## Appendix B. Maximum Permissible Exposure

## 1. Maximum Permissible Exposure

### 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby that distance of at least 0.2 m is normally maintained between the user and the device.
(A) Limits for Occupational / Controlled Exposure

| Frequency Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength $(\mathrm{E})(\mathrm{V} / \mathrm{m})$ | Magnetic Field <br> Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$ | Power Density $(\mathrm{S})$ <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Averaging Time <br> $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S <br> $($ minutes $)$ |
| :---: | :---: | :---: | :---: | :---: |
| $0.3-3.0$ | 614 | 1.63 | $(100)^{\star}$ | 6 |
| $3.0-30$ | $1842 / \mathrm{f}$ | $4.89 / \mathrm{f}$ | $(900 / \mathrm{f})^{\star}$ | 6 |
| $30-300$ | 61.4 | 0.163 | 1.0 | 6 |
| $300-1500$ |  |  | $\mathrm{~F} / 300$ | 6 |
| $1500-100,000$ |  |  | 5 | 6 |

(B) Limits for General Population / Uncontrolled Exposure

| Frequency Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength $(\mathrm{E})(\mathrm{V} / \mathrm{m})$ | Magnetic Field <br> Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$ | Power Density $(\mathrm{S})$ <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Averaging Time <br> $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S <br> $($ minutes $)$ |
| :---: | :---: | :---: | :---: | :---: |
| $0.3-1.34$ | 614 | 1.63 | $(100)^{\star}$ | 30 |
| $1.34-30$ | $824 / \mathrm{f}$ | $2.19 / \mathrm{f}$ | $(180 / \mathrm{f})^{\star}$ | 30 |
| $30-300$ | 27.5 | 0.073 | 0.2 | 30 |
| $300-1500$ |  |  | $\mathrm{~F} / 1500$ | 30 |
| $1500-100,000$ |  |  | 1.0 | 30 |

Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density

### 1.2. MPE Calculation Method

$E(\mathrm{~V} / \mathrm{m})=\frac{\sqrt{30 \times P \times G}}{d}$
Power Density: $\quad P d\left(W / \mathrm{m}^{2}\right)=\frac{E^{2}}{377}$
$\mathrm{E}=$ Electric field $(\mathrm{V} / \mathrm{m})$
P = Average RF output power (W)
$\mathbf{G}=$ EUT Antenna numeric gain (numeric)
$\mathbf{d}=$ Separation distance between radiator and human body (m)
The formula can be changed to
$P d=\frac{30 \times P \times G}{377 \times d^{2}}$
From the EUT RF output power, the minimum mobile separation distance, $d=0.31 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.
$\qquad$

### 1.3. Calculated Result and Limit

## Exposure Environment: General Population / Uncontrolled Exposure

EUT: Version 1
For 5 GHz Band (NII):
Antenna Type : Dipole Antenna
Conducted Power for IEEE 802.11 ac MCSO/Nss1 VHT20: 26.47 dBm

| Distance <br> (m) | Test Freq. (MHz) | Directional Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |  | Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Limit of Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Test Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (dBm) | (mW) |  |  |  |
| 0.31 | 5240 | 9.49 | 8.8932 | 26.4684 | 443.4459 | 0.326729 | 1 | Complies |

Note: Directional Gain $=10 \log \left[\frac{\sum_{j=1}^{N s s}\left(\sum_{K=1}^{N_{A N T}} g_{j, k}\right\}^{2}}{N_{A N T}}\right]$
For 5GHz Band (DTS):
Antenna Type : Dipole Antenna
Conducted Power for IEEE 802.11 ac MCSO/Nss1 VHT80: 26.45 dBm

| Distance <br> (m) | Test Freq. (MHz) | Directional Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |  | Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Limit of Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Test Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (dBm) | (mW) |  |  |  |
| 0.31 | 5775 | 9.49 | 8.8932 | 26.4518 | 441.7485 | 0.325478 | 1 | Complies |

Note: Directional Gain $=10 \log \left[\frac{\sum_{j=1}^{N s s}\left\{\sum_{K=1}^{N_{\text {ANT }}} g_{j, k}\right\}^{2}}{N_{\text {ANT }}}\right]$
For 2.4GHz Band:
Antenna Type : Dipole Antenna
Conducted Power for IEEE 802.11 ac MCSO/Nss1 VHT20: 27.56 dBm

| Distance <br> (m) | Test Freq. (MHz) | Directional Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |  | Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Limit of Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Test Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (dBm) | (mW) |  |  |  |
| 0.31 | 2437 | 8.34 | 6.8243 | 27.5617 | 570.3849 | 0.322489 | 1 | Complies |

Note: Directional Gain $=10 \log \left[\frac{\sum_{j=1}^{N s s}\left\{\sum_{K=1}^{N_{\text {ANT }}} g_{j, k}\right\}^{2}}{N_{\text {ANT }}}\right]$

## Conclusion:

Both of the 2.4 GHz WLAN function, 5 GHz Band 1 WLAN function and 5 GHz Band 4 WLAN function can transmit simultaneously, the formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + $\qquad$ .etc. < 1
CPD = Calculation power density
LPD = Limit of power density
Therefore, the worst-case situation is $0.322489 / 1+0.326729 / 1+0.325478 / 1=0.974696$, which is less than " 1 ". This confirmed that the device complies.

## EUT: Version 2

For 5GHz Band (NII):
Antenna Type : Dipole Antenna
Conducted Power for IEEE 802.11 ac MCSO/Nss1 VHT20: 26.46dBm

| Distance <br> (m) | Test Freq. (MHz) | Directional Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |  | Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Limit of Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Test Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (dBm) | (mW) |  |  |  |
| 0.31 | 5200 | 9.49 | 8.8932 | 26.4625 | 442.8465 | 0.326287 | 1 | Complies |

Note: Directional Gain $=10 \log \left[\frac{\sum_{j=1}^{N s s}\left\{\sum_{K=1}^{N_{\text {ANT }}} g_{j, k}\right\}^{2}}{N_{\text {ANT }}}\right]$
For 5GHz Band (DTS):
Antenna Type : Dipole Antenna
Conducted Power for IEEE 802.11 ac MCSO/Nss1 VHT40: $\mathbf{2 6 . 4 6 ~ d B m ~}$

| Distance <br> (m) | Test Freq. (MHz) | Directional Gain (dBi) | Antenna Gain (numeric) | The maximum combined Average Output Power |  | Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Limit of Power Density (S) ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Test Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (dBm) | (mW) |  |  |  |
| 0.31 | 5795 | 9.49 | 8.8932 | 26.4607 | 442.6563 | 0.326147 | 1 | Complies |

Note: Directional Gain $=10 \log \left[\frac{\sum_{j=1}^{N s s}\left\{\sum_{K=1}^{N_{\text {ANT }}} g_{j, k}\right\}^{2}}{N_{\text {ANT }}}\right]$
For 2.4GHz Band:
Antenna Type : Dipole Antenna
Conducted Power for IEEE 802.11 ac MCSO/Nss1 VHT20: 27.50 dBm

| Distance <br> $(\mathrm{m})$ | Test Freq. <br> $(\mathrm{MHz})$ | Directional <br> Gain $(\mathrm{dBi})$ | Antenna <br> Gain <br> $($ numeric $)$ | The maximum <br> combined Average <br> Output Power |  | Power <br> Density (S) <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit of <br> Power <br> Density $(\mathrm{S})$ <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | 2437 | 8.34 | 6.8243 | 27.4956 | 561.7704 | 0.317618 | 1 | Complies Res |

Note: Directional Gain $=10 \log \left[\frac{\sum_{j=1}^{N s s}\left(\sum_{K=1}^{N_{A N T}} g_{j, k}\right\}^{2}}{N_{A N T}}\right]$

## Conclusion:

Both of the 2.4 GHz WLAN function, 5 GHz Band 1 WLAN function and 5 GHz Band 4 WLAN function can transmit simultaneously, the formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + $\qquad$ etc. $<1$
CPD = Calculation power density
LPD = Limit of power density
Therefore, the worst-case situation is $0.317618 / 1+0.326287 / 1+0.326147 / 1=0.970052$, which is less than " 1 ". This confirmed that the device complies.

