QuieTer

Product	:	Nexus Player
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps)

Chain A

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result
	(MHz)	(Mbps)	(dB)	(dB)	
		(VTH0)	9.670	<13	Pass
	5530	(VTH2)	11.380	<13	Pass
106		(VTH4)	10.980	<13	Pass
	(VTH7)		12.190	<13	Pass
		(VTH9)	11.830	<13	Pass

Channel 106:

Agilent Spectrum Analyzer - Sw					E
KI RF 50 Ω Center Freq 5.53000	00000 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	01:35:59 AM Sep 13, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
10 dB/div Ref 20.00	PNO: Fast G	⊖ ⊤rig: Free Run #Atten: 30 dB	Mk	r1 5.542 8 GHz 0.01 dBm	Auto Tune
Log 10.0 10.0		2		uner multiper	Center Freq 5.530000000 GHz
-20.0 -30.0 -40.0					Start Fred 5.480000000 GHz
-50.0					Stop Frec 5.580000000 GHz
Center 5.53000 GHz #Res BW 1.0 MHz		V 3.0 MHz		Span 100.0 MHz 1.00 ms (1001 pts)	CF Step 10.000000 MH:
MKR MODE TRC SCL 1 N 2 f 2 N 1 f 3 - - 4 - - 5 - - 6 - - 7 - -	× 5.542 8 GHz 5.521 4 GHz	0.01 dBm -9.66 dBm	FUNCTION FUNCTION WIDTH		Auto Mar Freq Offse 0 H:
8 9 10 11 12 MSG			STATUS	s	

Agilent Spectrum Analyzer - Swep					
X RL RF 50 Ω Center Freq 5.530000	PNO: Fast 🕞	Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS	01:40:27 AM Sep 13, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	Frequency
10 dB/div Ref 20.00 dl	IFGain:Low	#Atten: 30 db	Mk	r1 5.522 2 GHz 0.50 dBm	Auto Tune
10.0 .000	Maget son town		2 marine demonstration of the second	many	Center Free 5.530000000 GH
-20.0				A stanson	Start Fre 5.480000000 GH
-50.0					Stop Fre 5.580000000 GH
Center 5.53000 GHz Res BW 1.0 MHz		/ 3.0 MHz		Span 100.0 MHz 1.00 ms (1001 pts)	CF Ste 10.000000 MH
MKR MODE TRC SCL 1 N 2 f 2 N 1 f	× 5.522 2 GHz 5.535 5 GHz	0.50 dBm -10.88 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
3 4 5 6					FreqOffse 0 ⊦
7 8 9 10 11					
12			STATUS		

Agilent Spectrum Analyzer - Swept SA				
02/ RL RF 50 ລັດເ Center Freq 5.530000000 GHz PNO:Fas IFGain:Lor		ALIGNAUTO #Avg Type: RMS	01:57:53 AM Sep 13, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW DET A P N N N N	Frequency
10 dB/div Ref 20.00 dBm		Mk	r1 5.544 3 GHz 0.65 dBm	Auto Tune
10.0 0.00 10.0 10.0	new many and	2 mar allen and a second line	and and a start	Center Fred 5.530000000 GH:
-20.0 -30.0 -40.0				Start Free 5.480000000 GH
-50.0			and and a second	Stop Fre 5.58000000 GH
Center 5.53000 GHz #Res BW 1.0 MHz #\ MKR MODE TRC SCL ×	/BW 3.0 MHz	Sweep	Span 100.0 MHz 1.00 ms (1001 pts) cunction value	CF Step 10.000000 MH Auto Ma
I N 2 f 5.544 3 GHz 2 N 1 f 5.537 6 GHz 3 - - - - 3 - - - - 4 - - - - 5 - - - - 6 - - - - - 9 -	0.65 dBm -10.33 dBm			Freq Offse
ISG	t.	STATUS		

Agilent Spectrum Analyzer - Swept							
M RL RF 50Ω Center Freq 5.530000	AC 000 GHz PN0: Fast IFGain:Low	SENSE:II	#Avg Ty	ALIGNAUTO (pe: RMS	TRAC TYP	4 Sep 13, 2014 E 1 2 3 4 5 6 E A MWWWWW T A P N N N N	Frequency
10 dB/div Ref 20.00 dB		#Atten: 50 dB		Mk	r1 5.517		Auto Tune
10.0 0.00 -10.0	^1	and menore and	marin margana	att of the state o	bor there may		Center Free 5.530000000 GH
-20.0 -30.0 -40.0						- Marth	Start Fre 5.480000000 GH
-50.0						What was	Stop Fre 5.58000000 GH
Center 5.53000 GHz #Res BW 1.0 MHz		V 3.0 MHz			1.00 ms ('		CF Ste 10.000000 MH
MKR MODE TRC SCL 1 N 2 f 2 N 1 f 3	× 5.517 2 GHz 5.542 9 GHz	1.31 dBm -10.88 dBm	FUNCTION	FUNCTION WIDTH	FUNCTIO		<u>Auto</u> Ma
4 5 6							Freq Offse 0 H
7 8 9 10							
11 12 1 NSG				STATUS			

Agilent Spectrum Analyzer - Swept SA					
🗱 RL RF 50Ω AC Center Freq 5.53000000		SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGNAUTO #Avg Type: RMS	02:31:57 AM Sep 13, 2014 TRACE 1 2 3 4 5 6 TYPE A M WIMMU DET A P N N N N	Frequency
10 dB/div Ref 20.00 dBm			Mk	r1 5.525 9 GHz 1.07 dBm	Auto Tune
10.0 0.00 -10.0	and a filler afferder	1-	ale 7 m 2 man istan	haven	Center Free 5.530000000 GH
-20.0 -30.0 -40.0				W Weller	Start Free 5.480000000 GH
-50.0				Maria	Stop Fre 5.58000000 GH
Center 5.53000 GHz #Res BW 1.0 MHz		3.0 MHz	-	Span 100.0 MHz 1.00 ms (1001 pts)	CF Ste 10.000000 MH
MKR MODE TRC SQL X 1 N 2 f X 1 f 3 1 f X X 1 f X	5.525 9 GHz 5.543 7 GHz	Y F 1.07 dBm -10.76 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma FreqOffse 0 H
11 12 MSG			STATUS		

Channel No.	Frequency	Data Rate	Measurement Level	Required Limit	Result	
	(MHz)	(Mbps)	(dB)	(dB)		
	(VTH0)		9.350	<13	Pass	
	5530	(VTH2)		9.550	<13	Pass
106		(VTH4)	9.010	<13	Pass	
	(VTH7)		9.280	<13	Pass	
		(VTH9)	8.750	<13	Pass	

Chain B

Channel 106:

Agilent Spectrum Analyzer - Swept SA				
X RL RF 50 Ω AC Center Freq 5.775000000 Image: Context freq 5.775000000 Image: Context freq 5.775000000 Image: Context freq 5.775000000	GHz PN0: Fast Trig: Free Run	ALIGNAUTO	09:17:20 PM Sep 11, 2014 TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr	1 5.754 4 GHz 7.90 dBm	Auto Tune
Log 10.0 0.00 -10.0			A manufacture of	Center Freq 5.775000000 GHz
-20.0			Mulumon	Start Freq 5.725000000 GHz
-50.0				Stop Freq 5.825000000 GHz
	#VBW 3.0 MHz	Sweep 1	Span 100.0 MHz .00 ms (1001 pts) FUNCTION VALUE	CF Step 10.000000 MHz <u>Auto</u> Man
2 N 1 f 5.7 3 4 5 6 7	50 5 GHz -1.45 dBm			Freq Offset 0 Hz
' ' 9 - 10 - 11 - 12 -				
MSG		STATUS		

		ctrur		alyzer - Sw														
Cen		Fre	RF q	ء 50 5.7750	2 AC) GH	łz			NSE:IN		#Avg		ALIGNAUTO RMS	TI	RACE 1	p 11, 2014 2 3 4 5 6	Frequency
	PNO: Fast Trig: Free Run PETA P NNN PETA P NNN N IFGain:Low #Atten: 30 dB Mkr1 5.790 0 GHZ									Auto Tune								
10 di Log 10.0 0.00			_	20.00		2~		-september	man	v			1	hardred all hard				Center Freq 5.775000000 GHz
-20.0 -30.0 -40.0																	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Start Freq 5.725000000 GHz
-50.0 -60.0 -70.0																		Stop Freq 5.825000000 GHz
Cen #Re: MXE	s Bl	N 1	.0 P SOL	0 GHz /IHz	× 5	.790	0 GHz	BW 3.	0 MHz Y 8.62 d	Bm	FUN	CTION		Sweep CHONWOTH	1.00 ms	n 100. s (100 chionwa		CF Step 10.000000 MHz <u>Auto</u> Man
2 3 4 5 6 7 8 9 10 11 12	N	1	f		5	.750	1 GHz		-0.93 d	Bm								Freq Offset 0 Hz
MSG	_													STATU	5			

	50 Ω AC	SENSE:INT	ALIGN AUTO	09:19:20 PM Sep 11, 2014	Frequency
enter Freq 5.	775000000 GHz PNO: Fast	Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A MWMMW	Trequency
	IFGain:Lov			DET A P N N N N	
			Mk	r1 5.779 7 GHz	Auto Tun
0 dB/div Ref 2	0.00 dBm			8.16 dBm	
.og		≜ 1			
10.0	man margan marga	man mentor and and	man marchen and the martille and	alytery	Center Fre
0.00		month and			5.775000000 GH
10.0		Y		William dama	
20.0				The second	
30.0				and a second	Start Fre
40.0					5.725000000 GH
50.0					
					Oton Err
60.0					Stop Fre
70.0					5.825000000 GH
enter 5.77500				Span 100.0 MHz	
Res BW 1.0 MH		'BW 3.0 MHz	Sweep	1.00 ms (1001 pts)	CF Ste
					10.000000 MH
1 N 2 F	× 5.779 7 GHz	8.16 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2 N 1 f	5.758 8 GHz	-0.85 dBm			
3 4					Freq Offs
5					01
6					
6 7 8					
7 8 9					
7 8 9 10					
7 8 9					

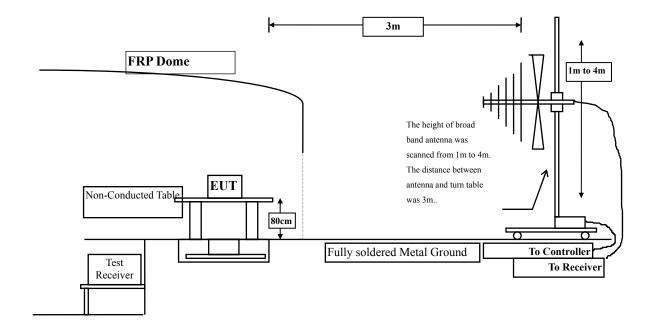
Agilent Spectrum Analyzer - Swept SA			
⊠ RL RF 50Ω AC Center Freq 5.775000000 GH2	Z SENSE:INT #Avg	ALIGN AUTO 09:20:24 PM Sep 11, 2014 Type: RMS TRACE 1 2 3 4 5 6 TYPE A MWWWW	Frequency
PN0 IFG2 10 dB/div Ref 20.00 dBm	Auto Tune		
10.0 10.0 10.0 10.0 10.0		8.30 dBm	Center Freq 5.775000000 GHz
-20.0			Start Freq 5.725000000 GHz
-50.0 -60.0 -70.0			Stop Freq 5.825000000 GHz
Center 5.77500 GHz #Res BW 1.0 MHz MKR MODE TRC SCL X 1 N 2 f 5.7570	#VBW 3.0 MHz	Span 100.0 MHz Sweep 1.00 ms (1001 pts) FUNCTION WIDTH FUNCTION VALUE	
2 N 1 f 5.757 4 3 4 5.757 4 5 6 7 8 9 9 10 11 12	GHz -0.98 dBm		Freq Offset 0 Hz
MSG		STATUS	

Agilent Spectrum Analyzer - Swept SA							
M RL RF 50Ω AC Center Freq 5.775000000	GHz	sense:INT	#Avg Type	ALIGN AUTO e: RMS	TRAC	E 1 2 3 4 5 6 A MWWWW	Frequency
10 dB/div Ref 20.00 dBm		Atten: 30 dB		Mk	r1 5.750	0 O GHz 9 dBm	Auto Tune
Log 10.0 0.00 -10.0		ner son gentle solder of	Programme and	and here here and a	horizont		Center Freq 5.775000000 GHz
-20.0						- Coullerapher	Start Freq 5.725000000 GHz
-50.0							Stop Freq 5.825000000 GHz
Center 5.77500 GHz #Res BW 1.0 MHz MKR MODE TRO SOL X	#VBW 3.0	Y FU	NCTION FUR	Sweep		00.0 MHz 1001 pts) NVALUE	CF Step 10.000000 MHz <u>Auto</u> Man
2 N 1 f 5. 3 - - - - 4 - - - - 5 - - - - 6 - - - - 7 - - - - 8 - - - - 9 - - - -	750 0 GHz 752 5 GHz	7.99 dBm -0.76 dBm					Freq Offset 0 Hz
10 11 12 MSG				STATUS			

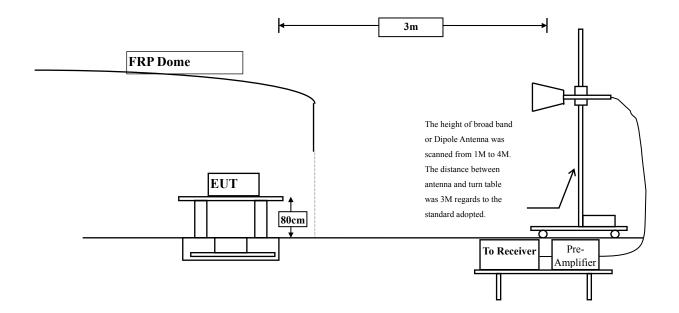
6. Radiated Emission

6.1. Test Equipment

The following test equipments are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2014
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	Field strength (microvolts/meter)	Measurement distance (meter)				
0.009-0.490	2400/F(kHz)	300				
0.490-1.705	24000/F(kHz)	30				
1.705-30	30	30				
30-88	100	3				
88-216	150	3				
216-960	200	3				
Above 960	500	3				

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10, 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas. The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

6.6. Test Result of Radiated Emission

Product	:	Nexus Player
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	39.030	51.960	-22.040	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000 Average	*	*	*	*	74.000
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10360.000	13.724	38.460	52.184	-21.816	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11a-6Mbps) (5220MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector:								
10440.000	13.322	39.620	52.942	-21.058	74.000			
15660.000	*	*	*	*	74.000			
20880.000	*	*	*	*	74.000			
26100.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
10440.000	14.245	38.640	52.885	-21.115	74.000			
15660.000	*	*	*	*	74.000			
20880.000	*	*	*	*	74.000			
26100.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmon	ic Radiated Emiss	sion Data				
Test Site	: No.3 OATS						
Test Mode	: Mode 1	: Transmit (802.11	a-6Mbps) (5240MHz	2)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
10480.000	13.693	39.330	53.024	-20.976	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10480.000	14.620	43.590	58.211	-15.789	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
Average							
Detector:							
10480.000	14.620	28.880	43.501	-10.499	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmon	ic Radiated Emiss	sion Data				
Test Site	: No.3 OATS						
Test Mode	: Mode 1	Transmit (802.11	a-6Mbps) (5260MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	38.270	52.285	-21.715	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10520.000	14.818	37.250	52.068	-21.932	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5300MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
10600.000	14.550	36.890	51.439	-22.561	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10600.000	14.881	36.810	51.691	-22.309	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5320MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	37.560	52.250	-21.750	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10640.000	15.083	36.890	51.973	-22.027	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

_

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmon	ic Radiated Emiss	sion Data				
Test Site	: No.3 OATS						
Test Mode	: Mode 1	Transmit (802.11	a-6Mbps) (5500MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
11000.000	16.399	36.300	52.699	-21.301	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11000.000	17.132	36.290	53.422	-20.578	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

_

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

_

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1	Transmit (802.11	a-6Mbps) (5580MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
11160.000	16.664	35.910	52.575	-21.425	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11160.000	17.643	36.230	53.873	-20.127	74.000		
16800.000	*	*	*	*	74.000		
22400.000	*	*	*	*	74.000		
28000.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5700MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
11400.000	16.530	35.780	52.311	-21.689	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11400.000	17.138	36.040	53.178	-20.822	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10360.000	12.930	37.660	50.590	-23.410	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10360.000	13.724	37.470	51.194	-22.806	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
Average Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10440.000	13.322	37.760	51.082	-22.918	74.000		
15660.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10440.000	14.245	36.980	51.225	-22.775	74.000		
15660.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz) 							
Test Mode								
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$			
Horizontal								
Peak Detector:								
10480.000	13.693	37.210	50.904	-23.096	74.000			
15720.000	*	*	*	*	74.000			
20960.000	*	*	*	*	74.000			
26200.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
10480.000	14.620	36.940	51.561	-22.439	74.000			
15720.000	*	*	*	*	74.000			
20960.000	*	*	*	*	74.000			
26200.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 Nexus Player Harmonic Radiated Emission Data 							
Test Site	: No.3 OATS							
Test Mode	: Mode 2	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5260MHz)						
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal	uD	dDμ V	dDµ V/III	ųD	dDµ V/III			
Peak Detector:								
10520.000	14.015	36.700	50.715	-23.285	74.000			
	*	*	\$0.715	-23.285	74.000			
15780.000	*	*	*	*				
21040.000					74.000			
26300.000	*	*	*	*	74.000			
Average								
Detector:	*	*	*	*	*			
	·			·	·			
Vertical								
Peak Detector:								
10520.000	14.818	36.890	51.708	-22.292	74.000			
15780.000	*	*	*	*	74.000			
21040.000	*	*	*	*	74.000			
26300.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10600.000	14.550	37.020	51.569	-22.431	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10600.000	14.881	36.580	51.461	-22.539	74.000		
15900.000	*	*	*	*	74.000		
21200.000	*	*	*	*	74.000		
26500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5320MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
10640.000	14.690	37.050	51.740	-22.260	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10640.000	15.083	36.540	51.623	-22.377	74.000		
15960.000	*	*	*	*	74.000		
21280.000	*	*	*	*	74.000		
26600.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5500MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
11000.000	16.399	36.050	52.449	-21.551	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11000.000	17.132	36.550	53.682	-20.318	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
Average Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player							
Test Item		: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS							
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5580MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector:								
11160.000	16.664	35.170	51.835	-22.165	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11160.000	17.643	35.230	52.873	-21.127	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5700MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
11400.000	16.530	35.670	52.201	-21.799	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11400.000	17.138	35.480	52.618	-21.382	74.000		
17100.000	*	*	*	*	74.000		
22800.000	*	*	*	*	74.000		
28500.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10380.000	12.939	36.910	49.849	-24.151	74.000		
15570.000	*	*	*	*	74.000		
20760.000	*	*	*	*	74.000		
25950.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10380.000	13.796	36.590	50.386	-23.614	74.000		
15570.000	*	*	*	*	74.000		
20760.000	*	*	*	*	74.000		
25950.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

Note:

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	 No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz) 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
Peak Detector:							
10460.000	13.508	36.790	50.298	-23.702	74.000		
15690.000	*	*	*	*	74.000		
20920.000	*	*	*	*	74.000		
26150.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10460.000	14.433	36.710	51.143	-22.857	74.000		
15690.000	*	*	*	*	74.000		
20920.000	*	*	*	*	74.000		
26150.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
Horizontal							
Peak Detector:							
10540.000	14.151	36.720	50.870	-23.130	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10540.000	14.829	36.680	51.508	-22.492	74.000		
15810.000	*	*	*	*	74.000		
21080.000	*	*	*	*	74.000		
26350.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 Nexus Player Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5310MHz)						
			2 / 1				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
10620.000	14.623	36.320	50.943	-23.057	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
10620.000	14.970	36.010	50.980	-23.020	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 Nexus Player Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5510MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
Peak Detector:							
11020.000	16.474	35.800	52.273	-21.727	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11020.000	46.058	36.300	53.524	-20.476	74.000		
15930.000	*	*	*	*	74.000		
21240.000	*	*	*	*	74.000		
26550.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 Nexus Player Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5550MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
11100.000	16.681	34.720	51.401	-22.599	74.000		
16770.000	*	*	*	*	74.000		
22360.000	*	*	*	*	74.000		
27950.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11100.000	17.523	34.930	52.453	-21.547	74.000		
16770.000	*	*	*	*	74.000		
22360.000	*	*	*	*	74.000		
27950.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5670MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector:							
11340.000	16.408	34.760	51.167	-22.833	74.000		
17010.000	*	*	*	*	74.000		
22680.000	*	*	*	*	74.000		
28350.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11340.000	17.167	35.130	52.297	-21.703	74.000		
17010.000	*	*	*	*	74.000		
22680.000	*	*	*	*	74.000		
28350.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4: Transmit (802.11ac-20BW-7.2Mbps) (5720MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11440.000	16.779	34.500	51.279	-22.721	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11440.000	17.519	34.410	51.929	-22.071	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 5: Transmit (802.11ac-40BW-15Mbps) (5710MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11420.000	16.648	35.160	51.807	-22.193	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11420.000	17.311	35.280	52.590	-21.410	74.000		
11550.000	*	*	*	*	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player Harmonic Radiated Emission Data No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5210MHz) 								
Frequency	Correct	Correct Reading Measurement Margin Limit							
	Factor	Level	Level	C					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10420.000	13.135	36.640	49.775	-24.225	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				
Vertical									
Peak Detector:									
10420.000	14.057	36.900	50.957	-23.043	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW-65Mbps) (5290MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10580.000	14.423	36.090	50.513	-23.487	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				
Vertical									
Peak Detector:									
10580.000	14.849	36.380	51.229	-22.771	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW-65Mbps) (5530MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11060.000	16.580	35.480	52.060	-21.940	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				
Vertical									
Peak Detector:									
11060.000	17.375	35.430	52.805	-21.195	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW-65Mbps) (5610MHz)								
Frequency	Correct Reading Measurement Margin I								
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11220.000	16.589	35.280	51.870	-22.130	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				
Vertical									
Peak Detector:									
11220.000	17.620	35.020	52.640	-21.360	74.000				
11550.000	*	*	*	*	74.000				
17325.000	*	*	*	*	74.000				
20720.000	*	*	*	*	74.000				
25900.000	*	*	*	*	74.000				
31080.000	*	*	*	*	74.000				
36260.000	*	*	*	*	74.000				
Average									
Detector:									
*	*	*	*	*	*				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Nexus Player							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 6: Transmit (802.11ac-80BW-65Mbps) (5690MHz)							
Frequency	Correct Reading Measurement Margin Li							
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11380.000	16.480	34.930	51.411	-22.589	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11380.000	17.125	34.810	51.936	-22.064	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5220MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V$ $dB\mu V/m$		dBµV/m		
Horizontal							
Peak Detector							
145.430	-7.730	36.913	3 29.183	-14.317	43.500		
241.460	-6.590	35.427	28.837	-17.163	46.000 46.000		
445.160	-0.432 3.492	37.977	37.545	-8.455			
593.570		33.119	36.611	-9.389	46.000		
741.980	3.892	33.271	37.163	-8.837	46.000		
890.390	6.515	28.112	34.627	-11.373	46.000		
Vertical							
Peak Detector							
102.750	-5.326	33.693	28.367	-15.133	43.500		
161.920	-4.964	32.259	27.295	-16.205	43.500		
365.620	0.282	25.641	25.923	-20.077	46.000		
593.570	-0.388	31.421	31.033	-14.967	46.000		
741.980	-0.358	33.461	33.103	-12.897	46.000		
920.460	3.272	23.324	26.596	-19.404	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5300MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V$ $dB\mu V/m$		dBµV/m		
Horizontal							
Peak Detector							
34.850	-0.978	30.569	29.591	-10.409	40.000 43.500		
145.430	-7.730	34.236	26.506 -16.994	-16.994			
445.160	-0.432	37.915	37.483	-8.517	46.000		
593.570	3.492	33.007	36.499	-9.501	46.000		
741.980	3.892	30.197	34.089	-11.911	46.000		
891.360	6.265	29.632	35.897	-10.103	46.000		
Vertical							
Peak Detector							
44.550	-10.527	41.280	30.753	-9.247	40.000		
161.920	-4.964	32.207	27.243	-16.257	43.500		
216.240	-6.051	37.220	31.169	-14.831	46.000		
593.570	-0.388	30.270	29.882	-16.118	46.000		
741.980	-0.358	33.627	33.269	-12.731	46.000		
890.390	1.095	29.244	30.339	-15.661	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	: Nexus Player								
Test Item	: General Radiated Emission								
Test Site									
Test Mode	: Mode 1:	: Transmit (802.11	a-6Mbps) (5580MHz	z)					
Frequency	Correct	Reading	Reading Measurement		Limit				
	Factor	Level	Level						
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m				
Horizontal									
Peak Detector									
144.460	-7.703	34.653	26.950	-16.550	43.500 46.000				
216.240	-10.271	37.192	26.921	-19.079					
445.160	-0.432	37.043	043 36.611 -9.389	-9.389	46.000				
593.570	3.492	34.326	37.818	-8.182	46.000				
741.980	3.892	32.178	36.070	-9.930	46.000				
891.360	6.265	27.545	33.810	-12.190	46.000				
Vertical									
Peak Detector									
44.550	-10.527	41.990	31.463	-8.537	40.000				
216.240	-6.051	38.143	32.092	-13.908	46.000				
380.170	0.962	24.243	25.205	-20.795	46.000				
614.910	1.701	28.672	30.373	-15.627	46.000				
741.980	-0.358	33.918	33.560	-12.440	46.000				
891.360	0.905	27.729	28.634	-17.366	46.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
144.460	-7.703	34.773	27.070	-16.430	43.500		
288.990	-5.513 -0.432 3.492	-5.513	33.335	27.822	-18.178	46.000	
445.160		38.121	37.689 -8.311	-8.311	46.000		
593.570		31.038	34.530	-11.470 -8.496	46.000		
741.980	3.892	33.612	37.504		46.000		
891.360	6.265	28.819	35.084	-10.916	46.000		
Vertical							
Peak Detector							
44.550	-10.527	42.290	31.763	-8.237	40.000		
108.570	-3.762	32.460	28.698	-14.802	43.500		
216.240	-6.051	37.947	31.896	-14.104	46.000		
614.910	1.701	28.722	30.423	-15.577	46.000		
741.980	-0.358	34.128	33.770	-12.230	46.000		
891.360	0.905	30.080	30.985	-15.015	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
42.610	-7.561	42.379	42.379 34.818 -5.182	-5.182	40.000 46.000		
216.240	-10.271	37.947	27.676	-18.324			
445.160	-0.432 3.492	36.090	35.658	-10.342	46.000		
593.570		27.862	31.354	-14.646	46.000		
741.980	3.892	34.544	38.436	-7.564	46.000		
891.360	6.265	30.080	36.345	-9.655	46.000		
Vertical							
Peak Detector							
62.980	-11.979	39.763	27.784	-12.216	40.000		
216.240	-6.051	37.947	31.896	-14.104	46.000		
445.160	-6.402	36.941	30.539	-15.461	46.000		
593.570	-0.388	32.413	32.025	-13.975	46.000		
692.510	1.917	28.843	30.760	-15.240	46.000		
891.360	0.905	30.080	30.985	-15.015	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item	: Nexus F : General	Player Radiated Emissic	n		
Test Site	: No.3 OA				
Test Mode			n-20BW 14.4Mbps)	(5580MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
144.460	-7.703	37.123	29.420	-14.080	43.500
241.460	-6.590 -0.432	35.733 34.418 31.808	29.143	-16.857 -12.014 -10.700	46.000 46.000 46.000
445.160			33.986		
593.570	3.492		35.300		
741.980	3.892	34.541	38.433	-7.567	46.000
890.390	6.515	29.238	35.753	-10.247	46.000
Vertical					
Peak Detector					
44.550	-10.527	40.833	30.306	-9.694	40.000
216 240	6.051	25 646	20.505	16 405	16.000

44.550	-10.527	40.833	30.306	-9.694	40.000
216.240	-6.051	35.646	29.595	-16.405	46.000
504.330	-0.055	28.707	28.652	-17.348	46.000
614.910	1.701	28.200	29.901	-16.099	46.000
741.980	-0.358	31.421	31.063	-14.937	46.000
890.390	1.095	28.982	30.077	-15.923	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
144.460	-7.703	39.028	31.325	-12.175	43.500
241.460	-6.590	37.311	30.721	-15.279	46.000
445.160	-0.432	37.453	37.021	-8.979	46.000
593.570	3.492	33.950	37.442	-8.558	46.000
741.980	3.892	33.667	37.559	-8.441	46.000
890.390	6.515	27.826	34.341	-11.659	46.000
Vertical					
Peak Detector					
40.670	-12.130	45.984	33.854	-6.146	40.000
103.720	-5.090	30.585	25.494	-18.006	43.500
216.240	-6.051	31.295	25.244	-20.756	46.000
405.390	-4.436	33.185	28.749	-17.251	46.000
614.910	1.701	29.565	31.266	-14.734	46.000
741.980	-0.358	38.351	37.993	-8.007	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
42.610	-7.561	40.194	32.633	-7.367	40.000
216.240	-10.271	34.759	24.488	-21.512	46.000
364.650	0.281	26.384	26.665	-19.335	46.000
593.570	3.492	27.744	31.236	-14.764	46.000
741.980	3.892	25.608	29.500	-16.500	46.000
890.390	6.515	23.843	30.358	-15.642	46.000
Vertical					
Peak Detector					
43.580	-10.919	41.530	30.611	-9.389	40.000
216.240	-6.051	36.008	29.957	-16.043	46.000
370.470	-0.431	24.151	23.720	-22.280	46.000
614.910	1.701	27.371	29.072	-16.928	46.000
837.040	1.606	26.560	28.166	-17.834	46.000
950.530	3.124	24.089	27.212	-18.788	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5550MHz) 				
Test Widde	: Mode 3:	1141151111 (002.11	11-40D W 50100ps) (5	55014112)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
41.640	-6.175	40.862	34.688	-5.312	40.000
216.240	-10.271	36.130	25.859	-20.141	46.000
405.390	0.794	26.800	27.594	-18.406	46.000
576.110	3.127	25.293	28.420	-17.580	46.000
741.980	3.892	33.280	37.172	-8.828	46.000
891.360	6.265	28.383	34.648	-11.352	46.000
Vertical					
Peak Detector					
84.320	-4.204	31.874	27.670	-12.330	40.000
216.240	-6.051	37.206	31.155	-14.845	46.000
511.120	0.783	26.979	27.762	-18.238	46.000
741.980	-0.358	31.313	30.955	-15.045	46.000
890.390	1.095	26.644	27.739	-18.261	46.000
940.830	3.480	27.003	30.483	-15.517	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site	 Nexus Player General Radiated Emission No.3 OATS 				
Test Mode	: Mode 4	: Transmit (802.11	ac-20BW-7.2Mbps)	(5720MHZ)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
103.720	-8.230	33.748	25.517	-17.983	43.500
241.460	-6.590	35.990	29.400	-16.600	46.000
445.160	-0.432	37.184	36.752	-9.248	46.000
593.570	3.492	34.900	38.392	-7.608	46.000
741.980	3.892	31.077	34.969	-11.031	46.000
890.390	6.515	30.232	36.747	-9.253	46.000
Vertical					
Peak Detector					
84.320	-4.204	32.854	28.650	-11.350	40.000
216.240	-6.051	37.313	31.262	-14.738	46.000
378.230	0.769	24.459	25.228	-20.772	46.000
593.570	-0.388	30.578	30.190	-15.810	46.000
741.980	-0.358	32.363	32.005	-13.995	46.000
940.830	3.480	26.738	30.218	-15.782	46.000
Nata					

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 5: Transmit (802.11ac-40BW-15Mbps) (5710MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
103.720	-8.230	33.292	25.061	-18.439	43.500
241.460	-6.590	36.001	29.411	-16.589	46.000
445.160	-0.432	38.900	38.468	-7.532	46.000
593.570	3.492	35.533	39.025	-6.975	46.000
741.980	3.892	34.004	37.896	-8.104	46.000
935.010	6.813	25.099	31.912	-14.088	46.000
Vertical					
Peak Detector					
102.750	-5.326	32.941	27.615	-15.885	43.500
216.240	-6.051	37.548	31.497	-14.503	46.000
374.350	0.224	26.101	26.325	-19.675	46.000
593.570	-0.388	29.926	29.538	-16.462	46.000
787.570	2.719	24.742	27.461	-18.539	46.000
890.390	1.095	29.445	30.540	-15.460	46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item	 Nexus Player General Radiated Emission 				
Test Site Test Mode	: No.3 O. : Mode 6		ac-80BW-65Mbps) (5210MHz)	
)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector					
145.430	-7.730	35.217	27.487	-16.013	43.500
288.990	-5.513	34.018	28.505	-17.495	46.000
445.160	-0.432	35.396	34.964	-11.036	46.000
593.570	3.492	36.997	40.489	-5.511	46.000
741.980	3.892	33.645	37.537	-8.463	46.000
890.390	6.515	28.174	34.689	-11.311	46.000
Vertical					
Peak Detector					
84.320	-4.204	34.902	30.698	-9.302	40.000
126.030	-3.719	31.069	27.351	-16.149	43.500
296.750	-4.521	32.887	28.366	-17.634	46.000
445.160	-6.402	37.550	31.148	-14.852	46.000
682.810	1.817	25.857	27.674	-18.326	46.000
844.800	2.462	23.074	25.536	-20.464	46.000
Note:					

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item	 Nexus Player General Radiated Emission 				
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 6	: Transmit (802.11	ac-80BW-65Mbps) (5290MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector					
143.490	-7.665	25.649	17.984	-25.516	43.500
276.380	-6.526	35.418	28.892	-17.108	46.000
445.160	-0.432	37.276	36.844	-9.156	46.000
593.570	3.492	33.767	37.259	-8.741	46.000
741.980	3.892	33.804	37.696	-8.304	46.000
884.570	6.531	22.533	29.064	-16.936	46.000
Vertical					
Peak Detector					
82.380	-4.523	33.515	28.992	-11.008	40.000
126.030	-3.719	34.442	30.724	-12.776	43.500
288.990	-5.523	33.467	27.944	-18.056	46.000
505.300	0.056	27.333	27.389	-18.611	46.000
741.980	-0.358	33.804	33.446	-12.554	46.000
891.360	0.905	30.118	31.023	-14.977	46.000
Noto:					

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 Nexus Player General Radiated Emission No.3 OATS Mode 6: Transmit (802.11ac-80BW-65Mbps) (5690MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
126.030	-7.349	34.894	27.546	-15.954	43.500
288.990	-5.513	34.904	29.391	-16.609	46.000
445.160	-0.432	37.913	37.481	-8.519	46.000
593.570	3.492	34.947	38.439	-7.561	46.000
741.980	3.892	34.283	38.175	-7.825	46.000
891.360	6.265	28.993	35.258	-10.742	46.000
Vertical Peak Detector					
126.030	-3.719	34.894	31.176	-12.324	43.500
241.460	-6.000	38.481	32.481	-13.519	46.000
445.160	-6.402	38.227	31.825	-14.175	46.000
593.570	-0.388	34.947	34.559	-11.441	46.000
692.510	1.917	29.661	31.578	-14.422	46.000
891.360	0.905	29.746	30.651	-15.349	46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

7. Band Edge

7.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

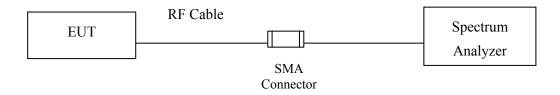
_	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note:

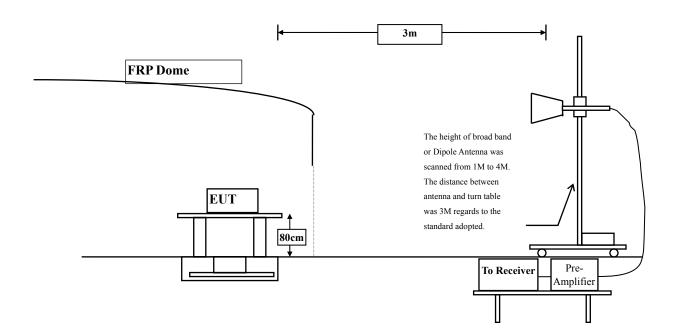
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
		Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2014
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2014
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits				
Frequency MHz	uV/m @3m	dBµV/m@3m		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

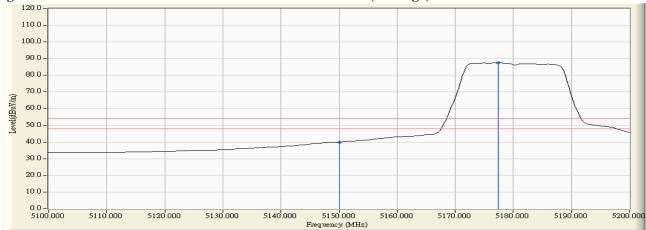
- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. Test Result of Band Edge

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level			Result
Channel NO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	3.340	50.274	53.614	74.00	54.00	Pass
36 (Peak)	5178.400	3.240	97.840	101.080			
36 (Average)	5104.800	3.479	28.773	32.252	74.00	54.00	Pass
36 (Average)	5150.000	3.340	36.567	39.907	74.00	54.00	Pass
36 (Average)	5177.400	3.244	84.245	87.488			



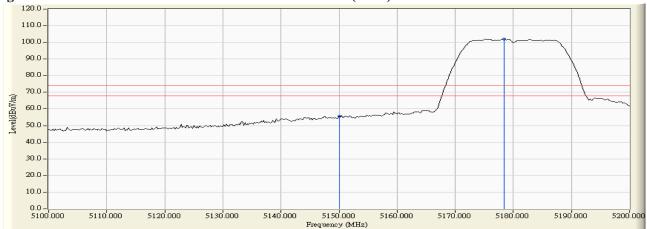
Horizontal (Peak)

Figure Channel 36:

Horizontal (Average)

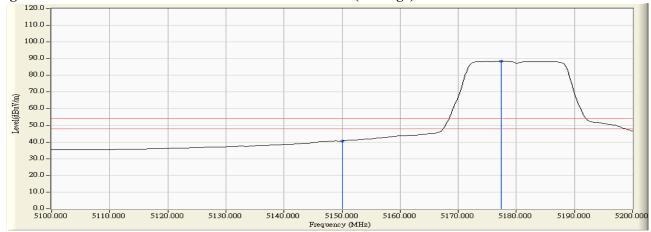
Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	5.260	50.269	55.529	74.00	54.00	Pass
36 (Peak)	5178.400	5.337	96.673	102.010			
36 (Average)	5150.000	5.260	35.426	40.686	74.00	54.00	Pass
36 (Average)	5177.400	5.336	83.173	88.508			


Figure Channel 36:

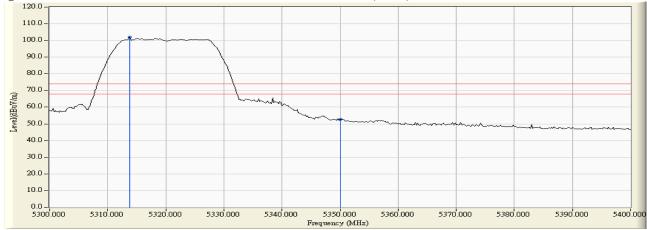
Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

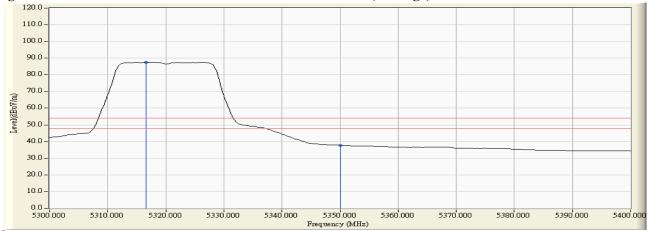
Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64

RF Radiated Measurement (Horizontal):


. .

-

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5313.800	3.832	98.026	101.858			
64 (Peak)	5350.000	3.716	48.966	52.683	74.00	54.00	Pass
64 (Average)	5316.600	3.823	83.770	87.593			
64 (Average)	5350.000	3.716	34.002	37.719	74.00	54.00	Pass

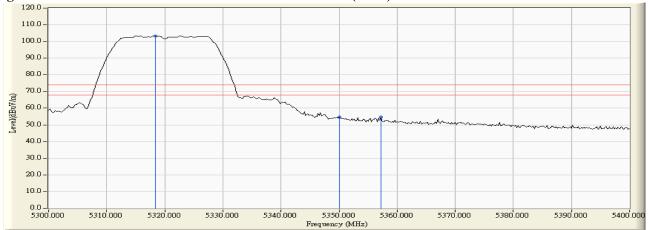

Figure Channel 64:

Horizontal (Peak)

Horizontal (Average)

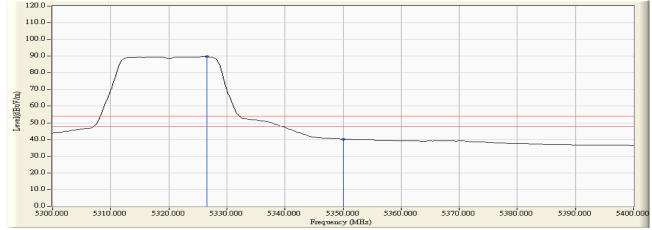
- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level 1
- 2. 3.

- 4. 5.
- "*", means this data is the worst emission level. Measurement Level = Reading Level + Correct Factor. The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64

RF Radiated Measurement (Vertical):

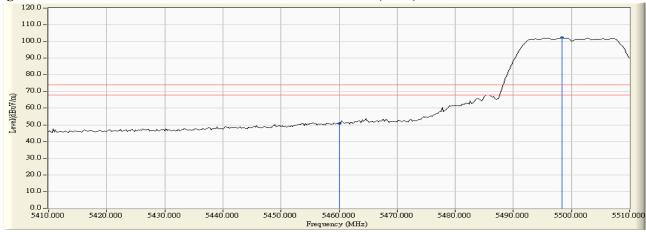
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
64 (Peak)	5318.400	5.731	97.690	103.421			
64 (Peak)	5350.000	5.691	48.860	54.552	74.00	54.00	Pass
64 (Peak)	5357.200	5.681	49.102	54.784	74.00	54.00	Pass
64 (Average)	5326.600	5.721	83.990	89.711			
64 (Average)	5350.000	5.691	34.572	40.264	74.00	54.00	Pass

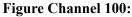

Figure Channel 64:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100


RF Radiated Measurement (Horizontal):

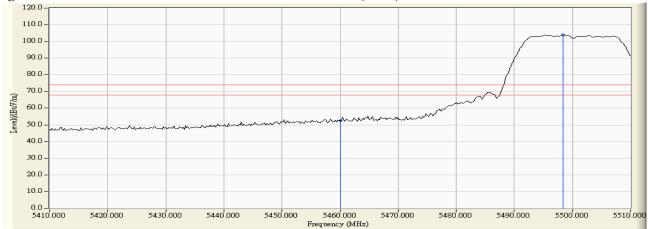
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	4.354	46.550	50.904	74.00	54.00	Pass
100 (Peak)	5498.400	4.804	97.462	102.265			
100 (Average)	5460.000	4.354	33.017	37.371	74.00	54.00	Pass
100 (Average)	5497.400	4.797	83.696	88.492			

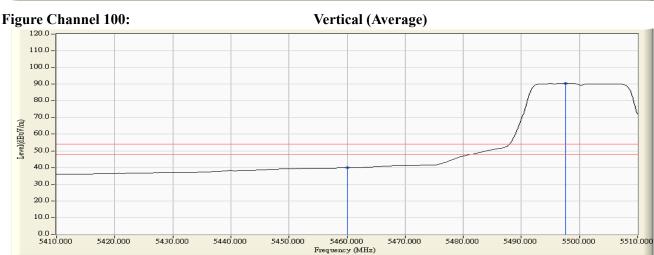
Figure Channel 100:

Horizontal (Peak)

Horizontal (Average)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. "*", means this data is the worst emission level. 1.
- 2.
- 3.
- 4.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
100 (Peak)	5460.000	6.041	46.432	52.473	74.00	54.00	Pass
100 (Peak)	5498.400	6.270	97.664	103.934			
100 (Average)	5460.000	6.041	33.736	39.777	74.00	54.00	Pass
100 (Average)	5497.600	6.267	84.193	90.461			

Figure Channel 100:

Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-77.760	-59.426	-32.426	-27.000	Pass

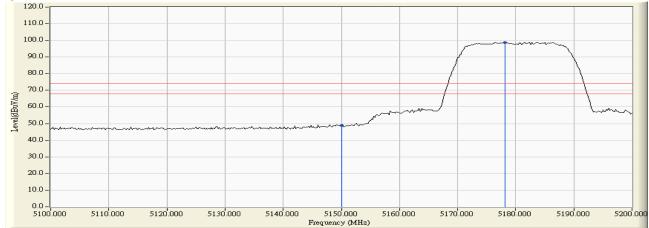
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-77.460	-58.125	-31.125	-27.000	Pass

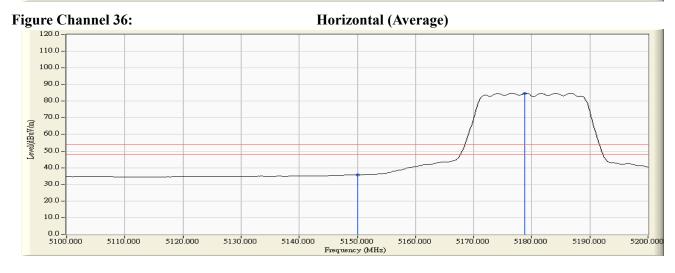
Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 140

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-77.960	-59.311	-32.311	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-77.070	-57.698	-30.698	-27.000	Pass


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

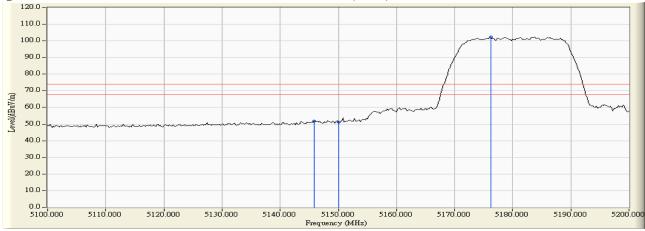

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	3.340	45.659	48.999	74.00	54.00	Pass
36 (Peak)	5178.200	3.240	95.597	98.838			
36 (Average)	5150.000	3.340	32.396	35.736	74.00	54.00	Pass
36 (Average)	5178.800	3.238	81.510	84.748			

Figure Channel 36:

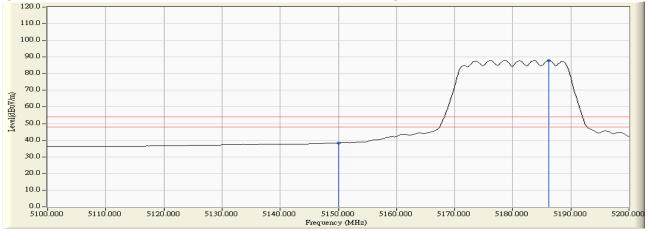
Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5145.800	5.248	46.602	51.850	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	45.821	51.081	74.00	54.00	Pass
36 (Peak)	5176.200	5.332	96.979	102.311			
36 (Average)	5150.000	5.260	33.100	38.360	74.00	54.00	Pass
36 (Average)	5186.200	5.360	82.516	87.875			


Figure Channel 36:

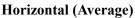
Vertical (Peak)

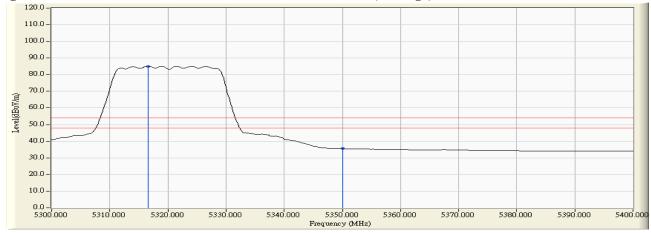
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

RF Radiated Measurement (Horizontal):

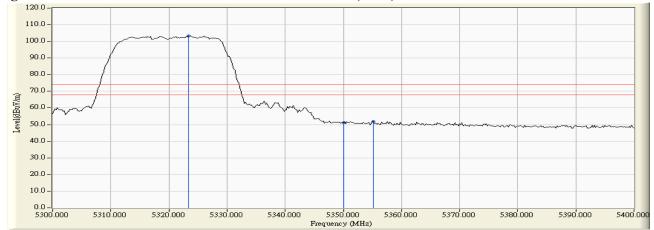

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBµV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBµV/m)	Result
64 (Peak)	5318.000	3.819	95.645	99.464			
64 (Peak)	5350.000	3.716	44.101	47.818	74.00	54.00	Pass
64 (Average)	5316.600	3.823	81.234	85.057			
64 (Average)	5350.000	3.716	31.877	35.594	74.00	54.00	Pass


Figure Channel 64:

Horizontal (Peak)

Figure Channel 64:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 64

RF Radiated Measurement (Vertical):

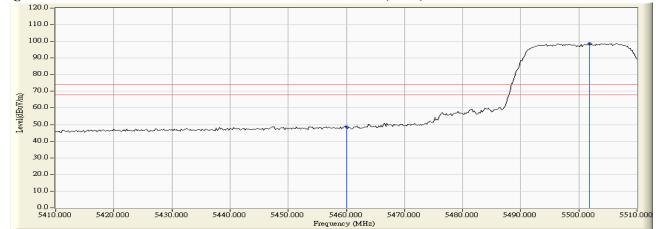
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Arerage Limit (dBµV/m)	Result
64 (Peak)	5323.400	5.725	97.505	103.230			
64 (Peak)	5350.000	5.691	45.340	51.032	74.00	54.00	Pass
64 (Peak)	5355.200	5.685	46.185	51.869	74.00	54.00	Pass
64 (Average)	5316.000	5.733	83.166	88.900			
64 (Average)	5350.000	5.691	32.891	38.583	74.00	54.00	Pass

Figure Channel 64:

Vertical (Peak)

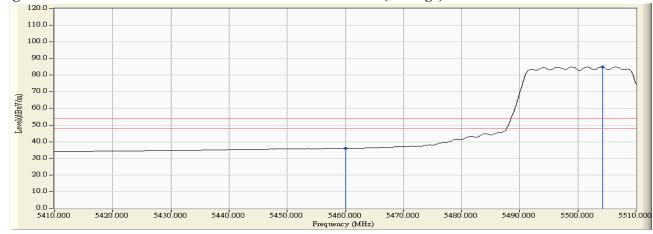
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

RF Radiated Measurement (Horizontal):

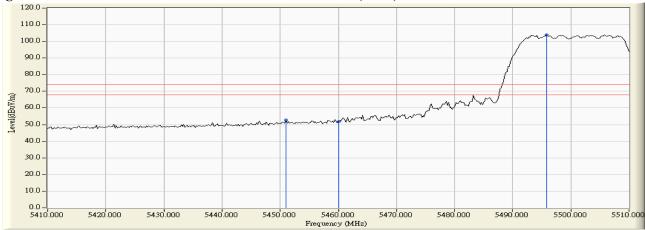
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	
100 (Peak)	5460.000	4.354	44.336	48.690	74.00	54.00	Pass
100 (Peak)	5501.800	4.827	93.806	98.633			
100 (Average)	5460.000	4.354	31.610	35.964	74.00	54.00	Pass
100 (Average)	5504.200	4.844	80.007	84.850			


Figure Channel 100:

Horizontal (Peak)

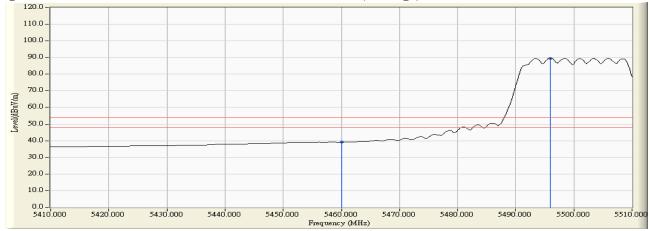
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	
100 (Peak)	5451.000	5.978	46.692	52.670	74.00	54.00	Pass
100 (Peak)	5460.000	6.041	45.798	51.839	74.00	54.00	Pass
100 (Peak)	5495.800	6.262	97.766	104.028			
100 (Average)	5460.000	6.041	33.091	39.132	74.00	54.00	Pass
100 (Average)	5496.000	6.263	83.319	89.582			


Figure Channel 100:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 100

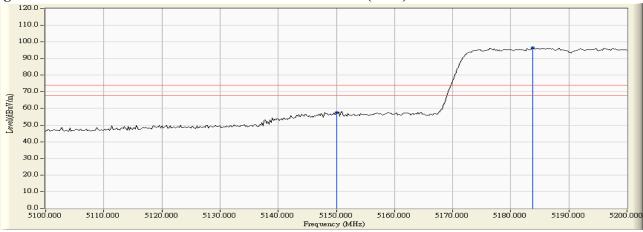
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-77.990	-59.656	-32.656	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-77.200	-57.865	-30.865	-27.000	Pass

nel 140
]

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-77.000	-58.351	-31.351	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-77.200	-57.828	-30.828	-27.000	Pass


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38

RF Radiated Measurement (Horizontal):

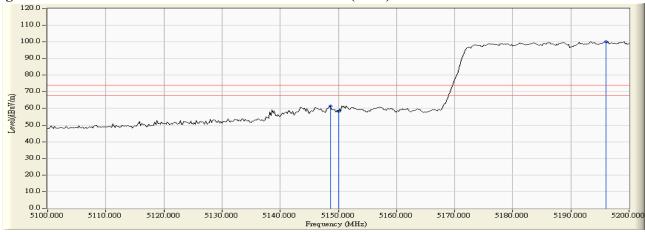
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5150.000	3.340	54.335	57.675	74.00	54.00	Pass
38 (Peak)	5183.800	3.221	93.276	96.497			
38 (Average)	5150.000	3.340	37.502	40.842	74.00	54.00	Pass
38 (Average)	5184.200	3.220	75.951	79.170			

Figure Channel 38:

Horizontal (Peak)

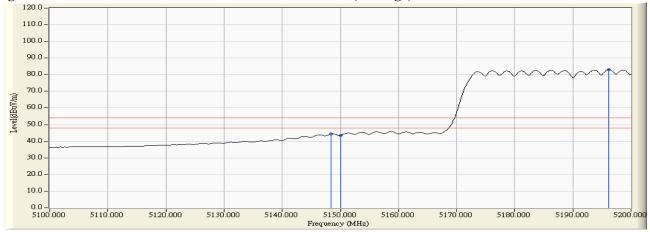
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 38

RF Radiated Measurement (Vertical):

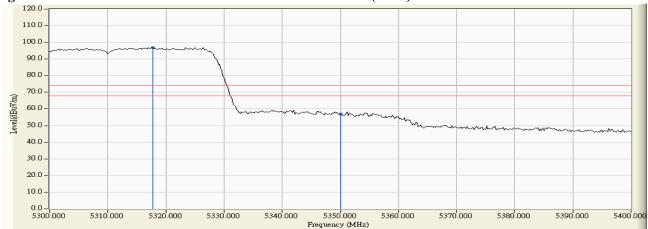
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5148.600	5.256	56.164	61.420	74.00	54.00	Pass
38 (Peak)	5150.000	5.260	52.954	58.214	74.00	54.00	Pass
38 (Peak)	5196.000	5.377	94.767	100.145			
38 (Average)	5148.400	5.256	38.998	44.254	74.00	54.00	Pass
38 (Average)	5150.000	5.260	38.290	43.550	74.00	54.00	Pass
38 (Average)	5196.200	5.378	77.591	82.969			


Figure Channel 38:

Vertical (Peak)

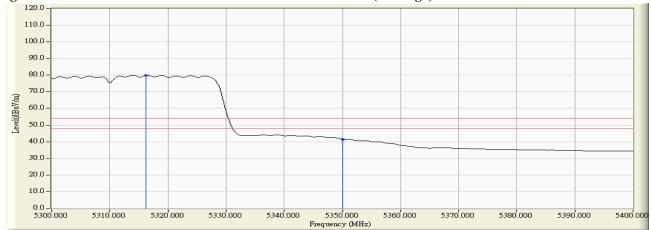
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62

RF Radiated Measurement (Horizontal):

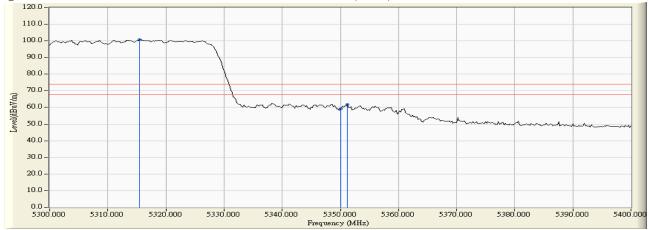
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5317.800	3.819	93.122	96.941			
62 (Peak)	5350.000	3.716	53.090	56.807	74.00	54.00	Pass
62 (Average)	5316.200	3.824	76.117	79.941			
62 (Average)	5350.000	3.716	37.721	41.438	74.00	54.00	Pass


Figure Channel 62:

Horizontal (Peak)

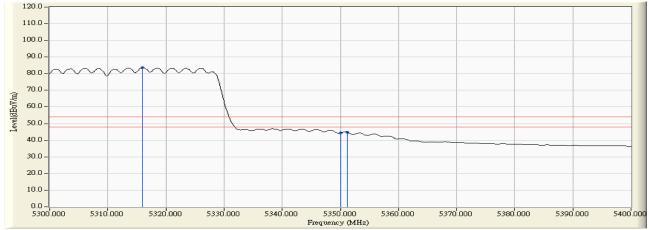
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


:	Nexus Player
:	Band Edge Data
:	No.3 OATS
:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 62
	:

RF Radiated Measurement (Vertical):

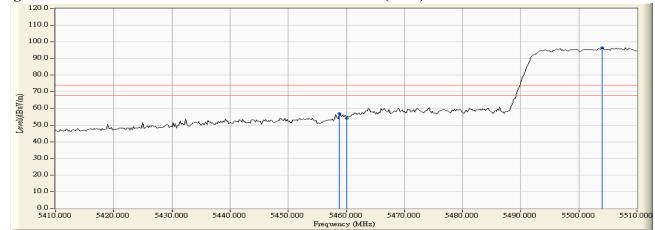
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
62 (Peak)	5315.400	5.735	94.889	100.624			
62 (Peak)	5350.000	5.691	53.427	59.119	74.00	54.00	Pass
62 (Peak)	5351.200	5.690	55.976	61.666	74.00	54.00	Pass
62 (Average)	5316.000	5.733	77.906	83.640			
62 (Average)	5350.000	5.691	38.579	44.271	74.00	54.00	Pass
62 (Average)	5351.200	5.690	39.122	44.812	74.00	54.00	Pass


Figure Channel 62:

Vertical (Peak)

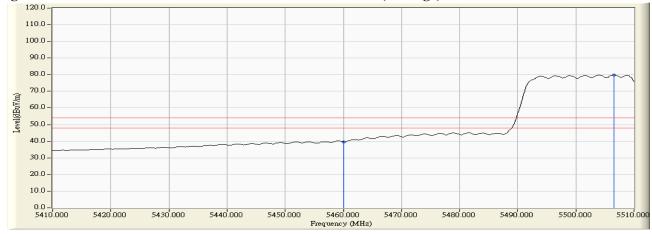
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


:	Nexus Player
:	Band Edge Data
:	No.3 OATS
:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102
	:

RF Radiated Measurement (Horizontal):

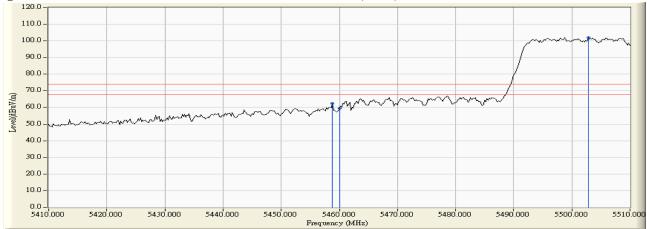
Channel No.	· ·		•	Emission Level			Result
enumer rot	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	10000000
102 (Peak)	5458.800	4.337	52.515	56.853	74.00	54.00	Pass
102 (Peak)	5460.000	4.354	49.630	53.984	74.00	54.00	Pass
102 (Peak)	5504.000	4.843	91.756	96.598			
102 (Average)	5460.000	4.354	35.317	39.671	74.00	54.00	Pass
102 (Average)	5506.600	4.837	74.892	79.728			


Figure Channel 102:

Horizontal (Peak)

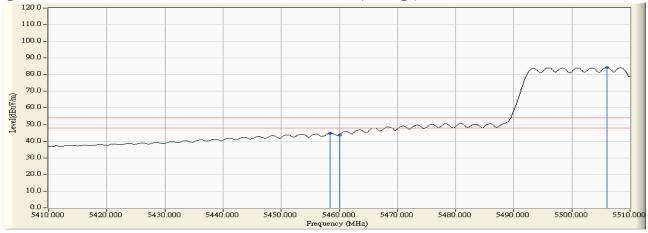
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
102 (Peak)	5458.800	6.032	56.512	62.544	74.00	54.00	Pass
102 (Peak)	5460.000	6.041	53.488	59.529	74.00	54.00	Pass
102 (Peak)	5502.800	6.283	95.740	102.023			
102 (Average)	5458.400	6.029	38.810	44.840	74.00	54.00	Pass
102 (Average)	5460.000	6.041	37.708	43.749	74.00	54.00	Pass
102 (Average)	5506.000	6.283	77.996	84.280			


Figure Channel 102:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

:	Nexus Player
:	Band Edge Data
:	No.3 OATS
:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 102
	: :

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-75.140	-56.806	-29.806	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-74.420	-55.085	-28.085	-27.000	Pass

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 134

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5725.000	18.649	-75.310	-56.661	-29.661	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5725.000	19.372	-75.270	-55.898	-28.898	-27.000	Pass

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.95	<5600	PASS
5660	5650.10	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

			L	0010	5.					
	0:06:44 AM Sep 12, 2014	TO 10.04	ALIGNAUTO	11. (TT)	SENS	_		nal <mark>yzer - Sw</mark> a F 50 ຊ	ectrum /	ilent S R L
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		g Type: Log-Pwr			lz NO: Fast	0000 GH	5.58000		
Auto Tune					#Atten: 30 d	Gain:Low	IF			
Auto Tuli	.589 95 GHz -17.78 dBm		Mk				Bm	ef 20.00 c	iv R) dB/d
Center Fre					1					
5.58000000 GH		_	~		×					.00
	-17.67 dBm		2							0.0
Start Fre							Lord			0.0
5.555000000 GH	and a state of the	Cal-damateria					and the second s	Marria Marrie		0.0
	and a starter								NTUR .	8.0
Stop Fre										0.0
5.60500000 GH		_				<u> </u>				0.0
CF Ste	pan 50.00 MHz	Spa						00 GHz	5.580	ente
5.000000 MH	ms (1001 pts)	ep 500 m	#Sweep		1.0 MHz	#VE		kHz	SW 30	Res I
<u>Auto</u> Ma	FUNCTION VALUE	IDTH FUR	FUNCTION WIDTH		2.33 dBr	0 GHz	× 5.575 9		E TAC SI	
Freq Offs					-17.78 dBn	5 GHz	5,589 9			2 N 3
01									++	4
		_							++	6
		_							\square	8
		_				-			\square	0
										2
		TATUS	STAT							G

5580MHz

								yzer - Swept SA		
Frequency	37 AM Sep 12, 2014		ALIGNAUTO		SE:INT	SEN		50 Q AC	RF	RL
	RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	TY	: Log-Pwr	Avg Typ	Run dB	Trig: Free #Atten: 30	PNO: Fast G IFGain:Low	.660000000	Freq 5	enter
Auto Tur	i0 00 GHz 6.67 dBm		Mkr					20.00 dBm	Ref) dB/di
Center Fre					1					
5.66000000 G				may	in	·····	2			.00
	-15.96 dBm						1			
Start Fre 5.635000000 Gi	AND IN	a Marthaland	and the second				-	بهجمعت ويصلها تطعينهم		0.0
0.00000000	AND ANT ANT ANT ANT	-							Maria	
Stop Fr										0.0
5.685000000 G										0.0
CF Ste 5.000000 M	n 50.00 MHz s (1001 pts)		#Sweep			1.0 MHz	#VBV		5.66000 W 300 I	
Auto M	CTION VALUE	FUNCTIO	CTION WIDTH	TION		¥ 4.04 dE	62 80 GHz	×	TAC SCL	
				_		-16.67 dB	62 80 GHZ 60 10 GHZ		1 1	1 N 2 N 3
Freq Offs					-					4 5
				_	-					6
										/ 8 9
				_	-					0
										2
		5	STATUS							G

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5590.00	<5600	PASS
5660	5650.25	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement. 5580MHz

Agilent Spectrum Analyzer - Sw					
Center Freq 5.5800	AC 00000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr		Frequency
10 dB/div Ref 20.00	PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Mk	r2 5.590 00 GHz -17.02 dBm	Auto Tune
10.0 0.00		warmen weater	2		Center Free 5.58000000 GH
-20.0 -30.0 -40.0	www.com			-16.70 dBm	Start Fre 5.555000000 GH
-50.0					Stop Fre 5.605000000 GH
Center 5.58000 GHz #Res BW 300 kHz	#VB\	V 1.0 MHz	#Sweet	Span 50.00 MHz 500 ms (1001 pts)	CF Ste 5.000000 MH Auto Ma
I N I f 2 N 1 f 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 9 - - -	5.595 65 GHz 5.590 00 GHz	3.30 dBm -17.02 dBm			Freq Offse
10 11 12 //sg			STAT	us l	

		-	00101112	60					
					SA	alyzer - Swept SA	ctrum An	nt Spe	giler
	01:24:13 PM Sep 12, 2014	ALIGN AUTO		SENSE:I		50 Q AC	RF		R
Frequency	TYPE NNNNN DET PNNNNN	Type: Log-Pwr		Trig: Free Ru #Atten: 30 dB	000 GHz PNO: Fast IFGain:Low	5.66000000	Freq :	nter	en
Auto Tur	2 5.650 25 GHz -16.96 dBm	Mkr2			m	20.00 dBm	Re	B/div	D d
Center Fre			1			20100 0.211			0g
5.660000000 G		~ <u></u>	man	man and an					.00
	-15.83 dBm	100			×		_	\vdash	0.0 0.0
Start Fre 5.635000000 Gi	alterticity allow the generative					malelerant	palking		0.0 0.0
Stop Fr								1	0.0
5.685000000 G							_	1	0.0
CF Ste 5.000000 M	Span 50.00 MHz 500 ms (1001 pts)	#Sweep		W 1.0 MHz	#V		5.6600 N 300		
Auto Ma	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	¥ 4.17 dBm	× 5.665 15 GHz	5	TAC SOL	N	1
Freq Offs				-16.96 dBm	5.650 25 GHz	5	1 f	N	2 3 4
01									5 6 7
									3
							-		0 1 2
		STATUS							3

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5580	5589.95	<5600	PASS
5660	5650.15	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

				ПIZ	290IN	5						
									alyzer - Swe			
Frequency	21:41 PM Sep 12, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	TF	LIGNAUTO	Avg Ty	e:INT Run	Trig: Free	NO: Fast 🔾	0000 GH	50 Q 5.58000	RF Freq∶		NIR Cer
Auto Tun	589 95 GHz		Mkr		dB	#Atten: 30	Gain:Low	IF				
	-16.33 dBm	-16						Bm	20.00 d	Re	B/div) d
Center Free 5.58000000 GH				m	1	warmoning	men					10.0 0.00
	-15.76 dBm		²				/				\vdash	10.0
Start Free 5.555000000 GH	Mandle det	- Alexandre	and the second second					an Marken and	had a later of	poter and		-20.0 -30.0 -40.0
		<u> </u>									F	50.0
Stop Free 5.60500000 GH		<u> </u>									\vdash	60.0
0.0000000000											\vdash	70.0
CF Step 5.000000 MH	oan 50.00 MHz ms (1001 pts)		#Sweep			1.0 MHz	#VB\		0 GHz kHz	5.5800 V 300		
<u>Auto</u> Mar	FUNCTION VALUE	FUNC	CTION WIDTH	TIÓN	m	¥ 4.24 dB		× 5.583 6		TRC SCL 1 f	N	1
Freq Offse				_	n	-16.33 dB	5 GHz	5.589 9		1 1	N	3
0 H												4
					-							6 7
				_	-							8 9
												10 11
						_		_				12
		6	STATUS									SG

					-					
							pt SA	alyzer - Sw	ipectrum Ar	gilent
Frequency	01:25:40 PM Sep 12, 2014	ALIGN AUTO		VSE:INT	SEI		AC		RI	RL
Frequency	TRACE 123456 TYPE MWWWWW	e: Log-Pwr	Avg Ty				0000 GI	5.66000	er Freq	Cent
	DET P NNNNN			e Run	Trig: Free #Atten: 30	PNO: Fast 🔾 FGain:Low	, F			
Auto Tun					Written. V	roain.cow				
Auto Tul	2 5.650 15 GHz	MKr								
	-15.89 dBm						lBm	f 20.00 (div Re	0 dB
			1							°g [
Center Fre			Y.		mune					0.0
5.660000000 GH		+ +	American			11				00.0
	-14.50 dBm					A2				0.0
		N .				<i></i>				0.0
Start Fre	A CANADOWN AND A SAND	When have					and the state of the state	nghain ally an		
5.635000000 GH	MAN WAR	1 1						and the second second	Market	30.0
	a survive and	+ +							AP	0.0
										0.0
Stop Fre										
5.685000000 GH										0.0
0.0000000000		+ +	+	-		+	<u> </u>			0.0
										Ļ
CF Ste	Span 50.00 MHz								r 5.6600	
5.000000 MH	500 ms (1001 pts)	#Sweep			/ 1.0 MHz	#VBI		KMZ	BW 300	Res
<u>Auto</u> Ma	FUNCTION VALUE	NCTION WIDTH	ICTION F		Y		Х		DE TAC SC	
					5.50 dł	05 GHz			1 1 f	
Freq Offs				3m	-15.89 dE	15 GHz	5.6501		1 1 1	2 3
										4
01										5
				+					++	6 7
										ŝ
										9
				+					++	0
				-					++	2
		STATUS								iG

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5570.00	<5600	PASS
5670	5650.20	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

	m Analyzer - Sw	rept SA								
RL			la la	SENS	E:INT	ALIG vg Type: Lo	NAUTO		PM Sep 12, 2014	
enter Fre	əq 5.5500	Р	1Z NO: Fast G Gain:Low	Trig: Free #Atten: 30	Run	vg Type. Lo	g-rwr	T) C	PE NNNNN ET PNNNNN	
) dB/div	Ref 20.00	dBm					Mk		0 0 GHz 31 dBm	Auto Tur
										0
				'						Center Fre
.00			Contraction	contranty	and the second	allong				5.55000000 GH
0.0				1 1		2				
0.0		+ - ,	<i>(</i>	++		- Y			-20.17 dBn	Ctort Er
0.0		- Aller				~~~	-			Start Fre
0.0	glorer united	pur					- Ander	moun	at the second start	5.50000000 G
10									and the second second	
										Stop Fre
0.0				+ +						5.60000000 G
0.0				+						5.60000000 GF
								-		
enter 5.53 Res BW 3	5000 GHz 100 kHz		#VB\	V 1.0 MHz		#S	weep		100.0 MHz (1001 pts)	10.000000 Mi
R MODE TRC		х		Y	FUNCTION	FUNCTION	NWIDTH	FUNCTI	ON VALUE	Auto Ma
1 N 1 2 N 1	f	5.537	5 GHz	-0.17 dB -22.31 dB	m	_				
3		0.070	0 0 12	-22.31 UB	"					Freq Offs
4										01
5										
7										
B										
0										
1										
2										
G							STATUS			

5550MHz

	Ω AC	SENSE:INT	ALIGNAUTO	04:06:56 PM Sep 12, 2014	Frequency	
enter Freq 5.67000000 GHz		Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWWWW	10000000000000	
0 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	Mk	r2 5.650 2 GHz -21.602 dBm	Auto Tune	
og 10.0 0.00	ubiii		monim		Center Fre 5.670000000 GH	
20.0	2 Adver		- Two	-21 01 dBrb	Start Fre	
0 material and a second			- mun	where and	5.62000000 GH	
0.0					Stop Fre 5.72000000 GH	
enter 5.67000 GHz Res BW 300 kHz	#VB\	V 1.0 MHz	Sweep	Span 100.0 MHz 1.07 ms (1001 pts)	CF Ste 10.000000 MH	
RR MODE THC SCL	5.667 4 GHz 5.650 2 GHz	-1.068 dBm -21.602 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma	
3 4 5 6					Freq Offs 0 H	
7 8 9						
1						

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5550	5569.50	<5600	PASS
5670	5650.30	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

			липz	55.							
Frequency	02:36:20 PM Sep 12, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW	alignauto e: Log-Pwr	Avg	SENSE:IN] = =	Iz ND: Fast C	AC 0000 GH	lyzer - Swe 50 û •.55000	RF		RL
Auto Tune	r2 5.569 5 GHz	Mk		30 dB	#Atten:	Sain:Low	IFO				
Center Free	-20.47 dBm		0 ¹				Bm	20.00 d	Ref	/div	0 de og
5.55000000 GH	-18.93 dBm	2		Y		Junior					0.00 10.0 20.0
5.500000000 GH	Allalogica advertisable carage	March al					AL December 201	tendoga the	معمومها	لىرورونى	30.0 40.0 50.0
Stop Fre 5.60000000 GH											0.0 70.0
CF Ste 10.000000 MH Auto Ma	Span 100.0 MHz 500 ms (1001 pts)	· · ·		łz	V 1.0 MH	#VB\) GHz (Hz	300 H	BW	Res
Auto Mai Freg Offse	FUNCTION VALUE	NCTION WIDTH	FUNCTION	dBm dBm	1.06 -20.47		5.561 5.569			N 1 N 1	1 2 3
он											4 5 6 7
				-							8 9 1 2
		STATUS		_						_	SG

5550MHz

	AC	SENSE:IN		ALIGN AUTO		MSep 12, 2014		
enter Freq 5.670000	ter Freq 5.670000000 GHz Avg Type: Log-Pwr Trig: Free Run Avg Itol/>Avg Type: Log-Pwr Avg Itol/>100/100					E 123456 MMMMM	w	
0 dB/div Ref 20.00 dB	IFGain:Low	satten: 30 db		Mk		0 3 GHz 62 dBm	Auto Tune	
		1	www.		20.2		Center Free	
20.0	2					-19.70 dBm		
30.0 40.0 Jahrdon Mary Mary Mary Market	Charles and a construction of the construction			Manual	www.www.	man	Start Fre 5.620000000 GH	
0.0							Stop Fre 5.720000000 GH	
enter 5.67000 GHz Res BW 300 kHz	#VBV	V 1.0 MHz		Sweep		00.0 MHz 1001 pts)	CF Ste 10.000000 MH	
KR MODE TRC SGL	× 5.660 0 GHz 5.650 3 GHz	0.302 dBm -20.262 dBm	FUNCTION	UNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Ma	
3							Freq Offse 0 H	
4 5 6								
6								

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-20BW-7.2Mbps) -Channel 44

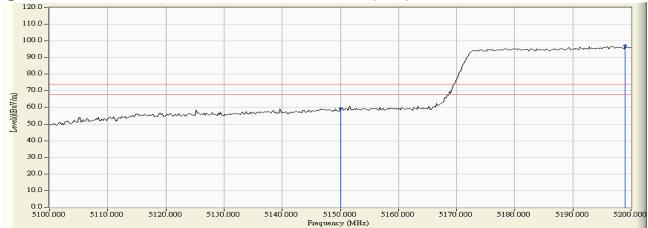
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-78.550	-59.567	-42.567	-17.000	Pass
Horizontal	5835.000	19.106	-78.650	-59.544	-32.544	-27.000	Pass

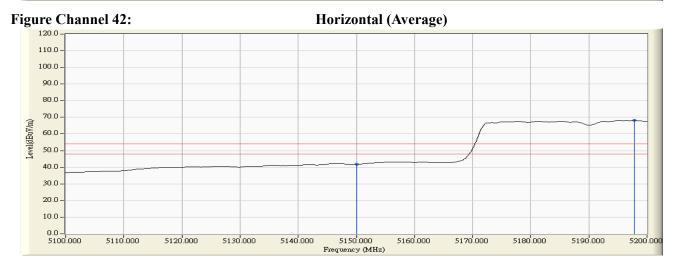
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-67.920	-47.715	-30.715	-17.000	Pass
Vertical	5835.000	20.326	-78.780	-58.454	-31.454	-27.000	Pass

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 5: Transmit (802.11ac-40BW-15Mbps) -Channel 42

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-66.330	-47.347	-30.347	-17.000	Pass
Horizontal	5835.000	19.106	-78.670	-59.564	-32.564	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-78.220	-58.015	-41.015	-17.000	Pass
Vertical	5835.000	20.326	-78.050	-57.724	-30.724	-27.000	Pass


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 42

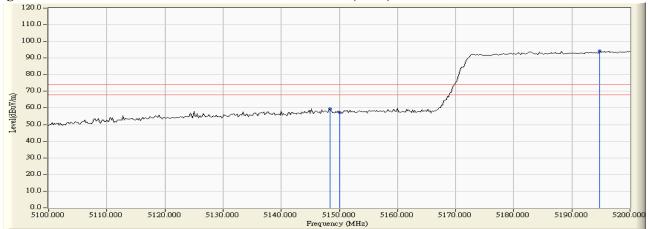

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5150.000	3.340	56.037	59.377	74.00	54.00	Pass
42 (Peak)	5199.000	3.156	93.875	97.031			
42 (Average)	5150.000	3.340	38.493	41.833	74.00	54.00	Pass
42 (Average)	5197.800	3.161	65.102	68.263			

Figure Channel 42:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 42

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5148.400	5.256	54.245	59.501	74.00	54.00	Pass
42 (Peak)	5150.000	5.260	52.086	57.346	74.00	54.00	Pass
42 (Peak)	5194.800	5.375	88.970	94.345			
42 (Average)	5150.000	5.260	36.661	41.921	74.00	54.00	Pass
42 (Average)	5199.200	5.384	62.458	67.842			

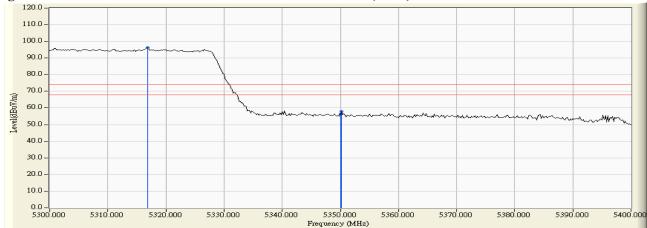
Figure Channel 42:

Vertical (Peak)

Figure Channel 42:

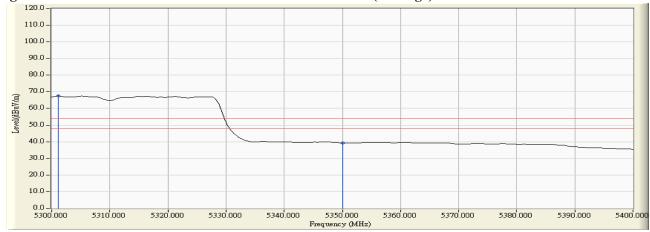
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 58

RF Radiated Measurement (Horizontal):

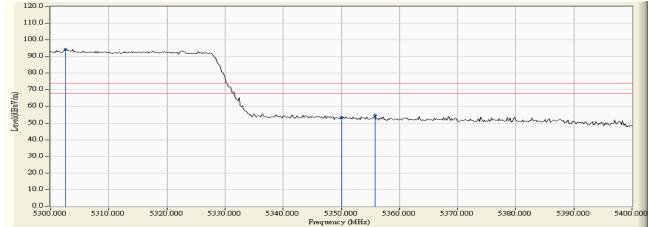
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
58 (Peak)	5316.800	3.823	92.266	96.088			
58 (Peak)	5350.000	3.716	52.437	56.154	74.00	54.00	Pass
58 (Peak)	5350.200	3.716	54.100	57.816	74.00	54.00	Pass
58 (Average)	5301.200	3.874	63.555	67.428			
58 (Average)	5350.000	3.716	35.485	39.202	74.00	54.00	Pass

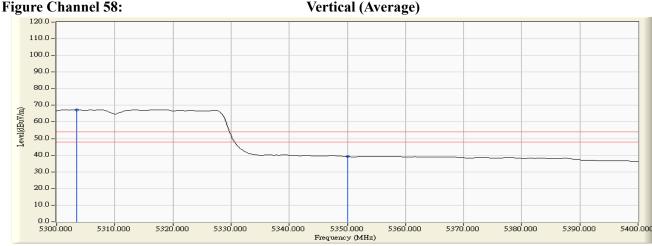

Figure Channel 58:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 58

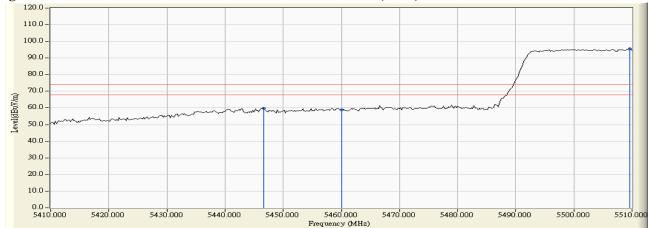

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
58 (Peak)	5302.600	5.752	88.462	94.214			
58 (Peak)	5350.000	5.691	47.873	53.565	74.00	54.00	Pass
58 (Peak)	5355.800	5.684	49.121	54.805	74.00	54.00	Pass
58 (Average)	5303.400	5.751	61.613	67.364			
58 (Average)	5350.000	5.691	33.522	39.214	74.00	54.00	Pass

Figure Channel 58:

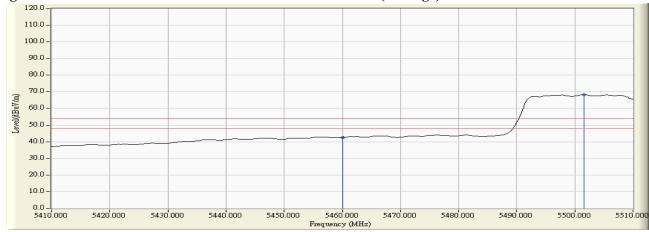
Vertical (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 106

RF Radiated Measurement (Horizontal):

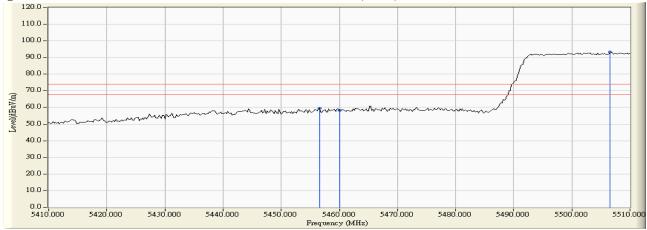
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
106 (Peak)	5446.600	4.176	55.780	59.956	74.00	54.00	Pass
106 (Peak)	5460.000	4.354	54.615	58.969	74.00	54.00	Pass
106 (Peak)	5509.600	4.812	90.631	95.443			
106 (Average)	5460.000	4.354	38.215	42.569	74.00	54.00	Pass
106 (Average)	5501.600	4.826	63.368	68.194			


Figure Channel 106:

Horizontal (Peak)

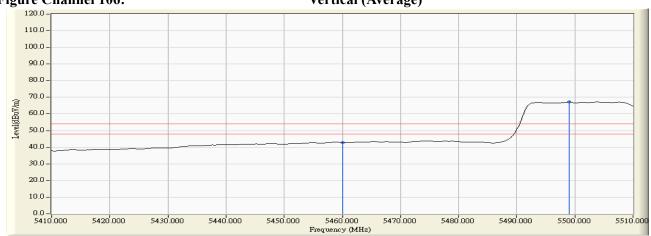
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 106

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel NO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
106 (Peak)	5456.600	6.017	53.427	59.444	74.00	54.00	Pass
106 (Peak)	5460.000	6.041	52.033	58.074	74.00	54.00	Pass
106 (Peak)	5506.600	6.280	86.943	93.223			
106 (Average)	5460.000	6.041	36.773	42.814	74.00	54.00	Pass
106 (Average)	5499.000	6.273	60.904	67.176			


Figure Channel 106:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 106

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5470.000	18.334	-74.380	-56.046	-29.046	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5470.000	19.335	-74.070	-54.735	-27.735	-27.000	Pass

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps) -Channel 138

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5825.000	18.983	-75.980	-56.997	-39.997	-17.000	Pass
Horizontal	5835.000	19.106	-77.060	-57.954	-30.954	-27.000	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5825.000	20.205	-76.020	-55.815	-38.815	-17.000	Pass
Vertical	5835.000	20.326	-77.080	-56.754	-29.754	-27.000	Pass

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps)

Chain A

Test Frequency	st Frequency Measurement Level (20dB BW)		Result
(MHz)	(MHz)	(MHz)	
5530	5569.8	<5600	PASS
5690	5650.4	>5650	PASS

NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

wept 5A				
Ω AC	SENSE:INT	ALIGNAUTO		Frequency
PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Type: Log-Pwr Avg Hold>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	1007a.0 * 3.5729076
dBm		Mk	r2 5.569 8 GHz -26.585 dBm	Auto Tur
	A1			
				Center Fre
	destances house	and the second of the second o		5.530000000 GH
		2		
1		1	-25.14 dBm	
1		1		Start Fre
		1 1		5.430000000 GH
and an internation		manginger	- have been and the second	0.4000000000
				Stop Fre
				5.63000000 GH
			0 000 0 MIL	
#VBV	/ 1.0 MHz	#Sweep		CF Ste 20.000000 MH
×		INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
5.569 8 GHz	-26.585 dBm			
				Freg Offs
				01
				01
1				
		STATUS		
	s ac pNO: Fast C IFGaincl.ow dBm dBm wammen wammen #VBV \$5,540.0 GHz		Augrantio DODOOD GHZ PND: Fast Trig: Free Run Aren: 20 dB Mk dBm #VBW 1.0 MHz #VBW 1.0 MHz 5.569 8 GHz 5.569 8 GHz 5.569 8 GHz 26.585 dBm Augrantic	s ac SPSEINT ALIYAND 07255978955.02 4 5 00000 GHz PN0: Fast C If GainLow Trg: Free Run Attan: 20 dB MKr2 5.569 8 GHz -26.585 dBm 4

5530MHz

	07:28:02 PM Sep 25, 2014	ALIGN AUTO	- and the second	VSE:INT	SENS		AC	50 Q	RE	L.	1
Frequency	TRACE 1 2 3 4 5 6 TYPE MUNICIPAL P N N N N N	: Log-Pwr 48/100	Avg Type Avg Hold:		Trig: Free F Atten: 20 d	iz 10: Fast 😱 Gain:Low		5.69000	Freq	ter I	en
Auto Tun	2 5.650 4 GHz -26.527 dBm	Mkr					1Bm	f 10.00 c	Re	3/div	
Center Fre										_	og 0.00
5.69000000 GH			anonena	-	and a second	perennes			-	-	10.0
	-24,43 (8%					²		-	_		20.0
Start Free	·						1				30.0 40.0
5.59000000 GH	morrowant	Januar					minimum	مرد معدار مدمور	here	Aural	50.0
ST 105									-	-	0.0
Stop Fre 5.79000000 GH								- j			70.0
					1						
CF Stej 20.000000 MH	Span 200.0 MHz 500 ms (1001 pts)	#Sweep \$			1.0 MHz	#VBW			5.6900 V 300		
uto Ma	FUNCTION VALUE	ICTION WIDTH	CTION FUI		Y		×		TRC SC		
					-4.425 dBr -26.527 dBr		5.702 0		f	N	2
Freq Offse									_		3
0 H			2			_					5 6
											7
											9
											11

Product	:	Nexus Player
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 6: Transmit (802.11ac-80BW-65Mbps)

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5530	5569.8	<5600	PASS
5690	5650.2	>5650	PASS

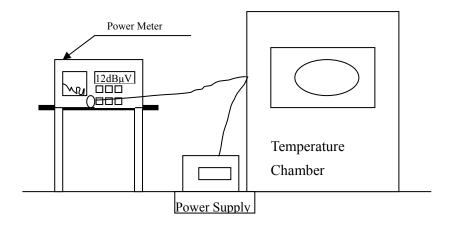
NOTE: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

			IIIZ	501	55						
								nalyzer - Swe		nt Spe	
Frequency	07:26:55 PM Sep 25, 2014 TRACE 1 2 3 4 5 6 TYPE MWWWWW PET P NNNNN	Lignauto Log-Pwr >100/100	Avg Type Avg Hold	un	SENSE Trig: Free Ru	NO: Fast	R AC 1000000 GH			1 nter	
Auto Tun		Mkr2 5.569 8 GHz					IFGaln:Low				
				1						—	
Center Fre				-							
5.53000000 GH		2			1	1					
	-24.31 dBm					1					
Start Fre							1				
5.430000000 GH		Land					mannel	manning			
									17-00-0		
Stop Fre 5.63000000 GH											
5.63000000 GH											
CF Ste 20.000000 MH	Span 200.0 MHz 500 ms (1001 pts)	#Sweep			1.0 MHz	#VBW		0 GHz 0 kHz			
Auto Ma	FUNCTION VALUE	NCTION WIDTH	TION FU		Y		×		TRC		
				1	-4.311 dBm -26.022 dBm		5.542 C	1		NN	
Freq Offse											
0 H											
				+		_		-	++	-	
			-								
			-							_	
										_	
									<u> </u>	_	

5530MHz

C L	RF	F 50 Q	AC		SEM	ISE:INT		ALIGNAUTO	07:28:53 Pf	M Sep 25, 2014	-
enter Freq 5.690000000 GHz PNO: Fast IFGain:Low		Trig: Free Run Atten: 20 dB		Avg Type: Log-Pwr ree Run Avg Hold: 43/100 20 dB		TYPE MWWWWWW DET P N N N N N		Frequency			
Mkr2 5.650 2 GF 10 dB/div Ref 10.00 dBm -27.161 dB							Auto Tune				
og 						1					Center Free
0.0			-	providence.	an south and						5.69000000 GH
20.0				²						-24.73 dBm	
40.0	مريمول							Venuen	mandantin	amothum at	Start Free 5.59000000 GH
50.0											
70.0	_						-				Stop Fre 5.79000000 GH
enter Res B				#VBW	1.0 MHz		100	#Sweep		00.0 MHz 1001 pts)	CF Ste
KR MODE	TAC SCI		×		Ŷ		INCTION FL	INCTION WIDTH	FUNCTIO	IN VALUE	Auto Ma
1 N 2 N	f		5.687		-4.731 dE						
3 4 6											Freq Offse 0 H
6 7 8											
9 10 11											
12											

8. Frequency Stability


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was setup to ANSI C63.10, 2009; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	Nexus Player
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave

Chain A

Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0068	-0.0068
		38	5190.0000	5190.0043	-0.0043
		44	5220.0000	5220.0082	-0.0082
		46	5230.0000	5230.0069	-0.0069
		48	5240.0000	5240.0077	-0.0077
		52	5260.0000	5260.0088	-0.0088
		54	5270.0000	5270.0081	-0.0081
Tnom (20) oC	V_{nom} (120) V	60	5300.0000	5300.0062	-0.0062
1 IIOIII (20) OC	Vnom (120)V	62	5310.0000	5310.0058	-0.0058
		64	5320.0000	5320.0032	-0.0032
		100	5500.0000	5500.0093	-0.0093
		102	5510.0000	5510.0102	-0.0102
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0097	-0.0097
		134	5670.0000	5670.0082	-0.0082
		140	5700.0000	5700.0087	-0.0087
		36	5180.0000	5180.0070	-0.0070
		38	5190.0000	5190.0040	-0.0040
		44	5220.0000	5220.0080	-0.0080
		46	5230.0000	5230.0070	-0.0070
		48	5240.0000	5240.0071	-0.0071
		52	5260.0000	5260.0083	-0.0083
		54	5270.0000	5270.0079	-0.0079
Tmax (50) oC	V_{max} (129) V	60	5300.0000	5300.0062	-0.0062
$1 \max(30) 0 C$	Vmax (138)V	62	5310.0000	5310.0088	-0.0088
		64	5320.0000	5320.0073	-0.0073
		100	5500.0000	5500.0074	-0.0074
		102	5510.0000	5510.0069	-0.0069
		110	5550.0000	5550.0100	-0.0100
		116	5580.0000	5580.0094	-0.0094
		134	5670.0000	5670.0081	-0.0081
		140	5700.0000	5700.0077	-0.0077

		36	5180.0000	5180.0069	-0.0069
		38	5190.0000	5190.0077	-0.0077
		44	5220.0000	5220.0088	-0.0088
		46	5230.0000	5230.0074	-0.0074
		48	5240.0000	5240.0066	-0.0066
		52	5260.0000	5260.0079	-0.0079
		54	5270.0000	5270.0092	-0.0092
$T_{max}(50)$ ⁹ C	Varia (102)V	60	5300.0000	5300.0086	-0.0086
Tmax (50) °C	Vmin (102)V	62	5310.0000	5310.0061	-0.0061
		64	5320.0000	5320.0074	-0.0074
		100	5500.0000	5500.0073	-0.0073
		102	5510.0000	5510.0079	-0.0079
		110	5550.0000	5550.0099	-0.0099
		116	5580.0000	5580.0101	-0.0101
		134	5670.0000	5670.0088	-0.0088
		140	5700.0000	5700.0080	-0.0080
		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0078	-0.0078
		44	5220.0000	5220.0094	-0.0094
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0082	-0.0082
		52	5260.0000	5260.0076	-0.0076
		54	5270.0000	5270.0093	-0.0093
$T_{min} (10) {}^{0}C$	Vmov (129)V	60	5300.0000	5300.0084	-0.0084
Tmin (-10) °C	Vmax (138)V	62	5310.0000	5310.0097	-0.0097
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0067	-0.0067
		102	5510.0000	5510.0074	-0.0074
		110	5550.0000	5550.0088	-0.0088
		116	5580.0000	5580.0094	-0.0094
		134	5670.0000	5670.0084	-0.0084
		140	5700.0000	5700.0086	-0.0086

		36	5180.0000	5180.0064	-0.0064
		38	5190.0000	5190.0078	-0.0078
		44	5220.0000	5220.0094	-0.0094
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0082	-0.0082
		52	5260.0000	5260.0076	-0.0076
	Vmin (102)V	54	5270.0000	5270.0093	-0.0093
Tmin (-10) °C		60	5300.0000	5300.0084	-0.0084
111111 (-10) C		62	5310.0000	5310.0097	-0.0097
		64	5320.0000	5320.0100	-0.0100
		100	5500.0000	5500.0067	-0.0067
		102	5510.0000	5510.0074	-0.0074
		110	5550.0000	5550.0088	-0.0088
		116	5580.0000	5580.0094	-0.0094
		134	5670.0000	5670.0084	-0.0084
		140	5700.0000	5700.0086	-0.0086

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.0123	-0.0123
		58ac80	5290.0000	5290.0096	-0.0096
T		106ac80	5530.0000	5530.0059	-0.0059
Tnom (20) °C	Vnom (120)V	138ac80	5690.0000	5690.0088	-0.0088
		142F	5710.0000	5710.0037	-0.0037
		144	5720.0000	5720.0079	-0.0079
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
	Vmax (138)V	42ac80	5210.0000	5210.0098	-0.0098
		58ac80	5290.0000	5290.0088	-0.0088
T (70) %C		106ac80	5530.0000	5530.0055	-0.0055
Tmax (50) °C		138ac80	5690.0000	5690.0073	-0.0073
		142F	5710.0000	5710.0066	-0.0066
		144	5720.0000	5720.0088	-0.0088
Test C	onditions	Channel	Frequency (MHz)	Frequency (MHz)	∆F (MHz)
		42ac80	5210.0000	5210.0098	-0.0098
		58ac80	5290.0000	5290.0088	-0.0088
Tmax (50) °C	Vmin (102)W	106ac80	5530.0000	5530.0055	-0.0055
1 max (50) C	Vmin (102)V	138ac80	5690.0000	5690.0073	-0.0073
		142F	5710.0000	5710.0066	-0.0066
		144	5720.0000	5720.0088	-0.0088

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∴F (MHz)
		42ac80	5210.0000	5210.0110	-0.0110
		58ac80	5290.0000	5290.0099	-0.0099
E : (0) %C	V. (120)V.	106ac80	5530.0000	5530.0067	-0.0067
Tmin (0) °C	Vmax (138)V	138ac80	5690.0000	5690.0093	-0.0093
		142F	5710.0000	5710.0082	-0.0082
		144	5720.0000	5720.0069	-0.0069
Test C	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.0110	-0.0110
		58ac80	5290.0000	5290.0099	-0.0099
E : (0) %C	V (100)V	106ac80	5530.0000	5530.0067	-0.0067
Tmin (0) °C	Vmin (102)V	138ac80	5690.0000	5690.0093	-0.0093
		142F	5710.0000	5710.0082	-0.0082
		144	5720.0000	5720.0069	-0.0069

Chain B

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0065	-0.0065
		38	5190.0000	5190.0040	-0.0040
		44	5220.0000	5220.0077	-0.0077
		46	5230.0000	5230.0067	-0.0067
		48	5240.0000	5240.0074	-0.0074
		52	5260.0000	5260.0084	-0.0084
		54	5270.0000	5270.0077	-0.0077
		60	5300.0000	5300.0059	-0.0059
Tnom (20) °C	Vnom (120)V	62	5310.0000	5310.0057	-0.0057
		64	5320.0000	5320.0030	-0.0030
		100	5500.0000	5500.0090	-0.0090
		102	5510.0000	5510.0100	-0.0100
		110	5550.0000	5550.0098	-0.0098
		116	5580.0000	5580.0096	-0.0096
		134	5670.0000	5670.0080	-0.0080
		140	5700.0000	5700.0086	-0.0086
		36	5180.0000	5180.0069	-0.0069
		38	5190.0000	5190.0041	-0.0041
		44	5220.0000	5220.0077	-0.0077
		46	5230.0000	5230.0069	-0.0069
		48	5240.0000	5240.0064	-0.0064
		52	5260.0000	5260.0078	-0.0078
		54	5270.0000	5270.0073	-0.0073
T (70) %C	V (120)V	60	5300.0000	5300.0060	-0.0060
Tmax (50) °C	Vmax (138)V	62	5310.0000	5310.0080	-0.0040 -0.0077 -0.0067 -0.0074 -0.0084 -0.0077 -0.0059 -0.0057 -0.0030 -0.0090 -0.0090 -0.0100 -0.0098 -0.0098 -0.0098 -0.0096 -0.0086 -0.0086 -0.0069 -0.0069 -0.0069 -0.0064 -0.0073
		64	5320.0000	5320.0069	-0.0069
		100	5500.0000	5500.0071	-0.0071
		102	5510.0000	5510.0061	-0.0061
		110	5550.0000	5550.0097	-0.0097
		116	5580.0000	5580.0093	-0.0093
		134	5670.0000	5670.0080	-0.0080
		140	5700.0000	5700.0074	-0.0074

		36	5180.0000	5180.0063	-0.0063
		38	5190.0000	5190.0074	-0.0074
		44	5220.0000	5220.0087	-0.0087
		46	5230.0000	5230.0070	-0.0070
		48	5240.0000	5240.0063	-0.0063
		52	5260.0000	5260.0077	-0.0077
		54	5270.0000	5270.0090	-0.0090
T (50) %C	N (100)N	60	5300.0000	5300.0084	-0.0084
Tmax (50) °C	Vmin (102)V	62	5310.0000	5310.0060	-0.0060
		64	5320.0000	5320.0072	-0.0072
		100	5500.0000	5500.0072	-0.0072
		102	5510.0000	5510.0077	-0.0077
		110	5550.0000	5550.0097	-0.0097
		116	5580.0000	5580.0099	-0.0099
		134	5670.0000	5670.0087	-0.0087
		140	5700.0000	5700.0079	-0.0079
		36	5180.0000	5180.0061	-0.0061
		38	5190.0000	5190.0077	-0.0077
		44	5220.0000	5220.0091	-0.0091
		46	5230.0000	5230.0077	-0.0077
		48	5240.0000	5240.0080	-0.0080
		52	5260.0000	5260.0071	-0.0071
		54	5270.0000	5270.0090	-0.0090
	M (120)M	60	5300.0000	5300.0081	-0.0081
Tmin (-10) °C	Vmax (138)V	62	5310.0000	5310.0094	-0.0094
		64	5320.0000	5320.0094	-0.0094
		100	5500.0000	5500.0065	-0.0065
		102	5510.0000	5510.0071	-0.0071
		110	5550.0000	5550.0087	-0.0087
		116	5580.0000	5580.0092	-0.0092
		134	5670.0000	5670.0083	-0.0083
		140	5700.0000	5700.0085	-0.0085

		36	5180.0000	5180.6300	-0.6300	
		38	5190.0000	5190.0075	-0.0075	
			44	5220.0000	5220.0084	-0.0084
		46	5230.0000	5230.0080	-0.0080	
		48	5240.0000	5240.0087	-0.0087	
		52	5260.0000	5260.0075	-0.0075	
	Vmin (102)V	54	5270.0000	5270.0089	-0.0089	
T_{min} (10) ^{9}C		60	5300.0000	5300.7700	-0.7700	
Tmin (-10) °C		62	5310.0000	5310.0090	-0.0090	
		64	5320.0000	5320.0097	-0.0097	
		100	5500.0000	5500.0079	-0.0079	
		102	5510.0000	5510.0066	-0.0066	
		110	5550.0000	5550.0074	-0.0074	
		116	5580.0000	5580.0089	-0.0089	
		134	5670.0000	5670.0077	-0.0077	
		140	5700.0000	5700.0086	-0.0086	

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tnom (20) °C	Vnom (120)V	42ac80	5210.0000	5210.0220	-0.0220
		58ac80	5290.0000	5290.0046	-0.0046
		106ac80	5530.0000	5530.0024	-0.0024
		138ac80	5690.0000	5690.0046	-0.0046
		142F	5710.0000	5710.0029	-0.0029
		144	5720.0000	5720.0064	-0.0064
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vmax (138)V	42ac80	5210.0000	5210.0024	-0.0024
		58ac80	5290.0000	5290.0046	-0.0046
T (70) ⁰ C		106ac80	5530.0000	5530.0016	-0.0016
Tmax (50) °C		138ac80	5690.0000	5690.0064	-0.0064
		142F	5710.0000	5710.0044	-0.0044
		144	5720.0000	5720.0037	-0.0037
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		42ac80	5210.0000	5210.0024	-0.0024
Tmax (50) °C		58ac80	5290.0000	5290.0046	-0.0046
	Vmin (102)V	106ac80	5530.0000	5530.0036	-0.0036
		138ac80	5690.0000	5690.0027	-0.0027
		142F	5710.0000	5710.0046	-0.0046
		144	5720.0000	5720.0033	-0.0033

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	∴F (MHz)
		42ac80	5210.0000	5210.0024	-0.0024
		58ac80	5290.0000	5290.0046	-0.0046
E : (0) %	N. (120)N	106ac80	5530.0000	5530.0025	-0.0025
Tmin (0) °C	Vmax (138)V	138ac80	5690.0000	5690.0017	-0.0017
		142F	5710.0000	5710.0039	-0.0039
		144	5720.0000	5720.0047	-0.0047
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmin (0) °C		42ac80	5210.0000	5210.0024	-0.0024
		58ac80	5290.0000	5290.0046	-0.0024 -0.0046 -0.0025 -0.0017 -0.0039 -0.0047 △F (MHz)
		106ac80	5530.0000	5530.0026	
	Vmin (102)V	138ac80	5690.0000	5690.0021	-0.0021
		142F	5710.0000	5710.0036	-0.0036
		144	5720.0000	5720.0039	-0.0039

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs