 03, 20 e: Log-Pwr TRACE 1 2 3 4 1			Peak Search				
Input: RF		Trig: Free #Atten: 30		Avg Hold: Ext Gain:		TYP		NextPeak				
۵ dB/div Ref 21.00 dBm 44.133 dB												
.og	1Δ2	T [-					Next Righ				
الماليه البار	withhl			10								
9.00						-		Next Lef				
19.0 29.0	ht-shipi	Mappy Mary						Marker Delta				
39.0 (f		·····Viujų	No and The Star	Marille 4			vervinastell	Mkr→C				
59.0				4× 44 hhovy	holewynytynegoleu	at a discover of the discover	www.www.ww					
69.0								Mkr→RefLv				
								Mor				
Center 5.85000 GHz Res BW 100 kHz	#VBW	300 kHz			Sweep	Span 1 9.60 ms (00.0 MHz 1001 pts)	1 of 2				
sg		-			STATU	s						

Channel 165 (5825MHz)

Product	Wireless-AC450 USB Adapter		
Test Item	RF antenna conducted test		
Test Mode	Mode 1: Transmit		
Date of Test	2013/09/03	Test Site	SR7

IEEE 802.11n (40MHz	z), ANT 0, Duty Cyo	cle: 1		
Channel No	Frequency	Measure Level	Limit	Decult
Channel No.	(MHz)	(dBc)	(dBc)	Result
151	5755	40.48	≧20	Pass
159	5795	49.15	≧20	Pass

Channel 151 (5755MHz)

	3PM Sep 03, 2013	02·10·08P	ALIGNAUTO	1	ISE:INT	SEN SEN	A	Sweptok	ectrum Analyzer 50 Ω	- Superior
Peak Search	ACE 1 2 3 4 5 6	TRAC	: Log-Pwr	Avg Type Avg Hold:] Trig: Free	Hz	00000 M	1 Δ 16.3000	larker '
NextPe	DET P NNNNN	DI	-3.50 dB	Ext Gain:		#Atten: 30	NO: Fast 😱 Gain:Low	put: RF PI IFC		
-	0.476 dB	40						dBm	Ref 21.00	0 dB/div
Next Rig						11		l en T		11.0
	-			1∆2						
Next Le	MARKIN	pullilylight	-Nik-Whiteling	July July	==\	124	1.2.4	1.21	= =	1.00
AX-00-9-0						1				9.00
Marker De				1						9.0
Marker De				ſ						29.0
4462	F			-	ANN WHIT	1.1.1.			abolianterio	39.0
Mkr→C					lar a f	rhandh iska , au	Maphiphiphiphia	nest the director		19.0
10.05.4						1.01		م ر ادا در ایرانیم	nultintution	59.0
Mkr→RefL		_			100					
	-						1			69.0
Мо 1 о	100.0 MHz (1001 pts)		Sweep 9			300 kHz	#VBW		.72500 GHz / 100 kHz	
	()		STATUS	_						sg

	Analyzer - Swept SA											
50 Marker 1Δ	-52.00000000 N	IHz IO: Fast 😱	C SEN] Trig: Free	Bun		ALIGNAUTO : Log-Pwr > 100/100	TRAC	02:12:21 PM Sep 03, 2013 TRACE 1 2 3 4 5 6 TYPE M WARMANN DET P N N N N N				
	Input: RF PN IFG	iain:Low	#Atten: 30		Ext Gain:	-3.50 dB		and the second s	Next Peal			
ΔMkr1 -52.0 MHz 0 dB/div Ref 21.00 dBm 49.151 dB												
11.0		1	1		1				Next Righ			
	▲ 1∆2				A		1	-				
1.00	phone in the second	Ą	1=1	1					Next Lei			
9.00			i na i	111								
19.0		1	· · ·						Marker Delt			
9.0		Mr.	1					-				
9.0	Υ <u></u>	- Woodela/H	Hydrain .	1	hefrend-successions				Mkr→C			
9.0				A BHUNNAWA	heldmantheauthatartheat	house the second	manusha	damakanala				
9.0									Mkr→RefL			
69.0							-		1.5			
enter 5.8500			and all a			3.75.1		00.0 MHz	Mor 1 of			
Res BW 100	kHz	#VBW	300 kHz			Sweep	9.1 ms (*	1001 pts)				

Channel 159 (5795MHz)

Product	Wireless-AC450 USB Adapter		
Test Item	RF antenna conducted test		
Test Mode	Mode 1: Transmit		
Date of Test	2013/09/03	Test Site	SR7

IEEE 802.11ac (80MH	lz), ANT 0, Duty Cy	/cle: 1		
Channel No.	Frequency (MHz)	Measure Level (dBc)	Limit (dBc)	Result
155	5775	35.41	≧20	Pass

Channel 155 (5775MHz)

🗖 Agilent		um Analyzer -	Swept SA								
n Markei	_		0000000	MHz		NSE:INT	Avg Type Avg Hold	ALIGNAUTO e: Log-Pwr	TRAC	M Sep 03, 2013 E 1 2 3 4 5 6 E M WWWWW	Peak Search
		ļr		IO: Fast Ģ ain:Low	#Atten: 30		Ext Gain:	-3.50 dB	⊳ kr3 -118	B.0 MHz	NextPeak
10 dB/di	v F	Ref 21.00	dBm				·		35	414 dB	
11.0				3∆4 —							Next Righ
-9.00				Musum		All ML LULIA	musully				
-19.0											Next Lef
-39.0	and the	Allar Mary Conferred	Herener Herener					www.www.		Asterenter	NEXT LET
-49.0							= :				Color States
-69.0					1						Marker Delta
Center #Res B		50 GHz		#\/B14	300 kHz			Sween		00.0 MHz 1001 pts)	
MKR MODE			×	#VD90	JOO KHZ	EUN	ction Fu	NetionAmplita		INVALUE	Mkr→Cl
1 Δ2 2 F		f (Δ)		BMHz (Δ)	33.570 -35.258 di	dB					
3 Δ4 4 F 5	1	f (Δ) f) MHz (Δ)	35.414 -37.101 dt	dB					Mkr→RefLv
6											
8 9 10 11											Mor 1 of 2
12 ISG								STATUS			

Peak Search								pt SA	zer - Swe			Spect	ilent S	Ag	
Peak Search	4 Sep 17, 2013 E 1 2 3 4 5 6 E MWWWWW	TRACE	ALIGNAUTO e: Log-Pwr d:>10/10		e Run			00000			50 G	14	ker	lar	
Next Dea	TPPNNNN	DE	n: -2.50 dB			#Atten: 3	NO: Fast Gain:Low		Input		2				
NextPea		ΔMkr1 -724 MHz مطاطن Ref 20.00 dBm 53.692 dB													
			1			1	F.p	1Δ2						og	
Next Righ														0.00	
	1							신문문		-			1.1	10.0	
				_										20.0	
Next Le		-							_	-	_		-	30.0	
				-							-	_	-	40.0	
	Autowner	Vor Month & Barrow	when the many of	w. Martin Martin	www.	where a start with the	millione	1.1.		-	-	hardress		50.0	
Marker Del		-						-	ture -		-		-	50.0	
				-						-		-	-	70.0	
	5.00 GHz	Stop 2	-		-				-	100	Hz	M	rt 30	tar	
Mkr→C	1001 pts)	2.39 s (1	Sweep		2	N 300 kHz	#VE	_	-	kHz	00	W 1	s Bl	Re	
-	N VALUE	FUNCTIO	UNCTION WIDTH	UNCTION		Y		X				_	MODE		
) 53.692 -48.710 d	4 MHz (2 GHz			(Δ)	f	1	<u>Δ2</u> F	2	
Mkr→RefL			-										-	3	
												_	-	5	
min viter -															
														7	
Mor														8	
100 0.02														8	

5745MHz (30MHz-25GHz)- 802.11a

5825MHz (30MHz-25GHz) -802.11a

				T	tenen an cort	- I or		t SA	er - Swep			it Spec	gile	
Peak Search	M Sep 17, 2013 E 1 2 3 4 5 6 E M MM/MM/	TRAC		Avg Ho] Trig: Free		0000 I	19000 Input:		50 Ω Δ -4	er 1	Irk	
NextPeak			-2.50 dB	Ext Gai	dB	#Atten: 30	in:Low	IFG	baa		2			
	ΔMkr1 -424 MHz 0 dB/div Ref 20.00 dBm 51.460 dB													
14.553		tan Sala	1			1 - 0	1	142-	-				g .0	
Next Righ		_				_	_	-	-		_	-	0-	
	-	_				_					-	-	0-	
Next Lei								0-111	E			1 ==	0-	
NCAL LO						1				1.1		1		
	War lange blat	Land and the second s		And the second of the	her all and the	moutouturn	the many share	Wymen	winder	her	ma	(handhin		
Marker Delt														
	5.00 GHz	Stop 2				-	-				Hz	30 M		
Mkr→C	1001 pts)		Sweep			300 kHz	#VBW			kHz		BW 1		
una se	IN VALUE	FUNCTIO	INCTION WIDTH	NCTION		51.460	MHz (Δ)	× 424		(Δ)				
						-49.954 dE		6.248			f		I	
Mkr→RefL				141	-									
													-	
Mor					-								-	
1 of													-	
		_	STATUS		_		_		_	_				

M Sep 17, 2013	10:50:40 Af	ALIGN AUTO		NSE:INT	C SE	ļ A			50 Q	1		1
E 123456	TYPE MWWWWWW		Avg Hol			0: Fast 😱	t:RF PI	3.50 d	ain •	Ga	amp	rea
	DE	-3.50 dB	Ext Gair) dB	#Atten: 3	ain:Low	IFO	10.41		1		
∆Mkr1 2.597 GHz طB/div Ref 20.00 dBm 50.528 dB												
		100000		-	1.1.1.1	1 m /				-		og
			-		-		1Δ2 -				1	0.0
			-				1		-		-	.00
				-			-		-	_		0.0
1							-					0.0
	-								_			0.0
		1					1:1:1				11:11	0.0
adression -	mahahlly			Sec.		L			W		h	
		- Commission	ARAN AND A REAL	and the second	Burghy May allowed and	in the second second second	An An An Josephered	Swar Mar	- Marine	A states	nNum	1.0
					2						11	0.0
					-			1		-	-	0.0
6 00 CH2	Oton 2		-		-	-	-	-	1-	naL	+ 20	ar
		Sweep	_		300 kHz	#VBW	_	Iz				
IN VALUE	FUNCTIC	NCTION WIDTH	NCTION		Y 50 529		X 2.59	à				
									f	1	F	2
				_			4 ·····4			1.00	-	3
												5
				_								6
												7
												9
	-			-								0
												1
	97 GHz 528 dB	DET P P NNN N Ikr1 2.597 GHz 50.528 dB	ELOG-PWY 2/10 TYPE IN MUNICULAR E-3.50 dB ΔMkr1 2.597 GHz 50.528 dB Stop 25.00 GHz Sweep 2.39 s (1001 pts)	Avg Type: Log-Pwr Avg Hold: 2/10 TRACE [1 2 3 4 5 6 TYPE INMUNTUM TYPE INMUNTUM Stop 25.00 GHz Sweep 2.39 s (1001 pts)	Avg Type: Log-Pwr Avg Hold: 2/10 TRACE 1 23456 0 dB Avg Hold: 2/10 Type Investment of the pwint of the	Avg Type: Leg-Pwr Avg Hold: 2/10 TRACE [1 2 3 4 5 6 PVP: MWWWWWW #Atten: 30 dB Ext Gain: -3.50 dB DEFP P NNNN ΔMkr1 2.597 GHz 50.528 dB 50.528 dB	Avg Type: Leg-Pwr Avg Hold: 2/10 Tract I 2 3 4 5 6 Pre Muximum Avg Hold: 2/10 Trig: Free Run Bain: Low Avg Type: Leg-Pwr Avg Hold: 2/10 TRACE I 2 3 4 5 6 Pre P NNNN ΔMkr1 2.597 GHz 50.528 dB ΔMkr1 2.597 GHz 50.528 dB Stop 25.00 GHz Sweep 2.39 s (1001 pts) Y BW 300 kHz Sweep 2.39 s (1001 pts) Y BW 200 kHz FUNCTION FUNCTION FUNCTION	AC SENSE:INT ALIGNAUTO ID:50:40 AM Sep 17, 2013 B Trig: Free Run #Avg Type: Log-Pwr AvgHold: 2100 Ext Gain: -3.50 dB IRRACE 12:34:56 Difference Avg Type: Log-Pwr AvgHold: 2100 Ext Gain: -3.50 dB IRRACE 12:34:56 B Avg Type: Log-Pwr AvgHold: 2100 Ext Gain: -3.50 dB IRRACE 12:34:56 DMKr1 2.597 GHz 50.528 dB Avg Type: Log-Pwr AvgHold: 200 IRRACE 12:34:56 1Δ2 ΔMkr1 2.597 GHz 50.528 dB Stop 25.00 GHz 2.39 s (1001 pts) X FUNCTION FUNCTION WIDTH FUNCTION WIDTH FUNCTION WIDTH	3.50 dB Avg Type: Log-Pwr Avg Hold: 2/10 Trid: 1 2 3 4 5 6 TYPE MAXAMMENT Avg Hold: 2/10 Input: RF PN0: Fast IFGain: Jow Trid: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg Hold: 2/10 TYPE MAXAMMENT Ext Gain: 3.50 dB 20.00 dBm 0 0 0 1Δ2 1 0 0 1Δ2 0 0 0 1Δ3 0 0 0	SD Ω AC SENSE:INT ALIGNAUTO ID:50:40 AM Sep 17, 2013 ain -3.50 dB Trig: Free Run IFGain: Jow Avg Type: Log-Pwr AvgIhold: 2/10 IRRAE[1:2:3:45 6 Input: RF PNO: Fast IFGain: Jow #Atten: 30 dB Avg Type: Log-Pwr AvgIhold: 2/10 IRRAE[1:2:3:45 6 Avg Type: Log-Pwr IFGain: Jow #Atten: 30 dB Avg Type: Log-Pwr AvgIhold: 2/10 IRRAE[1:2:3:45 6 Avg Type: Log-Pwr Stop: Sold #Atten: 30 dB Avg Type: Log-Pwr AvgIhold: 2/10 IRRAE[1:2:3:45 6 Arg Type: Log-Pwr Stop: Sold #VE Avg Type: Log-Pwr Stop: Sold Stop: Sold Imput: RF PNO: Fast IFGain: Jow #VBW 300 kHz Sweep 2.39 s (1001 pts) Stop: Sold X YBW 300 kHz FUNCTION FUNCTION WIDTH FUNCTION WIDTH	30.2 AC SENSE:INT AUGNAUTO ID:50:40 AM Sep 17, 2013 O Gain -3.50 dB Trig: Free Run Input: RF Avg Type: Log-Pwr Avg Type: Log-Pwr Arg Hold: 2/10 Ext Gain: -3.50 dB TRACE [1:2:4:5 6 Ref 20.00 dBm AdMkr1 2.597 GHz 50.528 dB AdMkr1 2.597 GHz 50.528 dB 1Δ2 Adm Arg Type: Log-Pwr Arg Type: Log-P	30 Ω AC SENSE:INT ALGNAUTO ID:50:40 AM Sep 17, 2013 amp Gain -3.50 dB Input: RF PNO: Fast Trig: Free Run Avg Type: Log-Pwr AvgHold: 2/10 IRRACE 12:3:4:5:6 input: RF PNO: Fast Trig: Free Run Avg Type: Log-Pwr Avg Type: Log-Pwr IRRACE 12:3:4:5:6 3/div Ref 20.00 dBm Addition Addition Addition Addition Addition 3/div Ref 20.00 dBm 1Δ2 Addition Addition

5745MHz (30MHz-25GHz)- 802.11n(20MHz) Ant0

5825MHz (30MHz-25GHz) -802.11n(20MHz) Ant0

Peak Search	4 Sep 17, 2013		ALIGNAUTO		NSE:INT	C SE				50 Ω				
1. 2200 57 500	E 123456 E MWWWWW T P P N N N N	TYP		AvgHold] Trig: Free	Fast 😱		218500 Input:	2.6	1Δ	ker	lar	
Next Dec			2023.00	Ext Gain) dB	#Atten: 30	:Low	IFGain:L	JUX.UV					
NextPea	ΔMkr1 2.622 GHz 10 dB/div Ref 20.00 dBm 49.269 dB													
		Property and	1000	1.0	1	2 - 1							og	
Next Rig				1				142					10.0	
nextrug	1												0.00	
		-		-							_	1	10.0	
				-	-	-	-				_	-	20.0	
Next Le					-	_	_			-	_		30.0	
										-	_	-	40.0	
	ant the construction	howwww	antime for the second	and dere saw		iller and animality		manungan	Remanne	Jane	le que	-	50.0	
						and the second second	and the state		AL WARM	"	mile.	a sur	50.0	
Marker Del								111		1		1.1	70.0	
	1.000	-				1						11	0.0	
	5.00 GHz	Stop 2	12.11				1.5	1.1		z	MH	rt 30	tar	
Mkr→C	1001 pts)	2.39 s ('	Sweep			300 kHz	#VBW	ŧ	z	00 kl	W 1	s Bl	Re	
WIRT - C	N VALUE	FUNCTIO	NCTION WIDTH	ICTION F	FU	Ý		x		SCL	TRC	MODE	IKR	
				_		49.269		2.622 GH)	f	1	Δ2		
					Bm	-48.841 dl	HZ	3.201 GH		f	1	F	2	
Mkr→RefL	1.1			1.41									4	
		-										-	5	
													7	
Mo				-	_							_	8	
1 of			1										0	
1.01					-								1	
		-			-					1	بل ا	_	-	

	M Sep 17, 2013	10/52/11 44	ALIGNAUTO	UT .	SENSE	A	Mapri JA	Analyzer - Sw	50 (ient s
Peak Search	E123456 EM WWWW	TRACE 123456 TYPE MWMMMM DET P P N N N N			Trig: Free Ru			.5469400		ker
NextPea	47 GHz	DMkr1 2.547 GHz						-		
	255 dB	53.				_	Bm	20.00 dE	Ret	B/div
			C 1		1.1.1	1	▲1∆2		-	
Next Righ							1			
	1		-			1			_	
1.1.2.2.1		_		-						
Next Le									-	-
19-16-1-18-1-1-1 19-16-1-18-1-18-1-19-1-19-1-19-1-19-1-19	1. Alaphillipped and	war promotion and						\$77		-
		PRODUCT AND	had been had window with the	معقول مردم مردم مردم مردم مردم مردم مردم مرد	- many lange age to	and the second where	and hadron any	Kenn	was and the	plan
										100
Marker Delt						1				
MarkerDell		_								
Marker Dell	5.00 GHz								MHz	
Marker Dell Mkr→C	1001 pts)	2.39 s (300 kHz	#VBW	*	kHz	100	s Bl
	1001 pts)		Sweep FUNCTION WIDTH	FUNCT	Y		*		100 80 SOU	s BV
	1001 pts)	2.39 s (FUNCT	300 kHz 53.255 dB -47.943 dBm	#VBW 47 GHz (Δ) 01 GHz	2.54	kHz (Δ)	100 80 SOU	s Bl
Mkr→C	1001 pts)	2.39 s (FUNCT	Y 53.255 dB	47 GHz (Δ)	2.54		100 1 f	S BL
	1001 pts)	2.39 s (FUNCT	Y 53.255 dB	47 GHz (Δ)	2.54		100 1 f	S BL
Mkr→C	1001 pts)	2.39 s (FUNCT	Y 53.255 dB	47 GHz (Δ)	2.54		100 1 f	S BL
Mkr→C	1001 pts)	2.39 s (FUNCT	Y 53.255 dB	47 GHz (Δ)	2.54		100 1 f	S BL
Mkr→C Mkr→RefL	1001 pts)	2.39 s (FUNCT	Y 53.255 dB	47 GHz (Δ)	2.54		100 1 f	S BL

5755MHz (30MHz-25GHz)- 802.11n(40MHz) Ant0

5795MHz (30MHz-25GHz) -802.11n(40MHz) Ant0

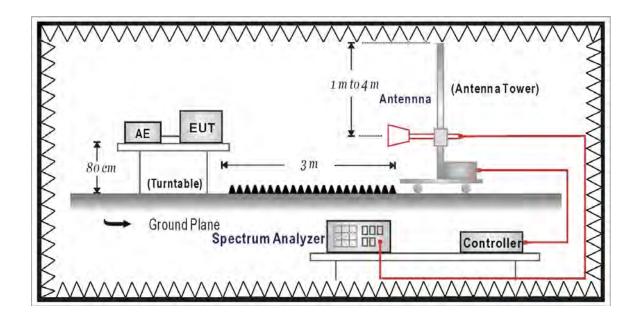
Peak Search	M Sep 17, 2013		ALIGNAUTO		NSE:INT	AC SE				50 \$		_	-
T our oburon	E 123456 E MWW/WWW T P P N N N N	TYP	>10/10	Avg Type: Log-Pwr Trig: Free Run Avg Hold>10/10 #Atten: 30 dB Ext Gain: -3.50 dB			GHz IO: Fast C ain:Low			Δ 3	r 1 /	ker	lar
NextPea	46 GHz 047 dB		ΔM					IBm	f 20.00 c	Ref	ív	B/di	0 di
			1	1		-	1	▲1Δ2	20.000	nei	IV.		og
ALC: A PLAT								•		-	-	-	10.0
Next Righ				-						-	-	-	0.00
				_	-				_	-			10.0
						_		-				-	20.0
Next Le				-						_			30.0
												11	40.0
	allow the sty V	maniponena	monumber	-		George and	1	in hame	/ 19-24	.X.		1.	50.0
		1.1				and the second	- martine		12 Walter		-themator	with	50.0
Marker Del				1		· · · ·				-			70.0
		-							1	-			0.0
	5.00 GHz		1.1.1				1.54				0 MI		
Mkr→CF	1001 pts)	2.39 s (Sweep			300 kHz	#VB	-	kHz	100	3W 1	s B	Re
	IN VALUE	FUNCTIO	NCTION WIDTH]	NCTION		Y		x			E TRC		
		-				53.047 -47.478 d	3 GHz (Z 2 GHz		(Δ)	f	1	Δ2 F	1
					BIII	~1.4/0 u	2 0112	2.00.				-	3
Mkr→RefL	1.5									-			4
									1		-		6
				-	1						-		7
Mo													9
1 of				-						-		-	10

							owept SA	Analyzer -		ent Spe	🛛 Agi
Peak Search	8:45 AM Sep 17, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWWW		Avg Type:	SE:INT	SEN Trig: Free	GHz NO: Fast	0000000	.49700	50 Ω Δ 2	cer 1	n Aarl
NextPea	2.497 GHz	50 dB	Avg Hold>10/10 Ext Gain: -3.50 dB		#Atten: 30	in:Low		In	-		
	48.812 dB	<u>д</u> ,,,,,					lBm	20.00	Ref	3/div	
14.15.53						1	<u>1Δ2</u>				og 10.0
Next Righ				-	_		1			-	0,00
							- F				0.0
Next Le						1					20.0
	A Margaret			-		1		() - 21		1 -	40.0
		monorisi	man and the second		Logod you where	- mar more	ويستعددونها للمس	w Kenner		whethers	0.0
Marker Del				_		1-					50.0 70.0
	-							~			
Mkr→C	op 25.00 GHz 9 s (1001 pts)	Sweep			300 kHz	#VBW		kHz		: 30 N S BW	
WKI→C	UNCTION VALUE	ION WIDTH	TION FUN		Y		x				
					48.812 -47.811 dE	7 GHz (Δ) 1 GHz		(Δ)		<u>A2</u> 1 F 1	2
Mkr→RefL				1							345
											6
Mor				1					-	-	8
1 of											10
								1			12

5775MHz (30MHz-25GHz) -802.11ac (80MHz) Ant0

6. Radiated Emission Band Edge

6.1. Test Equipment


The following test equipments are used during the test:

Radiated Emission Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Double Ridged Guide	Schwarzback	BBHA 9120	D743	2014/02/17
Horn Antenna				
Spectrum Analyzer	Agilent	E4440A	MY46187335	2014/01/27
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2014/02/21

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

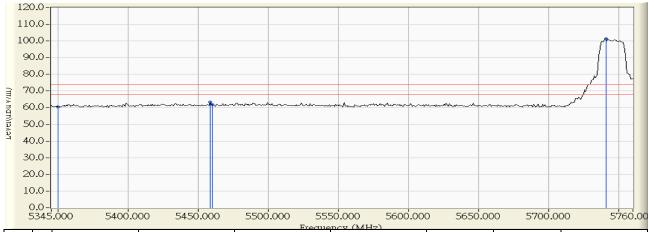
The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

6.5. Test Specification

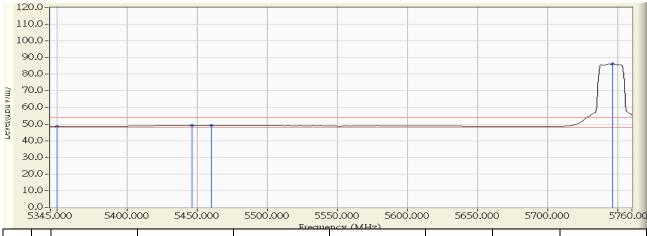
According to FCC Part 15 Subpart C Paragraph 15.247: 2012


6.6. Uncertainty

The measurement uncertainty ± 3.9 dB above 1GHz

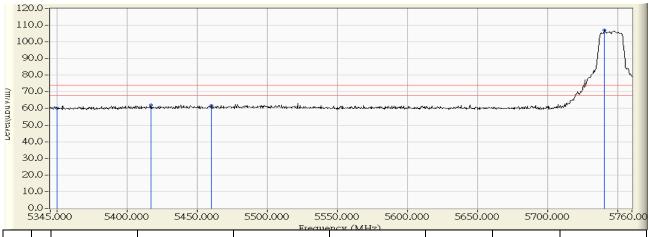
6.7. Test Result

Radiated is defined as


Site : CB1	Time : 2013/09/04 - 21:29
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

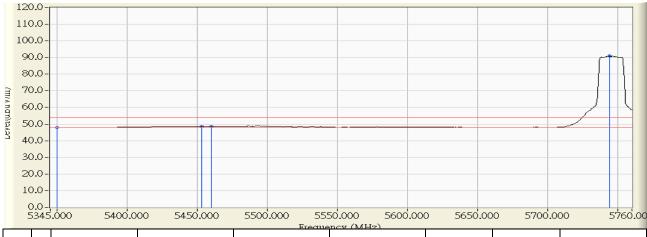
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	58.057	60.583	-13.417	74.000	PEAK
2		5458.433	3.366	59.911	63.278	-10.722	74.000	PEAK
3		5460.000	3.379	58.295	61.674	-12.326	74.000	PEAK
4	*	5740.633	2.760	98.508	101.268	27.268		

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 21:31
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

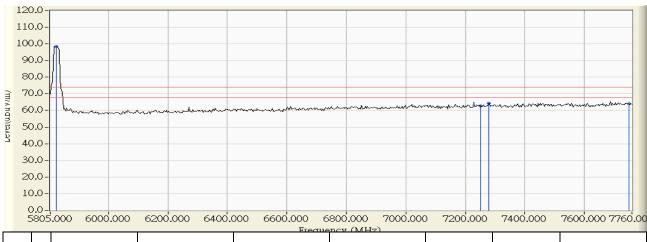
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.944	48.470	-5.530	54.000	AVERAGE
2		5445.983	3.271	45.890	49.161	-4.839	54.000	AVERAGE
3		5460.000	3.379	45.736	49.115	-4.885	54.000	AVERAGE
4	*	5746.167	2.739	83.395	86.134	32.134	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:08
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

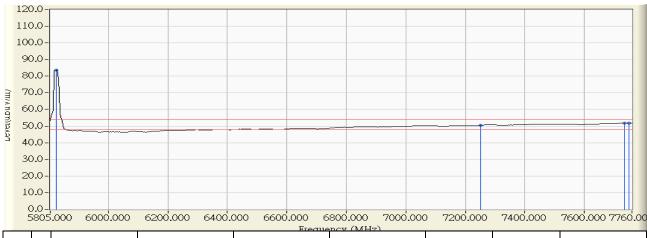
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	57.521	60.047	-13.953	74.000	PEAK
2		5416.795	3.044	59.199	62.243	-11.757	74.000	PEAK
3		5460.000	3.379	58.328	61.707	-12.293	74.000	PEAK
4	*	5740.495	2.761	104.477	107.238	33.238	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:12
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5745MHz

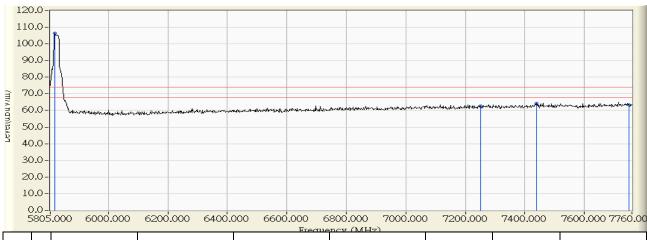
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.401	47.927	-6.073	54.000	AVERAGE
2		5452.900	3.323	45.203	48.527	-5.473	54.000	AVERAGE
3		5460.000	3.379	45.133	48.512	-5.488	54.000	AVERAGE
4	*	5744.230	2.746	88.179	90.926	36.926	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 21:34
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

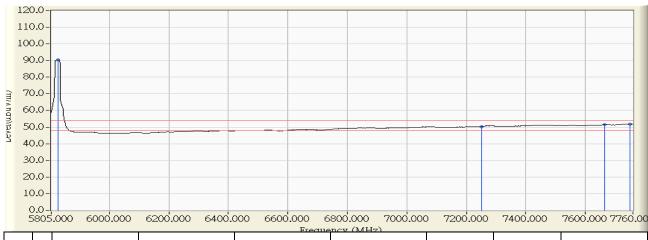
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5824.550	2.437	96.141	98.578	24.578	74.000	PEAK
2		7250.000	5.476	57.152	62.628	-11.372	74.000	PEAK
3		7277.767	5.536	58.744	64.280	-9.720	74.000	PEAK
4		7750.000	6.446	57.426	63.872	-10.128	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 21:44
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

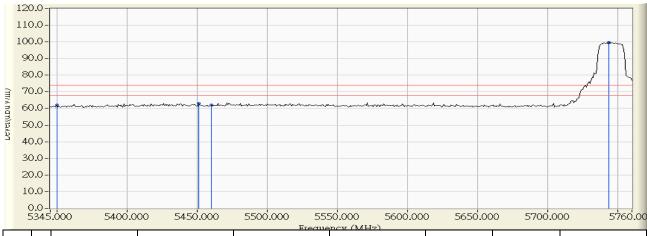
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5824.550	2.437	81.088	83.525	29.525	54.000	AVERAGE
2		7250.000	5.476	44.904	50.380	-3.620	54.000	AVERAGE
3		7733.933	6.419	45.398	51.817	-2.183	54.000	AVERAGE
4		7750.000	6.446	45.341	51.787	-2.213	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:13
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

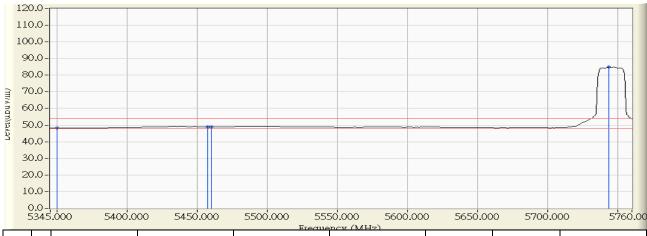
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5820.640	2.452	104.045	106.497	32.497	74.000	PEAK
2		7250.000	5.476	57.119	62.595	-11.405	74.000	PEAK
3		7439.380	5.885	58.494	64.379	-9.621	74.000	PEAK
4		7750.000	6.446	56.899	63.345	-10.655	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:24
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11a_5825MHz

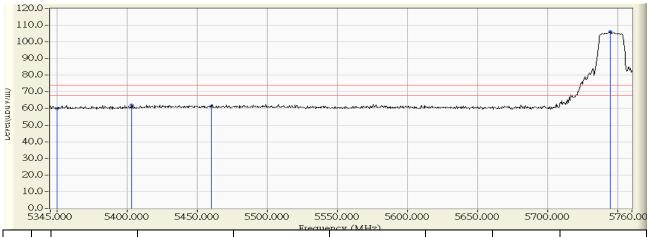
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5826.505	2.429	87.910	90.339	36.339	54.000	AVERAGE
2		7250.000	5.476	44.838	50.314	-3.686	54.000	AVERAGE
3		7664.205	6.299	45.089	51.388	-2.612	54.000	AVERAGE
4		7750.000	6.446	45.221	51.667	-2.333	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 21:51
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5745MHz

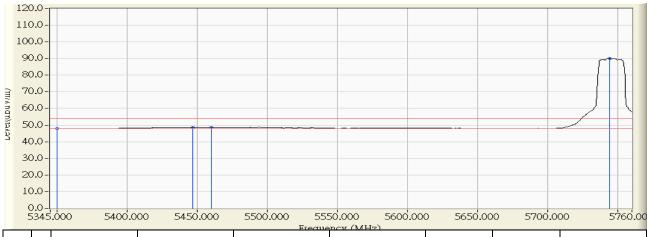
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	59.521	62.047	-11.953	74.000	PEAK
2		5450.825	3.308	59.698	63.006	-10.994	74.000	PEAK
3		5460.000	3.379	58.556	61.935	-12.065	74.000	PEAK
4	*	5743.400	2.749	97.010	99.760	25.760	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 21:52
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5745MHz

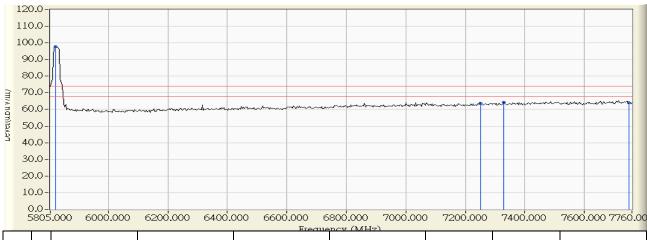
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.812	48.338	-5.662	54.000	AVERAGE
2		5457.050	3.357	45.621	48.977	-5.023	54.000	AVERAGE
3		5460.000	3.379	45.619	48.998	-5.002	54.000	AVERAGE
4	*	5743.400	2.749	82.088	84.838	30.838	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:25
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5745MHz

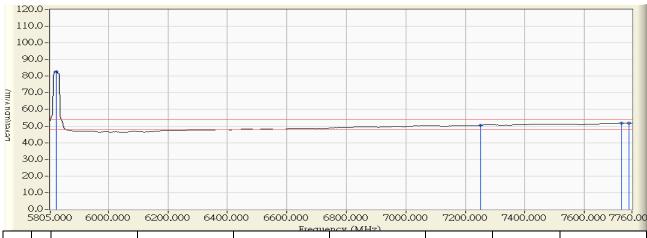
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	57.390	59.916	-14.084	74.000	PEAK
2		5403.100	2.938	59.062	62.000	-12.000	74.000	PEAK
3		5460.000	3.379	57.984	61.363	-12.637	74.000	PEAK
4	*	5744.645	2.745	103.261	106.006	32.006	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:28
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5745MHz

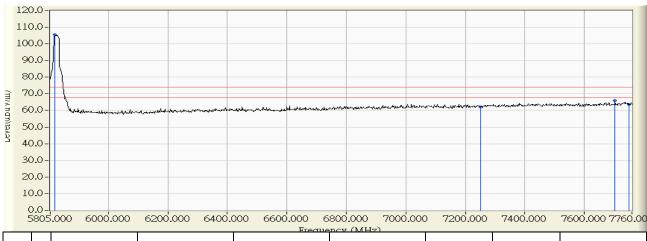
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.362	47.888	-6.112	54.000	AVERAGE
2		5446.675	3.276	45.295	48.571	-5.429	54.000	AVERAGE
3		5460.000	3.379	45.134	48.513	-5.487	54.000	AVERAGE
4	*	5743.815	2.748	87.321	90.069	36.069	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 21:54
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz

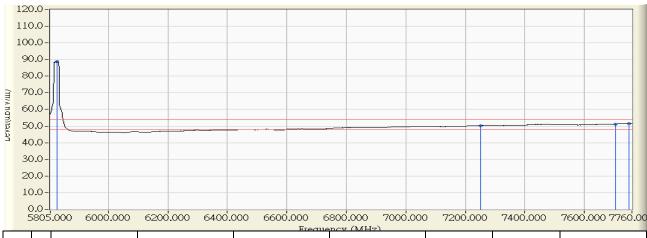
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5821.292	2.450	95.199	97.648	23.648	74.000	PEAK
2		7250.000	5.476	58.258	63.734	-10.266	74.000	PEAK
3		7329.900	5.649	58.628	64.276	-9.724	74.000	PEAK
4		7750.000	6.446	57.725	64.171	-9.829	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/04 - 22:08
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz

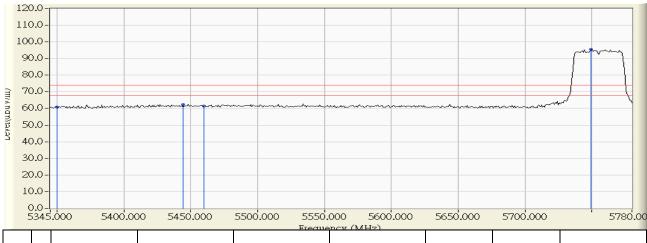
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5824.550	2.437	80.256	82.693	28.693	54.000	AVERAGE
2		7250.000	5.476	44.912	50.388	-3.612	54.000	AVERAGE
3		7724.158	6.402	45.331	51.733	-2.267	54.000	AVERAGE
4		7750.000	6.446	45.352	51.798	-2.202	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:30
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5820.640	2.452	102.927	105.379	31.379	74.000	PEAK
2		7250.000	5.476	56.732	62.208	-11.792	74.000	PEAK
3		7703.305	6.366	59.516	65.882	-8.118	74.000	PEAK
4		7750.000	6.446	57.311	63.757	-10.243	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:42
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(20M)_5825MHz

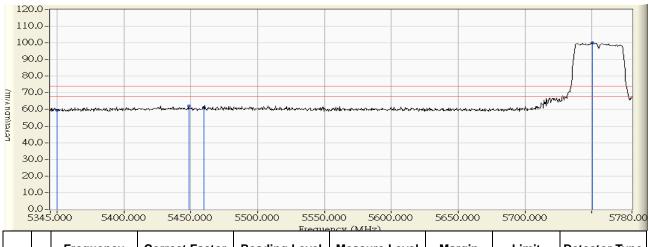
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5826.505	2.429	86.399	88.828	34.828	54.000	AVERAGE
2		7250.000	5.476	44.707	50.183	-3.817	54.000	AVERAGE
3		7705.260	6.369	44.901	51.270	-2.730	54.000	AVERAGE
4		7750.000	6.446	45.066	51.512	-2.488	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/09/05 - 08:45
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

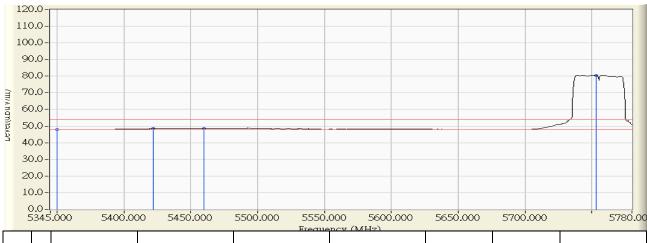
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	58.126	60.652	-13.348	74.000	PEAK
2		5444.325	3.258	59.009	62.267	-11.733	74.000	PEAK
3		5460.000	3.379	57.989	61.368	-12.632	74.000	PEAK
4	*	5749.550	2.726	92.668	95.394	21.394	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/05 - 08:47
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.433	47.959	-6.041	54.000	AVERAGE
2		5455.200	3.342	45.287	48.629	-5.371	54.000	AVERAGE
3		5460.000	3.379	45.241	48.620	-5.380	54.000	AVERAGE
4	*	5759.700	2.687	74.044	76.731	22.731	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:45
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

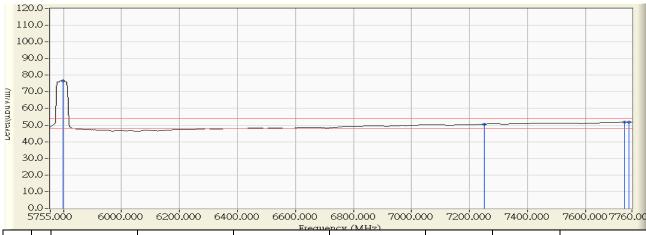
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	56.845	59.371	-14.629	74.000	PEAK
2		5448.530	3.290	58.692	61.982	-12.018	74.000	PEAK
3	,	5460.000	3.379	57.852	61.231	-12.769	74.000	PEAK
4	*	5750.420	2.722	97.408	100.131	26.131	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 15:48
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5755MHz

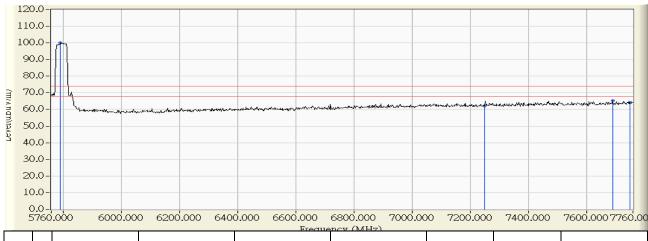
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.371	47.897	-6.103	54.000	AVERAGE
2		5421.995	3.085	45.381	48.466	-5.534	54.000	AVERAGE
3		5460.000	3.379	45.112	48.491	-5.509	54.000	AVERAGE
4	*	5753.030	2.713	77.864	80.577	26.577	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/05 - 08:50
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5785.075	2.589	92.327	94.916	20.916	74.000	PEAK
2		7250.000	5.476	57.862	63.338	-10.662	74.000	PEAK
3		7275.458	5.531	59.782	65.313	-8.687	74.000	PEAK
4		7750.000	6.446	57.668	64.114	-9.886	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/05 - 09:05
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

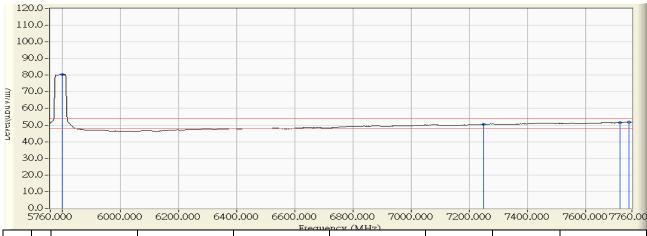
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5798.442	2.537	74.110	76.648	22.648	54.000	AVERAGE
2		7250.000	5.476	44.942	50.418	-3.582	54.000	AVERAGE
3		7733.267	6.418	45.349	51.767	-2.233	54.000	AVERAGE
4		7750.000	6.446	45.324	51.770	-2.230	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/09/06 - 15:49
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5790.000	2.570	97.338	99.908	25.908	74.000	PEAK
2	2	7250.000	5.476	56.705	62.181	-11.819	74.000	PEAK
3	3	7690.000	6.343	59.034	65.377	-8.623	74.000	PEAK
2	Ļ	7750.000	6.446	57.823	64.269	-9.731	74.000	PEAK

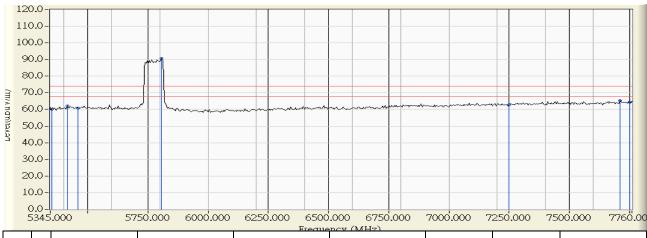
Note:


1. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

2. " * ", means this data is the worst emission level.

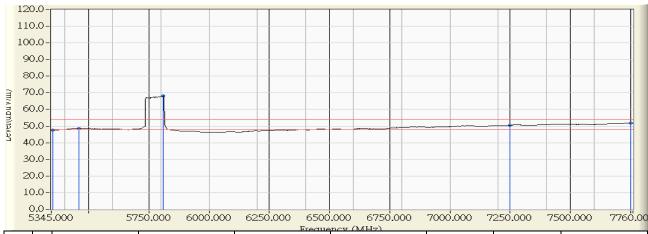
3. Measurement Level = Reading Level + Correct Factor.

4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.


Site : CB1	Time : 2013/09/06 - 16:01
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11n(40M)_5795MHz

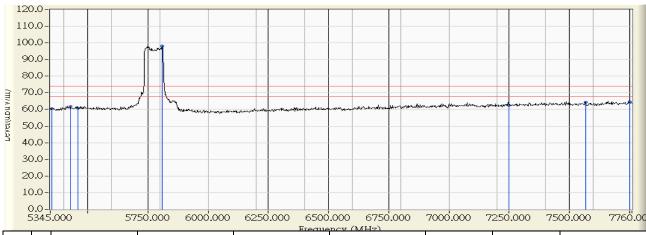
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5800.000	2.532	78.050	80.582	26.582	54.000	AVERAGE
2		7250.000	5.476	44.877	50.353	-3.647	54.000	AVERAGE
3		7718.000	6.392	45.163	51.554	-2.446	54.000	AVERAGE
4		7750.000	6.446	45.202	51.648	-2.352	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 14:05
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

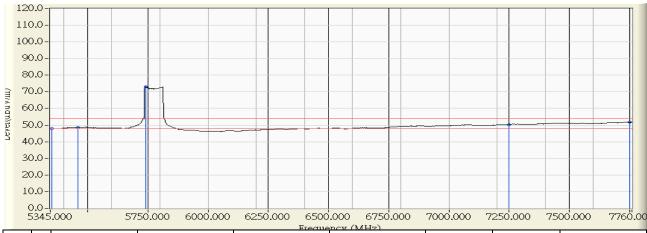
		Frequency	Frequency Correct Factor Reading Level		Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	57.579	60.105	-13.895	74.000	PEAK
2		5417.450	3.050	59.129	62.178	-11.822	74.000	PEAK
3		5460.000	3.379	57.502	60.881	-13.119	74.000	PEAK
4	*	5807.875	2.502	88.381	90.882	16.882	74.000	PEAK
5		7250.000	5.476	57.373	62.849	-11.151	74.000	PEAK
6		7711.700	6.380	59.000	65.381	-8.619	74.000	PEAK
7		7750.000	6.446	57.858	64.304	-9.696	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor \circ
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 14:23
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

		Frequency Correct Factor		Reading Level Measure Level		Margin Limit		Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.221	47.747	-6.253	54.000	AVERAGE
2		5460.000	3.379	45.075	48.454	-5.546	54.000	AVERAGE
3	*	5808.680	2.498	65.644	68.142	14.142	54.000	AVERAGE
4		7250.000	5.476	44.899	50.375	-3.625	54.000	AVERAGE
5		7750.000	6.446	45.283	51.729	-2.271	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/09/06 - 14:36
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	57.890	60.416	-13.584	74.000	PEAK
2		5427.110	3.125	58.747	61.871	-12.129	74.000	PEAK
3		5460.000	3.379	57.407	60.786	-13.214	74.000	PEAK
4	*	5808.680	2.498	95.599	98.097	24.097	74.000	PEAK
5		7250.000	5.476	57.006	62.482	-11.518	74.000	PEAK
6		7566.800	6.131	58.337	64.468	-9.532	74.000	PEAK
7		7750.000	6.446	58.173	64.619	-9.381	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

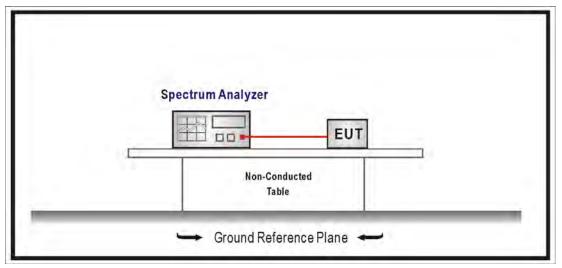
Site : CB1	Time : 2013/09/06 - 15:05
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC5V(Power by PC)
EUT : Wireless-AC450 USB Adapter	Note : 802.11ac(80M)_5775MHz

		Frequency Correct Factor		Reading Level Measure Level		Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.362	47.888	-6.112	54.000	AVERAGE
2		5460.000	3.379	45.159	48.538	-5.462	54.000	AVERAGE
3	*	5741.060	2.759	70.254	73.013	19.013	54.000	AVERAGE
4		7250.000	5.476	44.857	50.333	-3.667	54.000	AVERAGE
5		7750.000	6.446	45.204	51.650	-2.350	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measure Level = Reading Level + Correct Factor •
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment


The following test equipments are used during the test:

Occupied Bandwidth / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2014/08/05

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

7.2. Test Setup

7.3. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1% of EBW, Span greater than RBW.

7.4. Limits

The 6 dB bandwidth must be greater than 500 kHz.

7.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

7.6. Uncertainty

The measurement uncertainty is defined as ±150Hz

7.7. Test Result

Product	Wireless-AC450 USB Adapter					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmit					
Date of Test	2013/09/03	Test Site	SR7			

IEEE 802.11a, ANT 0 Frequency **Required Limit** Measure Level Channel No. Result (MHz) (MHz) (MHz) 5745 16.41 ≧0.5 149 Pass \ge 0.5 157 5785 16.41 Pass 16.42 165 5825 \ge 0.5 Pass

	Speetrum Ana	llyzer - Occu	pied BW								
	50 Ω Freq 5.	Input: F	RF #IFGain:Low	Trig: F	SENSE:INT r Freq: 5.7450 ree Run : 30 dB		ALIGNAUTO 1:> 100/100 : -3.50 dB	Radio St	PM Sep 03, 2013 d: None evice: BTS	Trace	e/Detector
10 dB/div Log 20	v Rei	<u>30 dBr</u>		man	-	uner of a type of	-			c	Clear Write
1. m	with	/						Mary Carl	er histor by humany		Average
-30											Max Hold
	5.745 GH W 300 kl			#	VBW 910	kHz		Sp: Sw	an 26 MHz reep 1 ms		Min Hole
Occupied Bandwidth 16.787 MHz				Total	Power	24.1	3 dBm		Auto	Detector Peak	
	smit Fre Bandwi		-3685 16.41		OBW x dB	Power		9.00 % .00 dB			2
MSG							STATU	s			

Center Freq: 5.785000000 GH2 Trig: Free Run Avg Ho	Radio Std: d:>100/100	
white have a more many the		Center Freq 5.785000000 GHz
	- Marine - M	withington
		CF Step
#VBW 910 kHz	Spai Swe	n 26 MHz 2.600000 MHz ep 1 ms Man
Total Power	24.02 dBm	
1Hz		
kHz OBW Power	99.00 %	
MHz x dB	-6.00 dB	
	STATUS	
	Trig: Free Run #Atten: 30 dB Ext Gai	Center Freq: 5.785000000 GHz Radio Std: Trig: Free Run Avg Hold>100/100 Radio Dev #Atten: 30 dB Ext Gain: -3.50 dB Radio Dev #Atten: 30 dB Std: #Atten: 30 dB Std: Radio Dev Radio De

	M Sep 03, 2013	02:28:27	ALIGNAUTO		SENSE:INT	AC		- Occupied B	um Analyzer 50.Ω	-		
Freq / Channel	: None	Radio Std	> 100/100	00000 GHz Avg Hold Ext Gain:	Freq: 5.8250 ee Run	Center	Center Freq 5.825000000 GHz					
					_		1	dBm	Ref 30	dB/div		
Center Fre 5.825000000 GH										0		
		N.	are and a second		www.www.www.w	han an a	an and a start and a start and a start a	portante		0		
	Unusvill palmange	- Maria							h vrikeding	owwww		
										0		
	4	1								0		
CF Ste										0		
2.600000 MH Auto Ma	n 26 MHz ep 1 ms	Spa Swe		KHz	/BW 9101	#V	n -			nter 5.82 es BW 3		
		9 dBm	23.8	ower	Total F		Occupied Bandwidth			ccupied Bandwidth		
						Hz	326 MI	16.				
		99.00 %		Freq Error 32.808 kHz OBW Power		Transmit Freq Error 32.808						
		.00 dB	-6		x dB	AH7	16.42 M		dwidth	x dB Ba		

Product	Wireless-AC450 USB Adapter					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmit					
Date of Test	2013/09/03	Test Site	SR7			

IEEE 802.11n (20MHz), ANT 0										
Channel No.	Frequency (MHz)	Measure Level (MHz)	Required Limit (MHz)	Result						
149	5745	17.47	≧0.5	Pass						
157	5785	17.54	≧0.5	Pass						
165	5825	17.49	≧0.5	Pass						

4	50 Ω	00000 0			NSE:INT reg: 5.74500	00000 CHa	ALIGN AUTO	02:32:55 Radio Sto	PM Sep 03, 2013	Freq / Channel
	Freq 5.745000000 GHz				Run	Avg Hold Ext Gain:			vice: BTS	
0 dB/div	Ref 30	dBm				1	-		-	
20										Center Fre 5.745000000 GH
-10	ſ	- and and and and and and	- marine - marine	ՠֈահահություն	and the second second	I'W'ILAN PROVINSION PROVINSION PROVINSION PROVINSION PROVINSION PROVINSION PROVINSION PROVINSION PROVINSION PRO	And the second second	mary h		
-20 Anatophicht	wow							Wy	setty grown they are	
-30										
-50				:=1						
Center 5.7				#VE	3W 910 P	Hz			an 26 MHz eep 1 ms	CF Ste 2.600000 MH <u>Auto</u> Ma
Occupied Bandwidth 17.585 MHz				Bandwidth Total Power 23.30 dBm						
Transmi	it Freq Er		63.090		OBW F	ower	91	9.00 %		
x dB Ba	ndwidth		17.47 N	1Hz	x dB		-6.	00 dB		
start	I Agilent Spect		Sample 2	_						2 1 K 2132 P

🗊 Agilent Sp	pectrum Analyzer - Occupie		_						
Center F	50 Ω Freq 5.78500000 Input: RF	eq 5.785000000 GHz Input: RF #IFGain:Low #Atten: 30 dB Ext Gain: -3.50 dB					02:36:42 Radio St Radio De	Freq / Channel	
10 dB/div	Ref 30 dBm		_			_			
20									Center Freq 5.785000000 GHz
0		and my and a second second	**~~~**	Arrestant	and the second second second	V www.	T		
-10 -20 44 miles	manna						h	๛ฦๅ๚๛๚๛๛๛	
-30						100 C			
-40 -50									
-60									CF Step
the same second second	5.785 GHz V 300 kHz		#VE	3W 910 k	Hz		Sp Sw	an 26 MHz reep 1 ms	2.600000 MHz <u>Auto</u> Man
Occu	Occupied Bandwidth 17.625 MH			Total P	'ower	23.5	6 dBm		
Trans	Transmit Freq Error 74.052		Hz	OBW F	ower	9	9.00 %		
x dB l	Bandwidth	17.54 M	Hz	x dB		-6	.00 dB		
MSG						STATUS	8		

D Agilent Spec	trum Analyzer - Occupie								
Center Freq 5.825000000 GHz Input: RF #IFGain:Low			5.825000000 GHz Input: RF Center Freq: 5.825000000 GHz Trig: Free Run Avg Hold>100/100				Radio St	aPM Sep 03, 2013 d: None evice: BTS	Freq / Channel
10 dB/div Ref 30 dBm									
20 10									Center Freq 5.825000000 GHz
-10		and the provide and	Marine Alexandra	A Contraction of the second se	(marma)	and the constraint	-		
-20 ^{DAAAAAUV}	monut						×	mannahman	
-30	-								
-50								-	
-60			1						CF Step 2.600000 MHz
Center 5.8 #Res BW			#VI	BW 910	kHz		Sp Sw	an 26 MHz /eep 1 ms	<u>Auto</u> Man
Occup	Occupied Bandwidth 17.626 MHz			Total I	Power	23.5	6 dBm		
Transm	Transmit Freq Error 65.961		Hz	OBW	Power	9	9.00 %		
x dB Ba	andwidth	17.49 M	Hz	x dB		-6	.00 dB		
MSG						STATU	s		

Product	Wireless-AC450 USB Adapter					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmit					
Date of Test	2013/09/03	Test Site	SR7			

IEEE 802.11n (40)	IEEE 802.11n (40MHz), ANT 0										
Channel No.	Frequency (MHz)	Measure Level (MHz)	Required Limit (MHz)	Result							
151	5755	36.29	≧0.5	Pass							
159	5795	36.36	≧0.5	Pass							

Agilent Spec	trum Analyzer - 50 Ω	Occupied BW		c i se	NSE:INT	т			PM Sep 03, 2013	
Center Fr	eq 5.7550	iput: RF		Center F	req: 5.75500 e Run	00000 GHz Avg Hold: Ext Gain:		Radio St		Freq / Channel
10 dB/div Log	Ref 20 (dBm		_						
10		horno	man	mont		www.		man		Center Free 5.755000000 GH
-10	10 where the second second							1	u	
-30 200 -40									Mar Harberton	
-50	-									_
-70 Center 5.7 Res BW				#VBW 1.5 MHz					an 52 MHz eep 1 ms	
	ied Band	width			Total F		21.4	0 dBm	cep i ma	
1.1 000		36.2	Ηz							
Transm	ransmit Freq Error 49.325 k		Hz	OBW F	ower	9	9.00 %			
x dB Ba	andwidth		36.29 N	IHz	x dB		-6.	.00 dB		
SG			_				STATUS	3		

🗊 Agilent Sp	ectrum Analyzer - C	Occupied BW		_									
20 Ω AC SENSE:INT ALIGNAUTO I02:46:30 PM Sep 03, 2013 Center Freq 5.795000000 GHz Center Freq: 5.795000000 GHz Radio Std: None Input: RF FifGain:Low #Atten: 30 dB Ext Gain: -3.50 dB Radio Device: BTS 10 dB/div Ref 20 dBm									Freq / Channel				
10 dB/div Log	Ref 20 d	BM		1 1		<u> </u>	1		(mark)	Contor From			
a	m	www.	monewa	.r-wai-tyhikinaa	mon	www.winibarawina	- Maria	ramy	-	Center Freq 5.795000000 GHz			
-10	1	-											
-30 printer	Mur			· · · · · ·					WWW Prostitutes				
-40													
-60							-						
-70										CF Step 5.200000 MHz			
Center 5 #Res BW	.795 GHz 510 kHz	_		#V	BW 1.5 N	AHz			an 52 MHz eep 1 ms	<u>Auto</u> Man			
Occu	Occupied Bandwidth 36.199 MH						Ηz	Total I	Power	21.0	0 dBm		
Trans	Transmit Freq Error 58.174		Hz	OBW	Power	9	9.00 %						
x dB E	Bandwidth		36.36 N	IHz	x dB		-6	.00 dB					
MSG							STATU	s					

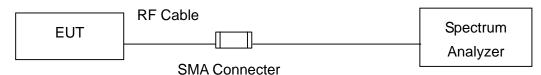
Product	Wireless-AC450 USB Adapter					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmit					
Date of Test	2013/09/03	Test Site	SR7			

IEEE 802.11ac (80MHz), ANT 0									
Channel No.	Frequency (MHz)	Measure Level (MHz)	Required Limit (MHz)	Result					
155	5775	76.30	≧0.5	Pass					

/BW 3.00	50 Ω 00 MHz	1	Center	SENSE:INT		ALIGNAUTO	02:49:24 Radio Sto	PM Sep 03, 2013 I: None		BW
		t: RF #IFGain:L	Trig: F	ree Run : 30 dB	Avg Hold: Ext Gain:		Radio De	vice: BTS	Auto	Res BW 1.0000 MH: Mar
10 dB/div Log	Ref 20 dE	3m	1				-	1		
10		+	myn-p ^{ri} netsaefhyderre	-		P-1-7			Auto	Video BV 3.0000 MH: <u>Mar</u>
-10	1									
-20 -30	hrin							hhowever where the last		
-40										
-50	-									
-70						-			F	ilter Type
Center 5.7 #Res BW 1	and the second	- n	#	VBW 3 MH	łz		Spar Sw	n 104 MHz eep 1 ms		Gaussian
Occupi	ed Bandw	vidth 75.784	MHz	Total F	Power	22.8	4 dBm			
Transmi	Transmit Freq Error -3298		2984 Hz	z OBW Power		99.00 %				
x dB Ba	ndwidth	76	.30 MHz	x dB		-6	.00 dB			
ISG						STATU	s	4		

8. Power Density

8.1. Test Equipment


The following test equipment is used during the test:

Power Density / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2014/08/05
Note: 1. All equipment	ts that need to ca	alibrate are with	calibration per	iod of 1 year.

8.2. Test Setup

IEEE 802.11 b / g / a / n (20M) MODE

8.3. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

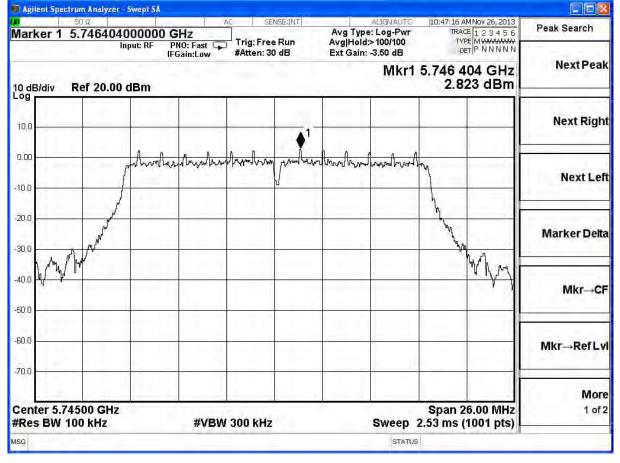
8.4. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, Set VBW= 300 kHz, Sweep time=Auto, Set detector=Peak detector

8.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

8.6. Uncertainty


The measurement uncertainty is defined as ±1.27dB.

8.7. Test Result

Product	Wireless-AC450 USB Adapter		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/11/26	Test Site	SR7

IEEE802.11a, ANT 0									
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result					
149	5745	2.82	≦8	Pass					
157	5785	2.93	≦8	Pass					
165	5825	2.54	≦8	Pass					

	<u>Chann</u>	<u>el 157</u>		
🗊 Agilent Spectrum Analyzer - Swept SA				
Marker 1 5.786430000000 GHz	Fast Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	10:50:42 AMNov 26, 2013 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Peak Search
IFGain:	Low #Atten: 30 dB	Ext Gain: -3.50 dB Mkr1	5.786 430 GHz 2.931 dBm	NextPeak
10.0				Next Right
0.00 milion Augusta	whentherton when	-utwaytowntowntownt	my	Next Left
-20.0			han	Marker Delta
-40.0			, Mad	Mkr→CF
-60.0				Mkr→RefLvl
Center 5.78500 GHz	#VBW 300 kHz	Sweep	Span 26.00 MHz 2.53 ms (1001 pts)	More 1 of 2
MSG		STATUS		

			nnel 1	Cn				
						Swept SA	rum Analyzer -	D Agilent Spec
Peak Search	10:53:13 AMNov 26, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	ALIGNAUTO e: Log-Pwr d:>100/100	Á	SENSE	NO: Fast 😱	put: RF P	50 ລ 5.8264300 In	Marker 1
Next Peak	5.826 430 GHz 2.541 dBm	:: -3.50 dB Mkr1		#Atten: 30 dl	Gain:Low	1	Ref 20.00	10 dB/div
Next Right			_ 1			1		10,0
Next Leff	<u></u>	atrontom	Anothe	watan	Inntern	mhemhen		-10.0
Marker Delta	- hundred -						www	-20.0
Mkr→CF	v Ym							-40.0
Mkr→RefLv								-60.0
More 1 of 2	Span 26.00 MHz 2.53 ms (1001 pts)	Sweep 2		00 kHz	#VBW :			Center 5.8
		STATUS					1.1.1.1.1.1.	MSG

Product	Wireless-AC450 USB Adapter		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/11/26	Test Site	SR7

IEEE802.11n_20MHz, ANT 0									
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result					
149	5745	2.83	≦8	Pass					
157	5785	2.75	≦8	Pass					
165	5825	2.03	≦8	Pass					

				<u>; 49</u>	Jnanne	<u> </u>				
								Swept SA		gilent Spectr
Peak Search	AM Nov 26, 2013 CE 1 2 3 4 5 6		ALIGNAUTO	A	NSE:INT	C SE ⊐	4	00000 0	2402700	
100000	PE MWWWWW ET P NNNNN	TY	>100/100 -3.50 dB	Avg Hol		Trig: Fre #Atten: 3	HZ NO: Fast 😱 Gain:Low	DOOOOO G put: RF P IF(arker 1 5
NextPea	378 GHz 33 dBm	5.746 3 2.8	Mkr1					dBm	ef 20.00 d	dB/div I
Next Righ						11		1.1		9
	-		mound	Ar and ala	Anna Anna	American	Anton	handa		00
Next Le		Mary	A Meri and of		V		1 N Y Y Y Y Y Y Y	- 1 × - 1 - 1 • 0 • 0	fre fre	.0'
Marker Dell		A							And and a second second	.0
Mkr→C	WW AREPHONE									.0 41 mm 11
Mkr→RefL										.0
Moi 1 of	26.00 MHz	Snap 2							00 GHz	enter 5.74
1.01	(1001 pts)	2.53 ms (Sweep :			300 kHz	#VBW			les BW 1
			STATUS			-				1

			<u>ei 157</u>	Chann					
							zer - Swept SA	trum Analyz	Agilent Spe
Peak Search	11:02:07 AMNov 26, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWAWW DET P N N N N N	ALIGN AUTO :: Log-Pwr :>100/100	Avg Hol	SENSE:INT	AC Tri	0 GHz PNO: Fast C IFGain:Low	04000000	50 Ω 5.78640	Marker 1
Next Peak	.786 404 GHz 2.753 dBm	-3.50 dB Mkr1 :	Ext Gair	n: 30 dB	∾	IFGain:Low	00 dBm	Ref 20.0	10 dB/div
Next Right		_		1		1			10,0
Next Left	m	munnul	ulmulm	mm	Annthow	Amburth	montion		0.00
Marker Delta							-	A MARINA C	30.0
Mkr→CF								/w	40.0 YWM 50.0
Mkr→RefLv									60.0
More 1 of 2	Span 26.00 MHz 53 ms (1001 pts)	Sweep 2		Hz	/BW 300	#VB	łz		Center 5.7 #Res BW
		STATUS					_		MSG

			<u>165 165 165 165 165 165 165 165 165 165 </u>	Chanr				
						er - Swept SA	trum Analyz	D Agilent Spec
Peak Search	11:05:30 AM Nov 26, 2013 TRACE 1 2 3 4 5 6 TYPE M WWWWWW	ALIGNAUTO e: Log-Pwr I:>100/100	Avg H	sense:INT		52000000 Input: RF	50 Ω 5.8276	Marker 1
Next Peak	5.827 652 GHz 2.026 dBm	3.50 dB Mkr1	Ext G	tten: 30 dB	PNO: Fast 😱 IFGain:Low			A 210
Next Right			1			00 dBm	Ref 20.	10 dB/div og
Next Left	my	freedmal	mbunt	shing produ	maturtinal	prontinual		0.00
Marker Delta							a manage	30.0
Mkr→Cl							17. 17.	40.0 Ulandy 50.0
Mkr→RefLv								60.0
More 1 of 2	Span 26.00 MHz 2.53 ms (1001 pts)	Sweep 2) kHz	#VBW :	łz		Center 5.8 #Res BW
		STATUS		and the second				MSG

Product	Wireless-AC450 USB Adapter		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/11/26	Test Site	SR7

IEEE802.11n_40MF	lz, ANT 0	-		
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
151	5755	-1.18	≦8	Pass
159	5795	-1.27	≦8	Pass

							yzer - Swept SA	nt Spectrum Ana	D Agiler
Peak Search	11:07:27 AMNov 26, 2013 TRACE 1 2 3 4 5 6	ALIGNAUTO e: Log-Pwr I:>100/100		SENSE:INT		GHz	50800000	50 Ω er 1 5.752	Marke
NextPeak	5.752 608 GHz -1.198 dBm	-3.50 dB			#Atten: 3	PNO: Fast Ģ IFGain:Low	Input: RF	div Ref 2	10 dB/
Next Righ						1			10,0 -
Next Lef	urburky	nanlaulandaala	Judwilant	ra portolionta	ntrature 1	hulmantur	- Andre Andred		0.00 — 10.0 —
Marker Delta				۰ ۲				, A	20.0 — 30.0 —
Mkr→C	harman							HW WWW	40.0 J
Mkr→RefLv					: :::				60.0 —
Mor 1 of:	Span 52.00 MHz 5.00 ms (1001 pts)	Sweep 4			/ 300 kHz	#VBW		er 5.75500 (BW 100 kH	
-		STATUS		-			-		ASG

			<u>1159</u>	<u>Chann</u>					
							- Swept SA		Agilent Speet
Peak Search	09:17 AMNov 26, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW	og-Pwr	Avg Type: Avg Hold:>	Bun	Caller and	Hz	000000 G		arker 1 (
NextPeak	DET P N N N N N	50 dB	Ext Gain: -		#Atten: 3	NO: Fast 🖵 Gain:Low	Input: RF PI IFC	9	
	78 880 GHz -1.270 dBm	Mkr1 5) dBm	Ref 20.00) dB/div
Next Right									0,0
Next Left	<u> </u>	whether	hallouthan	provedby	Antonio	an the half the	All and have been been been been been been been be	har	0.00
Marker Delta				V					0.0
	- Wall							W W	0.0 <u>A</u> MA
Mkr→CF	- Warren -								0.0 Aryw ^{hy} 0.0
Mkr→RefLv									0.0
More									0.0
1 of 2	oan 52.00 MHz ms (1001 pts)	weep 5.			300 kHz	#VBW			enter 5.79 Res BW 1
		STATUS							G

Product	Wireless-AC450 USB Adapter		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/11/26	Test Site	SR7

IEEE802.11ac_8	BOMHz, ANT 0			
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
155	5775	-3.03	≦8	Pass

								wept SA	n Analyzer - S		D Agile
Peak Search	MNov 26, 2013 E 1 2 3 4 5 6 PE MWWWWW	TR	ALIGNAUTO		Dun			00000 GI	7389120	50 er 1 5.7	× Mark
NextPeak	Input: RF PNO: Fast Trig: Free Run Avg Hold>100/100 TYPE MAWAWAW IFGain:Low #Atten: 30 dB Ext Gain: -3.50 dB DET PNNNN Mkr1 5.738 912 GHz -3.045 dBm										
Next Righ											10,0 -
Next Le		unhhy	_{แมก} ใปหูป _ส ูปปูมห	h.l.l.l.l.h.	rahildudd		mshlikk	hallhhh	phylip		0.00 -
Marker Del									1		20.0 - 30.0 -
Mkr→C	WAL MAN WANT								1	pelingstraphic	40.0 m
Mkr→RefL											60.0 -
Mor 1 of	04.0 MHz 1001 pts)	Span 10.0 ms	Sweep		-	300 kHz	#VBW	_		er 5.7750 BW 100	
	1001 pts)	10.0 ms	Sweep STATUS	-	_	300 kHz	#VBW		kHz	BW 100	#Res