FCC RADIO TEST REPORT

Report No. : FR952922-06AA

FCC RADIO TEST REPORT

FCC ID	:	MSQ-RTAXJ300
Equipment	:	AX3000 Dual Band Wi-Fi Router, AX5400 Dual Band Wi-Fi Router, Dual Band Wi-Fi Router
Brand Name	÷	ASUS
Model Name	:	RT-AX58U, RT-AX82U, RT-AX3000, RT-AX5400, TUF-AX3000
Applicant	:	ASUSTeK COMPUTER INC.
		1F., No. 15, Lide Rd., Beitou, Taipei 112, Taiwan
Manufacturer (1)	:	Datamax Electronics (DongGuan) Co., Ltd.
		Niu Shan Foreign Economic Industrial Park, Dong Cheng District, Dong Guan City, Guang Dong, China
Manufacturer (2)	:	Compal Networking (KunShan) Co., LTD.
		No. 520, Nabbang Rd., Economic & Technical Development Zone Kunshan, Jiangsu Province China
Manufacturer (3)	:	ARCADYAN TECHNOLOGY (VIETNAM) CO., LTD.
		Ba Thien Industrial Park, Ba Hien commune, Binh Xuyen district, Vinh Phuc Province
Standard	:	47 CFR FCC Part 15.247

The product was received on Dec. 25, 2019, and testing was started from Dec. 25, 2019 and completed on May 06, 2020. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A10_10 Ver1.2 Page Number: 1 of 20Issued Date: Jun. 10, 2020Report Version: 01

Table of Contents

Histor	History of this test report3				
Summ	nary of Test Result4				
1	General Description				
1.1 1.2	Information5 Applicable Standards				
1.3	Testing Location Information				
1.4	Measurement Uncertainty10				
2	Test Configuration of EUT11				
2.1	The Worst Case Measurement Configuration11				
2.2	EUT Operation during Test12				
2.3	Accessories12				
2.4	Support Equipment12				
2.5	Test Setup Diagram13				
3	Transmitter Test Result15				
3.1	AC Power-line Conducted Emissions15				
3.2	Emissions in Restricted Frequency Bands17				
4	Test Equipment and Calibration Data20				
Apper	ndix A. Test Results of AC Power-line Conducted Emissions				
Appendix B. Test Results of Emissions in Restricted Frequency Bands					
Apper	ndix C. Test Photos				

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR952922-06AA	01	Initial issue of report	Jun. 10, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	15.203 Antenna Requirement		-
3.1 15.207 AC Power-line Co		AC Power-line Conducted Emissions	PASS	-
3.2 15.247(d) Emissions in Restricted Frequency Bands PASS				-
Reference	to Sporton Pro	oject No.: 952922-05		

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Cindy Peng

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz) IEEE Std. 802.11		Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20), VHT20, ax (HEW20)	2412-2462	1-11 [11]
2400-2483.5	n (HT40), VHT40, ax (HEW40)	2422-2452	3-9 [7]

Band	Band Mode		Nant
2.4-2.4835GHz	802.11b	20	2TX
2.4-2.4835GHz	802.11g	20	2TX
2.4-2.4835GHz	802.11n HT20	20	2TX
2.4-2.4835GHz	802.11n HT20-BF	20	2TX
2.4-2.4835GHz	VHT20	20	2TX
2.4-2.4835GHz	VHT20-BF	20	2TX
2.4-2.4835GHz	802.11ax HEW20	20	2TX
2.4-2.4835GHz	802.11ax HEW20-BF	20	2TX
2.4-2.4835GHz	802.11n HT40	40	2TX
2.4-2.4835GHz	802.11n HT40-BF	40	2TX
2.4-2.4835GHz	VHT40	40	2TX
2.4-2.4835GHz	VHT40-BF	40	2TX
2.4-2.4835GHz	802.11ax HEW40	40	2TX
2.4-2.4835GHz	802.11ax HEW40-BF	40	2TX

Note:

- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- VHT20, VHT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- HEW20, HEW40 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Set	Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
	1	PSA	RFDPA161314IMLB701	Dipole Antenna	I-PEX	
1	2	PSA	RFDPA161311IM5B702	Dipole Antenna	I-PEX	
	3	PSA	RFDPA161310IM5B701	Dipole Antenna	I-PEX	
	4	PSA	RFDPA161316IMLB701	Dipole Antenna	I-PEX	
	1	M.gear	C660-510468-A	Dipole Antenna	I-PEX	
2	2	M.gear	C660-510469-A	Dipole Antenna	I-PEX	
2	3	M.gear	C660-510470-A	Dipole Antenna	I-PEX	
	4	M.gear	C660-510471-A	Dipole Antenna	I-PEX	Note 1
	1	M.gear	C660-510472-A	Dipole Antenna	I-PEX	Note I
3	2	M.gear	C660-510473-A	Dipole Antenna	I-PEX	
3	3	M.gear	C660-510474-A	Dipole Antenna	I-PEX	
	4	M.gear	C660-510475-A	Dipole Antenna	I-PEX	
	1	PSA	RFDPA171314IMLB701	Dipole Antenna	I-PEX	
4	2	PSA	RFDPA171311IM5B702	Dipole Antenna	I-PEX	
4	3	PSA	RFDPA171310IM5B702	Dipole Antenna	I-PEX	
	4	PSA	RFDPA171316IMLB701	Dipole Antenna	I-PEX	

0.1	A		Port			5GHz	5GHz	5GHz	5GHz
Set	Ant.	2.4G 2TX	5G 2TX	5G 4TX	2.4GHz	Band 1	Band 2	Band 3	Band 4
	1	2	-	2	1.71	1.75	1.89	1.88	1.70
1	2	-	1	1	-	1.93	1.93	1.92	1.95
I	3	-	2	4	-	1.75	1.85	1.83	1.89
	4	1	-	3	1.63	1.92	1.88	1.90	1.87
	1	2	-	2	1.61	1.74	1.84	1.86	1.67
0	2	-	1	1	-	1.76	1.80	1.87	1.87
2	3	-	2	4	-	1.66	1.72	1.69	1.84
	4	1	-	3	1.60	1.88	1.82	1.85	1.86
	1	2	-	2	1.70	1.71	1.85	1.85	1.68
3	2	-	1	1	-	1.68	1.73	1.80	1.85
3	3	-	2	4	-	1.63	1.74	1.76	1.77
	4	1	-	3	1.62	1.67	1.74	1.79	1.85
	1	2	-	2	1.7	1.74	1.74	1.82	1.68
	2	-	1	1	-	1.86	1.90	1.64	1.90
4	3	-	2	4	-	1.48	1.60	1.46	1.88
	4	1	-	3	1.61	1.63	1.71	1.81	1.86

Note 1:

Note 2: The above information was declared by manufacturer.

Note 3: The EUT has four sets of antennas and there are four antennas for each set.

Set 1~4 are the same type antenna. Only the highest gain Set 1 antenna was selected to test and record in this report.

For 2.4GHz WLAN function

IEEE 802.11b/g/n/VHT/ax mode (2TX/2RX):

Port 1 and port 2 can be used as transmitting/receiving antenna.

Port 1 and port 2 could transmit/receive simultaneously.

For 5GHz WLAN function

IEEE 802.11a/n/ac/ax mode (2TX, 4TX/4RX):

For 2TX

Port 1 and port 2 can be used as transmitting antenna.

Port 1 and port 2 could transmit simultaneously.

For 4TX, 4RX

Port 1, port 2, port 3 and port 4 can be used as transmitting/receiving antenna.

Port 1, port 2, port 3 and port 4 could transmit/receive simultaneously.

1.1.3 EUT Operational Condition

EUT Power Type	From power adapter					
Beamforming Function	With beamforming U Without beamforming					
Beamorning Function	For IEEE 802.11n/ax/VHT in 2.4GHz and IEEE 802.11n/ac/ax in 5GHz.					
Function	Point-to-multipoint Point-to-point					
Test Software Version	Mtool V3.1.0.3					

Note: The above information was declared by manufacturer.

1.1.4 Table for Multiple Listing

The Equipment and model names in the following table are all refer to the identical product.

Equipment	Model Name	Description
AX3000 Dual Band Wi-Fi Router, AX5400 Dual Band Wi-Fi Router, Dual Band Wi-Fi Router	RT-AX58U, RT-AX82U, RT-AX3000, RT-AX5400, TUF-AX3000	All the equipment and model names are identical, the different equipment and model names served as marketing strategy.

From the above table, equipment: AX3000 Dual Band Wi-Fi Router and model: RT-AX82U was selected as

representative model for the test and its data was recorded in this report.

1.1.5 Table for SKU information

SKU	Material	5G PA	Housing Size	Brand	P/N
SKU 1	RJ-45 port was covered by plastic.	SKY85743	223.62mm x 129.48mm x 32.9mm		
SKU 2	RJ-45 port was covered by metal.	SKY85743	264.82mm x 156.11mm x 54.97mm	LAN port :	LAN port :
SKU 3	RJ-45 port was covered by metal.	SKY85743	265.00mm x 158.39mm x 54.99mm	NETSWAP / Mingtek WAN port :	NS773602 / HN36201CG WAN port: NS771802
SKU 4	RJ-45 port was covered by metal.	SKY85743	275.50mm x 170.40mm x 65.00mm	NETSWAP / Mingtek	/HN18101CG
SKU 5	RJ-45 port was covered by plastic.	QPF4516B	223.62mm x 129.48mm x 32.9mm		

Note1: The SKU 3 is same as SKU 2 except for the logo of housing size and antenna appearance.

Note2: The SKU 4 is same as SKU 2 except for the logo of housing size, antenna appearance and design of light board.

Note3: The EUT 5 is same as SKU 1 except for 5G PA.

1.1.6 Table for EUT supports functions

Function	Support Type	
AP Router	Master	
Bridge	Slave without radar detection	
Repeater	Master	
Mesh	Master	

1.1.7 Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR952922AA

Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
1. Adding three adapters (adapter 3~adapter 5).	 Conducted Emissions Radiated Emissions below 1GHz.
2. Adding the SKU 4 and SKU 5 (Refer to section 1.1.6 for detail information).	Radiated Emissions below 1GHz.
 Adding 5GHz band 3 (5470~5725 MHz) for this device. Adding Mesh function. Adding Dynamic In-Service Monitoring Test (Zero-Wait CAC) of 160MHz. Adding model name: RT-AX3000, RT-AX5400, TUF-AX3000 (Refer to section 1.1.5 for detail information) Adding equipment name: Dual Band Wi-Fi Router (Refer to section 1.1.5 for detail information) Adding the SKU 3 (Refer to section 1.1.6 for detail information). Changing the applicant address to "1F., No. 15, Lide Rd., Beitou, Taipei 112, Taiwan" from "4F, No. 150, Li-Te Rd., Peitou, Taipei 112, Taiwan". 	It is not necessary to re-test.

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

	Testing Location					
	HWA YA ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)					
		TEL	:	886-3-327-3456 FAX : 886-3-327-0973		
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.		
	TEL : 886-3-656-9065 FAX : 886-3-656-9085					

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
Radiated below 1GHz (For Mode 1~Mode 2)	03CH05-CB	Eason Chen	21.1~22.4°C / 52~55%	Dec. 26, 2019
Radiated below 1GHz (For Mode 3~Mode 5)	03CH05-CB	KJ Chang	21.9~22.6°C / 54~57%	Apr. 23, 2020~May 06, 2020
AC Conduction	CO02-CB	Rick Yeh	23~24.8°C / 56~59%	Dec. 25, 2019

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%

2 Test Configuration of EUT

2.1 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests				
Tests Item	Tests Item AC power-line conducted emissions			
Condition AC power-line conducted measurement for line and neutral				
Operating Mode CTX				
The EUT supports 2.4GHz and 5GHz, the 2.4GHz has been evaluated to be the worst case. So the measurement will follow this same test configuration.				
1	SKU 1 (2.4GHz) + adapter 3			
2 SKU 1 (2.4GHz) + adapter 5				
For operating mode 2 is the worst case and it was record in this test report.				

Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	Emissions in Restricted Frequency Bands				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EU regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.				
Operating Mode < 1GHz	СТХ				
1	SKU 2 (2.4GHz) + adapter 3				
2	SKU 2 (2.4GHz) + adapter 5				
	nd adapter 5, after evaluating, adapter 1 has been evaluated to be the worst case. ollow this same test configuration.				
3	SKU 4 (2.4GHz) + adapter 1				
4	SKU 4 (5GHz) + adapter 1				
Mode 3 has been evaluate this same test mode.	Mode 3 has been evaluated to be the worst case among Mode 3~4, thus measurement for Mode 5 will follo this same test mode.				
5	SKU 5 (2.4GHz) + adapter 1				
For operating mode 2 is th	e worst case and it was record in this test report.				

The Worst Case Mode for Following Conformance Tests				
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation				
Operating Mode				
1 WLAN 2.4GHz + WLAN 5GHz				
Refer to Sporton Test Report No.: FA952922-06 for Co-location RF Exposure Evaluation.				
Note: The ELIT only use	in 7 avis			

Note: The EUT only use in Z axis.

2.2 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

2.3 Accessories

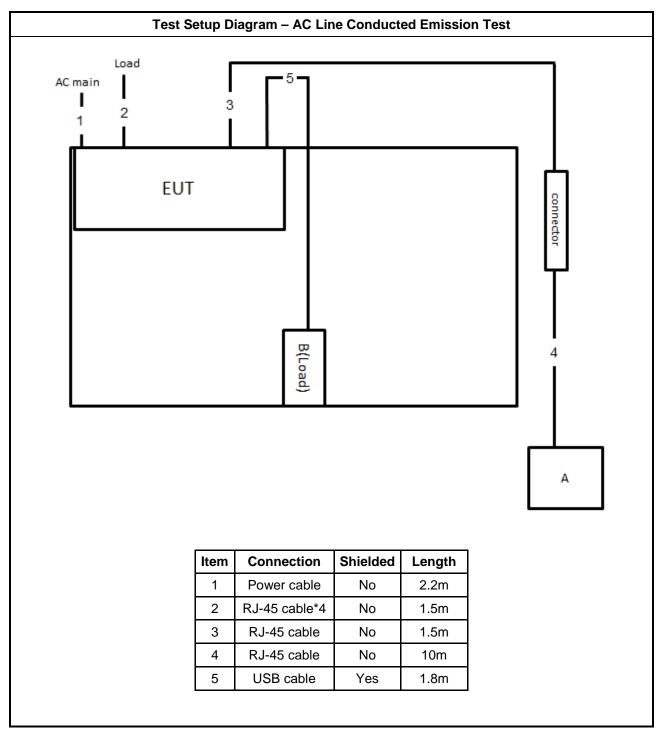
Accessories					
Equipment Name	Brand Name	Model Name	Туре	Country Code	Rating
Adapter 1	PI	AD2088320	010LF	-	INPUT: 100-240V ~ 50/60Hz, 0.8A OUTPUT: 19V, 1.75A
Adapter 2	PI	AD2088320	010-5LF	-	INPUT: 100-240V ~ 50/60Hz, 0.8A OUTPUT: 19V, 1.75A
Adapter 3	Delta	ADP-33AW B	-	G	INPUT: 100-240V ~ 1A, 50-60Hz OUTPUT: 19V, 1.75A
Adapter 4	Delta	ADP-33AW B	-	L	INPUT: 100-240V ~ 1A, 50-60Hz OUTPUT: 19V, 1.75A
Adapter 5	Delta	ADP-33AW Y	-	-	INPUT: 100-240V ~ 1A, 50-60Hz OUTPUT: 19V, 1.75A
Other					
RJ-45 cable*1, Non-shielded, 1.5m					

Note:

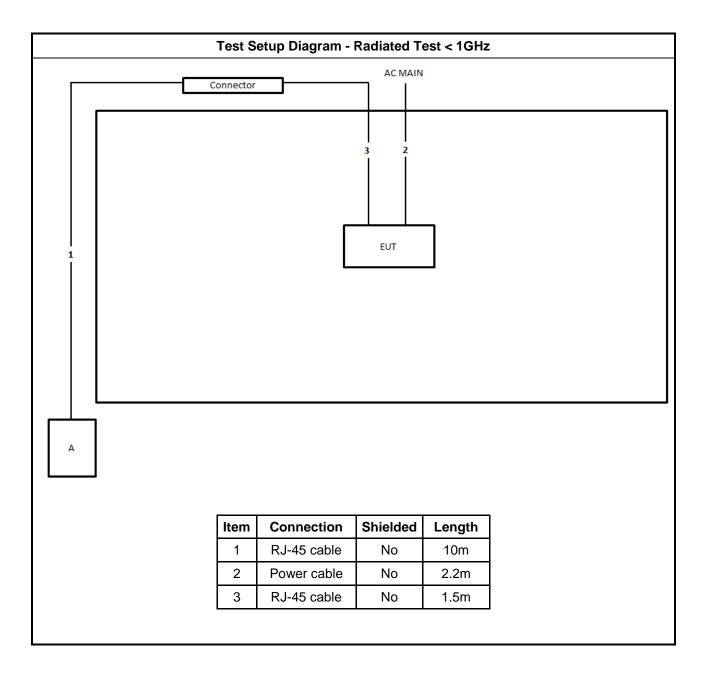
- 1. The power adapter 1~ adapter 2 do not affect the test result of RF tests, so only adapter 1 was tested and recorded in this report.
- 2. The difference between adapter 3 ~ adapter 4 are only different country code, there are only adapter 3 tested and recorded in this report.

2.4 Support Equipment

For AC Conduction:


	Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID						
А	LAN NB	DELL	E6430	N/A			
В	B HDD3.0 WD WDBACY5000AWT N/A						

For Radiated (below 1GHz):


	Support Equipment					
No.	No. Equipment Brand Name Model Name FCC ID					
А	A NB DELL E4300 N/A					

2.5 Test Setup Diagram

3 Transmitter Test Result

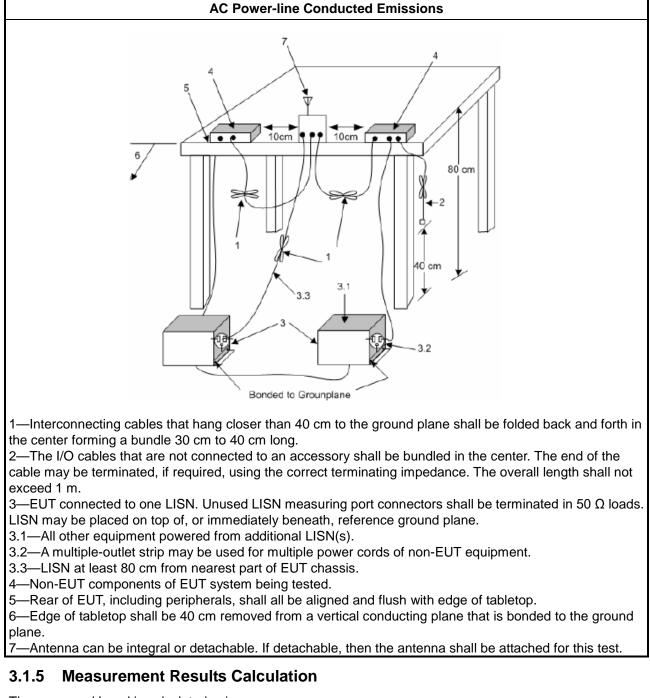
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5 66 - 56 * 56 - 46 *					
0.5-5 56 46					
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

The measured Level is calculated using:

- a. Corrected Reading (dBuV) = LISN Factor + Cable Loss + Read Level = Level
- b. Margin = Limit + (Read Level + LISN Factor + Cable Loss)

3.1.6 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 Emissions in Restricted Frequency Bands

3.2.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)		
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		

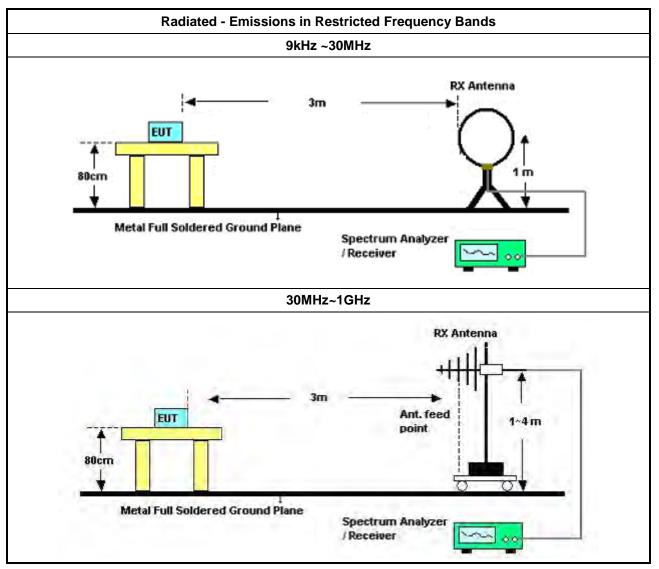
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.2.3 Test Procedures

	Test Method
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
•	For the transmitter unwanted emissions shall be measured using following options below:
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands.
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).
	☐ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.
•	For the transmitter band-edge emissions shall be measured using following options below:
	 Refer as FCC KDB 558074 clause 8.7 & C63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

3.2.4 Test Setup

3.2.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna Factor + Čable Loss + Read Level - Preamp Factor (if applicable) = Level.

3.2.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

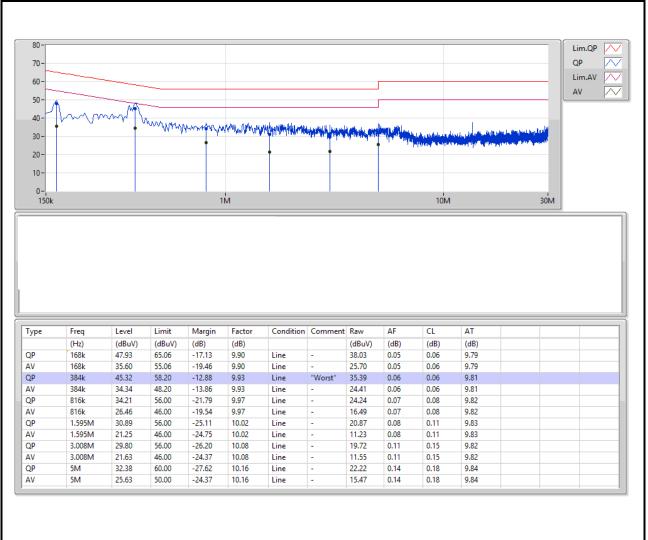
3.2.7 Test Result of Emissions in Restricted Frequency Bands

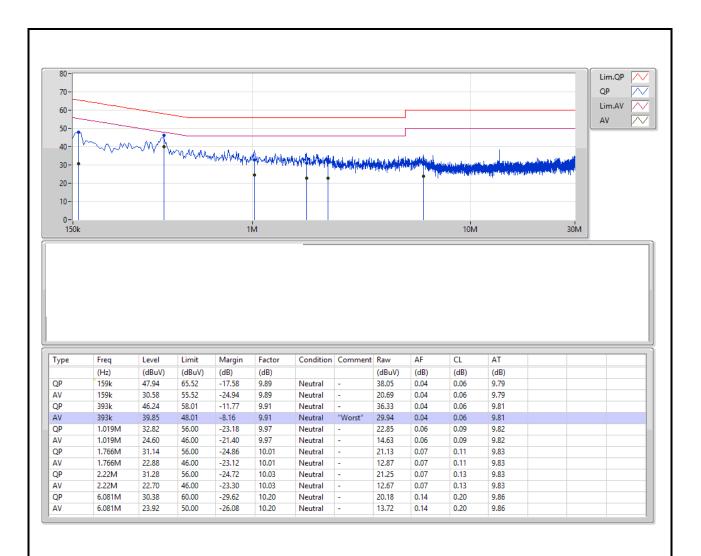
Refer as Appendix B

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Nov. 21, 2019	Nov. 20, 2020	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Oct. 30, 2019	Oct. 29, 2020	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	Jan. 16, 2019	Jan. 15, 2020	Conduction (CO02-CB)
COND Cable	Woken	Cable	2	0.15MHz ~ 30MHz	Oct. 21, 2019	Oct. 20, 2020	Conduction (CO02-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO02-CB)
Bilog Antenna with 6dB Attenuator	TESE & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 28, 2019	Mar. 27, 2020	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 27, 2020	Mar. 26, 2021	Radiation (03CH05-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 29, 2019	Mar. 28, 2020	Radiation (03CH05-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Apr. 13, 2020	Apr. 12, 2021	Radiation (03CH05-CB)
.Pre-Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	May 01, 2019	Apr. 30, 2020	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	Apr. 28, 2020	Apr. 27, 2021	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100304	9kHz ~ 40GHz	Aug. 15, 2019	Aug. 14, 2020	Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	May 15, 2019	May 14, 2020	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	LOW Cable-04+23	30MHz~1GHz	Oct. 07, 2019	Oct. 06, 2020	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	LOW Cable-04+23	30MHz~1GHz	Oct. 07, 2019	Oct. 06, 2020	Radiation (03CH05-CB)

Note: Calibration Interval of instruments listed above is one year.


N.C.R. means Non-Calibration required.


Carrinary								
Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Condition
			(Hz)	(dBuV)	(dBuV)	(dB)	(dB)	
Mode 2	Pass	AV	393k	39.85	48.01	-8.16	9.91	Neutral

Test Mode: Mode 2

erating Mode erating Function			2									
erating Function								1 01	arizat		ven	tical
			СТ	-X - S	KU 2	(2.4G	Hz) +	adap	ter 5			
	100 Level (d 90 80 70 60 50 40 81 56 30 20	BuV/m)			hater and a						Time: 16:00:04	
	1 Y Y	Y.M	MANNUA	herden	normalitie	we line	rd maker	und have	wedlerton	en al fail an	and the second	
	10											
	⁰ 30 10	0. 2	200.	300.	400.		0. ncy (MHz	600. 1)	700.	800.	900. 1000	
		Level	Line		Level	Loss	Factor	Factor	A/Pos	Rema	irk Pol/Phase	-
		dBuV/m 34.74		dB	dBuV	dB 0.69	dB/m 25.11	dB	cm 103	deg 112 QP	VERTICAL	
	2 35.82 3 39.70	35.53 34.28	40.00 40.00	-4.47 -5.72	44.00 45.00	0.77 0.83	22.25 19.96	31.49 31.51	103 104	130 QP 105 QP	VERTICAL VERTICAL	
	66.86		40.00	-4.23		0.92	15.46 12.60 13.26	31.70 31.87	150 150 150	22 Peak 332 Peak 306 Peak	VERTICAL	

Operating Mode				2					Pol	arizati	ion		Hori	rizonta
Operating Function						112	(2.40	LI) ,	- adap				TION	120110
					- S	KU Z	(2.40	ΠZ) +	auap	ler 5				
		evel (dE	211//m)							Date:	2019-1	2-26 Time:	15:56:30	
		Level (ut	suvilly							Dute.	2013-1	-zo mile.	13.30.30	
	90													
	80 70													
	60													
	50											FCC CI	LASS-B -6dB	
	40	1	3	4								6		
	30	1	will	14	mill	With when	-		withda	weeder Makelon	and the second of the second o	warmon the ante	ng gibertranklas	
	20	-V'	-	"Malar"										
	10													
	0	30 10). :	200.	300.	400.	50 Frequer	0. ncy (MHz	600. z)	700.	800.	900.	1000	
	0	30 10). :	200.	300.	400.				700.	800.	900.	1000	
	0	30 100). :	200.	300.	400.				700.	800.	900.	1000	
	0	30 100). :	200.	300.	400.				700.	800.	900.	1000	
	0	30 100). :	200.	300.	400.				700.	800.	900.	1000	
	05	30 100). :				Freque	ncy (MH2	z)			900.	1000	
	05				Over	Read	Freque	ncy (MH2	z) Preamp	700. A/Pos	T/Pos	900. Remark	1000 Pol/Phase	-
	04	Freq		Limit Line	Over	Read	Freque	ncy (MHz ntenna	z) Preamp		T/Pos			-
		Freq MHz 68.80	Level dBuV/m 32.29	Limit Line dBuV/m 40.00	Over Limit dB -7.71	Read Level dBuV 50.55	CableA Loss dB 1.02	ntenna Factor dB/m 12.60	Preamp Factor dB 31.88	A/Pos 	T/Pos deg 313	Remark Peak	Pol/Phase HORIZONTA	
	L 2 1 3 1	Freq MHz 68.80 102.75 167.74	Level dBuV/m 32.29 36.56 35.77	Limit Line dBuV/m 40.00 43.50 43.50	Over Limit dB -7.71 -6.94 -7.73	Read Level dBuV 50.55 49.79 49.90	CableA Loss dB 1.02 1.32 1.65	ntenna Factor dB/m 12.60 17.41 16.11	Preamp Factor dB 31.88 31.96 31.89	A/Pos 	T/Pos deg 313 12 359	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA	AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL
	L 1 2 1 3 1 4 2 5 4	Freq MHz 68.80 102.75 167.74 122.06 199.48	Level dBuV/m 32.29 36.56 35.77 36.11 38.12	Limit Line dBuV/m 40.00 43.50 43.50 46.00	Over Limit dB -7.71 -6.94 -7.73 -9.89 -7.88	Read Level dBuV 50.55 49.79 49.90 49.66 43.87	CableA Loss dB 1.02 1.32 1.65 1.87 2.93	ntenna Factor dB/m 12.60 17.41 16.11 16.56 23.80	Preamp Factor dB 31.88 31.96 31.89 31.98 32.48	A/Pos 	T/Pos deg 313 12 359 137 220	Remark 	Pol/Phase HORIZONTA HORIZONTA HORIZONTA HORIZONTA	AL AL AL AL