

Report No. : FR370338AA

RADIO TEST REPORT

FCC ID	: MSQ-RTAX6C00
Equipment	: AX3000 Dual Band WiFi 6 Router
Brand Name	: ASUS
Model Name	: RT-AX57 Go
Applicant	: ASUSTeK COMPUTER INC.
	1F., No. 15, Lide Rd., Beitou, Taipei City 112, Taiwan
Standard	: 47 CFR FCC Part 15.247

The product was received on Aug. 02, 2023, and testing was started from Aug. 04, 2023 and completed on Sep. 08, 2023. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A10_10 Ver1.3 Page Number: 1 of 31Issued Date: Sep. 18, 2023Report Version: 01

Table of Contents

Histo	ry of this test report	3
Sumr	nary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	8
1.3	Testing Location Information	8
1.4	Measurement Uncertainty	9
2	Test Configuration of EUT	10
2.1	Test Channel Mode	10
2.2	The Worst Case Measurement Configuration	11
2.3	EUT Operation during Test	12
2.4	Accessories	
2.5	Support Equipment	
2.6	Test Setup Diagram	14
3	Transmitter Test Result	17
3.1	AC Power-line Conducted Emissions	17
3.2	DTS Bandwidth	19
3.3	Maximum Conducted Output Power	20
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	
3.6	Emissions in Restricted Frequency Bands	26
4	Test Equipment and Calibration Data	30
Appe	ndix A. Test Results of AC Power-line Conducted Emissions	
Appe	ndix B. Test Results of DTS Bandwidth	
Appe	ndix C. Test Results of Maximum Conducted Output Power	
Appe	ndix D. Test Results of Power Spectral Density	
Appe	ndix E. Test Results of Emissions in Non-restricted Frequency Bands	
Appe	ndix F. Test Results of Emissions in Restricted Frequency Bands	
Appe	ndix G. Test Photos	
Photo	ographs of EUT v01	

History of this test report

Report No.	Version	Description	Issued Date
FR370338AA	01	Initial issue of report	Sep. 18, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen Report Producer: Cathy Chiu

1 General Description

1.1 Information

1.1.1 **RF General Information**

Frequency Range (MHz) IEEE Std. 802.11		Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20), VHT20, ax (HEW20)	2412-2462	1-11 [11]
2400-2483.5	n (HT40), VHT40, ax (HEW40)	2422-2452	3-9 [7]

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	2TX
2.4-2.4835GHz	802.11g	20	2TX
2.4-2.4835GHz	802.11n HT20	20	2TX
2.4-2.4835GHz	802.11n HT20-BF	20	2TX
2.4-2.4835GHz	VHT20	20	2TX
2.4-2.4835GHz	VHT20-BF	20	2TX
2.4-2.4835GHz	802.11ax HEW20	20	2TX
2.4-2.4835GHz	802.11ax HEW20-BF	20	2TX
2.4-2.4835GHz	802.11n HT40	40	2TX
2.4-2.4835GHz	802.11n HT40-BF	40	2TX
2.4-2.4835GHz	VHT40	40	2TX
2.4-2.4835GHz	VHT40-BF	40	2TX
2.4-2.4835GHz	802.11ax HEW40	40	2TX
2.4-2.4835GHz	802.11ax HEW40-BF	40	2TX

Note:

- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- VHT20, VHT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- HEW20, HEW40 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

A	Ant Dant	t Draw d	Madal Nama		Ormantan	Gain (dBi)	
Ant.	Port	Brand	Model Name	Antenna Type	Connector	2.4GHz	5GHz
1	1	T&W	2.4G PCB ant1	Dipole Antenna	N/A	2.7	-
2	2	T&W	2.4G PCB ant2	Dipole Antenna	N/A	2.5	-
3	1	Be-Comfortable	EmW201b-N	Dipole Antenna	N/A	-	3.5
4	2	T&W	5G PCB ant2	Dipole Antenna	N/A	-	3.6
5	3	Be-Comfortable	EmW201b-N	Dipole Antenna	N/A	-	3.2

Note1: The above information was declared by manufacturer.

Note2: Directional gain information

Туре	Maximum Output Power Power Spectral Der	
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{ANT}} \left(\sum_{k=1}^{N_{ANT}} g_{j,k}\right)^{2}}{N_{ANT}}\right]$
BF	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{sc}} \left\{ \sum_{k=1}^{N_{scr}} g_{j,k} \right\}^2}{N_{ANT}} \right]$	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{M}} \left\{\sum_{k=1}^{N_{MT}} g_{j,k}\right\}^{2}}{N_{_{ANT}}}\right]$

Ex.

Directional Gain (NSS1) formula :

$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{avg}} \left\{\sum_{k=1}^{N_{avg}} g_{j,k}\right\}}{N_{ANT}}\right]$$

 $NSS1(g1,1) = 10^{G1/20}$; $NSS1(g1,2) = 10^{G2/20}$;

 $g_{j,k} = (Nss1(g_{1,1}) + Nss1(g_{1,2}))^2$

 $\mathsf{DG} = \mathsf{10} \log[(\mathsf{Nss1}(\mathsf{g1},1) + \mathsf{Nss1}(\mathsf{g1},2))^2 / \mathsf{N}_{\mathsf{ANT}}] \Longrightarrow \mathsf{10} \log[(\mathsf{10^{G1/20}} + \mathsf{10^{G2/20}})^2 / \mathsf{N}_{\mathsf{ANT}}]$ Where ;

2.4G G1= 2.7 dBi ; G2= 2.5 dBi ;DG= 5.61dBi

5G G1= 3.5 dBi ; G2= 3.6 dBi ; G3= 3.2 dBi ;DG= 8.21dBi

For 2.4GHz function:

For IEEE 802.11 b/g/n/VHT/ax mode (2TX/2RX)

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11a/n/ac/ax mode (3TX/3RX)

Port 1, Port 2 and Port 3 can be used as transmitting/receiving antenna. Port 1, Port 2 and Port 3 could transmit/receive simultaneously.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.11b	0.995	0.02	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11g	0.985	0.07	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11ax HEW20-BF	0.988	0.05	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11ax HEW40-BF	0.989	0.05	n/a (DC>=0.98)	n/a (DC>=0.98)

Note:

DC is Duty Cycle.

DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From Power Adapter			
	Vith beamforming	eamforming		
Beamforming Function	The product has beamforming function for 11n/VHT/ax in 2.4GHz and n/ac/ax in 5GHz.			
Function	Point-to-multipoint	oint		
Support RU	Full RU	J		
Test Software Version	Dos [Ver 6.1.7601]			

Note: The above information was declared by manufacturer.

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information					
Test Lab. : Sportor	Test Lab. : Sporton International Inc. Hsinchu Laboratory				
Hsinchu	Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)				
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085				
Test site Designation No. TW3787 with FCC.					
	Conformity Assessment Body Identifier (CABID) TW3787 with ISED.				

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH01-CB	Ken Yeh	24.2-24.8 / 58-67	Aug. 11, 2023~ Sep. 06, 2023
Radiated (Below 1GHz)	03CH05-CB	Gordon Hung	22.2-23.3 / 56-59	Aug. 04, 2023~ Sep. 08, 2023
Radiated	03CH02-CB	Gordon Hung	20-21 / 55-58	Aug. 04, 2023~ Sep. 08, 2023
(Above 1GHz)	03CH03-CB	Gordon Hung	22.4-23.5 / 55-58	Aug. 04, 2023~ Sep. 08, 2023
AC Conduction	CO02-CB	Summer Li	22~23 / 50~51	Aug. 22, 2023

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.1 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.1 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	3.1 dB	Confidence levels of 95%
Output Power Measurement	0.8 dB	Confidence levels of 95%
Power Density Measurement	3.1 dB	Confidence levels of 95%
Bandwidth Measurement	2.2%	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
802.11b_Nss1,(1Mbps)_2TX	-
2412MHz	42
2437MHz	41
2462MHz	36
802.11g_Nss1,(6Mbps)_2TX	-
2412MHz	36
2417MHz	37
2437MHz	42
2457MHz	38
2462MHz	37
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-
2412MHz	32
2417MHz	37
2437MHz	40
2462MHz	36
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-
2422MHz	36
2437MHz	38
2452MHz	34

Note:

- Evaluated HEW20/HEW40 mode only, due to similar modulation. The power setting of HT20/HT40/ VHT20/VHT40 mode are the same or lower than HEW20/HEW40.
- The EUT supports non-beamforming and beamforming modes, after evaluating, the beamforming mode has been evaluated to be the worst case, so it was selected to test.

2.2 The Worst Case Measurement Configuration

Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode Normal Link			
1	1 EUT + Adapter 1		
2	2 EUT + Adapter 2		
For operating mode 2 is the worst case and it was record in this test report.			

The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands	
Test Condition Conducted measurement at transmit chains		

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands			
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
Operating Mode < 1GHz	СТХ			
After evaluating, the worst case was found at the Y axis on above 1GHz of Emissions in Restricted Frequency Bands. Thus, the measurement followed the same configuration.				
1	EUT in Y-axis + WLAN 2.4GHz + Adapter 1			
2	EUT in Y-axis + WLAN 5GHz + Adapter 1			
Mode 1 has been evaluate this same test mode.	d to be the worst case among Mode 1~2, thus measurement for Mode 3 will follow			
3	EUT in Y-axis + WLAN 2.4GHz + Adapter 2			
For operating mode 3 is th	e worst case and it was record in this test report.			
Operating Mode > 1GHz CTX				
After evaluating, the worst case was found at the Y axis. Thus, the measurement followed the same configuration.				
1 EUT in Y-axis + WLAN 2.4GHz				

The Worst Case Mode for Following Conformance Tests		
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation		
Operating Mode		
1 WLAN 2.4GHz+WLAN 5GHz		
Refer to Sporton Test Report No.: FA370338 for Co-location RF Exposure Evaluation.		

2.3 EUT Operation during Test

For CTX Mode:

non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

beamforming mode:

During the test, the following programs under WIN 7 were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe" to link with the remote workstation to transmit and receive packet by Client and transmit

duty cycle no less than 98%.

For Normal Link Mode:

During the test, the EUT operation to normal function.

2.4 Accessories

	Accessories				
EquipmentBrandModelNameNameName		Rating			
Adapter 1	KEYU	KA1801A-0902000US	INPUT: 100-240V~50/60Hz, 0.55A Max OUTPUT: 9V, 2000mA		
Adapter 2	Ruide	RD0902000-C55-154MG	INPUT: 100-240V~50/60Hz, 1.0A Max OUTPUT: 9V, 2.0A		
		Others			
RJ-45 cable*1, Non-shielded, 1m					
Base*1					

2.5 Support Equipment

For AC Conduction:

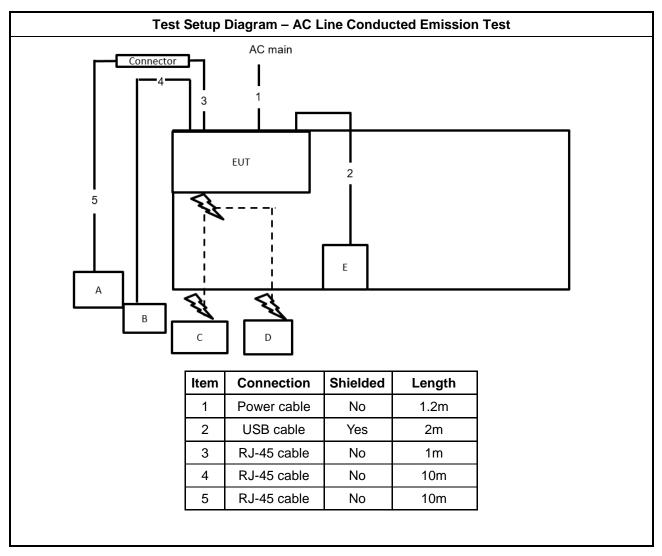
	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
А	1G LAN NB	DELL	E6430	N/A	
В	1G WAN NB	DELL	E6430	N/A	
С	2.4G NB	DELL	E6430	N/A	
D	5G NB	DELL	E6430	N/A	
Е	HDD3.0	WD	WDBACY5000AWT	N/A	

For Radiated (below 1GHz):

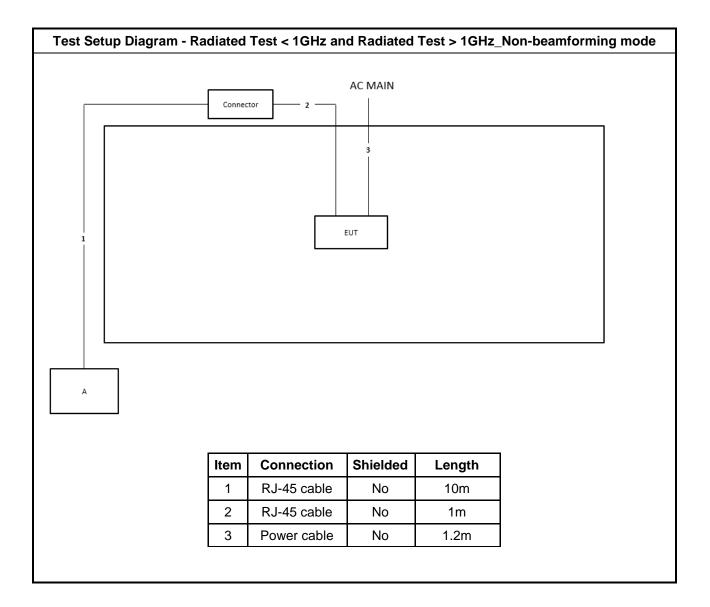
	Support Equipment		
No.	No. Equipment Brand Name Model Name FCC ID		FCC ID
A NB DELL E4300 N/A			

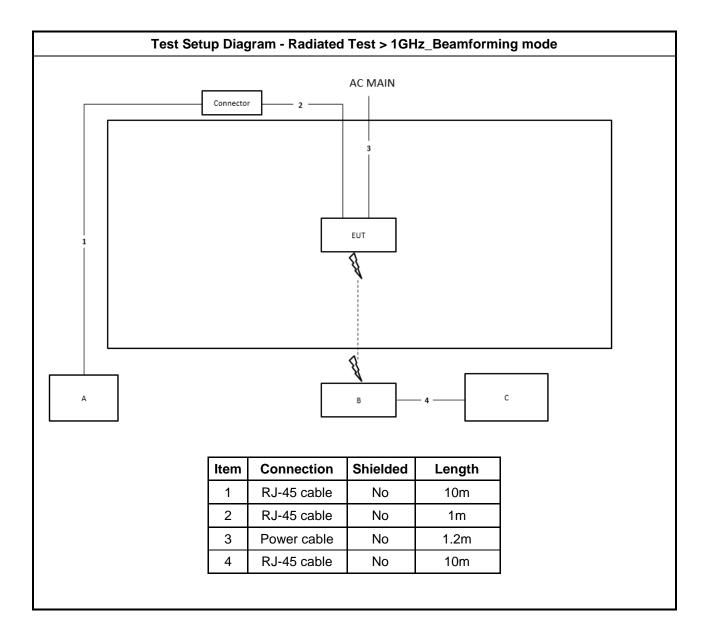
For Radiated (above 1GHz) and RF Conducted:

Non-beamforming mode:


	Support Equipment			
No.	No. Equipment Brand Name Model Name FCC ID		FCC ID	
А	A Notebook DELL E4300 N/A			

Beamforming mode:


	Support Equipment			
No.	No. Equipment Brand Name Model Name FCC ID			FCC ID
А	Notebook	DELL	E4300	N/A
В	B Client ASUS TUF-AX4200 MSQ-RTAX5		MSQ-RTAX5S00	
С	Notebook	DELL	E4300	N/A


2.6 Test Setup Diagram

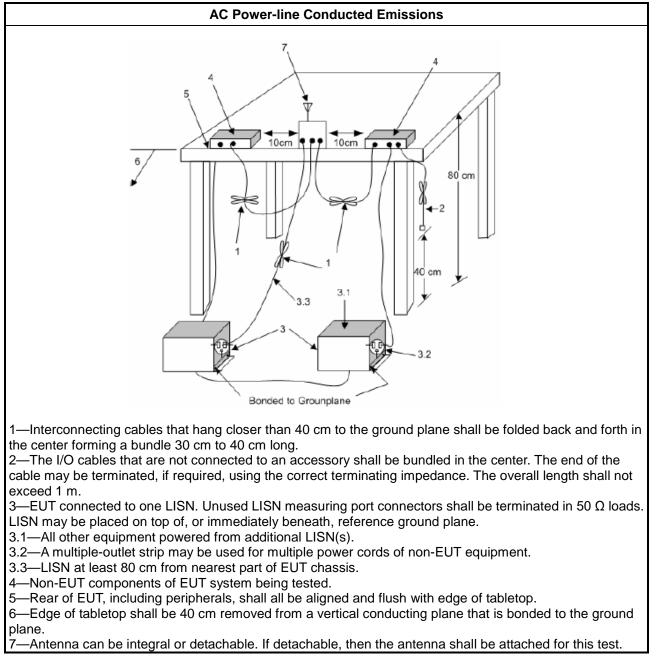
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz) Quasi-Peak Average				
0.15-0.5 66 - 56 * 56 - 46 *				
0.5-5	56	46		
5-30 60 50				
Note 1: * Decreases with the logarithm of the frequency.				

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Measurement Results Calculation

The measured Level is calculated using:

- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

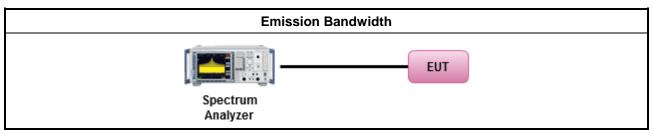
3.1.6 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 **DTS Bandwidth**

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit						
Systems using digital modulation techniques:						
 6 dB bandwidth ≥ 500 kHz. 						


3.2.2 **Measuring Instruments**

Refer a test equipment and calibration data table in this test report.

3.2.3 **Test Procedures**

For								
	the emission bandwidth shall be measured using one of the options below:							
	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.							
	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.							
	Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							

Test Setup 3.2.4

3.2.5 **Test Result of Emission Bandwidth**

Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

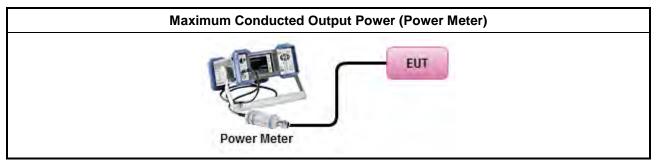
	If $G_{TX} \leq 6$ dBi, then $P_{Out} \leq 30$ dBm (1 W)
•	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W

- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 (G_{TX} 6)/3 \text{ dBm}$
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

 P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.3.3 Test Procedures

		Test Method
•	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).
•	Max	imum Conducted Output Power
	[duty	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)
	Mea	surement using a power meter (PM)
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).
•	For	conducted measurement.
		If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

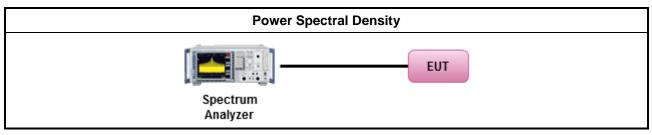
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

■ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method							
	 Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option). 							
	\square	Refe	er as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.					
•	For	cond	ucted measurement.					
	•	lf Th	ne EUT supports multiple transmit chains using options given below:					
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.					
			Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,					
			Option 3: Measure and add 10 $\log(N)$ dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 $\log(N)$. Or each transmit chains shall be add 10 $\log(N)$ to compared with the limit.					

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

3.5 Emissions in Non-restricted Frequency Bands

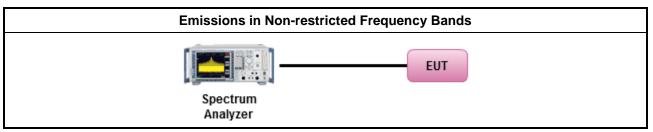
3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit						
RF output power procedure Limit (dBc)						
Peak output power procedure	20					
Average output power procedure	30					

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705 24000/F(kHz)		33.8 - 23	30					
1.705~30.0	30	29	30					
30~88 100		40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

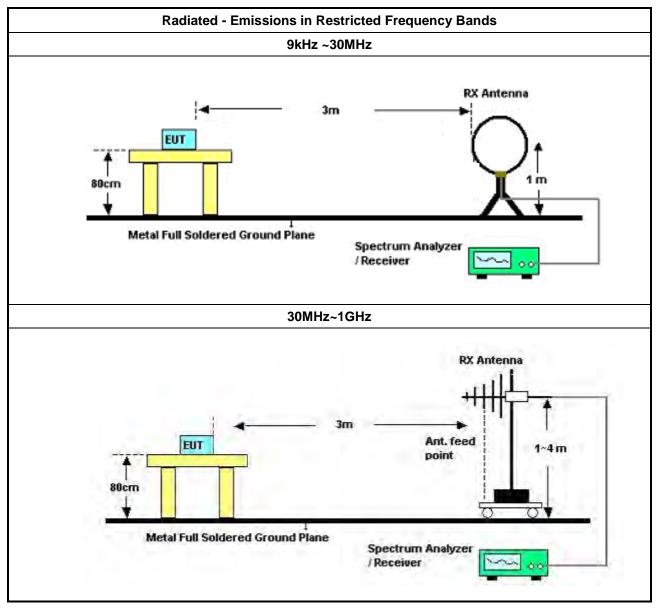
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

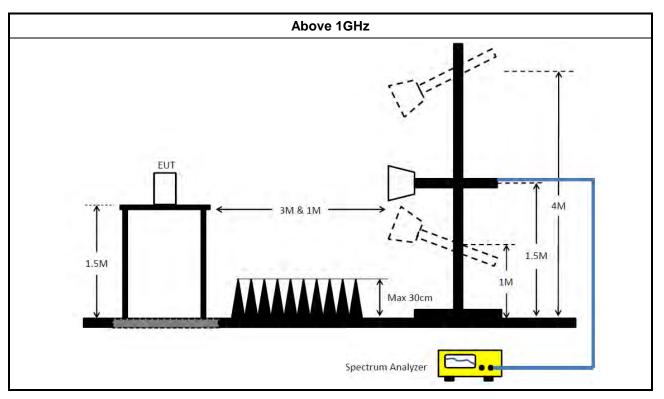
Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures


	Test Method								
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].								
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.								
•	 For the transmitter unwanted emissions shall be measured using following options below: 								
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 								
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).								
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).								
	☑ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).								
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.								
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.								
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.								
•	For the transmitter band-edge emissions shall be measured using following options below:								
	 Refer as FCC KDB 558074 clause 8.7 & C63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. 								
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements. 								
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 								
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB 								
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred. 								

3.6.4 Test Setup

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

Test Equipment and Calibration Data 4

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz Apr. 06, 2023		Apr. 05, 2024	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz Dec. 20, 2022		Dec. 19, 2023	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	May 18, 2023	May 17, 2024	Conduction (CO02-CB)
COND Cable	Woken	Cable	2	0.15MHz ~ 30MHz	Oct. 18, 2022	Oct. 17, 2023	Conduction (CO02-CB)
Pulse Limiter	Schwarzbeck	VTSD 9561F-N	00378	9kHz ~ 30MHz	Oct. 18, 2022	Oct. 17, 2023	Conduction (CO02-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO02-CB)
Loop Antenna	Teseq	HLA 6120	31244	9kHz - 30 MHz	Mar. 23, 2023	Mar. 22, 2024	Radiation (03CH05-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH05-CB	30 MHz ~ 1 GHz	Aug. 02, 2023	Aug. 01, 2024	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 24, 2023	Mar. 23, 2024	Radiation (03CH05-CB)
Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	May 03, 2023	May 02, 2024	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100304	9kHz ~ 40GHz	Apr. 18, 2023 Apr. 17, 2		Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 13, 2023	Jun. 12, 2024	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	Low Cable-04+23	30MHz~1GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH05-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH05-CB)
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz	1GHz ~18GHz Mar. 25, 2023		Radiation (03CH02-CB)
Horn Antenna	EMCO	3115	9610-4976	1GHz ~ 18GHz Apr. 18, 2023		Apr. 17, 2024	Radiation (03CH02-CB)
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170507	15GHz ~ 40GHz Jun. 28, 2023		Jun. 27, 2024	Radiation (03CH02-CB)
Pre-Amplifier	Agilent	83017A	MY39501305	1GHz ~ 26.5GHz Jun. 30, 2023 Jun. 29		Jun. 29, 2024	Radiation (03CH02-CB)
Spectrum analyzer	R&S	FSU	100015	9kHz~26GHz	Dec. 05, 2022	Dec. 04, 2023	Radiation (03CH02-CB)
RF Cable-high	Woken	RG402	High Cable-18	1GHz ~ 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH02-CB)

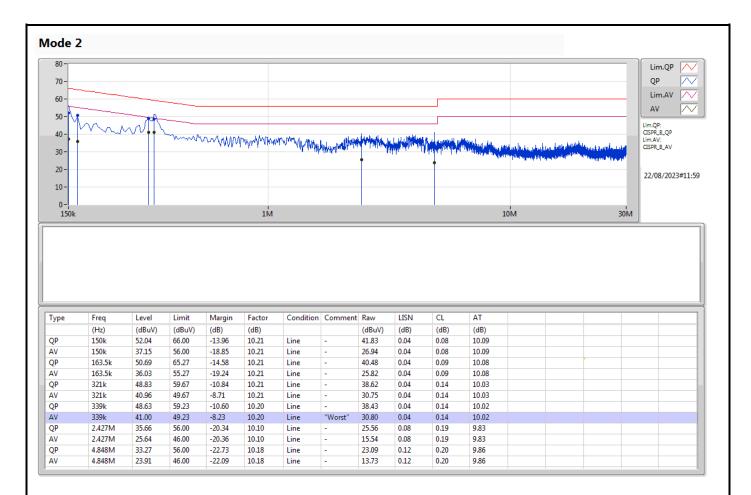
TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A10_10 Ver1.3 Page Number : 30 of 31

: Sep. 18, 2023 Issued Date Report Version : 01

Instrument	Brand	Model No.	Serial No.	Characteristics Calibration Date		Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-18+19	1GHz ~ 18GHz Oct. 03, 2022		Oct. 02, 2023	Radiation (03CH02-CB)
Test Software	SPORTON	SENSE	V5.10	-	- N.C.R. N.C.R.		Radiation (03CH02-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH03-CB	1GHz ~18GHz 3m	May 04, 2023	May 03, 2024	Radiation (03CH03-CB)
Horn Antenna	ETS·Lindgren	3115	6821	750MHz~18GHz	Feb. 03, 2023	Feb. 02, 2024	Radiation (03CH03-CB)
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170507	15GHz ~ 40GHz	Jun. 28, 2023	Jun. 27, 2024	Radiation (03CH03-CB)
Pre-Amplifier	Agilent	8449B	3008A02097	1GHz ~ 26.5GHz	Jun. 30, 2023	Jun. 29, 2024	Radiation (03CH03-CB)
Spectrum Analyzer	R&S	FSP40	100019	9kHz ~ 40GHz	Jun. 12, 2023	Jun. 11, 2024	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-20+29	1GHz ~ 18GHz	Oct. 03, 2022	Oct. 02, 2023	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-29	1GHz ~ 18GHz	1GHz ~ 18GHz Oct. 03, 2022 Oct. 02, 20		Radiation (03CH03-CB)
Test Software	SPORTON	SENSE	V5.10	-	- N.C.R. N.C.R.		Radiation (03CH03-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	9kHz~40GHz May 29, 2023 May 28		Conducted (TH01-CB)
Switch	SPTCB	SP-SWI	SWI-01	1 GHz –26.5 GHz Oct. 04, 2022		Oct. 03, 2023	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 18 GHz	I GHz – 18 GHz Oct. 03, 2022 Oct.		Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz – 18 GHz	Oct. 03, 2022	Oct. 02, 2023	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 18 GHz Oct. 03, 2022		Oct. 02, 2023	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-30	1 GHz – 18 GHz Oct. 03, 20		Oct. 02, 2023	Conducted (TH01-CB)
Power Sensor	Agilent	E9327A	US40442088	50MHz~18GHz Feb. 22, 2023 Feb. 2		Feb. 21, 2024	Conducted (TH01-CB)
Power Meter	Agilent	E4416A	GB41291199	50MHz~18GHz	Feb. 22, 2023	Feb. 21, 2024	Conducted (TH01-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH01-CB)

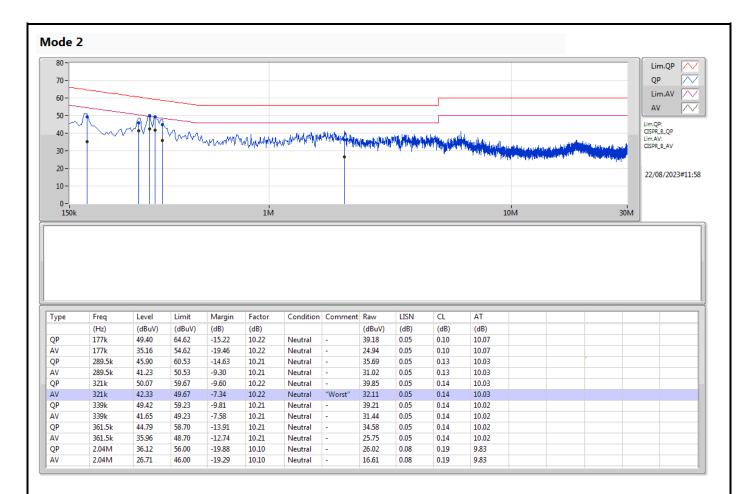
Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.


_

Conducted Emissions at Powerline

Appendix A

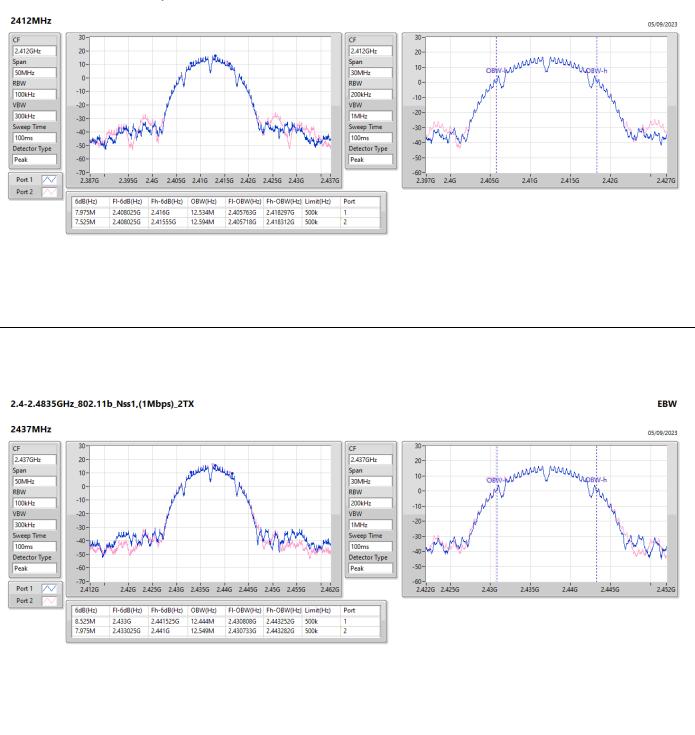

Summary	Summary										
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition				
			(Hz)	(dBuV)	(dBuV)	(dB)					
Mode 2	Pass	AV	321k	42.33	49.67	-7.34	Neutral				

Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
802.11b_Nss1,(1Mbps)_2TX	8.525M	12.744M	12M7G1D	7.525M	12.444M
802.11g_Nss1,(6Mbps)_2TX	16.325M	18.427M	18M4D1D	15.675M	16.668M
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	18.925M	19.265M	19M3D1D	18.85M	18.866M
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	37.9M	37.781M	37M8D1D	37.35M	37.731M

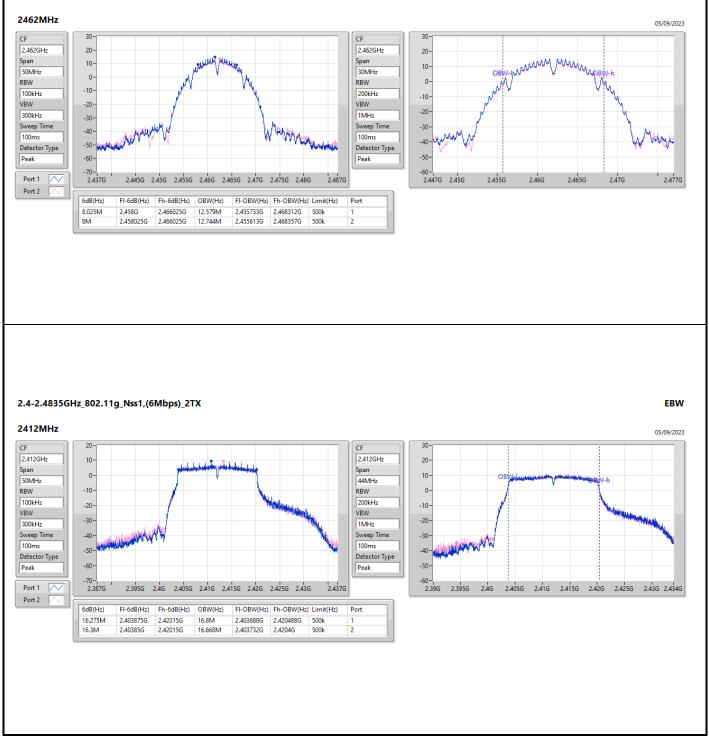
 $\label{eq:max-NdB} Max\cdot N\, dB = Maximum 6dB \ down \ bandwidth; \ Max-OBW = Maximum 99\% \ occupied \ bandwidth; \ Min-OBW = Minimum 99\% \ occupied \ bandwidth; \ Minimum 99\% \ occupied \ bandwidth;$

Result

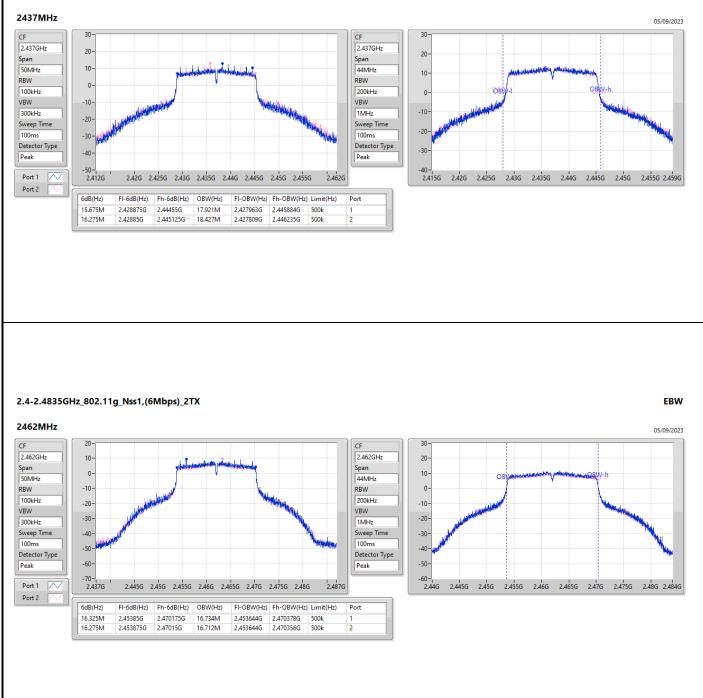

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	7.975M	12.534M	7.525M	12.594M
2437MHz	Pass	500k	8.525M	12.444M	7.975M	12.549M
2462MHz	Pass	500k	8.025M	12.579M	8M	12.744M
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	16.275M	16.8M	16.3M	16.668M
2437MHz	Pass	500k	15.675M	17.921M	16.275M	18.427M
2462MHz	Pass	500k	16.325M	16.734M	16.275M	16.712M
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	18.925M	18.866M	18.875M	18.891M
2437MHz	Pass	500k	18.875M	19.265M	18.9M	19.215M
2462MHz	Pass	500k	18.875M	19.04M	18.85M	19.065M
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	500k	37.8M	37.781M	37.85M	37.781M
2437MHz	Pass	500k	37.9M	37.781M	37.35M	37.731M
2452MHz	Pass	500k	37.7M	37.781M	37.65M	37.781M

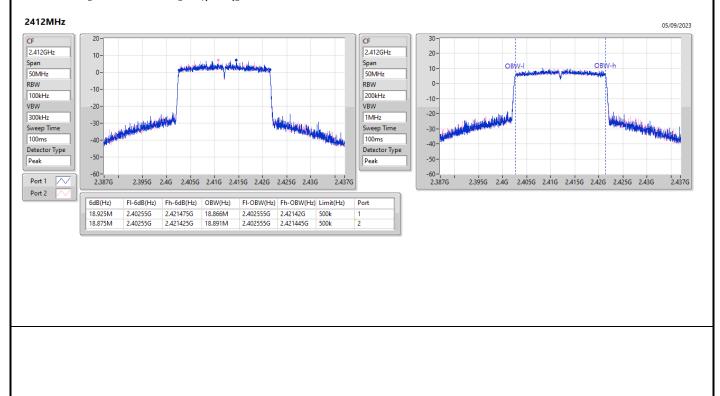
Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth

EBW



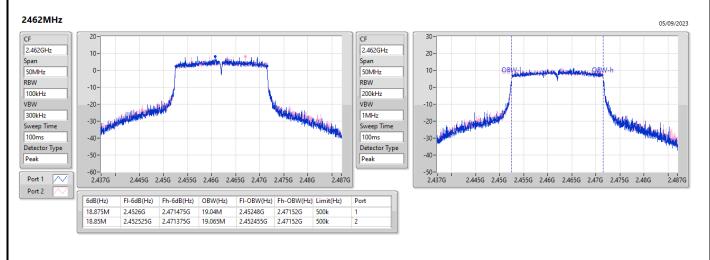
EBW





2.4-2.4835GHz_802.11g_Nss1,(6Mbps)_2TX

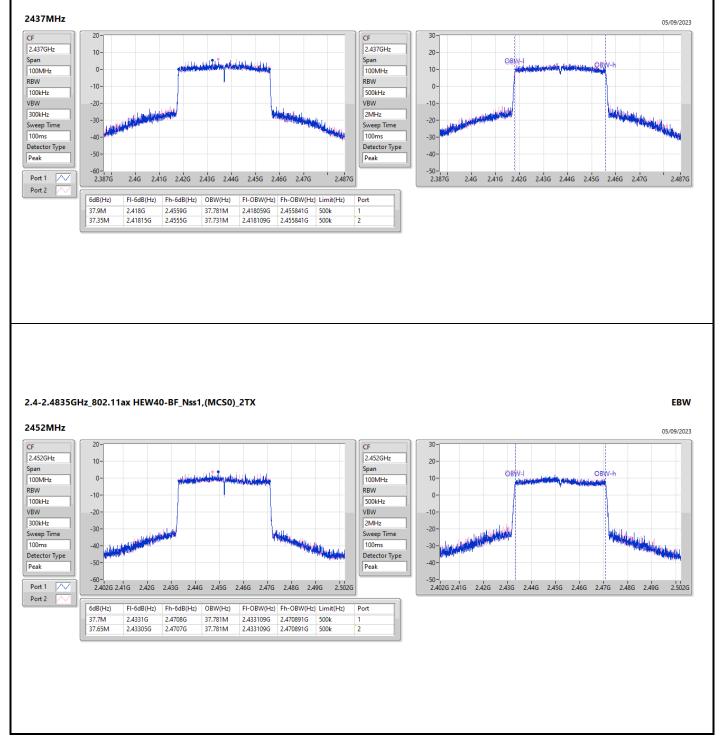
2.4-2.4835GHz_802.11ax HEW20-BF_Nss1,(MCS0)_2TX


2.4-2.4835GHz_802.11ax HEW20-BF_Nss1,(MCS0)_2TX

2437MHz 05/09/2023 30 30 CF CF 2.437GHz 2.437GHz 20-20-Span Span 10-50MHz 50MHz 10· RBW RBW 0. 100kHz 200kHz 0 VBW -10 VBW -10 300kHz 1MHz -20 Sweep Tin Sweep Time -20 100ms -30-100ms Detector Type Detector Type -30--40-Peak Peak -50-2.412G 40-2.412G 2.42G 2.425G 2.43G 2.435G 2.44G 2.445G 2.45G 2.455G 2.42G 2.425G 2.43G 2.435G 2.44G 2.445G 2.45G 2.455G Port 1 2.462G 2.462G Port 2 6dB(Hz) FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) Port 18.875M 2.427525G 19.265M 2.427355G 2.44662G 2.4464G 500k 18.9M 2.427525G 2.446425G 19.215M 2.427355G 2.44657G 500k

EBW

2.4-2.4835GHz_802.11ax HEW20-BF_Nss1,(MCS0)_2TX


2.4-2.4835GHz_802.11ax HEW40-BF_Nss1,(MCS0)_2TX

2422MHz 05/09/2023 20 30 CF CF 2.422GHz 2.422GHz 10-20-Span Span OBW-⊖B₩-h والمآثلين and the 0-. 100MHz 10 100MHz RBW RBW -10-0 100kHz 500kHz VBW -20 VBW -10 300kHz 2MHz When the state of -30 -20 Sweep Tin Sweep Time 100ms -40-100ms -30 Detector Type Detector Type -50--40 Peak Peak -50-2.3726 2.386 2.396 2.4G 2.416 2.42G 2.43G 2.44G 2.45G 2.46G 2.472G 60-1 2.3726 2.386 2.396 2.4G 2.41G 2.42G 2.43G 2.44G 2.45G 2.46G 2.472G Port 1 Port 2 FI-OBW(Hz) Fh-OBW(Hz) Limit(Hz) 6dB(Hz) FI-6dB(Hz) Fh-6dB(Hz) OBW(Hz) Port 37.781M 2.403109G 2.440891G 37.8M 2.4032G 2.441G 500k 37.85M 2.40305G 2.4409G 37.781M 2.403109G 2.440891G 500k

EBW

2.4-2.4835GHz_802.11ax HEW40-BF_Nss1,(MCS0)_2TX

Appendix C

Summary

Mode	Total Power (dBm)	Total Power (W)
2.4-2.4835GHz	-	-
802.11b_Nss1,(1Mbps)_2TX	27.12	0.51523
802.11g_Nss1,(6Mbps)_2TX	25.68	0.36983
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	25.18	0.32961
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	22.99	0.19907

Average Power

Appendix C

Result

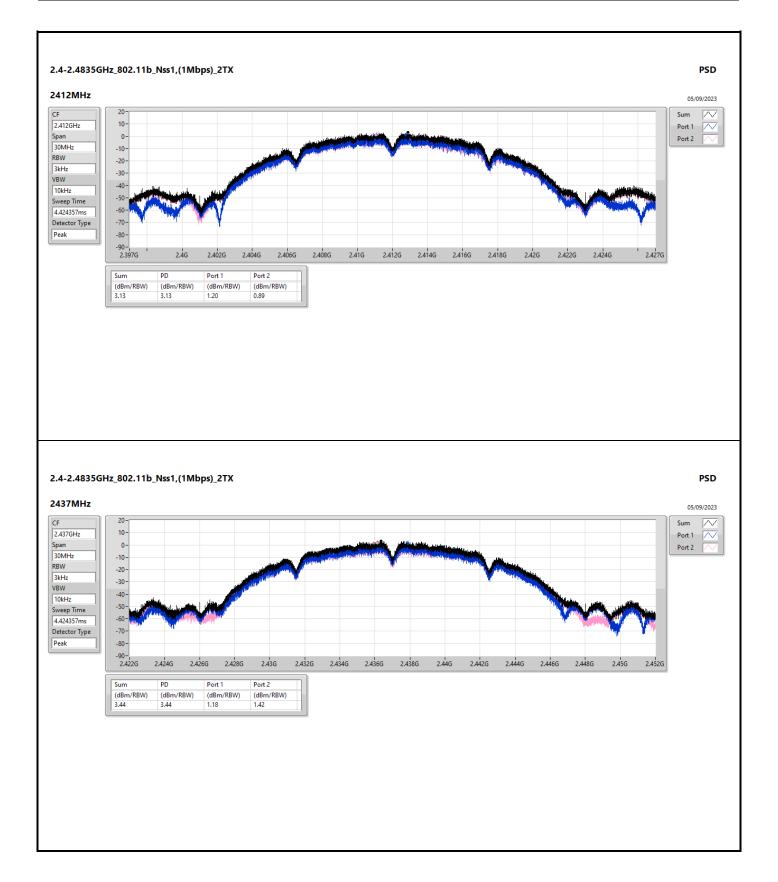
Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	2.70	24.07	24.15	27.12	30.00
2437MHz	Pass	2.70	23.60	23.56	26.59	30.00
2462MHz	Pass	2.70	22.28	21.51	24.92	30.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	2.70	19.99	20.07	23.04	30.00
2417MHz	Pass	2.70	20.48	20.59	23.55	30.00
2437MHz	Pass	2.70	22.58	22.75	25.68	30.00
2462MHz	Pass	2.70	20.52	20.06	23.31	30.00
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.61	18.44	18.36	21.41	30.00
2417MHz	Pass	5.61	20.78	20.70	23.75	30.00
2437MHz	Pass	5.61	22.19	22.14	25.18	30.00
2462MHz	Pass	5.61	19.67	19.75	22.72	30.00
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	5.61	19.07	19.03	22.06	30.00
2437MHz	Pass	5.61	19.94	20.02	22.99	30.00
2452MHz	Pass	5.61	17.82	17.79	20.82	30.00

DG = Directional Gain; Port X = Port X output power

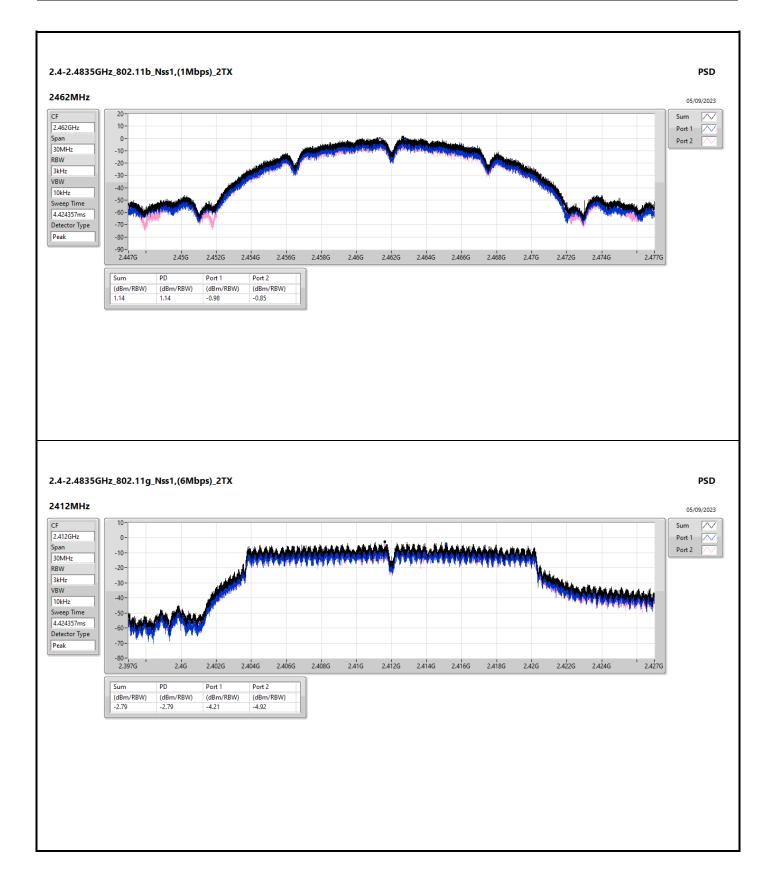
Summary

Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
802.11b_Nss1,(1Mbps)_2TX	3.44
802.11g_Nss1,(6Mbps)_2TX	-0.19
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-1.83
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-8.14

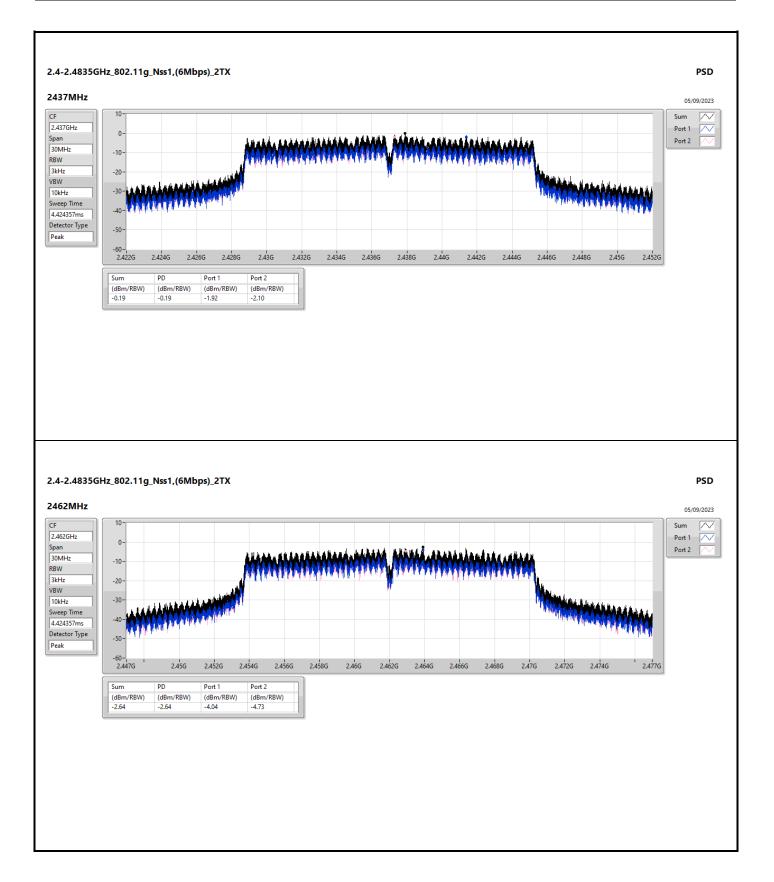
RBW = 3kHz;

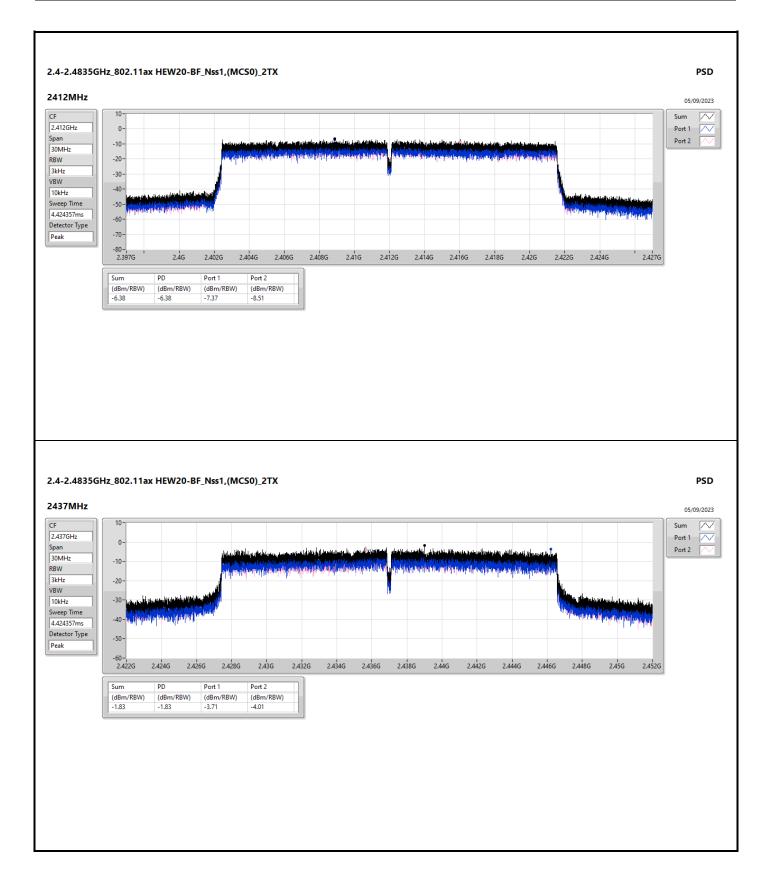


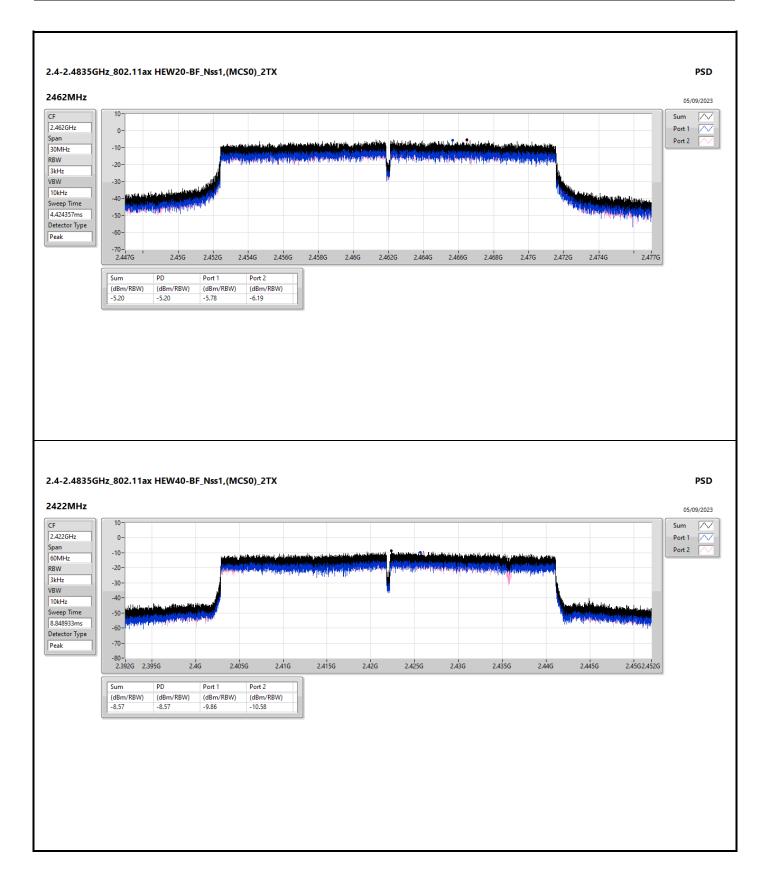
Result

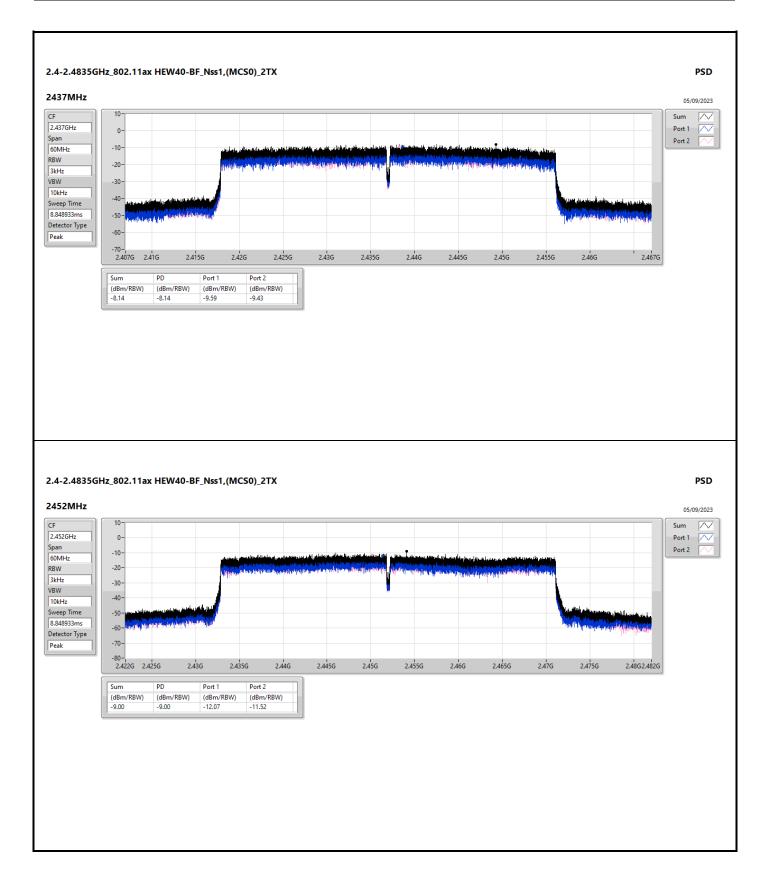

Mode	Result	DG	Port 1	Port 2	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.61	1.20	0.89	3.13	8.00
2437MHz	Pass	5.61	1.18	1.42	3.44	8.00
2462MHz	Pass	5.61	-0.98	-0.85	1.14	8.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.61	-4.21	-4.92	-2.79	8.00
2437MHz	Pass	5.61	-1.92	-2.10	-0.19	8.00
2462MHz	Pass	5.61	-4.04	-4.73	-2.64	8.00
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.61	-7.37	-8.51	-6.38	8.00
2437MHz	Pass	5.61	-3.71	-4.01	-1.83	8.00
2462MHz	Pass	5.61	-5.78	-6.19	-5.20	8.00
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	5.61	-9.86	-10.58	-8.57	8.00
2437MHz	Pass	5.61	-9.59	-9.43	-8.14	8.00
2452MHz	Pass	5.61	-12.07	-11.52	-9.00	8.00

DG = Directional Gain; RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;







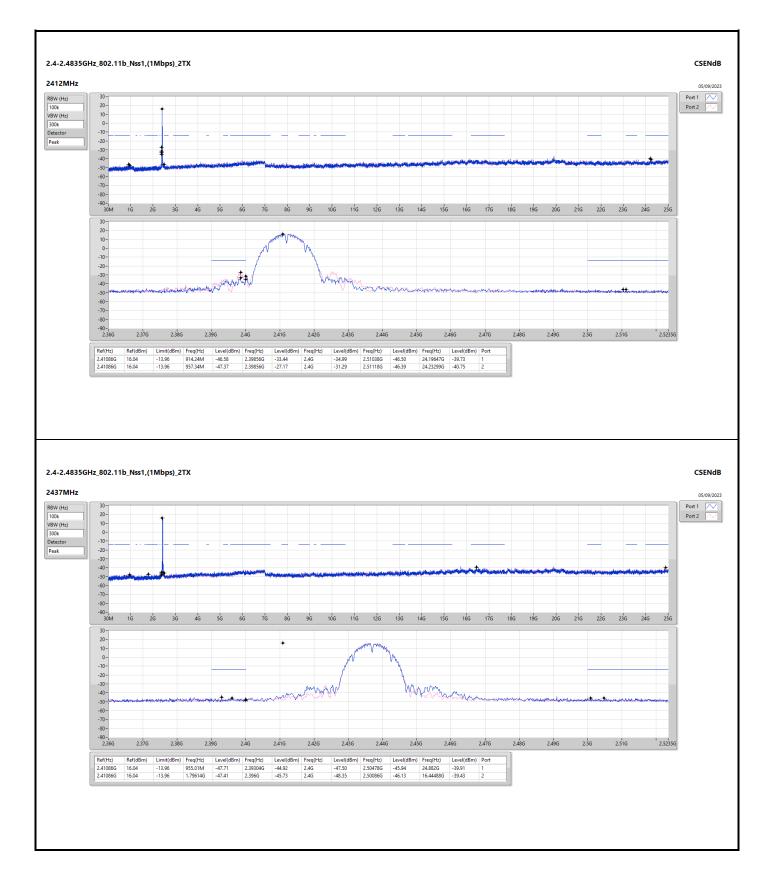


CSE (NdB Down)

Appendix E

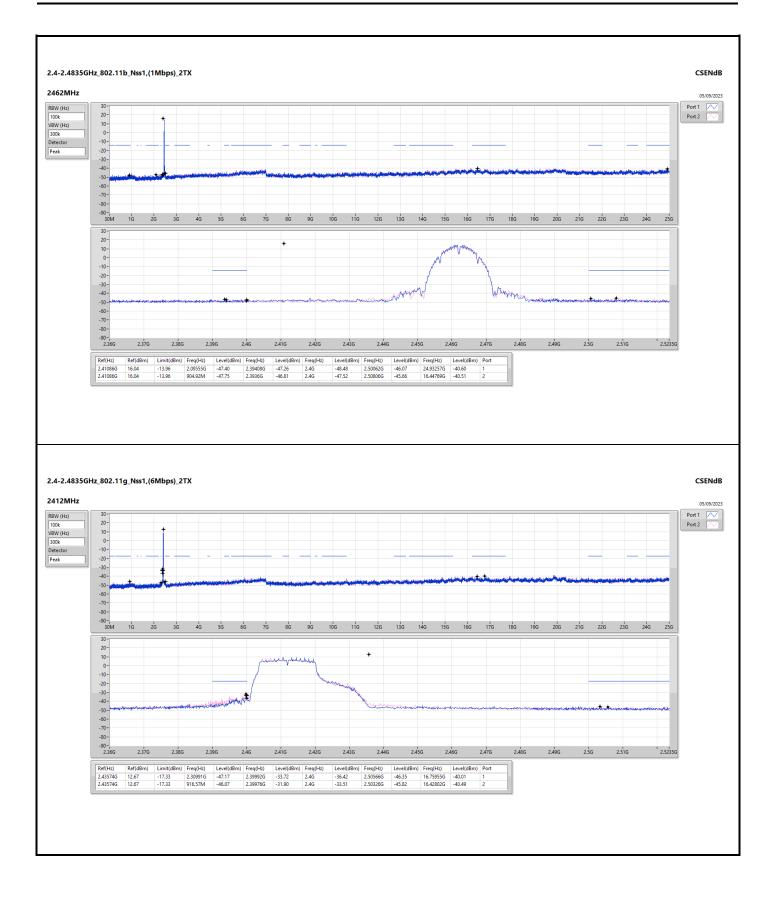
Summary

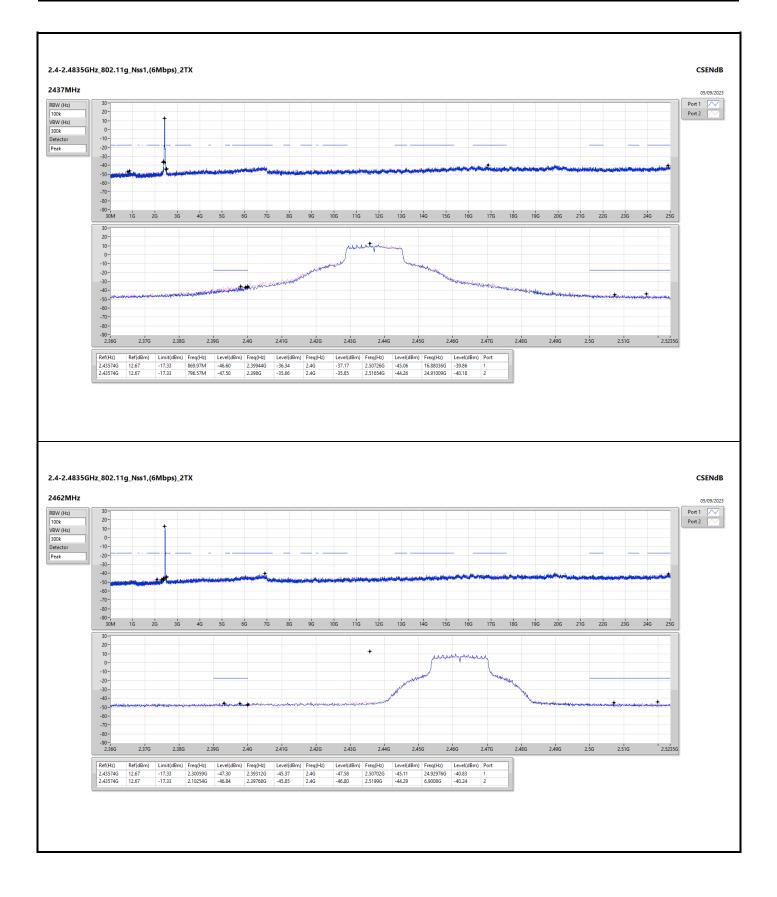
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
802.11b_Nss1,(1Mbps)_2TX	Pass	2.41086G	16.04	-13.96	957.34M	-47.37	2.39856G	-27.17	2.4G	-31.29	2.51118G	-46.39	24.23299G	-40.75	2
802.11g_Nss1,(6Mbps)_2TX	Pass	2.43574G	12.67	-17.33	916.57M	-46.07	2.39976G	-31.90	2.4G	-33.51	2.50326G	-45.82	16.42802G	-40.49	2
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	Pass	2.44192G	11.05	-18.95	1.95109G	-47.73	2.39952G	-24.70	2.4G	-26.69	2.51902G	-46.17	16.44207G	-39.38	2
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	Pass	2.4344G	5.95	-24.05	934.55M	-47.52	2.39952G	-26.20	2.4G	-27.88	2.50158G	-39.30	14.53337G	-41.08	2


CSE (NdB Down)

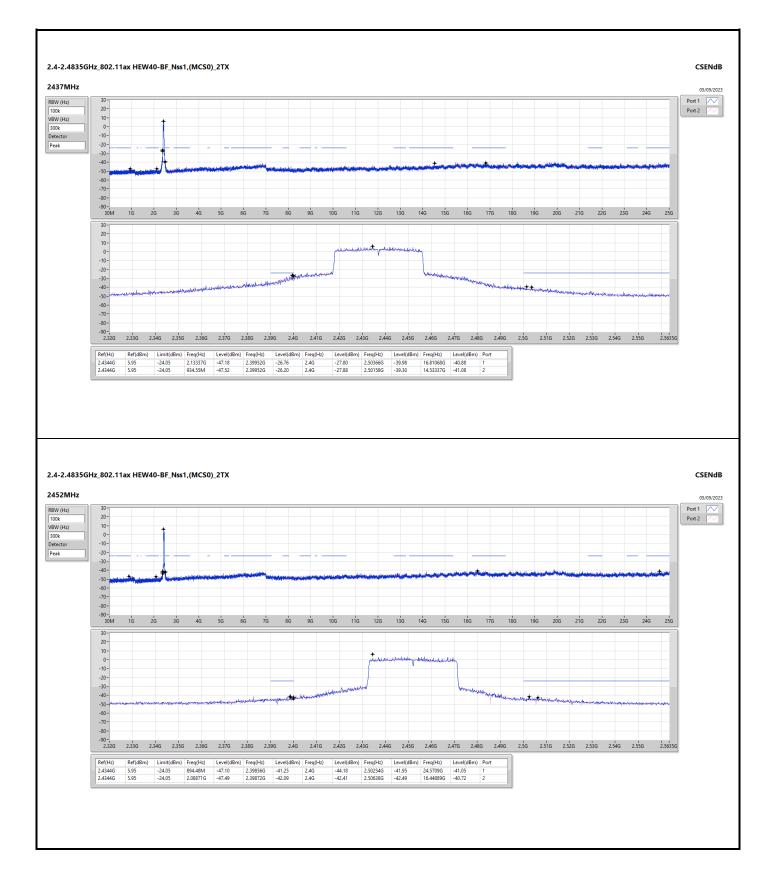
Appendix E

Result


Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.11b_Nss1,(1Mbps)_2TX	-		-	-		-	-	-	-	-		-		-	-
2412MHz	Pass	2.41086G	16.04	-13.96	914.24M	-46.58	2.39856G	-33.44	2.4G	-34.99	2.51038G	-46.50	24.19647G	-39.73	1
2412MHz	Pass	2.41086G	16.04	-13.96	957.34M	-47.37	2.39856G	-27.17	2.4G	-31.29	2.51118G	-46.39	24.23299G	-40.75	2
2437MHz	Pass	2.41086G	16.04	-13.96	955.01M	-47.71	2.39304G	-44.92	2.4G	-47.50	2.50478G	-45.94	24.882G	-39.91	1
2437MHz	Pass	2.41086G	16.04	-13.96	1.79614G	-47.41	2.396G	-45.73	2.4G	-48.35	2.50086G	-46.13	16.44488G	-39.43	2
2462MHz	Pass	2.41086G	16.04	-13.96	2.09555G	-47.40	2.39408G	-47.26	2.4G	-48.48	2.50062G	-46.07	24.93257G	-40.60	1
2462MHz	Pass	2.41086G	16.04	-13.96	904.92M	-47.75	2.3936G	-46.81	2.4G	-47.52	2.50806G	-45.66	16.44769G	-40.51	2
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-		-	-	-	-	-	-	-	-
2412MHz	Pass	2.43574G	12.67	-17.33	2.30991G	-47.17	2.39992G	-33.72	2.4G	-36.42	2.50566G	-46.35	16.75955G	-40.01	1
2412MHz	Pass	2.43574G	12.67	-17.33	916.57M	-46.07	2.39976G	-31.90	2.4G	-33.51	2.50326G	-45.82	16.42802G	-40.49	2
2437MHz	Pass	2.43574G	12.67	-17.33	869.97M	-46.60	2.39944G	-36.34	2.4G	-37.17	2.50726G	-45.06	16.88036G	-39.86	1
2437MHz	Pass	2.43574G	12.67	-17.33	796.57M	-47.50	2.398G	-35.66	2.4G	-35.85	2.51654G	-44.26	24.91009G	-40.18	2
2462MHz	Pass	2.43574G	12.67	-17.33	2.30059G	-47.30	2.39312G	-45.37	2.4G	-47.58	2.50702G	-45.11	24.92976G	-40.83	1
2462MHz	Pass	2.43574G	12.67	-17.33	2.10254G	-46.84	2.39768G	-45.85	2.4G	-46.80	2.5199G	-44.29	6.9008G	-40.24	2
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.44192G	11.05	-18.95	711.53M	-47.45	2.39816G	-25.45	2.4G	-28.25	2.50542G	-45.48	16.21169G	-40.75	1
2412MHz	Pass	2.44192G	11.05	-18.95	1.95109G	-47.73	2.39952G	-24.70	2.4G	-26.69	2.51902G	-46.17	16.44207G	-39.38	2
2437MHz	Pass	2.44192G	11.05	-18.95	1.87886G	-47.38	2.39648G	-36.98	2.4G	-37.87	2.5035G	-43.70	15.33791G	-40.79	1
2437MHz	Pass	2.44192G	11.05	-18.95	946.86M	-46.24	2.39328G	-36.47	2.4G	-38.32	2.50574G	-42.69	24.85109G	-40.81	2
2462MHz	Pass	2.44192G	11.05	-18.95	943.36M	-47.23	2.39952G	-44.23	2.4G	-46.70	2.50198G	-41.37	24.89886G	-41.18	1
2462MHz	Pass	2.44192G	11.05	-18.95	2.17593G	-47.53	2.39848G	-45.99	2.4G	-47.35	2.50078G	-41.56	16.41679G	-40.79	2
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2422MHz	Pass	2.4344G	5.95	-24.05	444.49M	-47.48	2.3968G	-28.28	2.4G	-28.61	2.50542G	-44.52	16.87799G	-39.97	1
2422MHz	Pass	2.4344G	5.95	-24.05	2.19176G	-46.12	2.39856G	-27.45	2.4G	-28.45	2.50222G	-43.79	14.87833G	-40.50	2
2437MHz	Pass	2.4344G	5.95	-24.05	2.13337G	-47.18	2.39952G	-26.76	2.4G	-27.80	2.50366G	-39.98	16.81068G	-40.88	1
2437MHz	Pass	2.4344G	5.95	-24.05	934.55M	-47.52	2.39952G	-26.20	2.4G	-27.88	2.50158G	-39.30	14.53337G	-41.08	2
2452MHz	Pass	2.4344G	5.95	-24.05	894.48M	-47.10	2.39856G	-41.25	2.4G	-44.18	2.50254G	-41.95	24.5709G	-41.05	1
2452MHz	Pass	2.4344G	5.95	-24.05	2.08871G	-47.49	2.39872G	-42.09	2.4G	-42.41	2.50638G	-42.49	16.44889G	-40.72	2

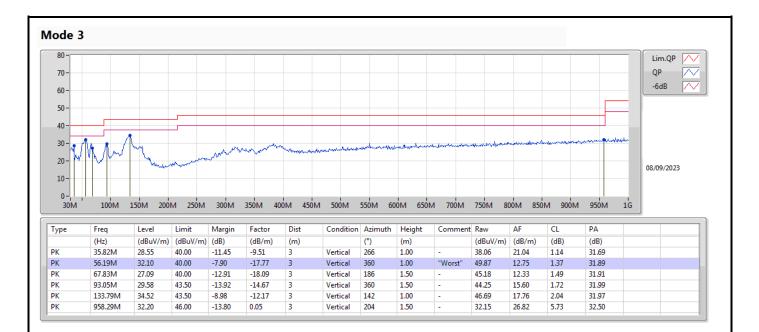


CSE (NdB Down)



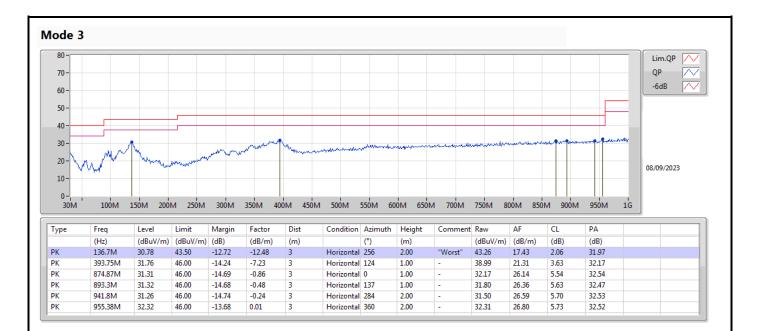
CSE (NdB Down)

Radiated Emissions below 1GHz


Appendix F.1

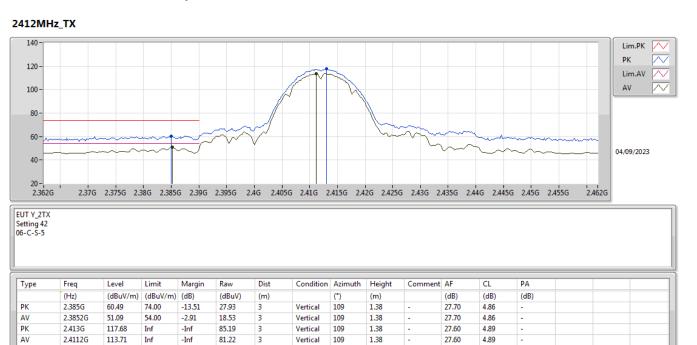
Summary							
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	
Mode 3	Pass	PK	56.19M	32.10	40.00	-7.90	Vertical

Radiated Emissions below 1GHz


Appendix F.1

Radiated Emissions below 1GHz

Appendix F.1


RSE TX above 1GHz

Appendix F.2

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-				-	-	-	-	-
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	Pass	AV	2.39G	52.96	54.00	-1.04	3	Vertical	108	1.80	-

AV

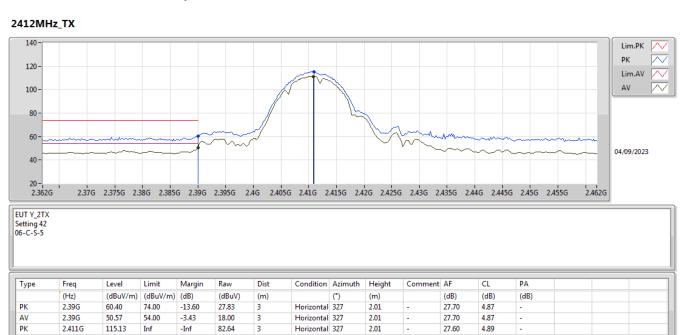
2.4108G

111.23

Inf

-Inf

78.74


3

Horizontal 327

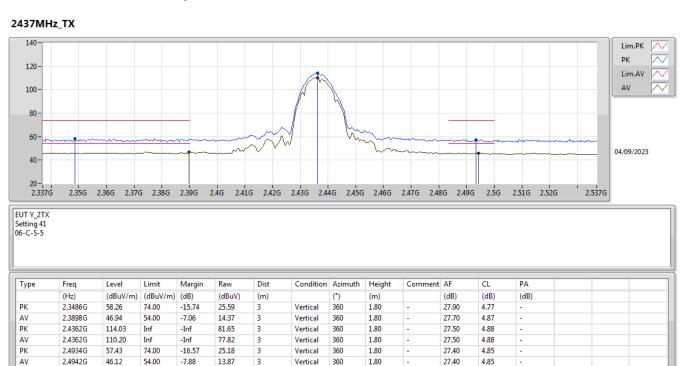
2.01

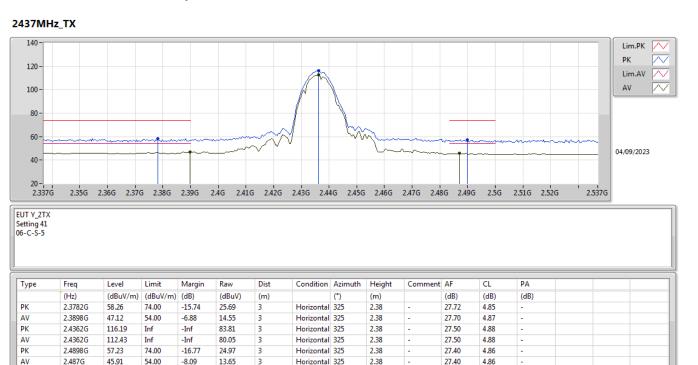
Appendix F.2

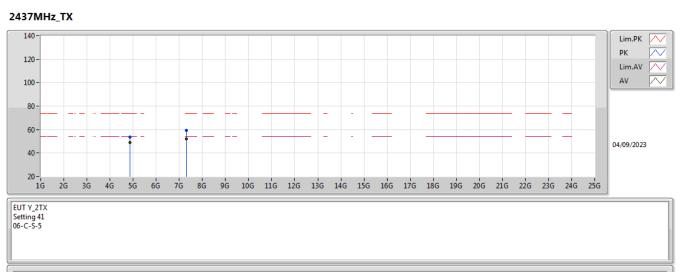
2.4-2.4835GHz_802.11b_Nss1,(1Mbps)_2TX

27.60

4.89







Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.87392G	53.79	74.00	-20.21	47.16	3	Vertical	62	1.80	-	31.30	6.70	31.37		
AV	4.874G	49.11	54.00	-4.89	42.48	3	Vertical	62	1.80	-	31.30	6.70	31.37		
PK	7.30992G	59.44	74.00	-14.56	47.59	3	Vertical	22	2.18	-	36.60	7.85	32.60		
AV	7.31024G	51.99	54.00	-2.01	40.13	3	Vertical	22	2.18	-	36.60	7.86	32.60		

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.87392G	53.88	74.00	-20.12	47.25	3	Horizontal	283	1.48	-	31.30	6.70	31.37		
AV	4.874G	45.37	54.00	-8.63	38.74	3	Horizontal	283	1.48	-	31.30	6.70	31.37		
PK	7.30952G	56.13	74.00	-17.87	44.28	3	Horizontal	39	1.80	-	36.60	7.85	32.60		
AV	7.31016G	45.97	54.00	-8.03	34.11	3	Horizontal	39	1.80	-	36.60	7.86	32.60		

PK

AV

2.4864G

2.4864G

59.77

49.75

74.00

54.00

-14.23

-4.25

27.51

17.49

3

3

Vertical

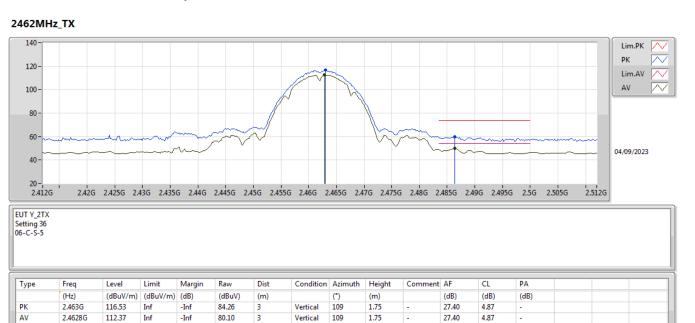
Vertical

109

109

1.75

1.75


27.40

27.40

4.86

4.86

Appendix F.2

PK

AV

2.4838G

2.4998G

57.18

45.39

74.00

54.00

-16.82

-8.61

24.92

13.14

3

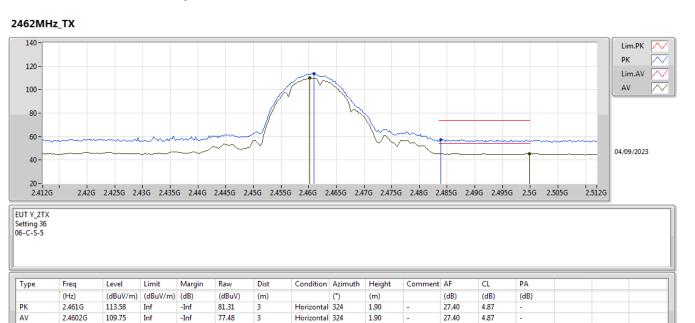
3

Horizontal 324

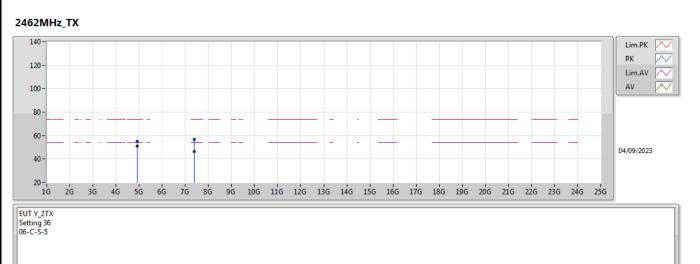
Horizontal 324

1.90

1.90

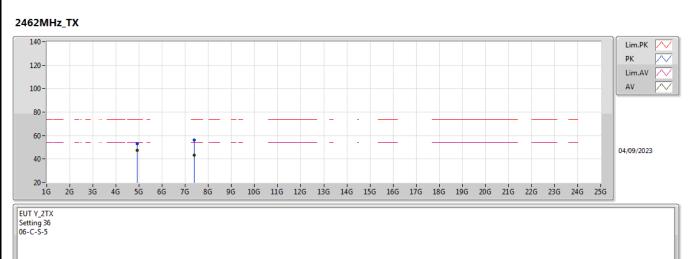

27.40

27.40


4.86

4.85

Appendix F.2



Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.92404G	55.02	74.00	-18.98	48.25	3	Vertical	5	1.78	-	31.40	6.70	31.33		
AV	4.924G	50.93	54.00	-3.07	44.16	3	Vertical	5	1.78	-	31.40	6.70	31.33		
PK	7.38564G	56.85	74.00	-17.15	45.07	3	Vertical	21	2.09	-	36.60	7.89	32.71		
AV	7.38528G	46.17	54.00	-7.83	34.39	3	Vertical	21	2.09	-	36.60	7.89	32.71		

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.92408G	52.88	74.00	-21.12	46.11	3	Horizontal	177	1.80	-	31.40	6.70	31.33		
AV	4.924G	47.43	54.00	-6.57	40.66	3	Horizontal	177	1.80	-	31.40	6.70	31.33		
PK	7.38432G	56.07	74.00	-17.93	44.29	3	Horizontal	40	1.80	-	36.60	7.89	32.71		
AV	7.38524G	43.48	54.00	-10.52	31.70	3	Horizontal	40	1.80	-	36.60	7.89	32.71		

PK

AV

2.408G

2.4078G

113.26

103.05

Inf

Inf

-Inf

-Inf

80.74

70.53

3

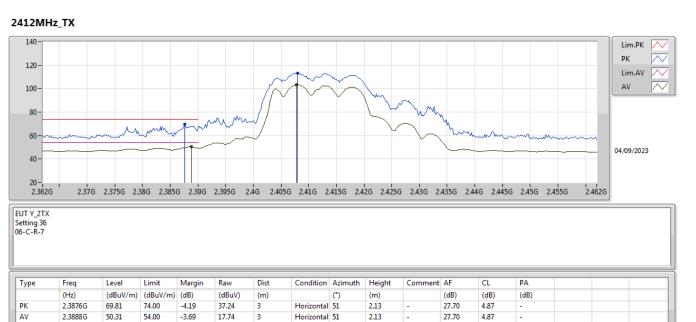
3

Horizontal 51

Horizontal 51

2.13

2.13


27.62

27.62

4.90

4.90

Appendix F.2

4.8256G

35.90

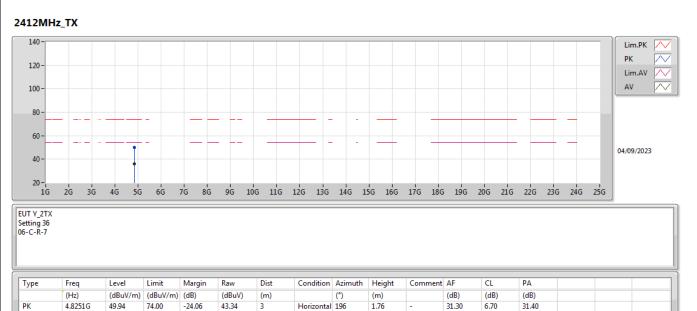
54.00

-18.10

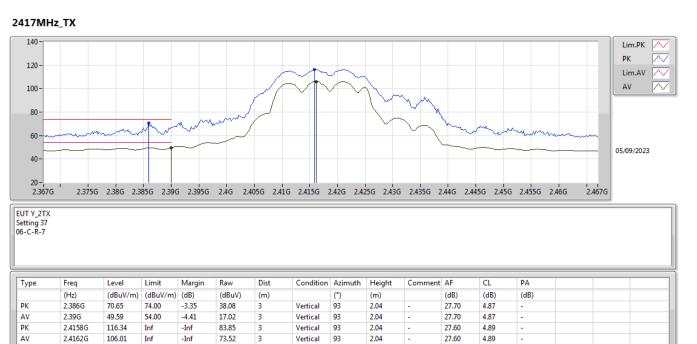
29.30

3

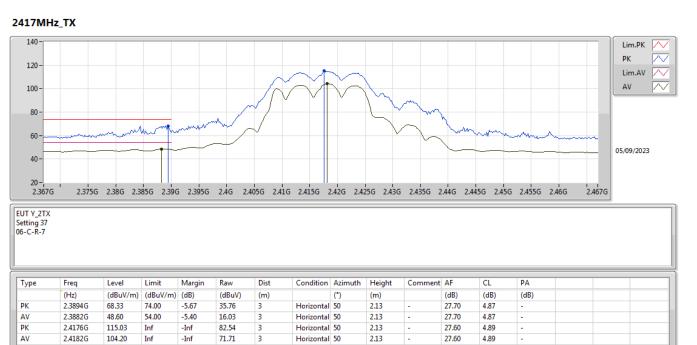
Horizontal 196

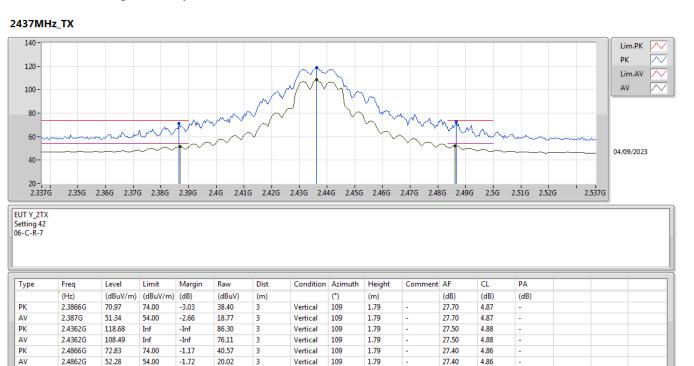

1.76

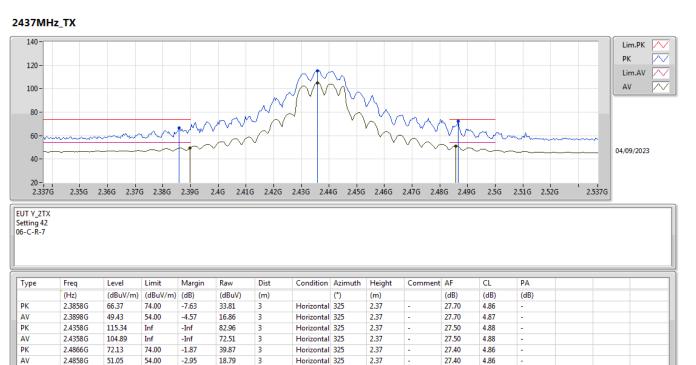
31.30

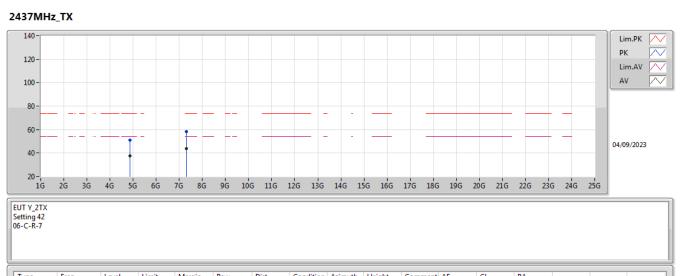

6.70

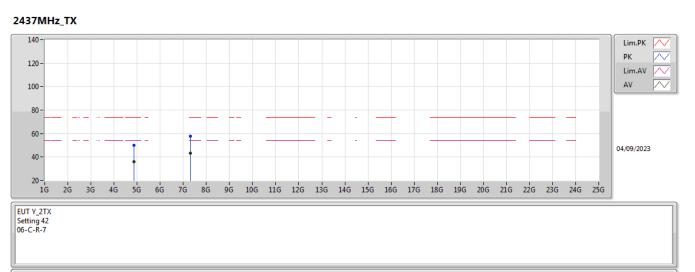
31.40


Appendix F.2









Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.8732G	50.83	74.00	-23.17	44.20	3	Vertical	57	1.80	-	31.30	6.70	31.37		
AV	4.8743G	37.51	54.00	-16.49	30.88	3	Vertical	57	1.80	-	31.30	6.70	31.37		
PK	7.3066G	58.34	74.00	-15.66	46.49	3	Vertical	24	2.13	-	36.60	7.85	32.60		
AV	7.3118G	43.97	54.00	-10.03	32.11	3	Vertical	24	2.13	-	36.60	7.86	32.60		

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.8698G	50.08	74.00	-23.92	43.45	3	Horizontal	187	1.80	-	31.30	6.70	31.37		
AV	4.8723G	36.27	54.00	-17.73	29.64	3	Horizontal	187	1.80	-	31.30	6.70	31.37		
РК	7.3031G	57.97	74.00	-16.03	46.11	3	Horizontal	45	2.87	-	36.60	7.85	32.59		
AV	7.3129G	43.19	54.00	-10.81	31.33	3	Horizontal	45	2.87	-	36.60	7.86	32.60		

2.4-2.4835GHz_802.11g_Nss1,(6Mbps)_2TX

2.4584G

2.4838G

2.49G

AV

107.35

71.09

51.35

Inf

74.00

54.00

-Inf

-2.91

-2.65

75.06

38.83

19.09

3

3

3

Vertical

Vertical

Vertical

94

94

94

1.99

1.99

1.99

27.42

27.40

27.40

4.87

4.86

4.86

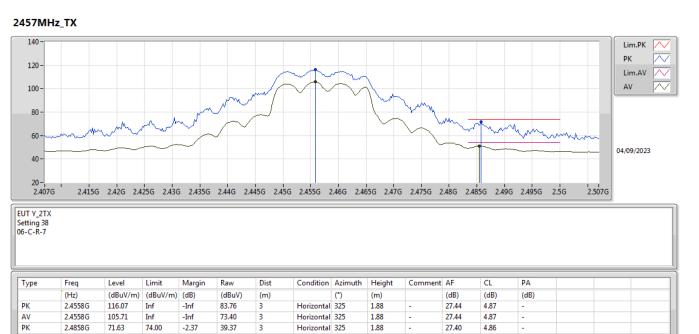
2.4854G

51.17

54.00

-2.83

18.91


3

Horizontal 325

1.88

Appendix F.2

2.4-2.4835GHz_802.11g_Nss1,(6Mbps)_2TX

27.40

4.86

PK

AV

2.4636G

2.4835G

2.4836G

106.55

70.41

51.54

Inf

74.00

54.00

-Inf

-3.59

-2.46

74.28

38.15

19.28

3

3

3

Vertical

Vertical

Vertical

96

96

96

1.96

1.96

1.96

27.40

27.40

27.40

4.87

4.86

4.86

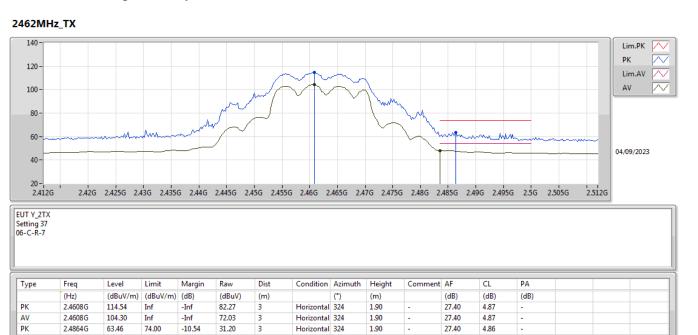
2.4835G

48.17

54.00

-5.83

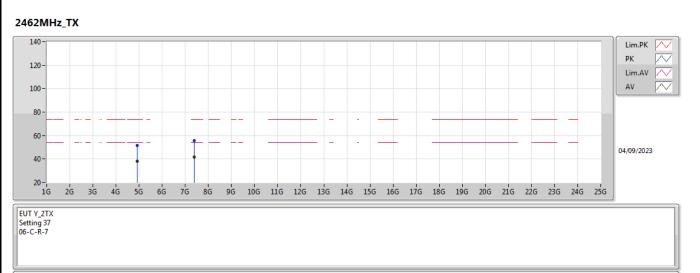
15.91


3

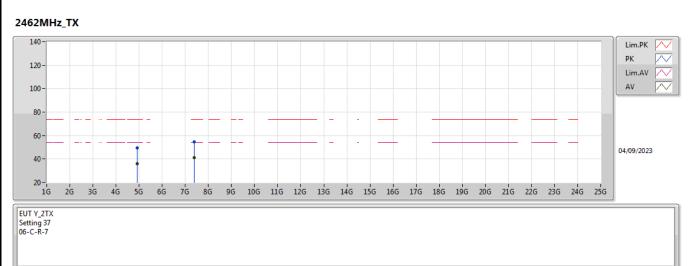
Horizontal 324

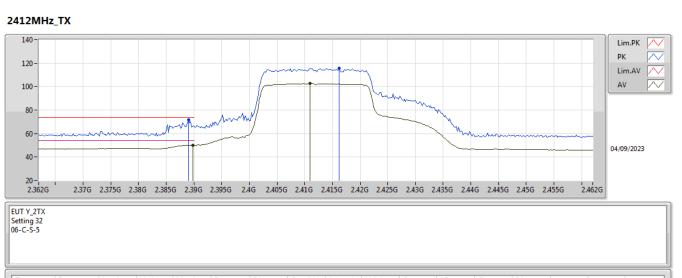
1.90

Appendix F.2


2.4-2.4835GHz_802.11g_Nss1,(6Mbps)_2TX

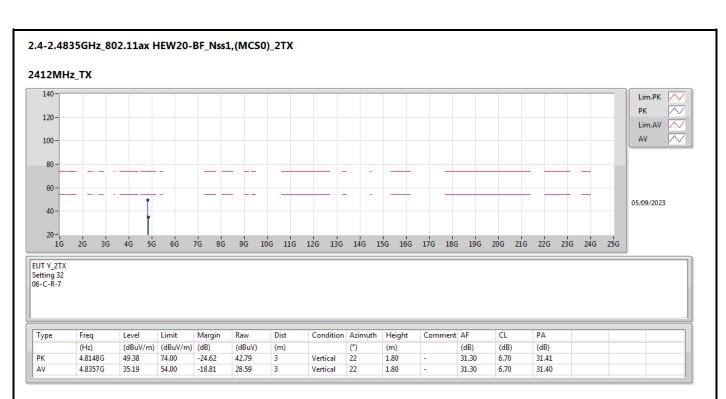
27.40

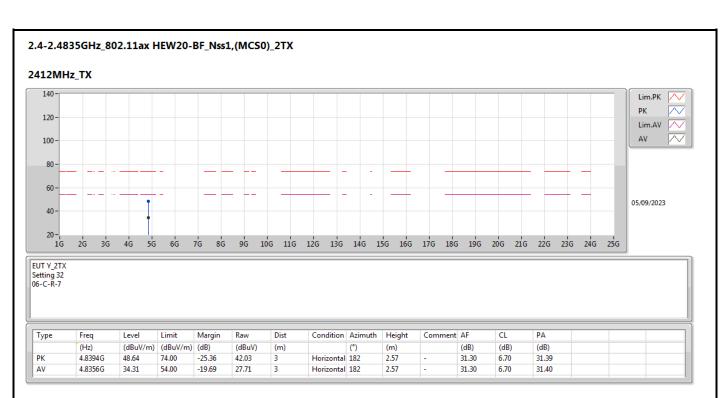

4.86


Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA	
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)	
PK	4.9254G	51.45	74.00	-22.55	44.68	3	Vertical	20	1.80	-	31.40	6.70	31.33	
AV	4.9255G	38.10	54.00	-15.90	31.33	3	Vertical	20	1.80	-	31.40	6.70	31.33	
PK	7.3897G	55.56	74.00	-18.44	43.78	3	Vertical	21	2.17	-	36.60	7.89	32.71	
AV	7.3839G	41.95	54.00	-12.05	30.17	3	Vertical	21	2.17	-	36.60	7.89	32.71	

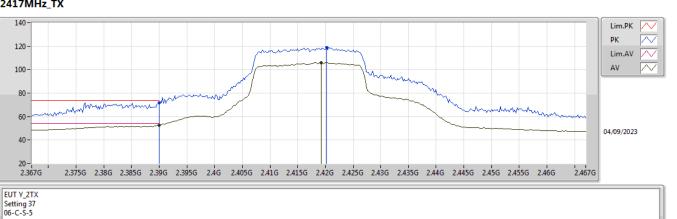
Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	4.9284G	49.45	74.00	-24.55	42.67	3	Horizontal	48	1.65	-	31.41	6.70	31.33		
AV	4.9234G	35.91	54.00	-18.09	29.15	3	Horizontal	48	1.65	-	31.39	6.70	31.33		
PK	7.3777G	54.69	74.00	-19.31	42.90	3	Horizontal	133	1.98	-	36.60	7.89	32.70		
AV	7.3803G	41.19	54.00	-12.81	29.40	3	Horizontal	133	1.98	-	36.60	7.89	32.70		

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.389G	71.91	74.00	-2.09	39.34	3	Vertical	108	1.38	-	27.70	4.87	-		
AV	2.3898G	50.22	54.00	-3.78	17.65	3	Vertical	108	1.38	-	27.70	4.87	-		
PK	2.4162G	115.75	Inf	-Inf	83.26	3	Vertical	108	1.38	-	27.60	4.89	-		
AV	2.411G	102.67	Inf	-Inf	70.18	3	Vertical	108	1.38	-	27.60	4.89	-		

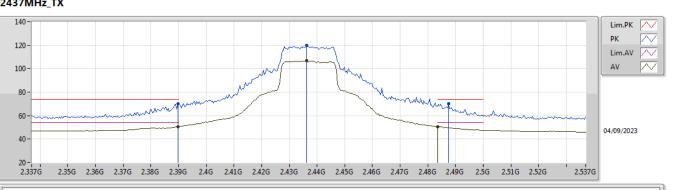



C-	-S-	-5	

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.3898G	61.39	74.00	-12.61	28.82	3	Horizontal	344.6	1.80	-	27.70	4.87	-		
AV	2.39G	47.10	54.00	-6.90	14.53	3	Horizontal	344.6	1.80	-	27.70	4.87	-		
РК	2.4182G	108.60	Inf	-Inf	76.11	3	Horizontal	344.6	1.80	-	27.60	4.89	-		
AV	2.42G	95.57	Inf	-Inf	63.08	3	Horizontal	344.6	1.80	-	27.60	4.89	-		



Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.39G	71.73	74.00	-2.27	39.16	3	Vertical	106	1.20	-	27.70	4.87	-		
AV	2.39G	52.39	54.00	-1.61	19.82	3	Vertical	106	1.20	-	27.70	4.87	-		
РК	2.4202G	118.97	Inf	-Inf	86.48	3	Vertical	106	1.20	-	27.60	4.89	-		
AV	2.4192G	105.83	Inf	-Inf	73.34	3	Vertical	106	1.20	-	27.60	4.89	-		



Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.3828G	68.33	74.00	-5.67	35.77	3	Horizontal	341.2	1.80	-	27.70	4.86	-		
AV	2.3898G	48.63	54.00	-5.37	16.06	3	Horizontal	341.2	1.80	-	27.70	4.87	-		
PK	2.4214G	112.22	Inf	-Inf	79.74	3	Horizontal	341.2	1.80	-	27.59	4.89	-		
AV	2.4214G	99.34	Inf	-Inf	66.86	3	Horizontal	341.2	1.80	-	27.59	4.89	-		

2.4-2.4835GHz_802.11ax HEW20-BF_Nss1,(MCS0)_2TX

EUT Y_2TX Setting 40 06-C-S-5

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
PK	2.3898G	69.99	74.00	-4.01	37.42	3	Vertical	110	1.80	-	27.70	4.87	-		
AV	2.3898G	50.49	54.00	-3.51	17.92	3	Vertical	110	1.80	-	27.70	4.87	-		
PK	2.4362G	119.77	Inf	-Inf	87.39	3	Vertical	110	1.80	-	27.50	4.88	-		
AV	2.4362G	106.77	Inf	-Inf	74.39	3	Vertical	110	1.80	-	27.50	4.88	-		
PK	2.4874G	70.37	74.00	-3.63	38.11	3	Vertical	110	1.80	-	27.40	4.86	-		
AV	2.4835G	50.64	54.00	-3.36	18.38	3	Vertical	110	1.80	-	27.40	4.86	-		

РК

AV PK

AV

2.3898G

2.4298G

2.429G

2.4838G

2.4835G

47.41

113.72

101.08

65.13

47.31

54.00

Inf

Inf

74.00

54.00

-6.59

-Inf

-Inf

-8.87

-6.69

14.84

81.33

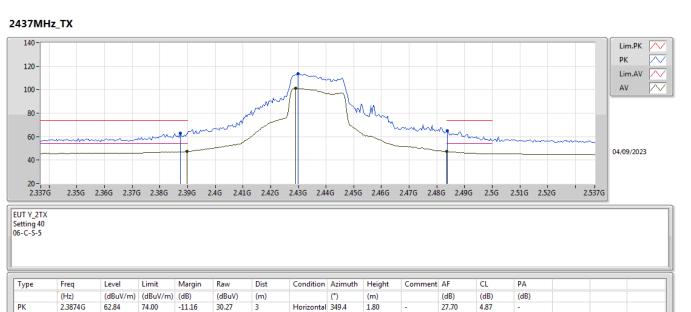
68.68

32.87

15.05

3

3


3

3

3

Appendix F.2

2.4-2.4835GHz_802.11ax HEW20-BF_Nss1,(MCS0)_2TX

Horizontal 349.4

Horizontal 349.4

Horizontal 349.4

Horizontal 349.4

Horizontal 349.4

1.80

1.80

1.80

1.80

1.80

27.70

27.50

27.51

27.40 27.40 4.87

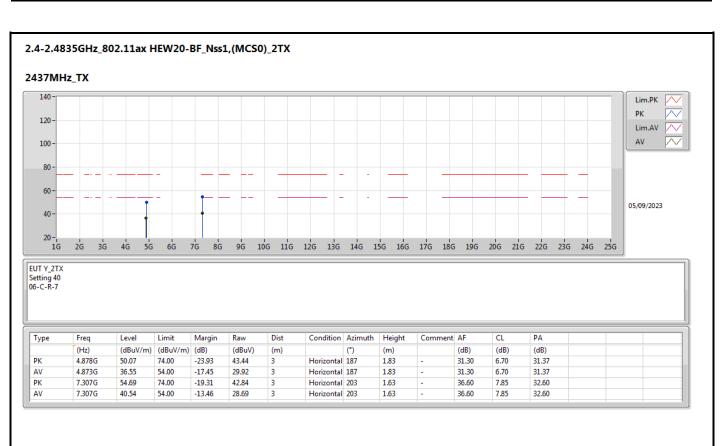
4.89

4.89

4.86

4.86

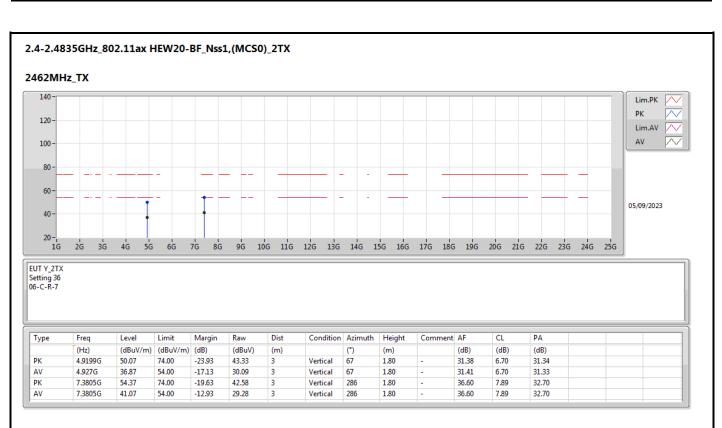
.

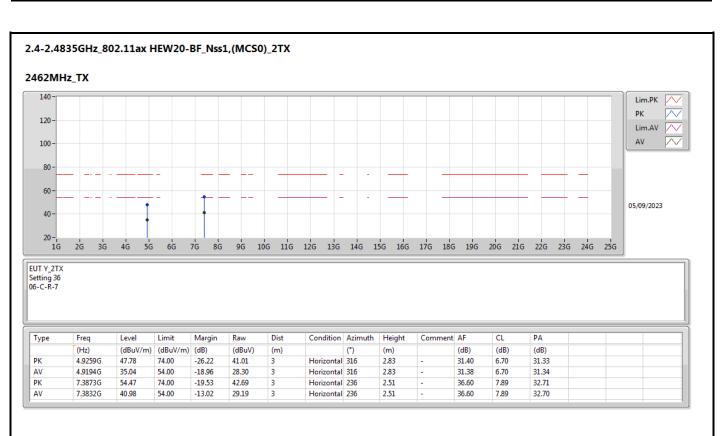

Sporton International Inc.	Hsinchu Laboratory
----------------------------	--------------------

Page No. : 37 of 53 Report No. : FR370338AA

2.4-2.4835GHz_802.11ax HEW20-BF_Nss1,(MCS0)_2TX 2437MHz_TX 140-Lim.PK РК 120-Lim.AV AV 100 -80 -60· 05/09/2023 40-20-| 1G 3G 4G 7G 9G 10G 11G 12G 13G 14G 15G 16G 17G 18G 19G 20G 21G 22G 23G 24G 25G 2G 5G 6G 8G EUT Y_2TX Setting 40 06-C-R-7 Туре Freq Level Limit Margin Raw Dist Condition Azimuth Height Comment AF CL PA (Hz) (dBuV/m) (dBuV/m) (dB) (dBuV) (m) (dB) (dB) (dB) (°) (m) PK 4.8716G 51.75 74.00 -22.25 45.12 3 Vertical 61 1.80 31.30 6.70 31.37 AV 4.8742G 37.59 54.00 -16.41 30.96 3 Vertical 61 1.80 31.30 6.70 31.37 PK 7.3102G 56.68 74.00 -17.32 44.82 3 Vertical 342 2.12 36.60 7.86 32.60 AV 7.3103G 43.22 54.00 -10.78 31.36 3 Vertical 342 2.12 36.60 7.86 32.60

Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.4602G	118.21	Inf	-Inf	85.94	3	Vertical	92	1.92	-	27.40	4.87	-		
AV	2.4612G	105.72	Inf	-Inf	73.45	3	Vertical	92	1.92	-	27.40	4.87	-		
РК	2.4848G	70.00	74.00	-4.00	37.74	3	Vertical	92	1.92	-	27.40	4.86	-		
AV	2.4836G	52.88	54.00	-1.12	20.62	3	Vertical	92	1.92	-	27.40	4.86	-		





Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.4612G	113.49	Inf	-Inf	81.22	3	Horizontal	336	2.15	-	27.40	4.87	-		
AV	2.4608G	100.47	Inf	-Inf	68.20	3	Horizontal	336	2.15	-	27.40	4.87	-		
РК	2.4842G	61.36	74.00	-12.64	29.10	3	Horizontal	336	2.15	-	27.40	4.86	-		
AV	2.4835G	48.47	54.00	-5.53	16.21	3	Horizontal	336	2.15	-	27.40	4.86	-		

PK

AV PK

AV

2.39G

2.4236G

2.4272G

2.4968G

2.4856G

52.96

113.77

96.69

63.27

47.95

54.00

Inf

Inf

74.00

54.00

-1.04

-Inf

-Inf

-10.73

-6.05

20.39

81.32

64.27

31.02

15.69

3

3

3

3

3

Vertical

Vertical

Vertical

Vertical

Vertical

108

108

108

108

108

1.80

1.80

1.80

1.80

1.80

27.70

27.56

27.53

27.40 27.40 4.87

4.89

4.89

4.85

4.86

.

Appendix F.2

Sporton Internatio	nal Inc. Hsinchu	Laboratory
--------------------	------------------	------------

2.4856G

45.75

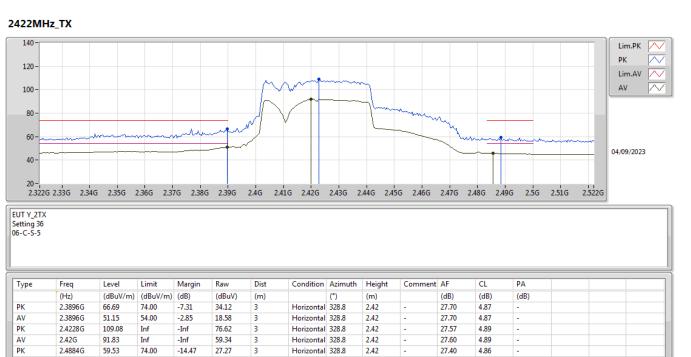
54.00

-8.25

13.49

3

Horizontal 328.8

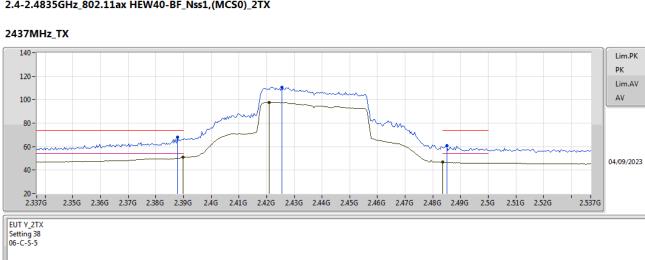

2.42

27.40

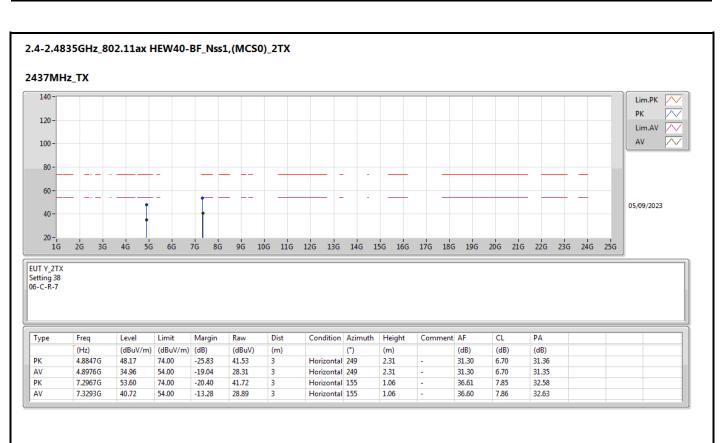
4.86

AV

Appendix F.2

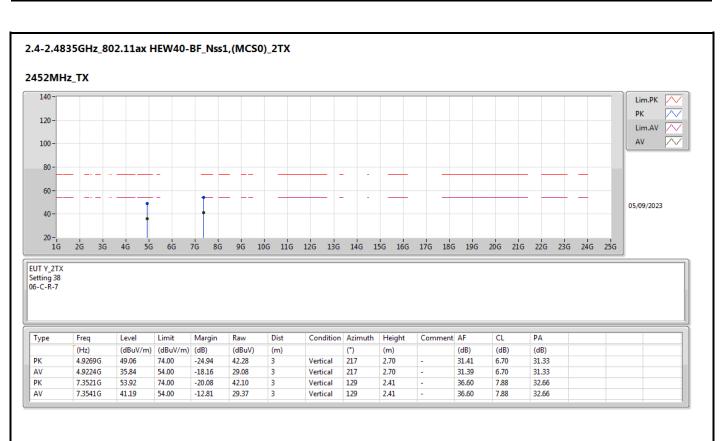


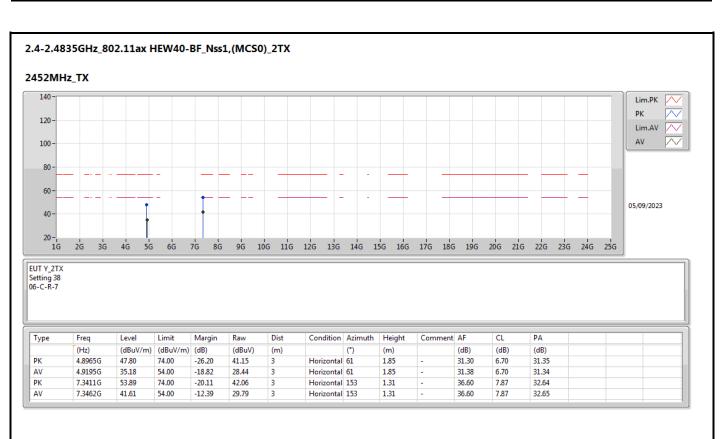
Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
РК	2.3898G	70.16	74.00	-3.84	37.59	3	Vertical	111	1.80	-	27.70	4.87	-		
AV	2.377G	51.80	54.00	-2.20	19.23	3	Vertical	111	1.80	-	27.73	4.84	-		
РК	2.4306G	115.31	Inf	-Inf	82.93	3	Vertical	111	1.80	-	27.50	4.88	-		
AV	2.4478G	102.01	Inf	-Inf	69.63	3	Vertical	111	1.80	-	27.50	4.88	-		
РК	2.4918G	66.02	74.00	-7.98	33.77	3	Vertical	111	1.80	-	27.40	4.85	-		
AV	2.4835G	51.89	54.00	-2.11	19.63	3	Vertical	111	1.80	-	27.40	4.86	-		



Туре	Freq	Level	Limit	Margin	Raw	Dist	Condition	Azimuth	Height	Comment	AF	CL	PA		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dBuV)	(m)		(°)	(m)		(dB)	(dB)	(dB)		
PK	2.3878G	68.05	74.00	-5.95	35.48	3	Horizontal	341	2.47	-	27.70	4.87	-		
AV	2.3898G	50.86	54.00	-3.14	18.29	3	Horizontal	341	2.47	-	27.70	4.87	-		
PK	2.4254G	110.72	Inf	-Inf	78.28	3	Horizontal	341	2.47	-	27.55	4.89	-		
AV	2.421G	97.83	Inf	-Inf	65.35	3	Horizontal	341	2.47	-	27.59	4.89	-		
PK	2.485G	60.78	74.00	-13.22	28.52	3	Horizontal	341	2.47	-	27.40	4.86	-		
AV	2.4835G	46.80	54.00	-7.20	14.54	3	Horizontal	341	2.47	-	27.40	4.86	-		

2.4-2.4835GHz_802.11ax HEW40-BF_Nss1,(MCS0)_2TX 2437MHz_TX 140-Lim.PK РК 120-Lim.AV AV 100-80 -60· 05/09/2023 40-20-| 1G 3G 4G 7Ġ 9G 10G 11G 12G 13G 14G 15G 16G 17G 18G 19G 20G 21G 22G 23G 24G 25G 2G 5G 6G 8G EUT Y_2TX Setting 38 06-C-R-7 Туре Freq Level Limit Margin Raw Dist Condition Azimuth Height Comment AF CL PA (Hz) (dBuV/m) (dBuV/m) (dB) (dBuV) (m) (dB) (dB) (dB) (°) (m) PK 4.8679G 47.89 74.00 -26.11 41.26 3 Vertical 110 1.51 31.30 6.70 31.37 AV 4.8541G 34.98 54.00 -19.02 28.36 3 Vertical 110 1.51 31.30 6.70 31.38 PK 7.3094G 53.69 74.00 -20.31 41.84 3 Vertical 352 2.76 36.60 7.85 32.60 AV 7.3359G 40.65 54.00 -13.35 28.82 3 Vertical 352 2.76 36.60 7.87 32.64




Lim.PK PK

