

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 1: TX CDD_ADP: AD890326			
Date of Test	2017/05/09	Test Site	SR10-H	

802.11a(ANT 0)

Channel No.	Frequency	Measure Level	Limit	Result	
	(MHz)	(dBm)	(dBm)		
149	5745	9.911	≦28.76	Pass	
157	5785	9.970	≦28.76	Pass	
165	5825	10.629	≦28.76	Pass	

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

				ot SA	ectrum Analyzer - Swept SA	Keysight Sp
Frequency	09:31:18 PM May 09, 2017 TRACE 1, 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO Avg Type: RMS Avg Hold:>100/100	SENSE:INT	0000 GHz	RF 50 Ω DC req 5.74500000	× Center F
Auto Tune	DETANNNN	Ext Gain: -1.20 dB	#Atten: 40 dB	PNO: Fast 🖵 IFGain:Low		
Auto Turis	5.741 912 GHz 9.911 dBm	MKr1		Bm	Ref 23.80 dBm	10 dB/div
Center Fred		-	• 1			
5.745000000 GHz						13.8
Start Fred						3.80
5.725000000 GHz		<u> </u>				-6.20
Stop Free	hangementionersatilite where the particulation	N. Walker		When the second se		-16.2
5.765000000 GHz	Hayha fanning half water while he			<i>A</i>	- down with the second	-26.2
CF Step	and the state of t				North and a state of the state	-36.2
4.000000 MHz Auto Mar						-46.2
Freq Offset						-56.2
0 Hz						
	2.000 1.000			1.01	· · [0 · · ·]	-66.2
	Span 40.00 MHz 33 ms (10001 pts)	Sweep 1.3	1.5 MHz*	#VBW	74500 GHz 510 kHz	Center 5. #Res BW
-		STATUS				MSG

Keysight Spectrum Analyzer - Swept SA				
RF 50Ω DC	SENSERINT		9:26:07 PM May 09, 2017	Frequency
Center Freq 5.785000000 GH	Z IO: Fast C Trig: Free Run Gain:Low #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	1. S. 35.
10 dB/div Ref 23.80 dBm		Mkr1 5.	783 312 GHz 9.970 dBm	Auto Tune
13.8	1	Territoria francescontes		Center Freq 5.785000000 GHz
-6.20				Start Freq 5.765000000 GHz
-16.2		- New Marken	Manduran	Stop Freq 5.805000000 GHz
-16.2 -26.2 -36.2			Northerspheriological and a standard	CF Step 4.000000 MHz <u>Auto</u> Man
-56.2				Freq Offset 0 Hz
-66.2 Center 5.78500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*		span 40.00 MHz ms (10001 pts)	
MSG		STATUS	ine (10001 pro)	
		1		

📜 Keysight Spectrum Analyzer - Swept SA				
🚧 RF 50Ω DC	SENSE(IN		09:33:35 PM May 09, 2017	Frequency
Center Freq 5.825000000 GH	IZ NO: Fast 😱 Trig: Free Run Gain:Low #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Trequency
10 dB/div Ref 23.80 dBm		Mkr1	5.828 216 GHz 10.629 dBm	Auto Tune
13.8	participant and a second se	-1993-mailtage aff - Laborate francis		Center Freq 5.825000000 GHz
· 3.80				Start Freq 5.805000000 GHz
-16.2			and a second and a second	Stop Freq 5.845000000 GHz
-26.2 -36.2				CF Step 4.000000 MHz <u>Auto</u> Man
-56,2				Freq Offset 0 Hz
-66.2 Center 5.82500 GHz			Span 40.00 MHz	
#Res BW 510 kHz	#VBW 1.5 MHz*	Sweep 1.3	333 ms (10001 pts)	
MSG		STATUS		

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 1: TX CDD_ ADP: AD890326		
Date of Test	2017/05/09	Test Site	SR10-H

802.11a(ANT 1)

Channel No.	Frequency	Measure Level	Limit	Result	
	(MHz)	(dBm)	(dBm)		
149	5745	9.827	≦28.76	Pass	
157	5785	9.697	≦28.76	Pass	
165	5825	10.565	≦28.76	Pass	

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

		- /	Channel 149	SA	ectrum Analyzer - Swept SA	Keysight Spi
Frequency	09:31:33 PM May 09, 2017 TRACE 1 2 3 4 5 6	ALIGN AUTO Avg Type: RMS	SENSE(INT	000 GHz	RF 50 Ω DC req 5.74500000	Zenter F
Auto Tune	5.744 368 GHz 9.827 dBm	Avg Hold:>100/100 Ext Gain: -1.20 dB Mkr1	Trig: Free Run #Atten: 40 dB	PNO: Fast 😱 IFGain:Low	Ref 23.80 dBm	10 dB/div
Center Fre 5.745000000 GH						- og 13.8
Start Fre 5.725000000 GH						3.80 6.20
Stop Fre 5.765000000 GH	Hillingenaryn it, sog starred fan skyster og	No. No. And		And the second s	L. Blyreld Town or Streed	26.2
CF Ste 4.000000 MH Auto Ma					Killer Andre Martin Constant	36.2
Freq Offse 0 H						56,2
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	1.5 MHz*	#VBW	74500 GHz 510 kHz	-66.2 Center 5.3 #Res BW
-	í l	STATUS		5_CP.png> saved	<a_cdd_a0_5745_c< td=""><td>ısg 🤳 File -</td></a_cdd_a0_5745_c<>	ısg 🤳 File -

📜 Keysight Spectrum Analyzer - Swept SA				- 6 ×
RF 50 Ω DC	SENSERINT		9:27:20 PM May 09, 2017	Frequency
Center Freq 5.785000000 GH	Z NO: Fast C Gain:Low #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNN	Trequency
10 dB/div Ref 23.80 dBm		Mkr1 5	782 804 GHz 9.697 dBm	Auto Tune
13.8		Schwarzer Britanson without		Center Freq 5.785000000 GHz
-6.20				Start Freq 5.765000000 GHz
-16.2		March March	Munit	Stop Freq 5.805000000 GHz
-26.2 -36.2			Warden and a state of the state	4.000000 MH2
-46.2				<u>Auto</u> Man
-56,2				Freq Offset 0 Hz
-66.2				•
Center 5.78500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*		Span 40.00 MHz 3 ms (10001 pts)	
мsg 🤳 File <a_cdd_a0_5785_cp.png< td=""><td>> saved</td><td>STATUS</td><td></td><td></td></a_cdd_a0_5785_cp.png<>	> saved	STATUS		

Keysight Spectrum Analyzer - Swept SA					
🖊 RF 50Ω DC		SENSE:INT	ALIGN AUT		Fraguanay
	NO: Fast	ig: Free Run Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Frequency
10 dB/div Ref 23.80 dBm			Mk	r1 5.826 400 GHz 10.565 dBm	Auto Tune
13.8	and the second second	'	-		Center Freq 5.825000000 GHz
-3.80 -6.20					Start Freq 5.805000000 GHz
-16.2			× ×	Man of the South and the start of the Starting South and the start of the Starting South and the start of the	Stop Freq 5.845000000 GHz
-26.2 -36.2				an shirthe a shi	CF Step 4.000000 MHz <u>Auto</u> Man
-56,2					Freq Offset 0 Hz
-66.2 Center 5.82500 GHz #Res BW 510 kHz	#VBW 1.5) MHz*	Sweep	Span 40.00 MHz 1.333 ms (10001 pts)	
MSG JFile <a_cdd_a0_5825_cp.pn< td=""><td>g> saved</td><td></td><td>STA</td><td>TUS</td><td></td></a_cdd_a0_5825_cp.pn<>	g> saved		STA	TUS	

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 1: TX CDD_ ADP: AD890326		
Date of Test	2017/05/09	Test Site	SR10-H

802.11a(ANT 2)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
		(ubili)	(ubili)		
149	5745	9.974	≦28.76	Pass	
157	5785	9.838	≦28.76	Pass	
165	5825	10.707	≦28.76	Pass	

Note

Effective array gain = 7.24dBi

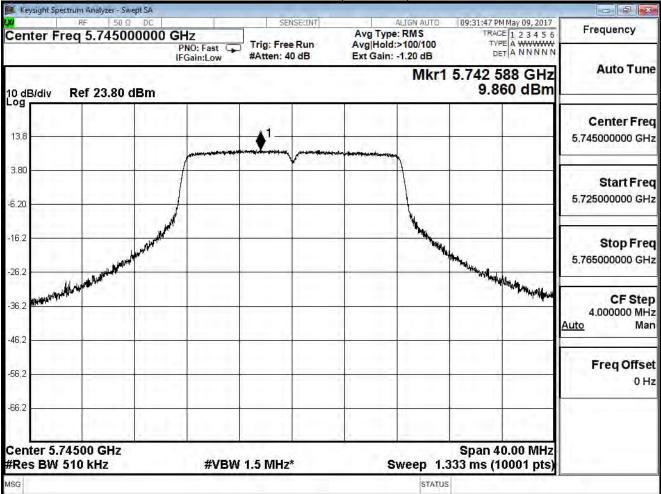
Limit = 30-(7.24-6) = 28.76 dBm

📜 Keysight S	Spectrum Analyzer - Sw	vept SA				-	A SHARE		
🚧 Center I	RF 50 Ω	00000 GHz		SENSE:INT	Avg Type: R	MS	TRAC	May 09, 2017	Frequency
				Free Run n: 40 dB	Avg Hold:>10 Ext Gain: -1.2		DE	TANNNN T	1
10 dB/div Log	Ref 23.80 (dBm	7.5			Mkr1 5		56 GHz 74 dBm	Auto Tune
13.8			¹						Center Freq 5.745000000 GHz
3.80 -6.20									Start Freq 5.725000000 GHz
-16.2		January Market Street				M North Coloring	handham	Angran and a state of the	Stop Freq 5.765000000 GHz
-36.2 ///////	sometime of the second second second						judi	uhodergeilessighiering	CF Step 4.000000 MHz <u>Auto</u> Man
-56.2									Freq Offset 0 Hz
-66.2								h Ce	
	i.74500 GHz V 510 kHz		#VBW 1.5 M	lHz*	Swe	ep 1.33	Span 4 3 ms (1	0.00 MHz 0001 pts)	
MSG						STATUS			

📕 Keysight Spectrum Analyzer - Swept SA				
RF 50 Ω DC	SENSE:INT	ALIGN AUTO	09:27:47 PM May 09, 2017	Frequency
Center Freq 5.785000000 GHz PNO: Fast IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Trequency
10 dB/div Ref 23.80 dBm		Mkr1 (5.786 516 GHz 9.838 dBm	Auto Tune
13.8		WY Marright rite away		Center Freq 5.785000000 GHz
3.80				Start Freq 5.765000000 GHz
-16.2		In the second second	WWW.matt. Walk And and an inter with	Stop Freq 5.805000000 GHz
-26.2 -36.2			and the state of t	CF Step
-46.2				4.000000 MHz <u>Auto</u> Man
-56,2				Freq Offset 0 Hz
-66:2				
Center 5.78500 GHz #Res BW 510 kHz #VE	3W 1.5 MHz*	Sweep 1.3	Span 40.00 MHz 33 ms (10001 pts)	
MSG JFile <a_cdd_a1_5785_cp.png> saved</a_cdd_a1_5785_cp.png>		STATUS		

Keysight Spectrum Analyzer - Swept SA					
📕 RF 50 Ω DC		SENSERINT	ALIGN AUTO	09:34:19 PM May 09, 2017	Eronuonau
Center Freq 5.825000000 GHz PNO: Fast G IFGain:Low		Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Frequency
10 dB/div Ref 23.80 dBm			Mkr	1 5.826 068 GHz 10.707 dBm	Auto Tune
13.8	Jamester		Advantion of a standard in Participan		Center Freq 5.825000000 GHz
-6.20					Start Freq 5.805000000 GHz
-16.2			- Netter	Warren and a second and the second	Stop Freq 5.845000000 GHz
-26.2 -36.2					CF Step 4.000000 MHz <u>Auto</u> Man
-56,2					Freq Offset 0 Hz
-66.2 Center 5.82500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1	Span 40.00 MHz .333 ms (10001 pts)	
Msg 🥹 File <a_cdd_a1_5825_cp.p< td=""><td>ng> saved</td><td></td><td>STATL</td><td>IS</td><td></td></a_cdd_a1_5825_cp.p<>	ng> saved		STATL	IS	

Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 1: TX CDD_ ADP: AD890326				
Date of Test	2017/05/09	Test Site	SR10-H		


802.11a(ANT 3)

Channel No.	Frequency Measure Level		Limit	Result		
	(MHz)	(dBm)	(dBm)	rtoourt		
149	5745	9.860	≦28.76	Pass		
157	5785	9.720	≦28.76	Pass		
165	5825	10.668	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA				
LX RF 50Ω DC	SENSE:INT		09:28:04 PM May 09, 2017	Frequency
Center Freq 5.785000000 GHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	
10 dB/div Ref 23.80 dBm		Mkr1 5	.784 196 GHz 9.720 dBm	Auto Tune
13.8	1	Perifrant stational state		Center Freq 5.785000000 GHz
-6.20				Start Freq 5.765000000 GHz
-16.2 -26.2 -36.2		North Martin	with a state of the second of the	Stop Freq 5.805000000 GHz
36.2 Millionary Manakara			and the second of the	CF Step
-46.2				4.000000 MHz <u>Auto</u> Man
-56,2		-		Freq Offset 0 Hz
-66.2			e militaria	
Center 5.78500 GHz #Res BW 510 kHz #VB\	N 1.5 MHz*		Span 40.00 MHz 3 ms (10001 pts)	
MSG JFile <a_cdd_a2_5785_cp.png> saved</a_cdd_a2_5785_cp.png>		STATUS		

Keysight Spectrum Analyzer - Swept SA					
🕊 RF 50Ω DC		SENSE(INT	ALIGN AUT		Fraguanay
Center Freq 5.825000000 GHz PNO: Fast IFGain:Low		Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Frequency
10 dB/div Ref 23.80 dBm			Mk	r1 5.826 056 GHz 10.668 dBm	Auto Tune
13.8		<u></u> 1	treation and the born method		Center Freq 5.825000000 GHz
-6.20					Start Freq 5.805000000 GHz
-16.2 -26.2 -36.2	HARV.			Weiter and the second starter of	Stop Freq 5.845000000 GHz
-36.2				and the state of t	CF Step 4.000000 MHz Auto Man
-56,2					Freq Offset 0 Hz
-66.2 Center 5.82500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep	Span 40.00 MHz 1.333 ms (10001 pts)	
MSG 🧼 File <a_cdd_a2_5825_c< td=""><td>P.png> saved</td><td></td><td>STA</td><td>TUS</td><td></td></a_cdd_a2_5825_c<>	P.png> saved		STA	TUS	

Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 1: TX CDD_ ADP: AD890326				
Date of Test	2017/05/09	Test Site	SR10-H		

802.11a(ANT0+1+2+3)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result			
149	5745	15.914	≦28.76	Pass			
157	5785	15.828	≦28.76	Pass			
165	5825	16.663	≦28.76	Pass			

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: TX MIMO_ADP: AD890326				
Date of Test	2017/05/09	Test Site	SR10-H		

IEEE 802.11n(20MHz)(ANT 0)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result			
149	5745	9.712	≦28.76	Pass			
157	5785	9.672	≦28.76	Pass			
165	5825	10.233	≦28.76	Pass			

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA					
KF 50Ω DC		SENSE(INT		10:14:21 PM May 09, 2017	Frequency
Center Freq 5.785000000 GHz PNO: Fast IFGain:Low		Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Frequency
10 dB/div Ref 23.80 dBm			Mkr1 5	5.783 592 GHz 9.672 dBm	Auto Tune
13.8	and an international strength on the strength on the strength on the strength on the strength of the strength	1			Center Freq 5.785000000 GHz
-6.20					Start Freq 5.765000000 GHz
-16.2 -26.2 -36.2				wington along a strange and a strange and a strange a st	Stop Freq 5.805000000 GHz
20 2 with which which which we want				and the second of the	CF Step
-46.2					4.000000 MHz <u>Auto</u> Man
-56,2	-				Freq Offset 0 Hz
-66.2)+
Center 5.78500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.33	Span 40.00 MHz 3 ms (10001 pts)	
MSG 🧿 File <ht20_mimo_a2_578< td=""><td>5_PD.png> save</td><td>d</td><td>STATUS</td><td></td><td></td></ht20_mimo_a2_578<>	5_PD.png> save	d	STATUS		

Keysight Spectrum Analyzer - Swept SA				
KF 50 Ω DC	SENSE:INT		0:16:54 PM May 09, 2017	Frequency
Center Freq 5.825000000 GHz PNO: Fas IFGain:Lo	t 😱 Trig: Free Run w #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	
10 dB/div Ref 23.80 dBm		Mkr1 5	824 396 GHz 10.233 dBm	Auto Tune
13.8	property and participation	***		Center Freq 5.825000000 GHz
·3.80				Start Freq 5.805000000 GHz
-16.2			Mining management	Stop Freq 5.845000000 GHz
-26.2 -36.2			- marting to de a series a ser	CF Step 4.000000 MHz <u>Auto</u> Man
-56,2			-	Freq Offset 0 Hz
-66.2 Center 5.82500 GHz			Span 40.00 MHz	
#Res BW 510 kHz #\	/BW 1.5 MHz*	Sweep 1.33:	3 ms (10001 pts)	
MSG		STATUS		

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/09	Test Site	SR10-H	

IEEE 802.11n(20MHz)(ANT 1)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
149	5745	9.902	≦28.76	Pass		
157	5785	9.492	≦28.76	Pass		
165	5825	10.115	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

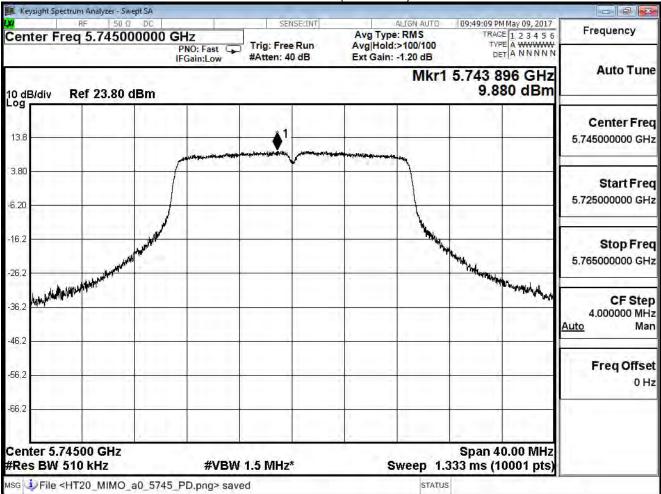
Limit = 30-(7.24-6) = 28.76 dBm

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ept SA	trum Analyzer - Sw	Keysight Spec
Frequency	09:49:29 PM May 09, 2017 TRACE 1 2 3 4 5 6	ALIGN AUTO	NSE:INT		lz 1	DC	RF 50 Ω eq 5.74500	1
Auto Tun		Hold:>100/100 Gain: -1.20 dB		Trig: Free #Atten: 40	NO: Fast 😱 Gain:Low	PN		
	5.746 216 GHz 9.902 dBm	MKr1			1.1	1Bm	Ref 23.80 d	dB/div
Center Free			.1		4- 6		1 1 1	Ī.
5.745000000 GH		www.	Lanna .	******				3.8
Start Free							-	.80
5.725000000 GH								20
Stop Free		The way				and the state of t		6.2
5.765000000 GH	Maril and a start for a long to set of the						Contraction and	5.2
CF Step	Martine and and a start						WWWW Hardy and the State	5.2 Mulphinik
4.000000 MH Auto Mar								5.2
Freq Offse								6.2
0 H							1 11 - 1	
	1.5.6		[]					5.2
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	*	1.5 MHz*	#VBW	<u></u> _	4500 GHz	enter 5.7 Res BW 5
		STATUS		Concerning of the second		a2_5745_P	HT20_MIMO_	

📕 Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC	SENSERINT		0:13:33 PM May 09, 2017	Frequency	
	er Freq 5.785000000 GHz PNO: Fast Free Run IFGain:Low #Atten: 40 dB		Avg Type: RMS TRACE 1, 2 3 4 5 6 Avg/Hold:>100/100 TYPE A Ext Gain: -1.20 dB DET A NNNN		
10 dB/div Ref 23.80 dBm		Mkr1 5.	786 820 GHz 9.492 dBm	Auto Tune	
13.8	1-			Center Freq 5.785000000 GHz	
-5.20				Start Freq 5.765000000 GHz	
-16.2		- North Mark	hand the tart and and a shall not	Stop Freq 5.805000000 GHz	
-26.2 -36.2			and and particular and and	CF Step	
-46.2			3.1.54	4.000000 MHz <u>Auto</u> Man	
-56,2			-	Freq Offset 0 Hz	
-66.2			-	1.	
Center 5.78500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*		pan 40.00 MHz ms (10001 pts)		
MSG 🤳 File <ht20_mimo_a0_5785_pd< td=""><td>.png> saved</td><td>STATUS</td><td></td><td></td></ht20_mimo_a0_5785_pd<>	.png> saved	STATUS			

Trig: Free Run w #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	10:17:09 PM May 09, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
	Avg Hold:>100/100 Ext Gain: -1.20 dB	TYPE A WWWWW	Frequency
	Mind F	and the second sec	
	WIKT S	.823 996 GHz 10.115 dBm	Auto Tune
1 			Center Freq 5.825000000 GHz
			Start Freq 5.805000000 GHz
	-	In the second second	Stop Freq 5.845000000 GHz
			CF Step 4.000000 MHz <u>Auto</u> Man
			Freq Offset 0 Hz
A CONTRACT OF A	Sweep 1.33		
	VBW 1.5 MHz*	VBW 1.5 MHz* Sweep 1.33	Image: Contract of the second secon

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/09	Test Site	SR10-H	


IEEE 802.11n(20MHz)(ANT 2)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
149	5745	9.880	≦28.76	Pass		
157	5785	9.766	≦28.76	Pass		
165	5825	10.196	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC		SENSE(INT	ALIGN AUTO	10:14:08 PM May 09, 2017	Frequency
Center Freq 5.785000000	GHZ PNO: Fast IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	
10 dB/div Ref 23.80 dBm			Mkr1	5.783 484 GHz 9.766 dBm	Auto Tune
13.8	Jan Martin Martin	1			Center Freq 5.785000000 GHz
-6.20					Start Freq 5.765000000 GHz
-16.2 -26.2 -36.2				Manager and the state of the st	Stop Freq 5.805000000 GHz
.36 2 Anthrough the Anthrough the				and the second states and the second se	CF Step
-46.2					4.000000 MHz <u>Auto</u> Man
					Freq Offset 0 Hz
-66.2					
Center 5.78500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.	Span 40.00 MHz 333 ms (10001 pts)	
MSG JFile <ht20_mimo_a1_578< td=""><td>5_PD.png> save</td><td>d</td><td>STATUS</td><td></td><td></td></ht20_mimo_a1_578<>	5_PD.png> save	d	STATUS		

📜 Keysight Spectrum Analyzer - Swept SA				
🜠 RF 50 Ω DC	SENSE(INT		10:18:41 PM May 09, 2017	Frequency
Center Freq 5.825000000 GHz PNO: Fast IFGain:Low	PNO: Fast C Trig: Free Run Avg Hold:>100/100		TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Frequency
10 dB/div Ref 23.80 dBm		1.431.50 m. 102 8.43 (F	.827 516 GHz 10.196 dBm	Auto Tune
13.8				Center Freq 5.825000000 GHz
3.80				Start Freq 5.805000000 GHz
-16.2		N.M. MARKAN	Martine and Mar	Stop Freq 5.845000000 GHz
-16.2 -26.2 -36.2			may hit had been a few	CF Step 4.000000 MHz <u>Auto</u> Man
-46.2				Freq Offset 0 Hz
-66.2				
	3W 1.5 MHz*		Span 40.00 MHz 3 ms (10001 pts)	
MSG		STATUS		

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/09	Test Site	SR10-H	

IEEE 802.11n(20MHz)(ANT 3)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
149	5745	9.766	≦28.76	Pass		
157	5785	9.266	≦28.76	Pass		
165	5825	10.017	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

	Spectrum Analyzer - Swe		a second			
Center	RF 50 Ω Freq 5.74500	0000 GHz	SENSE:INT	ALIGN AUTO Avg Type: RMS	09:48:36 PM May 09, 2017 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast (IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Hold:>100/100 Ext Gain: -1.20 dB	TYPE A WWWWW DET A NNNNN	5 m 20-
10 dB/div Log	Ref 23.80 d	Bm		Mkr1	5.745 796 GHz 9.766 dBm	Auto Tune
13.8		in the second second	1	100 400 - 11 40 40 Martin		Center Freq 5.745000000 GHz
3.80 -6.20						Start Freq 5.725000000 GHz
-16.2	Martinger	Werterstein				Stop Freq 5.765000000 GHz
-36.2	New Martin Construction				The second state of the se	CF Step 4.000000 MHz <u>Auto</u> Man
-56.2		· · · _ · _ · _ · _ · _ · _ · _ ·				Freq Offset 0 Hz
-66.2						
	5.74500 GHz V 510 kHz	#VB	W 1.5 MHz*	Sweep 1.3	Span 40.00 MHz 33 ms (10001 pts)	
MSG				STATUS	7	

📜 Keysight Spectrum Analyzer - Swept SA				And the second second	
RF 50 Ω DC		VSE(INT		0:13:07 PM May 09, 2017	Frequency
Center Freq 5.785000000 Gi	HZ NO: Fast Trig: Free Gain:Low #Atten: 4			TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Auto Tune
10 dB/div Ref 23.80 dBm	10 dB/div Ref 23.80 dBm 9.266 dBm 9.266 dBm				
13.8	Law - Hand Law & String angle - mail 1994 1994	1			Center Freq 5.78500000 GHz
3,80		And the second sec			Start Freq 5.765000000 GHz
-16.2			White Andrews	Wildow .	Stop Freq 5.805000000 GHz
-16.2 -26.2 -36.2				lin many and a surplicity of the	CF Step 4.000000 MHz <u>Auto</u> Man
-56,2					Freq Offset 0 Hz
-66.2 Center 5.78500 GHz				Span 40.00 MHz	
#Res BW 510 kHz	#VBW 1.5 MHz	*) ms (10001 pts)	
MSG			STATUS		

Keysight Spectrum Analyzer - Swept SA				
¥ RF 50 Ω DC	SENSE(INT		0:17:36 PM May 09, 2017	Frequency
Center Freq 5.825000000 GHz PNC IFGa	: Fast 🕞 Trig: Free Run in:Low #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNN	
10 dB/div Ref 23.80 dBm		Mkr1 5.	823 888 GHz 10.017 dBm	Auto Tune
13.8	and a second a second a second a	Martine de martine de		Center Freq 5,825000000 GHz
-6.20				Start Freq 5.805000000 GHz
-16.2		New	and a state of the	Stop Freq 5.845000000 GHz
-26.2			e mailentallaidheann	CF Step 4.000000 MHz <u>Auto</u> Man
-56,2				Freq Offset 0 Hz
-66.2 Center 5.82500 GHz			Span 40.00 MHz	
#Res BW 510 kHz	#VBW 1.5 MHz*	Sweep 1.333	ms (10001 pts)	
MSG		STATUS		

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/09	Test Site	SR10-H	

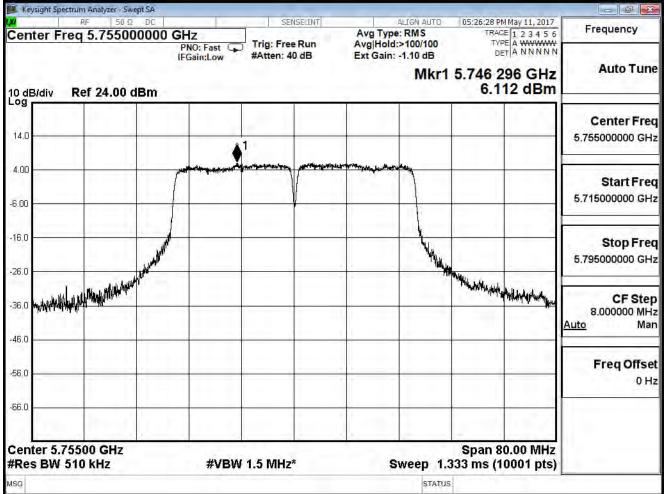
IEEE 802.11n(20MHz)(ANT0+1+2+3)						
Channel No.	Frequency	Measure Level Limit		Decult		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
149	5745	15.836	≦28.76	Pass		
157	5785	15.574	≦28.76	Pass		
165	5825	16.162	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/11	Test Site	SR10-H	


IEEE 802.11n(40MHz)(ANT 0)

Channel No.	Frequency	ncy Measure Level Li		Popult		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
151	5755	6.112	≦28.76	Pass		
159	5795	6.448	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA				
🜠 RF 50 Ω DC	SENSE(INT	ALIGN AUTO	10:51:21 PM May 09, 2017	Frequency
Center Freq 5.795000000 GHz PNO: IFGain	Fast 😱 Trig: Free Run :Low #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.20 dB	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	
10 dB/div Ref 23.80 dBm		Mkr1	5.803 408 GHz 6.448 dBm	Auto Tune
13.8		1		Center Freq 5.795000000 GHz
16.20				Start Freq 5.755000000 GHz
-16.2		- the	Helishang Hington of Jaka Manakana Terrak	Stop Freq 5.835000000 GHz
-26.2 -36.2			"" "The share of the standard land	CF Step 8.000000 MHz <u>Auto</u> Man
-56,2				Freq Offset 0 Hz
-66.2 Center 5.79500 GHz			Span 80.00 MHz	
#Res BW 510 kHz	#VBW 1.5 MHz*	Sweep 1.3	33 ms (10001 pts)	
MSG		STATUS		

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/11	Test Site	SR10-H	

IEEE 802.11n(40MHz)(ANT 1)						
Channel No	Frequency	Measure Level Limit		Deput		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
151	5755	6.092	≦28.76	Pass		
159	5795	6.270	≦28.76	Pass		

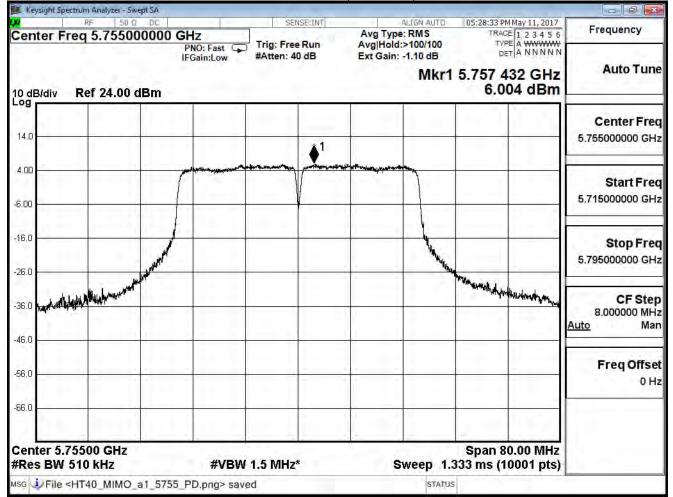
Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA				
	SENSE:INT	ALIGN AUTO Avg Type: RMS	05:27:50 PM May 11, 2017 TRACE 1 2 3 4 5 6	Frequency
Center Freq 5.755000000 GHz PNO: Fa IFGain:L		Avg Hold:>100/100 Ext Gain: -1.10 dB	TYPE A WWWWW DET A NNNNN 5.758 952 GHz 6.092 dBm	Auto Tune
14.0	▲1			Center Freq 5.755000000 GHz
6.00				Start Free 5.715000000 GH:
26.0				Stop Frec 5.795000000 GHz
36.0			the and indicated in the second second	CF Step 8.000000 MH2 <u>Auto</u> Mar
-66,0	_			Freq Offse 0 H:
-66.0 Center 5.75500 GHz #Res BW 510 kHz #	VBW 1.5 MHz*	Sween 1	Span 80.00 MHz 333 ms (10001 pts)	
MSG JFile <ht40 5755="" a0="" mimo="" pd.png<="" td=""><td></td><td>SWEEP 1.</td><td></td><td></td></ht40>		SWEEP 1.		

Keysight Spectrum Analyzer - Swept SA						- ē 🔀
¥ RF 50Ω DC		SENSE(INT			10:51:38 PM May 09, 2017	Frequency
Center Freq 5.795000000 GHz PNO: Fast IFGain:Low		Trig: Free Run #Atten: 40 dB			TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	
10 dB/div Ref 23.80 dBm	11			Mkr1 5	.803 808 GHz 6.270 dBm	Auto Tune
13.8			▲ ¹			Center Freq 5.795000000 GHz
3.80	ar welden wegerijne for sen					Start Freq 5.755000000 GHz
-16.2				-		Stop Freq 5.835000000 GHz
-26.2 -36.2					the share and the production	CF Step 8.000000 MHz <u>Auto</u> Man
-56,2						Freq Offset 0 Hz
-66.2 Center 5.79500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	s		Span 80.00 MHz 3 ms (10001 pts)	
MSG JFile <ht40_mimo_a0_5795_< td=""><td>PD.png> save</td><td>d</td><td></td><td>STATUS</td><td></td><td></td></ht40_mimo_a0_5795_<>	PD.png> save	d		STATUS		


Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: TX MIMO_ ADP: AD890326				
Date of Test	2017/05/11 Test Site SR10-H				

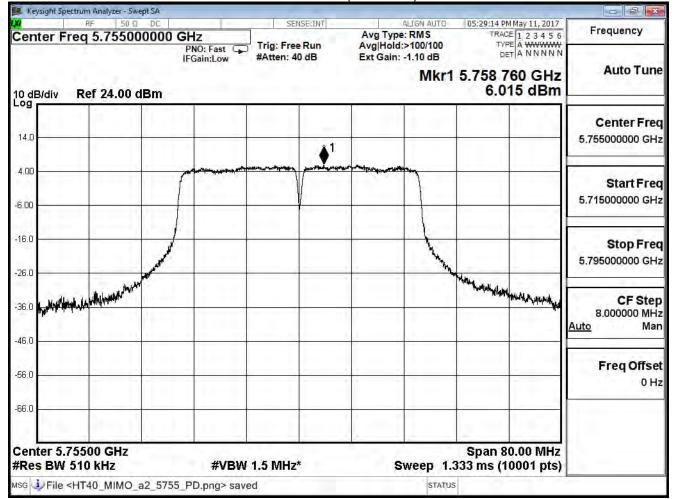
IEEE 802.11n(40MHz)(ANT 2)							
Channel No.	annel No. Frequency Measure Level Limit (MHz) (dBm) (dBm) Result						
151	5755	6.004	≦28.76	Pass			
159	5795	6.576	≦28.76	Pass			

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA						
¥ RF 50Ω DC		SENSE(INT			52:06 PM May 09, 2017	Frequency
Center Freq 5.795000000 C	BHZ PNO: Fast GD IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Type: RI Avg Hold:>10 Ext Gain: -1.2	0/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	E. S. 30.
10 dB/div Ref 23.80 dBm				Mkr1 5.8	03 808 GHz 6.576 dBm	Auto Tune
13.8			1			Center Freq 5.795000000 GHz
-6.20	-					Start Freq 5.755000000 GHz
-16.2				how we wanted		Stop Freq 5.835000000 GHz
-26.2 -36.2					ulanterstationsample	CF Step 8.000000 MHz <u>Auto</u> Man
-56,2						Freq Offset 0 Hz
-66.2 Center 5.79500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Swe		oan 80.00 MHz ms (10001 pts)	
MSG JFile <ht40_mimo_a1_5795< td=""><td>PD.png> save</td><td>d</td><td></td><td>STATUS</td><td></td><td></td></ht40_mimo_a1_5795<>	PD.png> save	d		STATUS		


Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: TX MIMO_ ADP: AD890326				
Date of Test	2017/05/11 Test Site SR10-H				

IEEE 802.11n(40MHz)(ANT 3)							
Channel No.	H No. (MHz) (dBm) (dBm) Result						
151	5755	6.015	≦28.76	Pass			
159	5795	6.416	≦28.76	Pass			

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA					
KF 50 Ω DC		SENSE(INT	ALIGN AU		Frequency
Center Freq 5.79500000	0 GHz PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/10 Ext Gain: -1.20 dB		
10 dB/div Ref 23.80 dBm		· · · ·	Mk	r1 5.804 064 GHz 6.416 dBm	Auto Tune
13.8			▲ ¹		Center Freq 5.795000000 GHz
9.80		and an and a state of the state			Start Freq 5.755000000 GHz
-16.2				Wares with and a second s	Stop Freq 5.835000000 GHz
-26.2 -36.2				and a second and the second se	CF Step 8.000000 MHz <u>Auto</u> Man
-56,2			+ +		Freq Offset 0 Hz
-66.2 Center 5.79500 GHz				Span 80.00 MHz	
#Res BW 510 kHz	#VBW	1.5 MHz*	Sweep	1.333 ms (10001 pts)	
MSG			ST	ATUS	

Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: TX MIMO_ADP: AD890326				
Date of Test	2017/05/11 Test Site SR10-H				

IEEE 802.11n(40MHz)(ANT 0+1+2+3)							
Channel No.	Result						
151	(MHz) 5755	(dBm) 12.077	(dBm) ≦28.76	Pass			
159	5795	12.449	≦28.76	Pass			

Note

Effective array gain = 7.24dBi Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: TX MIMO_ ADP: AD890326				
Date of Test	2017/05/11 Test Site SR10-H				

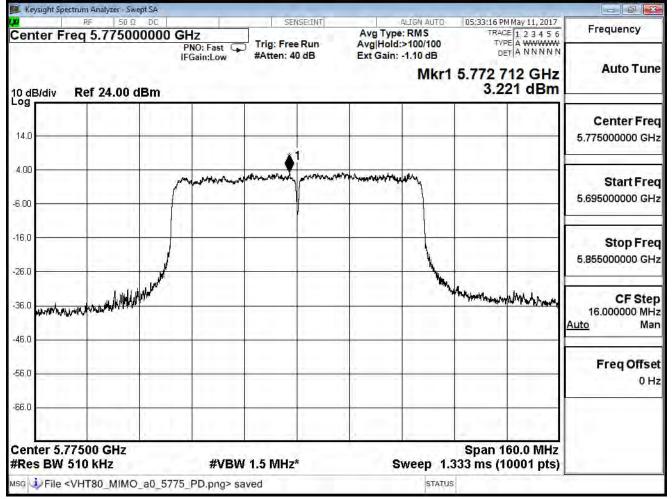
IEEE802.11ac(80MHz)(ANT 0)						
Channel No.	Result					
155	5775	3.185	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight!	Spectrum Ana	lyzer - Swept SA						
L XI	RF	50 Ω DC		SENSERINT		IGN AUTO	05:32:41 PM May 11, 2017	Frequency
Center	Freq 5.	77500000	PNO: Fast	Trig: Free Run	Avg Type: Avg Hold:>	100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
10 dB/div	Ref 2	4.00 dBm	IFGain:Low	#Atten: 40 dB	Ext Gain: -1		5.788 936 GHz 3.185 dBm	Auto Tune
14.0					41			Center Freq 5.775000000 GHz
4.00			mannan	union puno	minument	~		Start Freq 5.695000000 GHz
-16.0						1		Stop Freq 5.855000000 GHz
-36.0	www.white	WHATWWW					n shere from the firming	CF Step 16.000000 MHz <u>Auto</u> Man
-56.0		-						Freq Offset 0 Hz
	5.77500						Span 160.0 MHz	
100.002 21 0011	N 510 kH	lz	#VBW	1.5 MHz*	SW		333 ms (10001 pts)	
MSG						STATUS	5	



Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: TX MIMO_ ADP: AD890326			
Date of Test	2017/05/11 Test Site SR10-H			

IEEE802.11ac(80MHz)(ANT 1)					
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
155	5775	3.221	≦28.76	Pass	

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

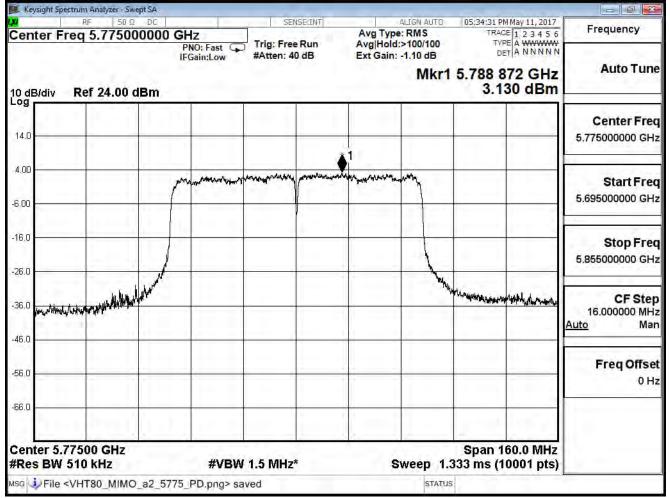
Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 2: TX MIMO ADP: AD890326		
Date of Test	2017/05/11	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 2)					
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
155	5775	3.199	≦28.76	Pass	

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight S	pectrum Analyze	r - Swept SA									
L <mark>XI</mark>	RF	50Ω DC			SEN	ISERINT		ALIGN AUTO		M May 11, 2017	Frequency
Center F	Freq 5.77	500000		Fast 😱	Trig: Free #Atten: 40		Avg Type Avg Hold: Ext Gain:	>100/100	TYF	E 1 2 3 4 5 6 E A WWWW T A NNNNN	Trequency
10 dB/div	Ref 24.	00 dBm				903) 	I CALCUME	Mkr1	5.790 1 3.1	20 GHz 99 dBm	Auto Tune
14.0	1		141			1-1	15.00		1.2	1.1	Center Freq 5.775000000 GHz
							▲ 1				5.//500000 GHz
4.00			man	ntermany	mann	monsing	when the and the transmission	m			Start Freq
-6.00											5.695000000 GHz
-16.0											Stop Freq
-26.0			1					<u>\</u> .			5.855000000 GHz
-36.0	สามระเหตุขามประกับไป	Haland		11	= 1			**	how many and a second	whighner	CF Step
and the second second	and a stand and a stand							1	i T		16.000000 MHz <u>Auto</u> Man
-46.0				-				- 1			Freq Offset
-56.0											0 Hz
-66.0								-			
Center 5	.77500 GH	17			17	_	-		Snan 1	60.0 MHz	
	/ 510 kHz	12	1.5	#VBW	1.5 MHz*		S	weep 1.		0001 pts)	
мsg 🤳 File	<vht80_m< td=""><td>IMO_a1_5</td><td>775_PD</td><td>.png> sa</td><td>ved</td><td></td><td></td><td>STATU</td><td>S</td><td></td><td></td></vht80_m<>	IMO_a1_5	775_PD	.png> sa	ved			STATU	S		



Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 2: TX MIMO ADP: AD890326		
Date of Test	2017/05/11	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 3)					
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
155	5775	3.130	≦28.76	Pass	

Effective array gain = 7.24dBi

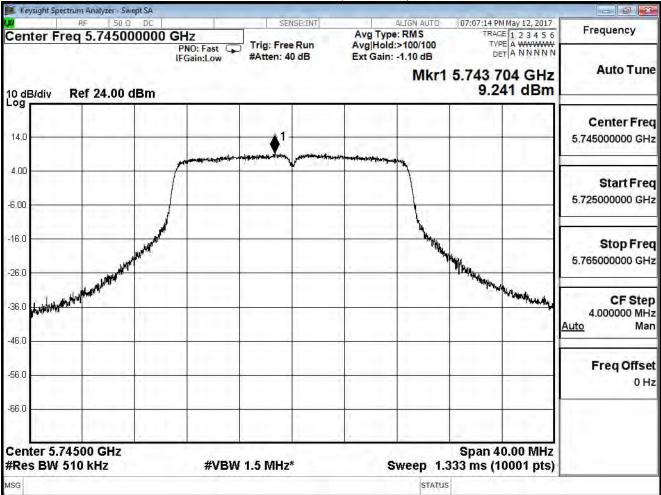
Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 2: TX MIMO_ ADP: AD890326		
Date of Test	2017/05/11	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 0+1+2+3)					
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
155	5775	9.204	≦28.76	Pass	

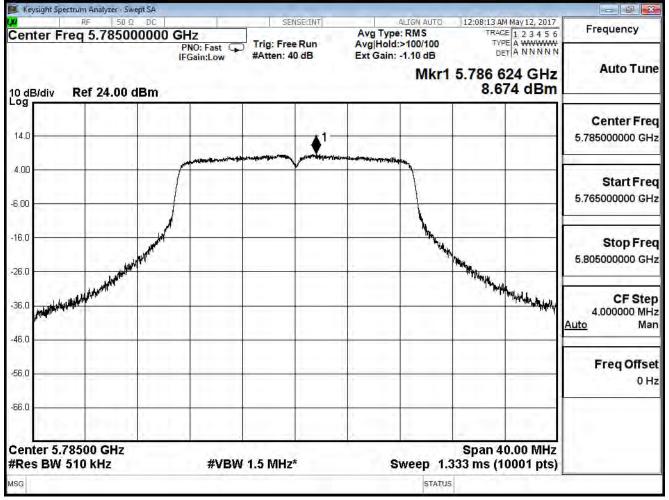
Effective array gain = 7.24dBi Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H


IEEE 802.11n(20MHz)(ANT 0)

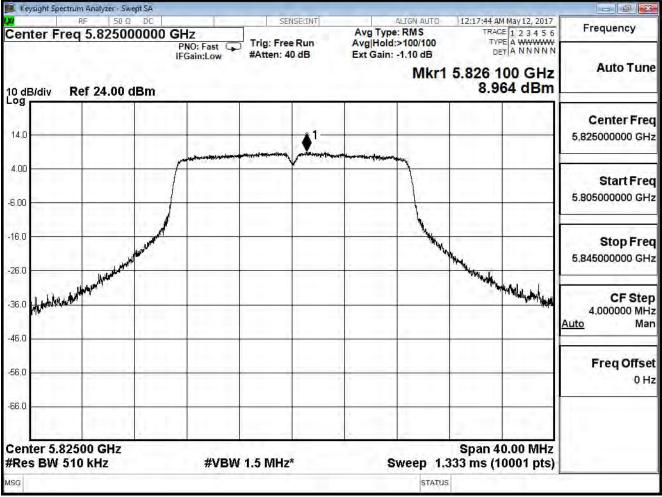
· · · · · · · · · · · · · · · · · · ·				
Channel No.	Frequency	Measure Level	Limit	Result
	(MHz)	(dBm)	(dBm)	
149	5745	9.241	≦28.76	Pass
157	5785	8.674	≦28.76	Pass
165	5825	8.964	≦28.76	Pass

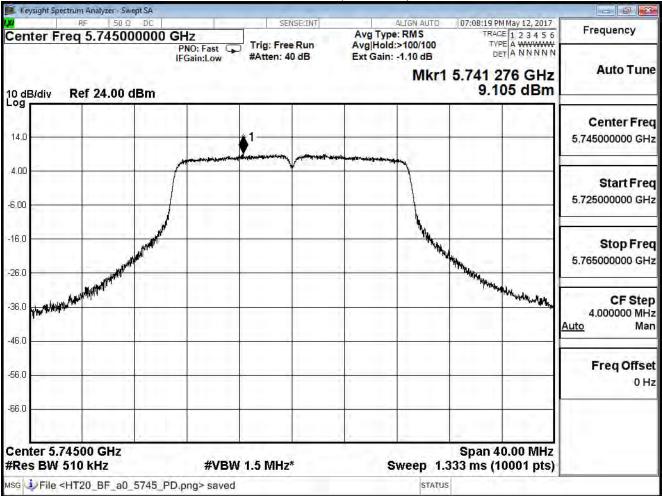
Note


Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

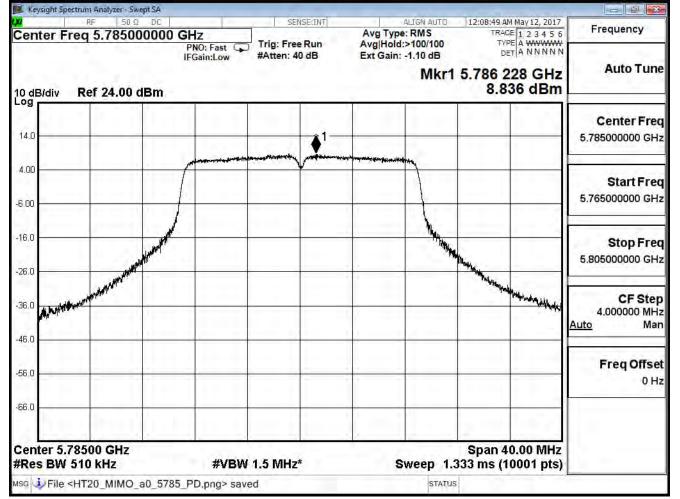



Channel 149 (5745MHz)

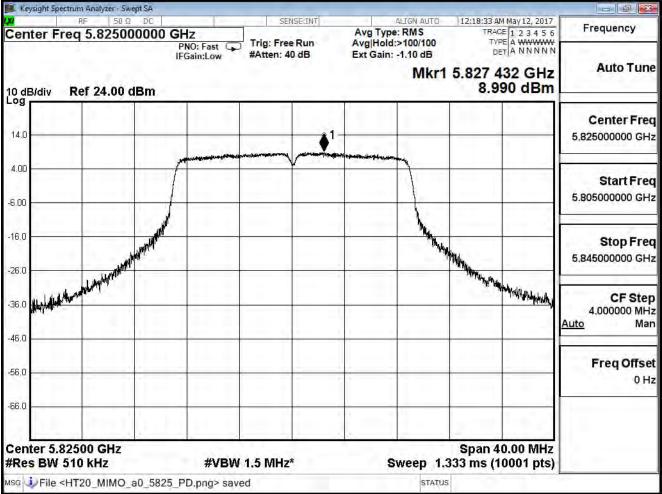

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

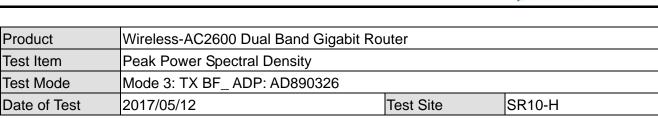
IEEE 802.11n(20MHz)(ANT 1) Frequency Measure Level Limit Channel No. Result (MHz) (dBm) (dBm) 149 5745 9.105 ≦28.76 Pass \leq 28.76 Pass 157 5785 8.836 165 5825 8.990 ≦28.76 Pass

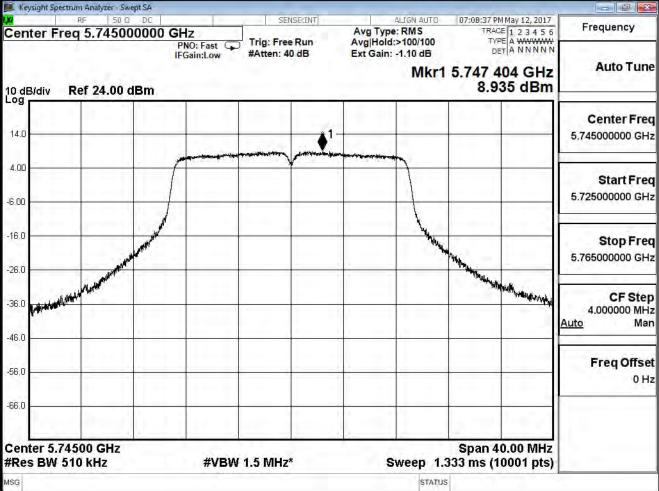
Note


Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm


Channel 149 (5745MHz)




DEKRA

IEEE 802.11n(20MHz)(ANT 2)						
Channel No	Frequency	Measure Level	Limit	Decult		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
149	5745	8.935	≦28.76	Pass		
157	5785	8.586	≦28.76	Pass		
165	5825	8.810	≦28.76	Pass		

Note

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Channel 149 (5745MHz)

- 6 ×

Auto Tune

Center Freq

Start Freq 5.765000000 GHz

Stop Freq 5.80500000 GHz

CF Step

Man

0 Hz

4.000000 MHz

Freq Offset

Auto

5.785000000 GHz

Frequency

RF

MAN

MSG J File <HT20_MIMO_a1_5785_PD.png> saved

Allaw Adda for Artist

Center 5.78500 GHz

#Res BW 510 kHz

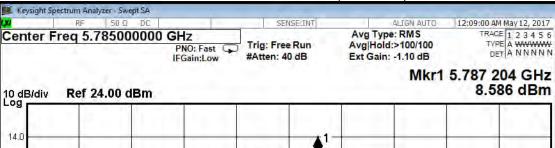
10 dB/div Log

14.0

4 00

-6.00

-16.0


-26.0

-36.0

-46.0

-56.0

-66.0

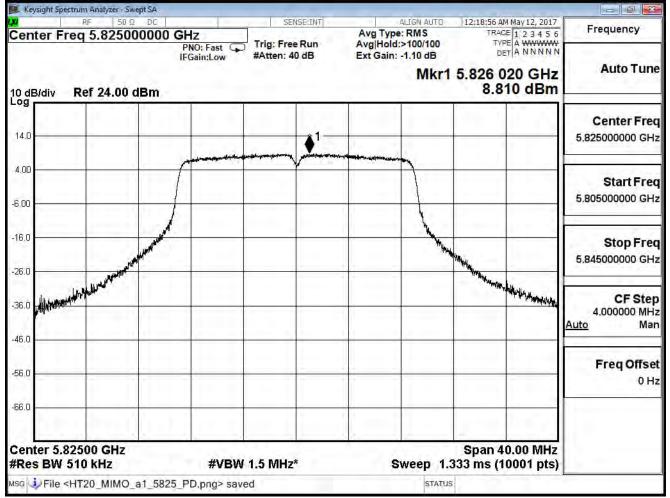
#VBW 1.5 MHz*

the states

MA.

Marthul MA

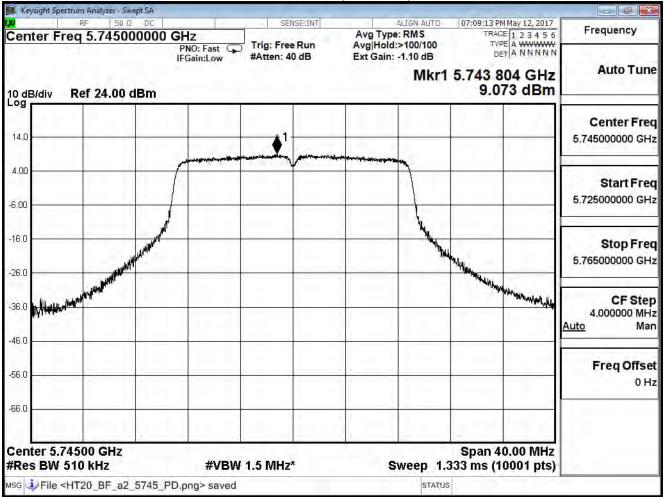
-


Span 40.00 MHz

Sweep 1.333 ms (10001 pts)

STATUS

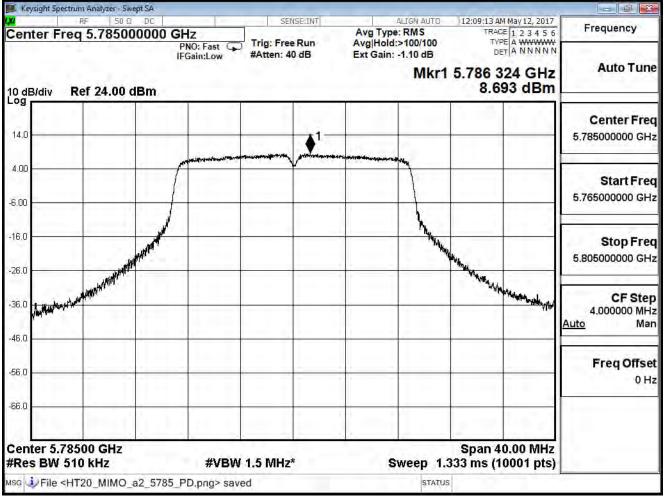
Channel 165 (5825MHz)


Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: TX BF_ ADP: AD890326				
Date of Test	2017/05/12	Test Site	SR10-H		

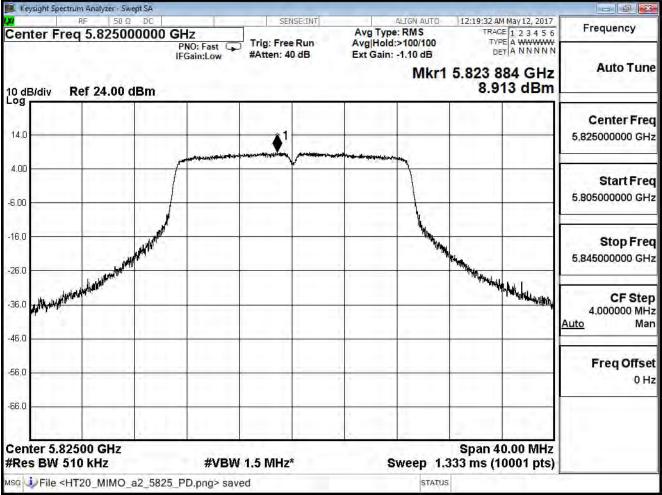
IEEE 802.11n(20MHz)(ANT 3)	2.11n(20MHz)(ANT 3)
----------------------------	---------------------

	/ /			
Channel No.	Frequency	Measure Level	Limit	Result
	(MHz)	(dBm)	(dBm)	Result
149	5745	9.073	≦28.76	Pass
157	5785	8.693	≦28.76	Pass
165	5825	8.913	≦28.76	Pass

Effective array gain = 7.24dBi


Limit = 30-(7.24-6) = 28.76 dBm

Channel 149 (5745MHz)



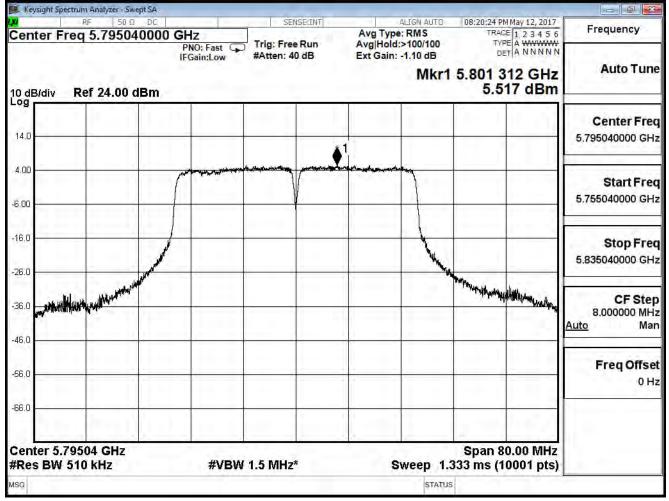
Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: TX BF_ ADP: AD890326				
Date of Test	2017/05/12	Test Site	SR10-H		

IEEE 802.11n(20MHz)(ANT0+1+2+3)						
Channel Ne	Frequency	Measure Level	Limit	Decult		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
149	5745	15.110	≦28.76	Pass		
157	5785	14.719	≦28.76	Pass		
165	5825	14.940	≦28.76	Pass		

Effective array gain = 7.24dBi Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: TX BF_ ADP: AD890326			
Date of Test	2017/05/12	Test Site	SR10-H	

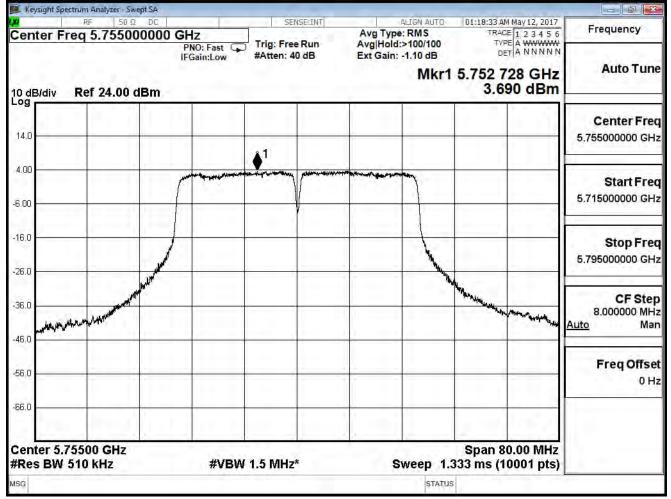
IEEE 802.11n(40MHz)(ANT 0)	D)
----------------------------	----


Channel No.	Frequency	Measure Level	Limit	Result		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
151	5755	3.782	≦28.76	Pass		
159	5795	5.517	≦28.76	Pass		

Effective array gain = 7.24dBi

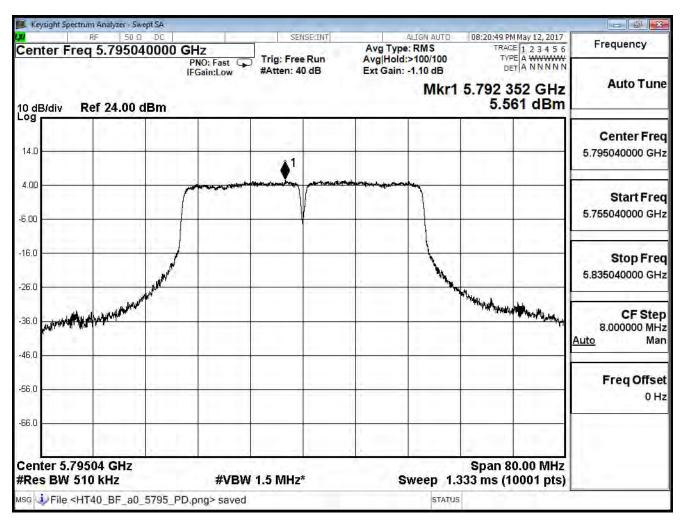
Limit = 30-(7.24-6) = 28.76 dBm

RF 50 Ω DC				
	SENSE(INT	ALIGN AUTO	01:19:13 AM May 12, 2017	Frequency
enter Freq 5.755000000 GHz PNO: Fast IFGain:Low dB/div Ref 24.00 dBm	Trig: Free Run #Atten: 40 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.10 dB Mkr1	5.757 584 GHz 3.782 dBm	Auto Tune
4.0	.1			Center Freq 5.755000000 GHz
00				Start Freq 5.715000000 GHz
5.0				Stop Freq 5.795000000 GHz
5.0 - whore and the second sec			the strength of the second sec	CF Step 8.000000 MH2 Auto Mar
a, 0				Freq Offset 0 Hz
enter 5.75500 GHz			Span 80.00 MHz	
Res BW 510 kHz #VBV	/ 1.5 MHz*	Sweep 1.	333 ms (10001 pts)	



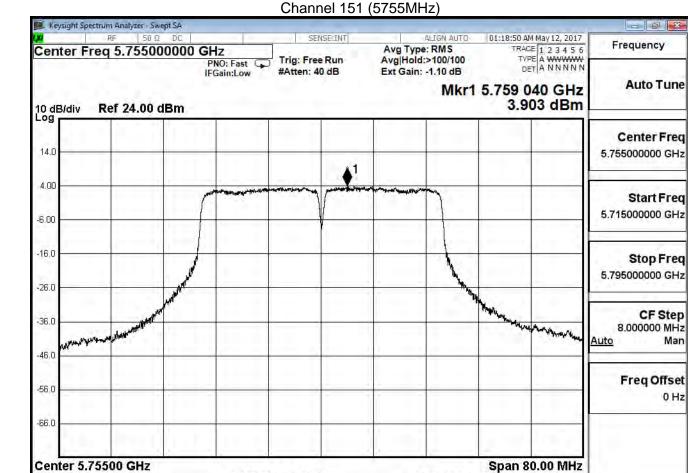
Product	Wireless-AC2600 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: TX BF_ ADP: AD890326				
Date of Test	2017/05/12	Test Site	SR10-H		


IEEE 802.11n(40MHz)(ANT 1)						
Channel No.	Frequency	Measure Level	Limit	Result		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
151	5755	3.690	≦28.76	Pass		
159	5795	5.561	≦28.76	Pass		


Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

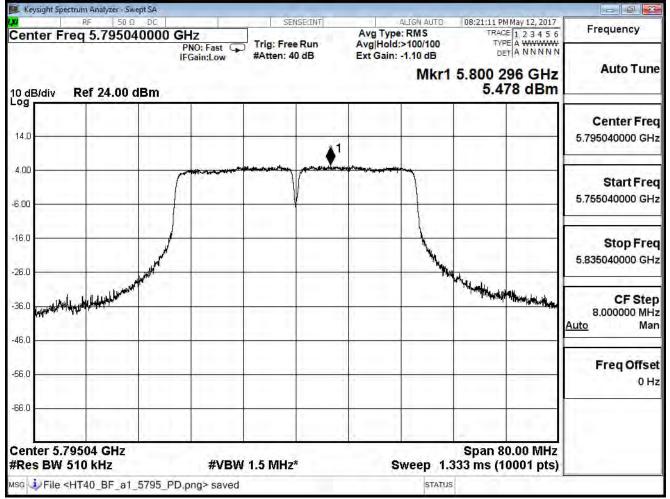

IEEE 802.11n(40MHz)(ANT 2)							
Channel No.	Channel No.Frequency (MHz)Measure Level (dBm)Limit (dBm)Result						
151	5755	3.903	≦28.76	Pass			
159	5795	5.478	≦28.76	Pass			

Effective array gain = 7.24dBi

#Res BW 510 kHz

Msg JFile <HT40_MIMO_a1_5755_PD.png> saved

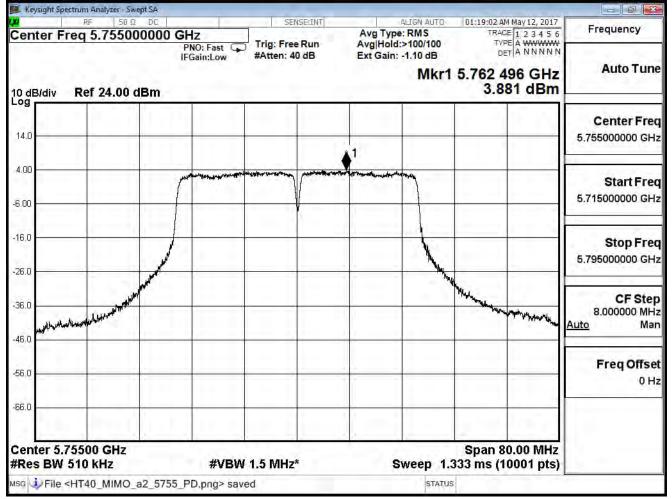
Limit = 30-(7.24-6) = 28.76 dBm



#VBW 1.5 MHz*

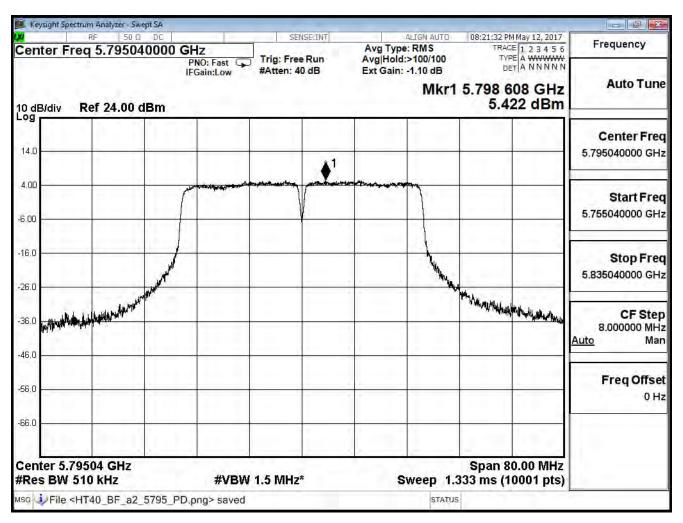
Sweep 1.333 ms (10001 pts)

STATUS



Product	Wireless-AC2600 Dual Band Gigabit Ro	uter	
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H


IEEE 802.11n(40MHz)(ANT 3)						
Channel No.Frequency (MHz)Measure Level (dBm)Limit (dBm)Result						
151	5755	3.881	≦28.76	Pass		
159	5795	5.422	≦28.76	Pass		


Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

IEEE 802.11n(40MHz)(ANT 0+1+2+3)					
Channel No.	Frequency	Measure Level	Limit	Result	
Channel No.	(MHz)	(dBm)	(dBm)	Result	
151	5755	9.835	≦28.76	Pass	
159 5795 11.515 ≦28.76					

Effective array gain = 7.24dBi Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 0)						
Channel No.	Frequency	Measure Level	Limit	Result		
	(MHz)	(dBm)	(dBm)			
155 5775 2.595 ≦28.76 Pass						

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA		and the second se		
RF 50 Ω DC Center Freq 5.775000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: RMS	01:20:30 AM May 12, 2017 TRACE 1 2 3 4 5 6	Frequency
PNO: Fast IFGain:Low 10 dB/div Ref 24.00 dBm	➡ Trig: Free Run #Atten: 40 dB	Avg Hold:>100/100 Ext Gain: -1.10 dB Mkr1	5.781 336 GHz 2.595 dBm	Auto Tune
14.0				Center Freq 5.775000000 GHz
4.00	un men and a poly in the second	an month of the second se		Start Freq 5.695000000 GHz
-16,0				Stop Freq 5.855000000 GHz
-36.0			that phonone and phone the state of the	CF Step 16.000000 MHz <u>Auto</u> Man
-56.0				Freq Offset 0 Hz
-66.0 Center 5.77500 GHz			Span 160.0 MHz	
	W 1.5 MHz*	Sweep 1.	333 ms (10001 pts)	
MSG		STATUS		

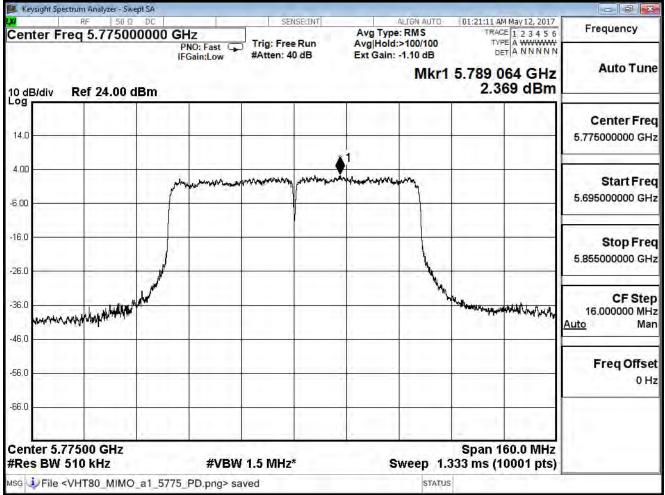
Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 1)						
Channel No.	Frequency	Measure Level	Limit	Result		
	(MHz)	(dBm)	(dBm)	Result		
155 5775 2.118 \leq 28.76 Pass						

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Sv	vept SA				
Zenter Freq 5.7750		SENSE:INT	ALIGN AUT Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 24.00	PNO: Fast G IFGain:Low	☐ Trig: Free Run #Atten: 40 dB	Avg Hold:>100/10 Ext Gain: -1.10 dB Mk		Auto Tune
14.0					Center Freq 5.775000000 GHz
4.00	roman	-	minnens		Start Freq 5.695000000 GHz
-16.0					Stop Freq 5.855000000 GHz
-36.0	Aller			have been and the bourt with	CF Step 16.000000 MHz <u>Auto</u> Mar
-56.0			4 4		Freq Offset 0 Hz
-66.0				Span 160.0 MHz	
#Res BW 510 kHz	#VBV	V 1.5 MHz*	Sweep	1.333 ms (10001 pts)	
MSG			ST	ATUS	



Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 2)				
Channel No.	Frequency	Measure Level	Limit	Result
	(MHz)	(dBm)	(dBm)	
155	5775	2.369	≦28.76	Pass

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12	Test Site	SR10-H

IEEE802.11ac(80MHz)(ANT 3)				
Channel No.	Frequency	Measure Level	Limit	Result
	(MHz)	(dBm)	(dBm)	
155	5775	2.192	≦28.76	Pass

Effective array gain = 7.24dBi

Limit = 30-(7.24-6) = 28.76 dBm

Keysight Spectrum Analyzer - Swept SA			and the second	
Center Freq 5.775000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: RMS	01:21:22 AM May 12, 2017 TRACE 1 2 3 4 5 6	Frequency
PNO: Fa IFGain:L 10 dB/div Ref 24.00 dBm		Avg Hold:>100/100 Ext Gain: -1.10 dB Mkr1	5.789 016 GHz 2.192 dBm	Auto Tune
14.0				Center Freq 5.775000000 GHz
4.00	man man	an and a second se		Start Freq 5.695000000 GHz
26.0				Stop Fred 5.855000000 GHz
36.0 Jown west work of a damped for the first work of the second				CF Step 16.000000 MHz Auto Man
-56.0				Freq Offsel 0 Hz
-66.0			2	
Center 5.77500 GHz #Res BW 510 kHz #	BW 1.5 MHz*	Sweep 1.3	Span 160.0 MHz 333 ms (10001 pts)	
Msg 🥹 File <vht80_mimo_a2_5775_pd.pd< td=""><td>> saved</td><td>STATUS</td><td></td><td></td></vht80_mimo_a2_5775_pd.pd<>	> saved	STATUS		

Product	Wireless-AC2600 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: TX BF_ ADP: AD890326		
Date of Test	2017/05/12 Test Site SR10-H		

IEEE802.11ac(80MHz)(ANT 0+1+2+3)				
Channel No.	Frequency	Measure Level	Limit	Popult
Channel No.	(MHz)	(dBm)	(dBm)	Result
155	5775	8.343	≦28.76	Pass

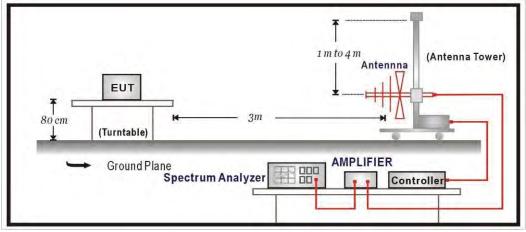
Effective array gain = 7.24dBi Limit = 30-(7.24-6) = 28.76 dBm

6. Radiated Emission

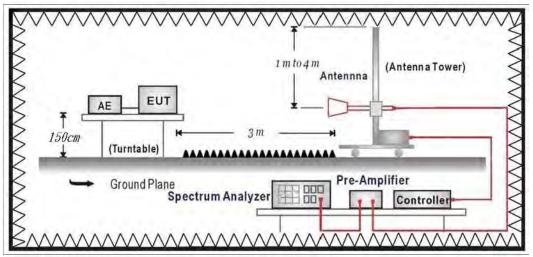
6.1. Test Equipment

The following test equipment are used during the radiated emission test:

Radiated Err	nission / Cl	34-H
	1001011 / 01	


Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum	Agilent	E4440A	MY46187335	2017/12/21
Bilog Antenna	Teseq	CBL6112D	23191	2017/07/04
Horn Antenna	Schwarzbeck	BBHA 9120 D	1640	2017/10/23
Pre-Amplifier	EMCI	EMC01820I	12143782	2018/03/08
Pre-Amplifier	EMCI	EMC01820I	980367	2018/02/09
Radiated Emission / CB2	2-H			
Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Signal & Spectrum	R&S	FSV40	101455	2017/11/27
Analyzer				
Bilog Antenna	Teseq	CBL6112D	23191	2017/07/04
Horn Antenna	Schwarzbeck	BBHA 9120	D639	2017/06/29
Pre-Amplifier	EMCI	EMC01820I	12162511	2018/03/08
Pre-Amplifier	EMCI	EMC01820I	980366	2018/01/22

Note: All equipment that need to calibrate are with calibration period of 1 year.



6.2. Test Setup

Under 1GHz Test Setup:

Above 1GHz Test Setup:

6.3. Limits

General Radiated Emission Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section. Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits				
Frequency MHz	uV/m @3m	dBuV/m@3m		
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		

Remark:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

> Unwanted Emission out of the restricted bands Limits

FCC Part 15 Subpart C Paragraph 15.407(b) Limits				
Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength (dBuV/m@3m)		
5150 - 5250	-27	68.3		
5250 - 5350	-27	68.3		
5470 - 5725	-27	68.3		
5705 5050	-27 (Note1)	68.3		
5725 - 5850	-17 (Note2)	78.3		

Remark:

- 1. For frequencies more than 10 MHz above or below the band edges.
- 2. For frequency range from the band edges to 10 MHz above or below the band edges.

3.
$$uV/m = \frac{1000000\sqrt{30 \times EIRP}}{3}$$
, RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

6.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

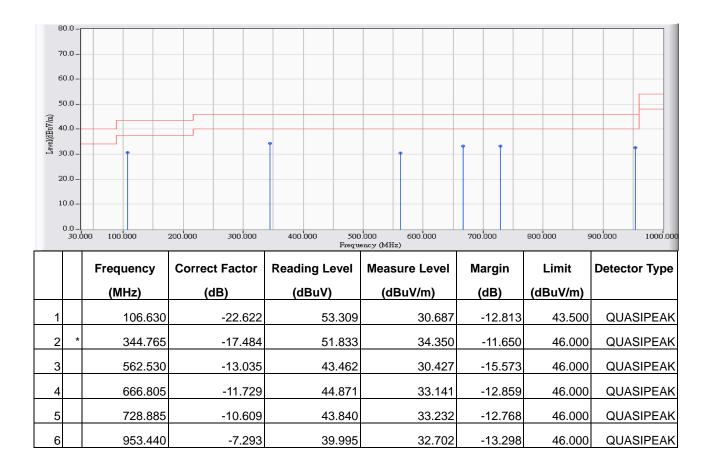
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The additional latch filter below 1GHz was used to measure the level of harmonics radiated emission during field dtrength of harmonics measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 KHz, above 1GHz are 1 MHz.

The frequency range from 30MHz to 10th harminics is checked.

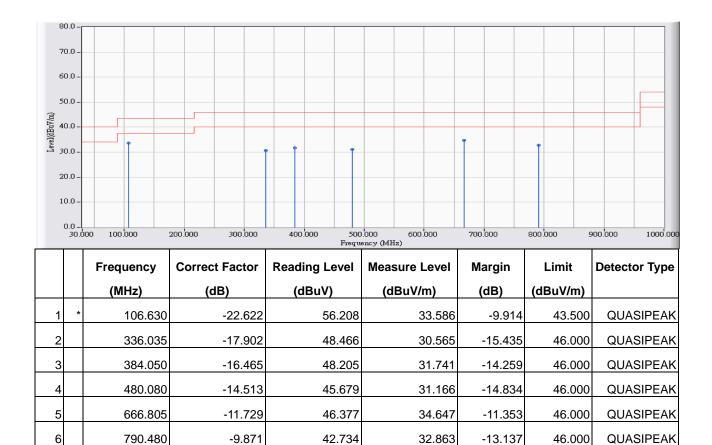
6.5. Uncertainty


The measurement uncertainty $30MHz \sim 1GHz$ as $\pm 3.43dB$ $1GHz \sim 26.5Ghz$ as $\pm 3.65dB$

6.6. Test Result

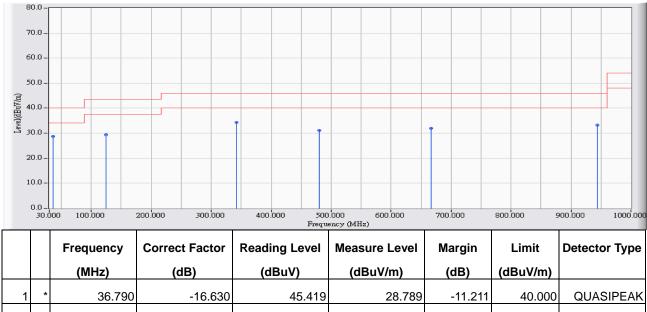
30MHz-1GHz Spurious

Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326 802.11ac(80M)_5210MHz



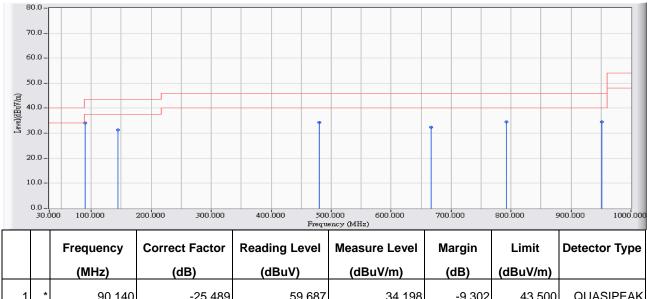
Note:

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.


Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5210MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

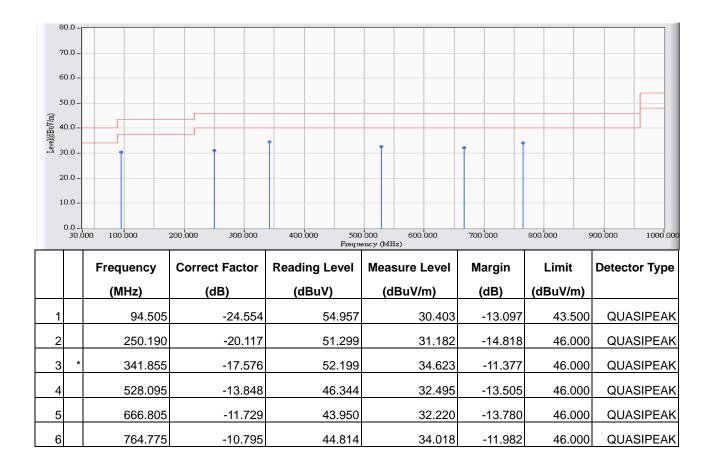
Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5775MHz



1	30.79	-10.030	45.419	20.709	-11.211	40.000	QUASIFEAR
2	125.06	0 -21.198	50.634	29.436	-14.064	43.500	QUASIPEAK
3	342.34	0 -17.561	51.904	34.343	-11.657	46.000	QUASIPEAK
4	480.08	0 -14.513	45.679	31.166	-14.834	46.000	QUASIPEAK
5	666.80	5 -11.729	43.711	31.981	-14.019	46.000	QUASIPEAK
6	944.22	5 -7.211	40.426	33.215	-12.785	46.000	QUASIPEAK

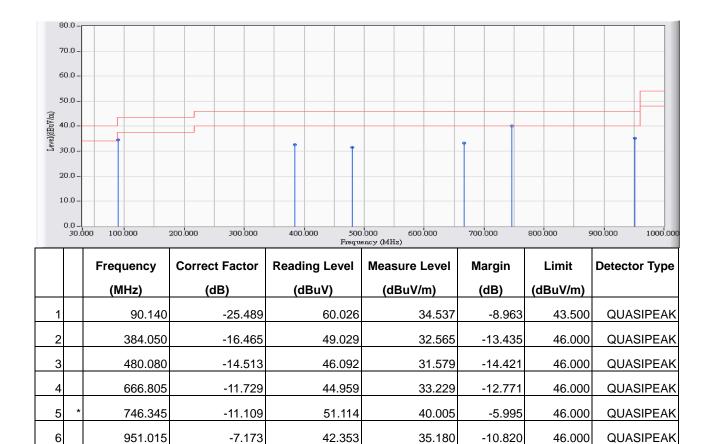
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5775MHz

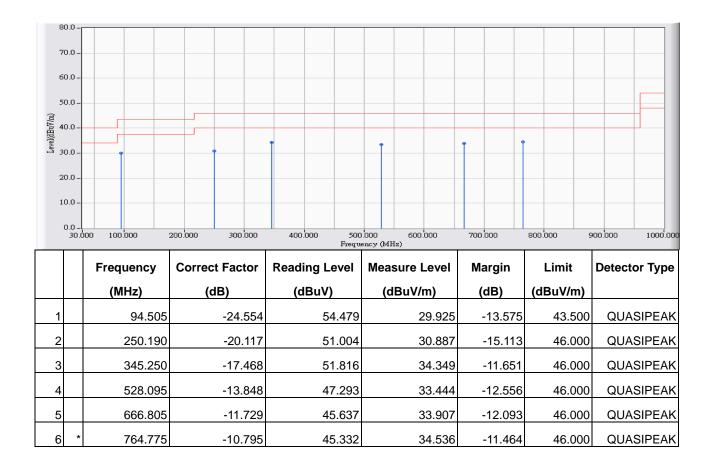


1	*	90.140	-25.489	59.687	34.198	-9.302	43.500	QUASIPEAK
2		144.460	-21.866	53.235	31.369	-12.131	43.500	QUASIPEAK
3		480.080	-14.513	48.874	34.361	-11.639	46.000	QUASIPEAK
4		666.805	-11.729	44.171	32.441	-13.559	46.000	QUASIPEAK
5		792.420	-9.993	44.534	34.540	-11.460	46.000	QUASIPEAK
6		951.015	-7.173	41.632	34.459	-11.541	46.000	QUASIPEAK

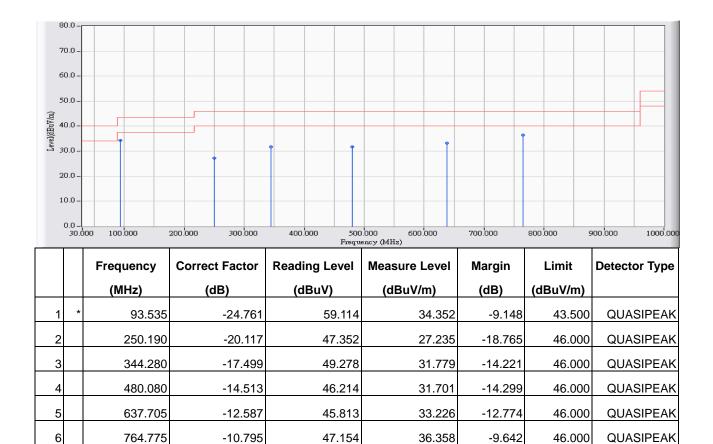
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.


Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 4:TX_ADP: ADP-33AW B
	802.11ac(80M)_5210MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

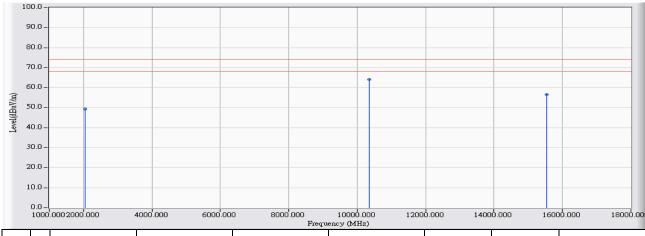

Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 4:TX_ADP: ADP-33AW B
	802.11ac(80M)_5210MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.


Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 4:TX_ADP: ADP-33AW B
	802.11ac(80M)_5775MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB4-H	Time : 2017/05/05
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 4:TX_ADP: ADP-33AW B
	802.11ac(80M)_5775MHz



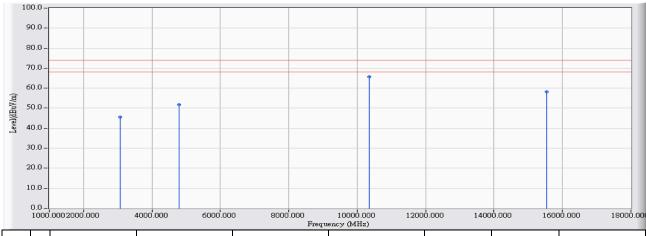
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Harmonic & Spurious:

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5180MHz

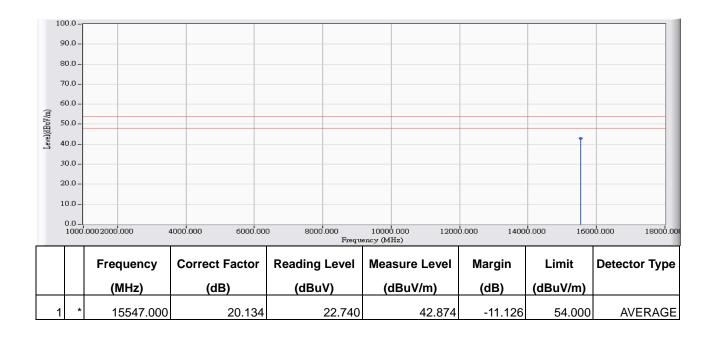
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	51.770	49.210	-24.790	74.000	PEAK
2	*	10357.000	18.378	45.630	64.007	-9.993	74.000	PEAK
3		15532.000	20.137	36.370	56.507	-17.493	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5180MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		3061.000	0.922	44.540	45.463	-28.537	74.000	PEAK
2		4786.000	8.021	43.760	51.781	-22.219	74.000	PEAK
3	*	10359.000	18.387	47.350	65.736	-8.264	74.000	PEAK
4		15547.000	20.134	38.080	58.214	-15.786	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

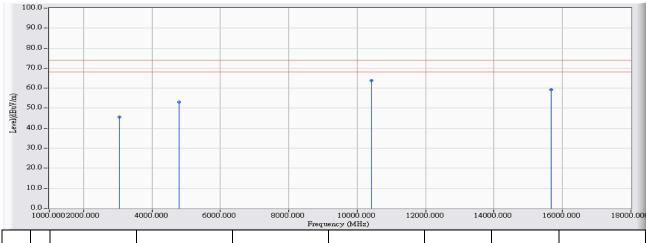
Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5180MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5220MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	51.170	48.610	-25.390	74.000	PEAK
2		4806.000	8.021	42.040	50.061	-23.939	74.000	PEAK
3		10420.000	18.660	34.880	53.540	-20.460	74.000	PEAK
4	*	15640.000	20.114	35.650	55.764	-18.236	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

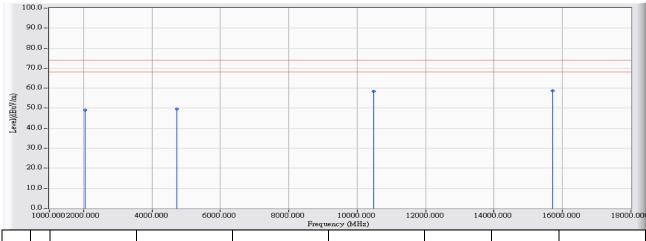

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5220MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5220MHz

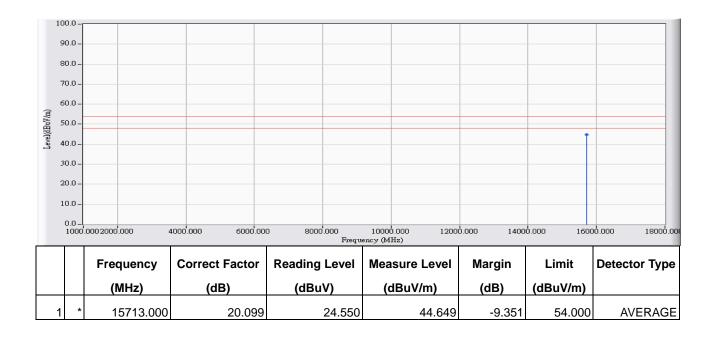
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		3059.000	0.920	44.760	45.679	-28.321	74.000	PEAK
2		4789.000	8.022	45.020	53.041	-20.959	74.000	PEAK
3	*	10420.000	18.660	45.250	63.910	-10.090	74.000	PEAK
4		15661.000	20.110	39.100	59.210	-14.790	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5220MHz

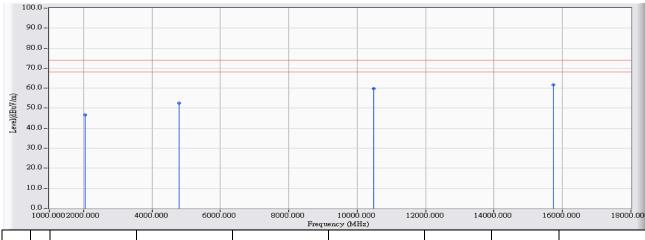
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5240MHz



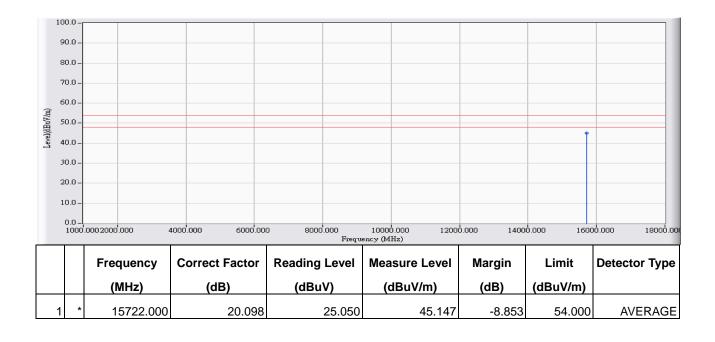
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	51.670	49.110	-24.890	74.000	PEAK
2		4720.000	7.876	41.740	49.616	-24.384	74.000	PEAK
3		10485.000	18.952	39.610	58.562	-15.438	74.000	PEAK
4	*	15713.000	20.099	38.720	58.819	-15.181	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5240MHz

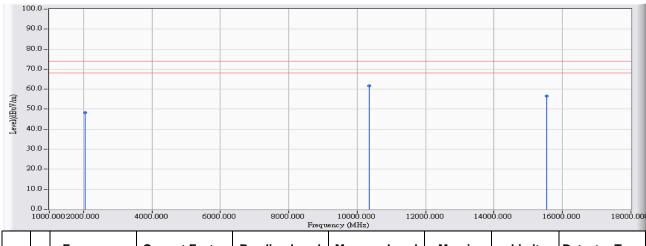
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	49.170	46.610	-27.390	74.000	PEAK
2		4800.000	8.021	44.600	52.621	-21.379	74.000	PEAK
3		10479.000	18.926	40.790	59.715	-14.285	74.000	PEAK
4	*	15725.000	20.097	41.500	61.597	-12.403	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5240MHz

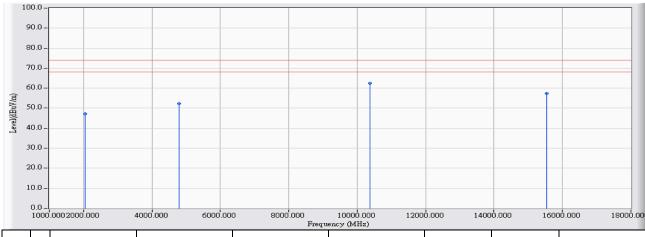
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2039.000	-2.560	50.880	48.320	-25.680	74.000	PEAK
2		10357.000	18.378	43.220	61.597	-12.403	74.000	PEAK
3		15531.000	20.137	36.460	56.597	-17.403	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

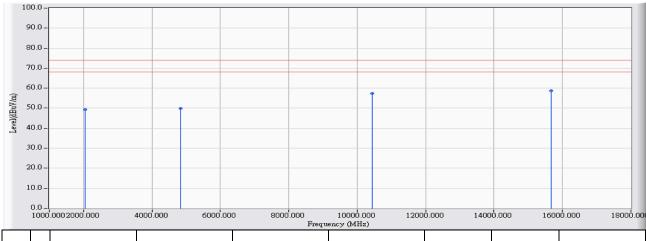

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5180MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5180MHz

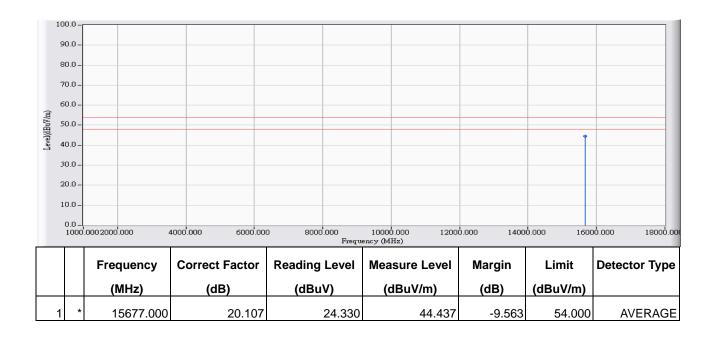
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2041.000	-2.553	49.730	47.177	-26.823	74.000	PEAK
2		4786.000	8.021	44.340	52.361	-21.639	74.000	PEAK
3	*	10366.000	18.417	43.980	62.398	-11.602	74.000	PEAK
4		15543.000	20.134	37.270	57.404	-16.596	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5180MHz

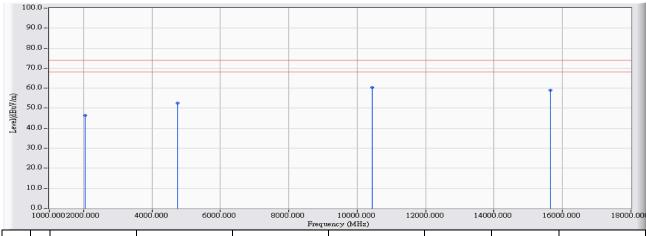
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5220MHz



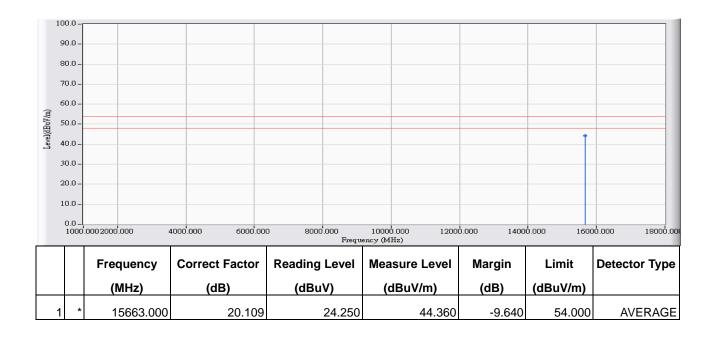
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	51.950	49.390	-24.610	74.000	PEAK
2		4827.000	8.020	41.850	49.871	-24.129	74.000	PEAK
3		10429.000	18.701	38.720	57.421	-16.579	74.000	PEAK
4	*	15677.000	20.107	38.660	58.767	-15.233	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5220MHz

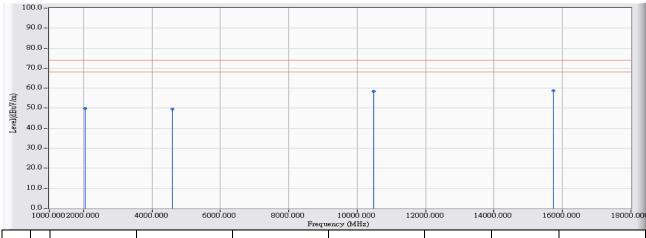
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5220MHz



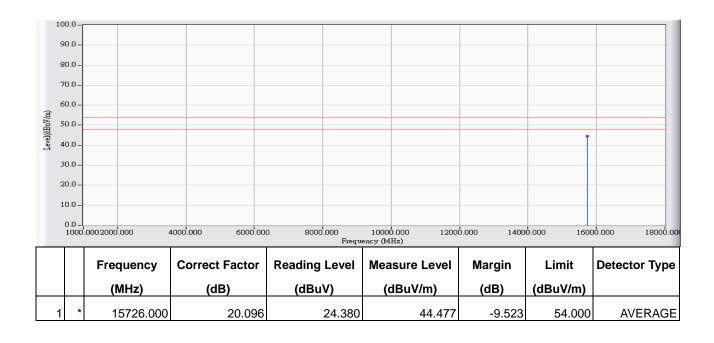
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	48.960	46.400	-27.600	74.000	PEAK
2		4755.000	8.016	44.610	52.626	-21.374	74.000	PEAK
3	*	10440.000	18.750	41.490	60.240	-13.760	74.000	PEAK
4		15655.000	20.111	38.840	58.951	-15.049	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/02
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5220MHz

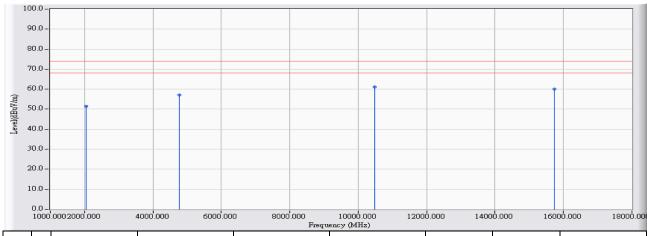
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5240MHz



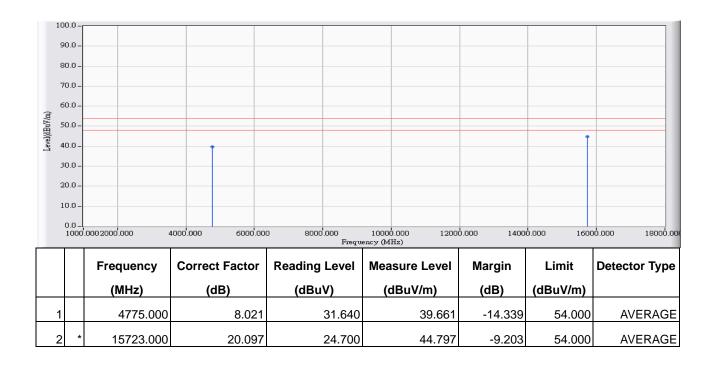
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	52.480	49.920	-24.080	74.000	PEAK
2		4594.000	7.268	42.280	49.548	-24.452	74.000	PEAK
3		10476.000	18.911	39.460	58.372	-15.628	74.000	PEAK
4	*	15726.000	20.096	38.580	58.677	-15.323	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5240MHz

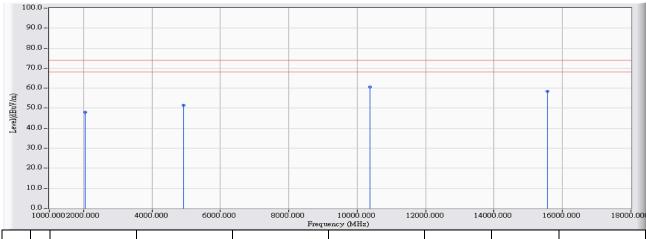
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	7.550	43.960	51.510	-22.490	74.000	PEAK
2	*	4775.000	18.634	38.550	57.184	-16.816	74.000	PEAK
3		10480.000	18.930	42.130	61.060	-12.940	74.000	PEAK
4		15731.000	20.095	39.970	60.066	-13.934	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5240MHz

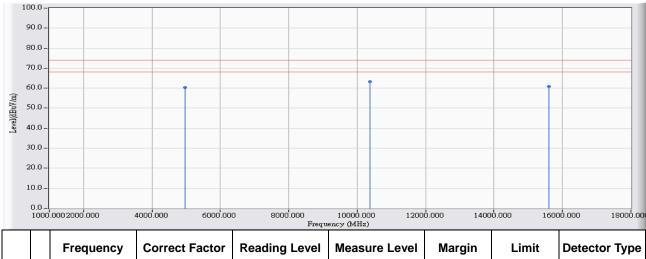
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5190MHz



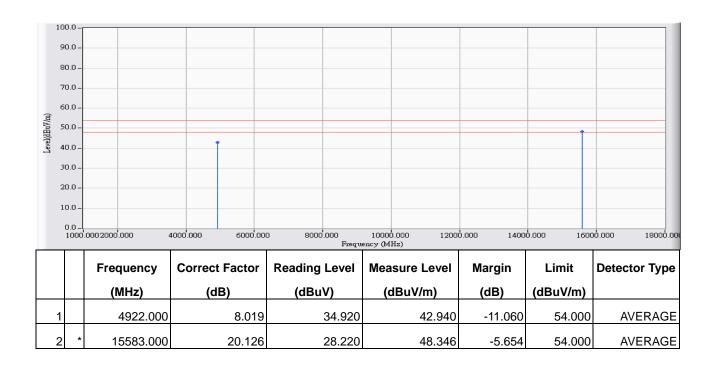
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	50.660	48.100	-25.900	74.000	PEAK
2		4919.000	8.020	43.520	51.540	-22.460	74.000	PEAK
3	*	10377.000	18.467	42.230	60.697	-13.303	74.000	PEAK
4		15561.000	20.130	38.440	58.571	-15.429	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5190MHz

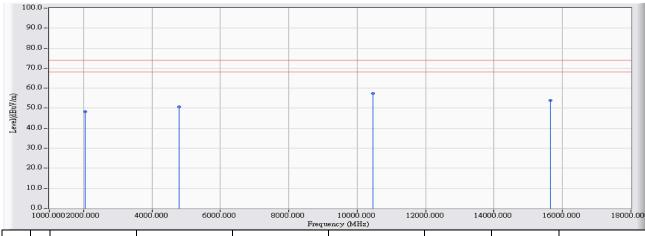
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03		
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6		
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz		
VERTICAL			
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326		
	802.11n(40M)_5190MHz		



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4959.000	8.020	52.230	60.250	-13.750	74.000	PEAK
2	*	10378.000	18.471	44.880	63.352	-10.648	74.000	PEAK
3		15601.000	20.122	40.610	60.732	-13.268	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

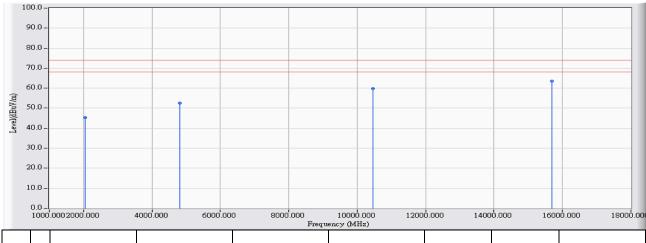

Site : CB2-H	Time : 2017/05/03		
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6		
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz		
VERTICAL			
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326		
	802.11n(40M)_5190MHz		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03			
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6			
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz			
HORIZONTAL				
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326			
	802.11n(40M)_5230MHz			

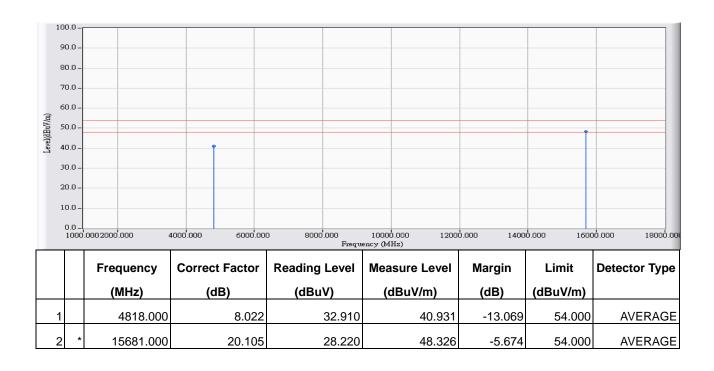
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	50.700	48.140	-25.860	74.000	PEAK
2		4783.000	8.022	42.530	50.551	-23.449	74.000	PEAK
3	*	10461.000	18.844	38.410	57.254	-16.746	74.000	PEAK
4		15650.000	20.112	33.760	53.872	-20.128	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5230MHz

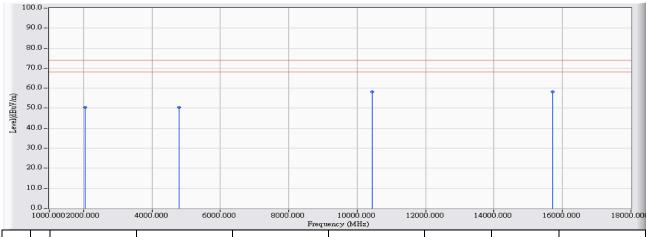
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5230MHz



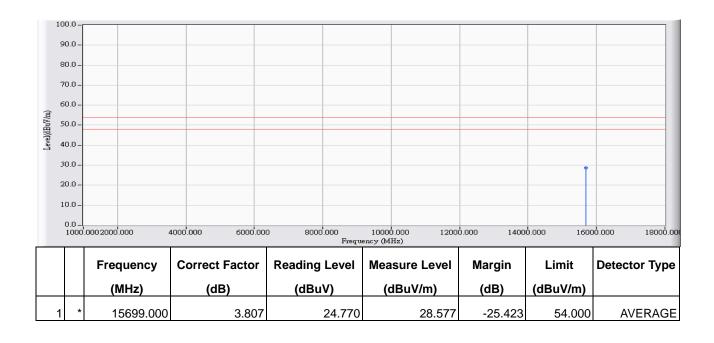
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	47.910	45.350	-28.650	74.000	PEAK
2	*	4818.000	8.022	44.550	52.571	-21.429	74.000	PEAK
3		10460.000	18.840	41.040	59.880	-14.120	74.000	PEAK
4		15697.000	20.103	43.380	63.483	-10.517	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5230MHz

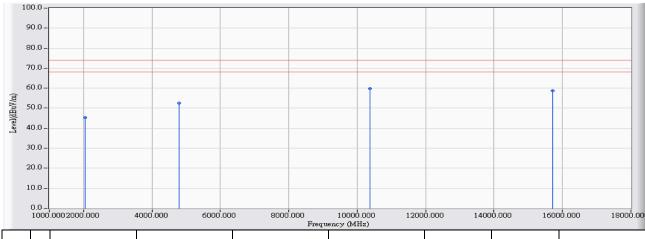
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5210MHz



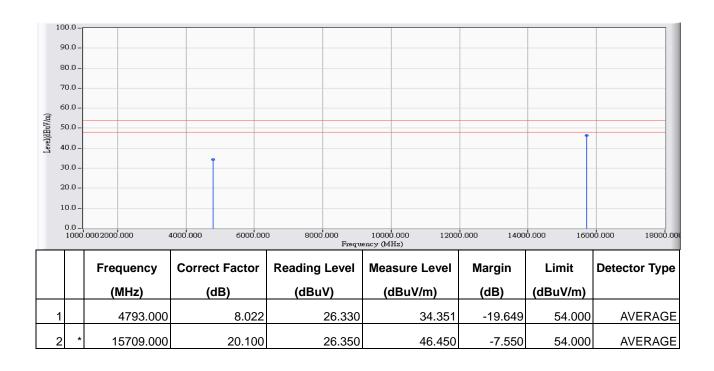
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	52.850	50.290	-23.710	74.000	PEAK
2		4800.000	8.021	42.470	50.491	-23.509	74.000	PEAK
3		10442.000	18.759	39.310	58.069	-15.931	74.000	PEAK
4	*	15704.000	20.102	38.160	58.261	-15.739	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5210MHz

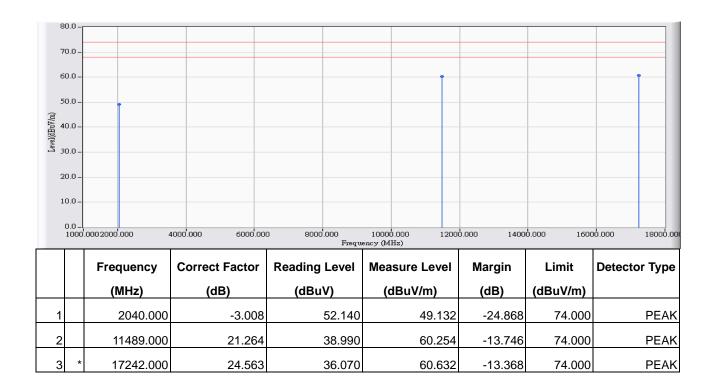
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5210MHz

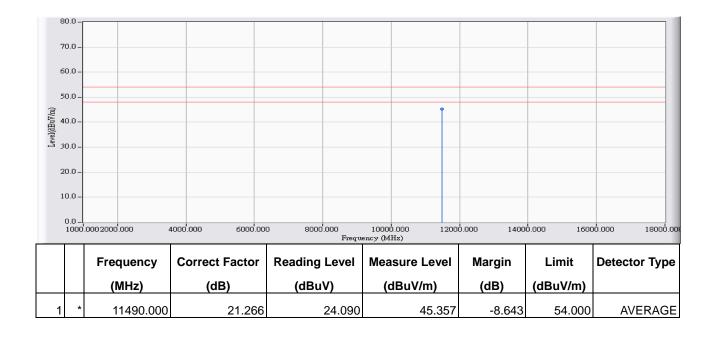


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2039.000	-2.560	47.860	45.300	-28.700	74.000	PEAK
2		4793.000	8.022	44.450	52.471	-21.529	74.000	PEAK
3	*	10382.000	18.490	41.250	59.740	-14.260	74.000	PEAK
4		15709.000	20.100	38.580	58.680	-15.320	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5210MHz

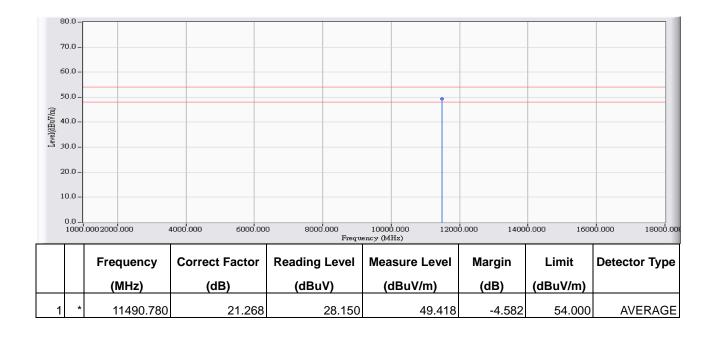
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5745MHz

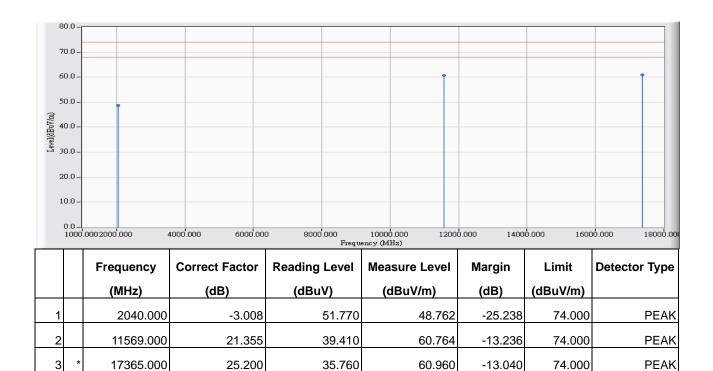
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5745MHz

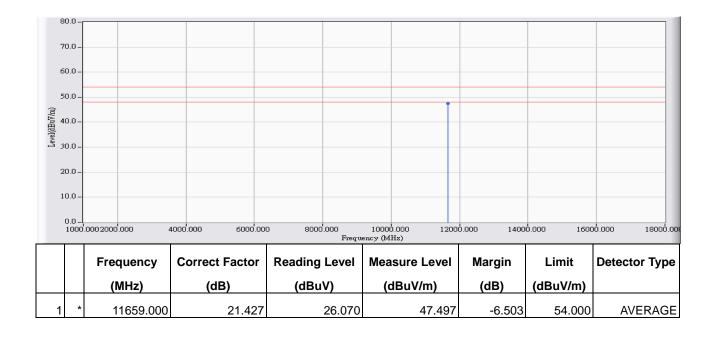
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5745MHz

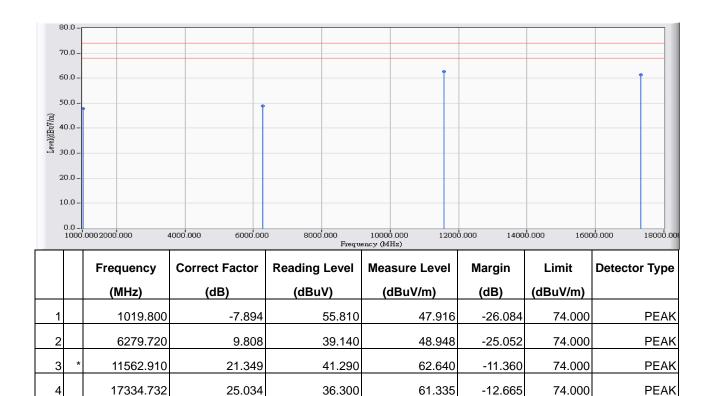
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5745MHz

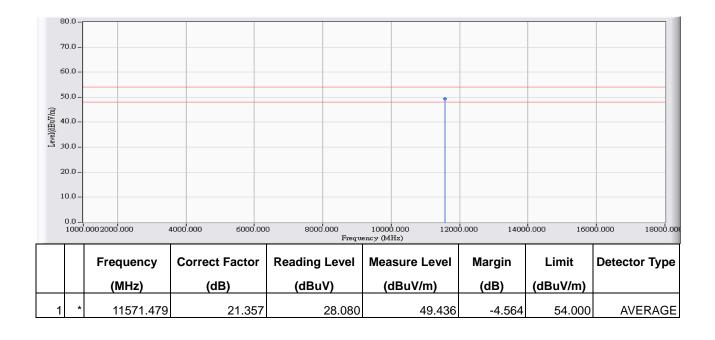
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5785MHz

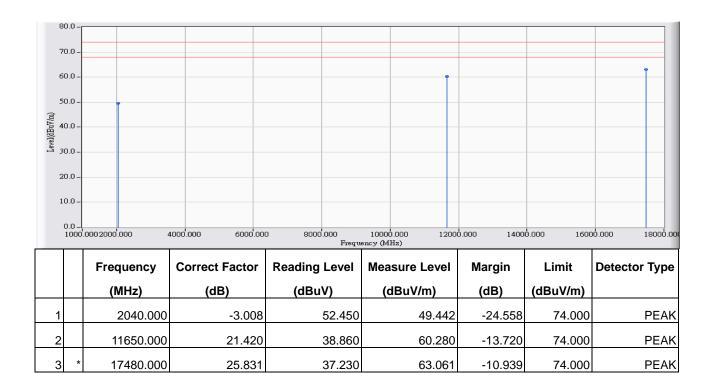
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5785MHz

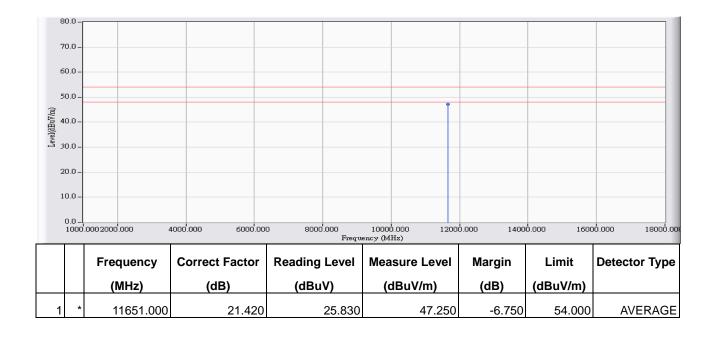
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5785MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5785MHz

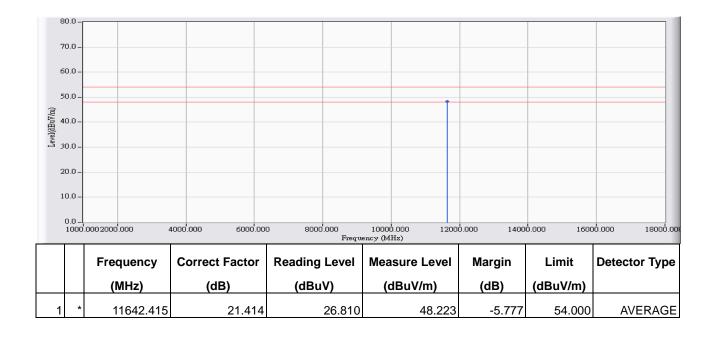
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5825MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5825MHz

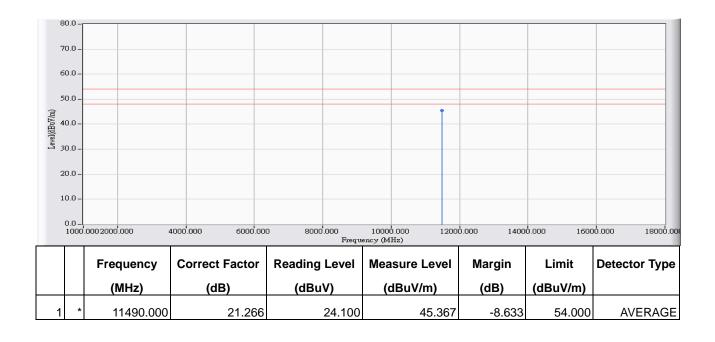
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5825MHz

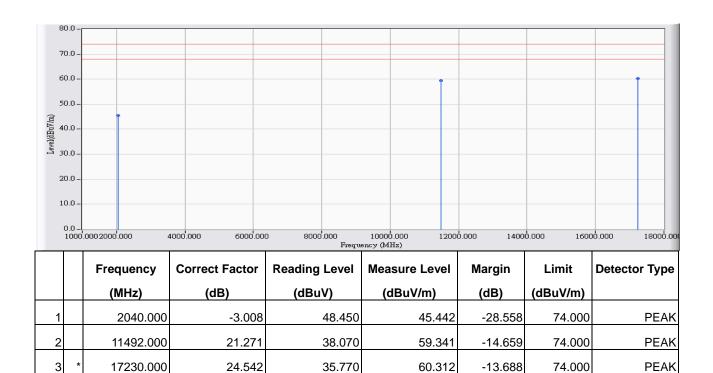
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 1: TX CDD_ ADP: AD890326
	802.11a_5825MHz

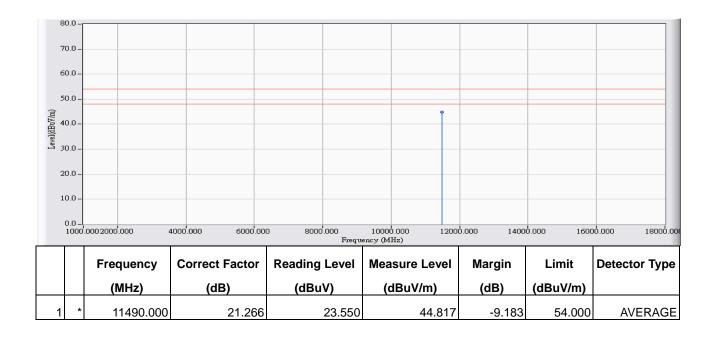
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5745MHz

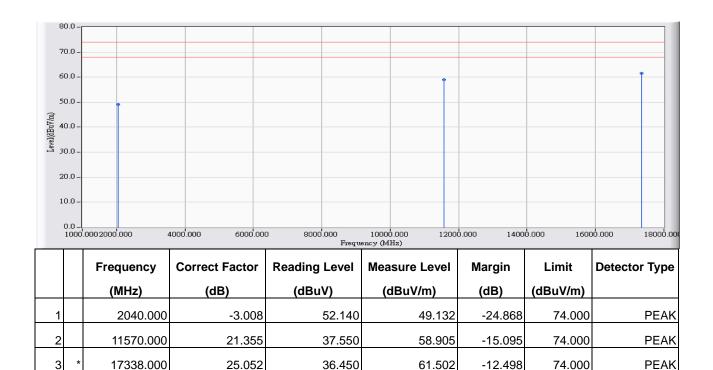
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5745MHz

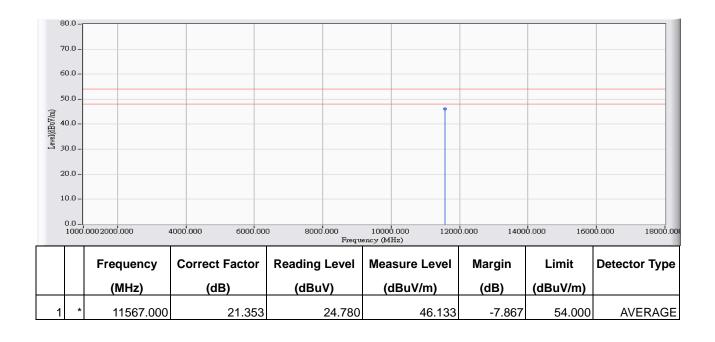
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5745MHz

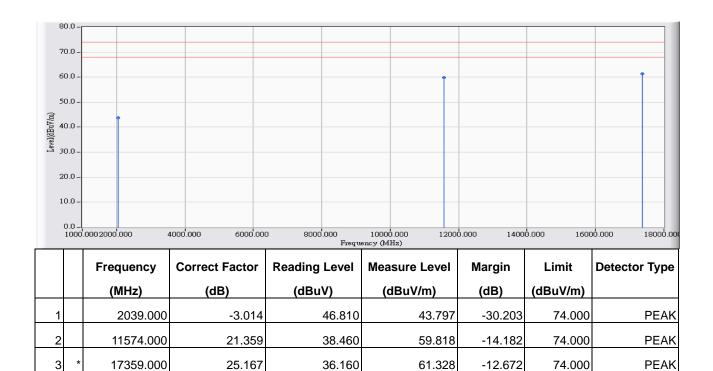
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5745MHz

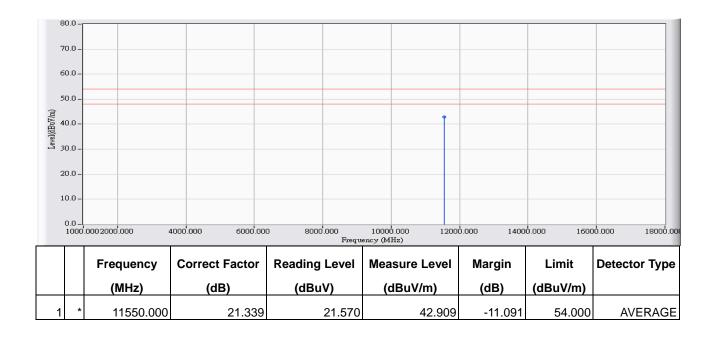
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5785MHz

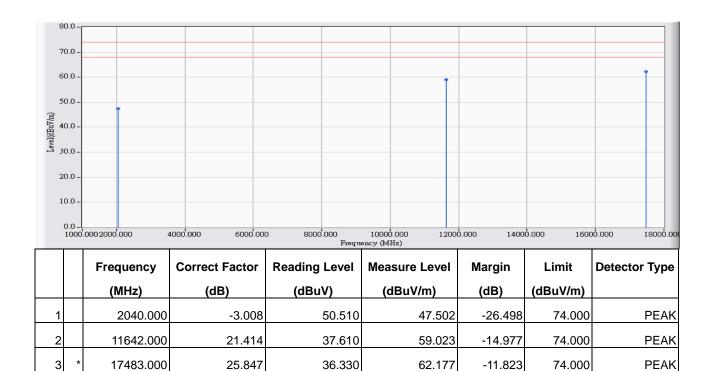
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326]
	802.11n(20M)_5785MHz

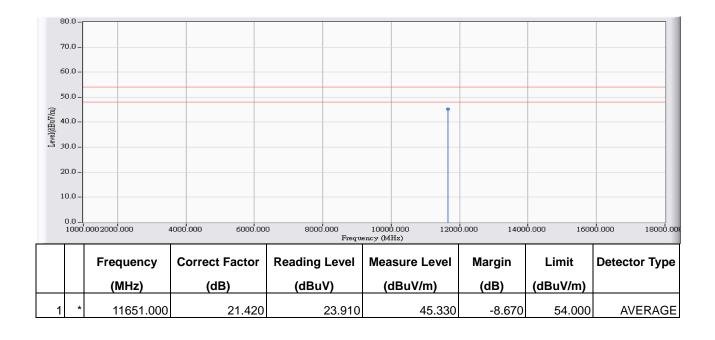
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5785MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

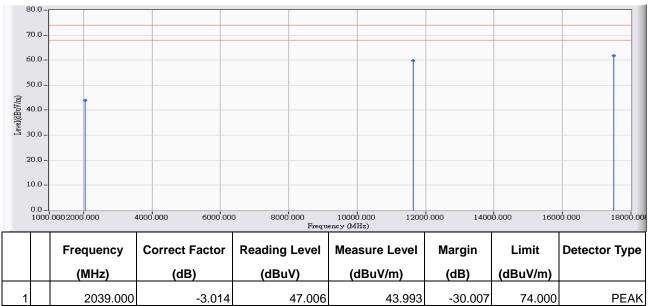

Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5785MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5825MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

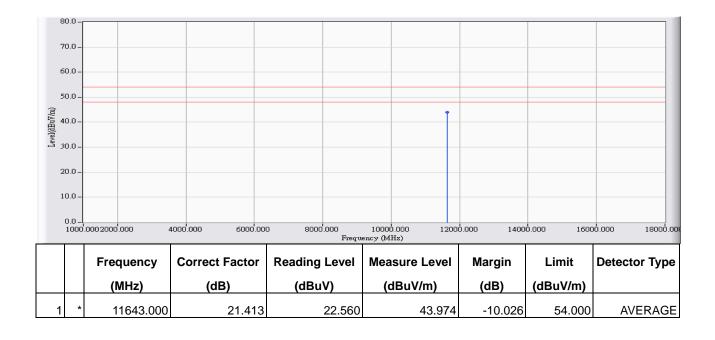
Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5825MHz


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

PEAK

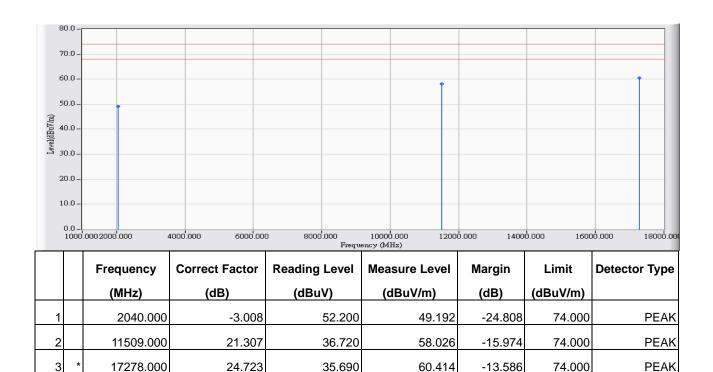
PEAK

Site : CB2-H	Time : 2017/05/04
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5825MHz

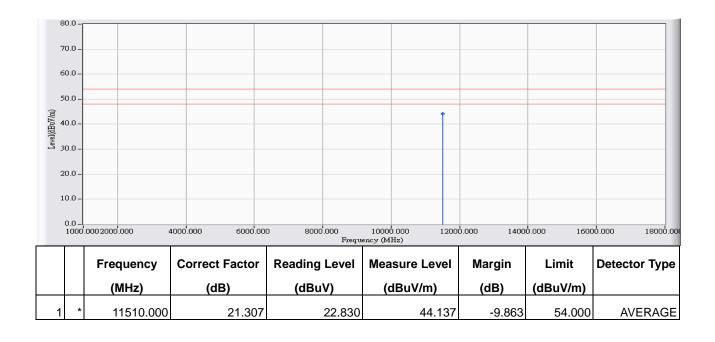


2039.000 -3.014 47.006 43.993 -30.007 74.000 1 2 11643.000 21.413 38.460 59.874 -14.126 74.000 17489.000 25.880 35.930 61.810 -12.190 74.000 3

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/11
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(20M)_5825MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5755MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5755MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05	
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6	
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz	
VERTICAL		
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326	
	802.11n(40M)_5755MHz	

Δ

17250.000

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

60.787

-13.213

74.000

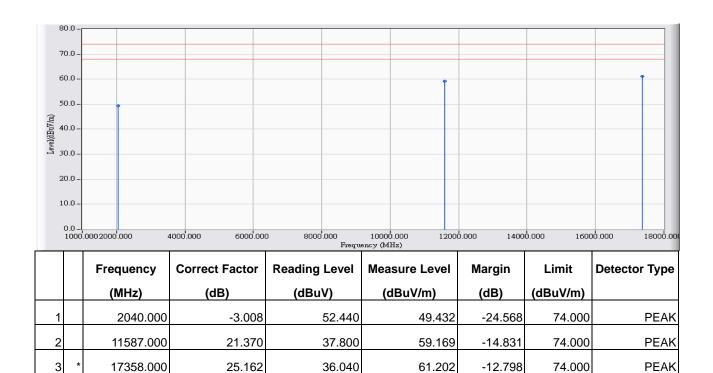
PEAK

36.210

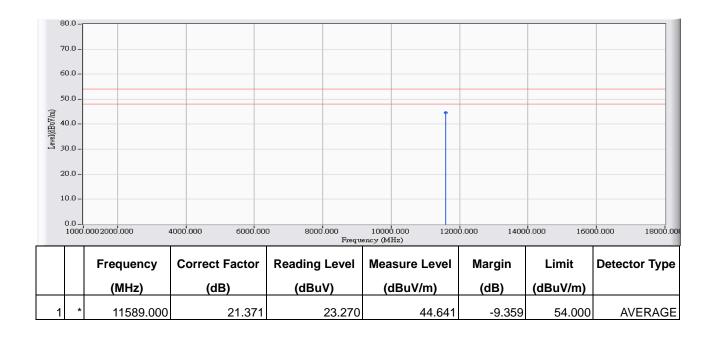
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.

24.577

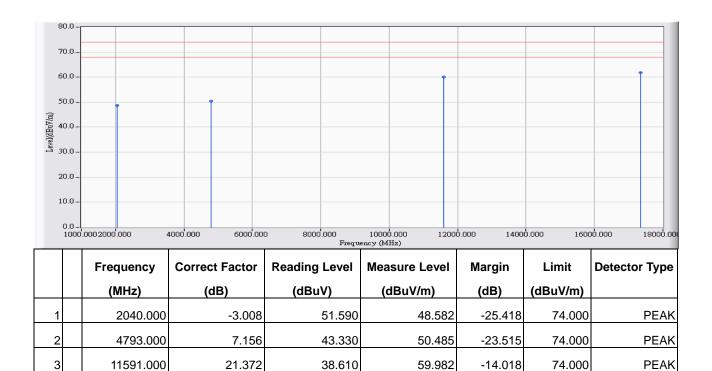
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5755MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5795MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05	
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6	
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz	
HORIZONTAL		
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326	
	802.11n(40M)_5795MHz	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05	
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6	
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz	
VERTICAL		
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326	
	802.11n(40M)_5795MHz	

Δ

17354.000

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

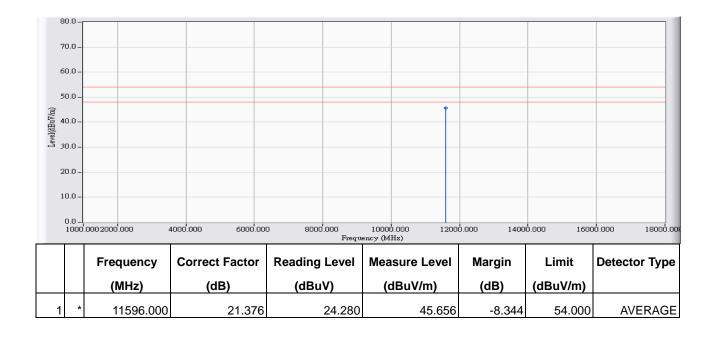
61.860

-12.140

74.000

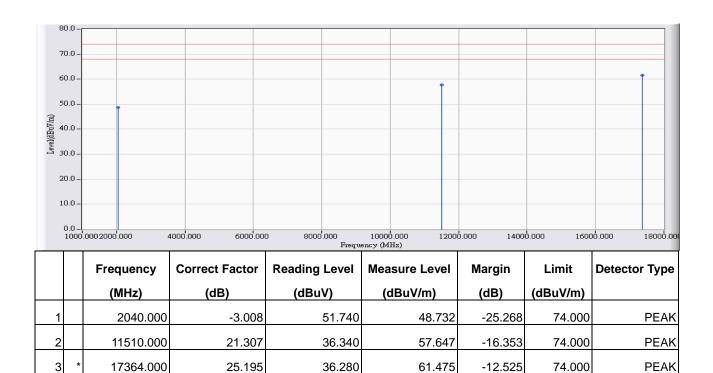
PEAK

36.720

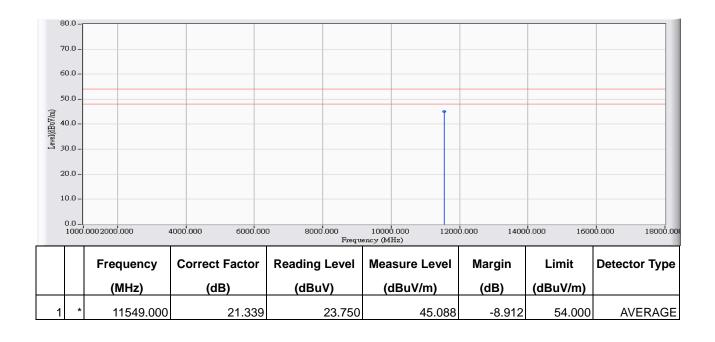

- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

25.140

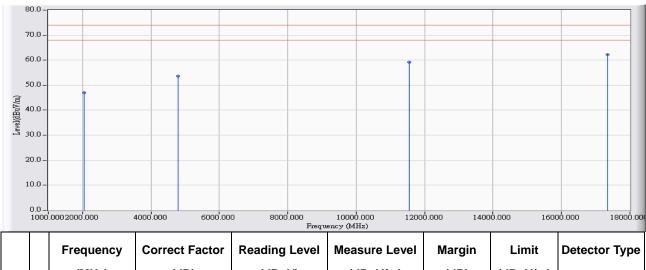
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11n(40M)_5795MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

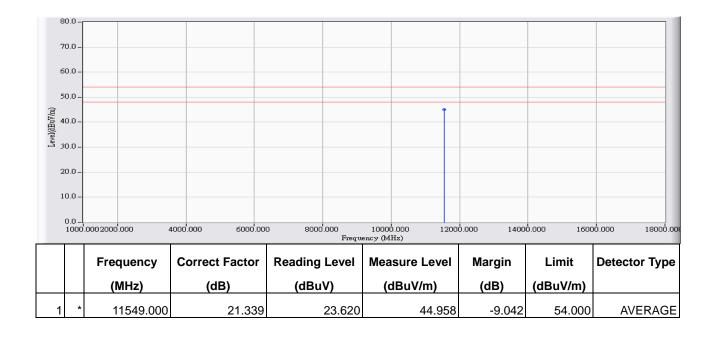

Site : CB2-H	Time : 2017/05/05		
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6		
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz		
HORIZONTAL			
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326		
	802.11ac(80M)_5775MHz		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB2-H	Time : 2017/05/05		
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6		
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz		
HORIZONTAL			
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326		
	802.11ac(80M)_5775MHz		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05		
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6		
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz		
VERTICAL			
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326		
	802.11ac(80M)_5775MHz		



		Frequency	Correct Factor	Reading Level	weasure Lever	wargin	Linnt	Delector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2040.000	-3.008	49.950	46.942	-27.058	74.000	PEAK
2		4794.000	7.156	46.380	53.536	-20.464	74.000	PEAK
3		11547.000	21.337	37.880	59.217	-14.783	74.000	PEAK
4	*	17350.000	25.118	37.180	62.298	-11.702	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB2-H	Time : 2017/05/05
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB2-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2600 Dual Band Gigabit Router	Note : Mode 2: TX MIMO_ ADP: AD890326
	802.11ac(80M)_5775MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.