

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)	
Date of Test	2017/02/27	Test Site	SR10-H	

IEEE 802.11n(20MHz)(ANT 0)								
	Frequency	Measure Level	Limit	Desult				
Channel No.	(MHz)	(dBm) (dBm) Result						
149	5745	9.710	≤29.38	Pass				
157	5785	10.214	≤29.38	Pass				
165	5825	10.377	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

📜 Keysight Spectrum Analyzer - Swept SA - 6 X 50 \$2 RF SENSE: INT ALIGN AUTO 09:17:12 PM Feb 27, 2017 Frequency TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN Center Freq 5.745000000 GHz Avg Type: RMS Trig: Free Run Avg|Hold:>100/100 PNO: Fast G #Atten: 38 dB Ext Gain: -1.70 dB Auto Tune Mkr1 5.748 724 GHz 9.710 dBm 10 dB/div Log Ref 20.00 dBm Center Freq 1 10.0 5.745000000 GHz 0.00 Start Freq 5.725000000 GHz -10.0 -20.0 Marithan the stand of the stand of the stand بسوالي والمراجع المراجع والمراجع والمعادي والمعالم والمعالي والمعالي والمعالي والمعالي والمعالي والمعالي والمعا Stop Freq 5.765000000 GHz -30.0 CF Step -40.0 4.000000 MHz Auto Man -50.0 **Freq Offset** -60.0 0 Hz -70.0 Center 5.74500 GHz Span 40.00 MHz Sweep 1.333 ms (10001 pts) #Res BW 510 kHz #VBW 1.5 MHz* STATUS MSG

			-	pt SA	ectrum Analyzer - Swep RF 50 Ω	Keysight Sp		
Frequency	09:21:29 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Avg Type: RMS TRACE 1 2 3 4 5		5000000 GHz Avg Type: RMS TRACE 1 2 3 4 5				enter F
Auto Tune	DETANNNN	Gain: -1.70 dB	#Atten: 38 dB	PNO: Fast 😱 IFGain:Low				
Auto Tune	5.789 204 GHz 10.214 dBm	Mkr1		Bm	Ref 20.00 dE	0 dB/div		
Center Freq						-og		
5.785000000 GHz		-	and a second sec	(management		10.0		
Start Freq 5.765000000 GHz						0.00		
				1		10.0		
Stop Free	way out the way the way to	1		M	· · ·	20.0		
5.80500000 GHz	A A A A A A A A A A A A A A A A A A A				and her to be a stand of the stand of the stand	30.0		
CF Step		= =				40.0		
4.000000 MHz Auto Man								
and a second						50.0		
Freq Offset 0 Hz		-				60,0		
						70.0		
	Span 40.00 MHz				78500 GHz	Center 5		
	333 ms (10001 pts)	Sweep 1.3	1.5 MHz*	#VBW	510 kHz	Res BW		
		STATUS				ISG		

					1 Gait 1 G	pt SA	trum Analyzer - Swe	Keysight Sp
Frequency	09:35:56 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO	Avg	SENSE(IN	z	0000 GH	RF 50 Ω eq 5.82500	enter F
Auto Tune	DETANNNN	ld: 82/100 n: -1.70 dB		#Atten: 38 dB	NO: Fast 😱 Gain:Low	PN IFC	-	
AutoTune	5.828 644 GHz 10.377 dBm	Mkr1				Bm	Ref 20.00 d) dB/div
Center Fred		17.00	1	-1	1			Jan Star
5.825000000 GH		*****	and a second second second	and a state of the	and a second of the second states	٢		0.0
Start Free						-		0.00
5.80500000 GH		- W		-		- M		0.0
Stop Fred 5.845000000 GH2	surtexter and an internet and the advantages					Wat	Anthronomy and the second	0.0 0.0
CF Step								0.0
4.000000 MH Auto Mar								0.0
Freq Offse					1			
0 Ha								0.0
				- 11			1 1000	0.0
	Span 40.00 MHz 333 ms (10001 pts)	Sween 13		1.5 MHz*	#VBM		2500 GHz	enter 5.3 Res BW
	(Second S	STATUS					IV NILE	G

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)	
Date of Test	2017/02/27	Test Site	SR10-H	

IEEE 802.11n(20MH	IEEE 802.11n(20MHz) (ANT 1)							
Channel No.	Frequency	Measurement	Limit	Result				
Channel No.	(MHz)	z) (dBm) (dBm) Result						
149	5745	9.785	≤29.38	Pass				
157	5785	10.153	≤29.38	Pass				
165	5825	10.109	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

	STATISTICS.					A	trum Analyzer - Swept SA	Keysight Sp
Frequency	Avg Type: RMS TRACE 1 2 3 4 5 6		SENSERINT		eq 5.745000000 GHz		[#] Center F	
11	DETANNNN	в	Ext Gain: -1.7	n: 38 dB		PNO: Fast IFGain:Low		
	5.741 160 GHz 9.785 dBm	Kri			100	m	Ref 20.00 dBm	0 dB/div
Center Fre	1. S.		-17	1	1			
Center Freq 5.745000000 GHz Start Freq 5.725000000 GHz				and an and the second		/ manager		10.0
		-						0.00
5.725000000 GH		Wu .		-		/	/	10.0
Stop Fre	aboration all in the second	Y		-		/	alasin mana and	20,0
5.765000000 GH							in the wither wine and the	30.0
								40.0
and the second sec								50.0
Freq Offse								
он								60.0
1+				1				70.0
	Span 40.00 MHz 333 ms (10001 pts)	13	Swe	H7*	VBW 1.5 M		4500 GHz	Center 5. Res BW
		TATUS	OWC	115			/HT20 a0 MIMO 57	a carrier of

						pectrum Analyzer - Swej	Keysight S
Frequency	09:22:10 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	ALIGN AUTO	SENSE(INT	Hz	0000 GH	RF 50 Ω Freq 5.78500	enter f
- Su 25-	DETANNNN	vg Hold:>100/100 xt Gain: -1.70 dB	rig: Free Run Atten: 38 dB	PNO: Fast 😱 FGain:Low			
Auto Tune	5.781 960 GHz 10.153 dBm	Mkr1			Bm	Ref 20.00 d) dB/div
Center Freq 5.78500000 GHz			1				0.0
5.785000000 GHz		Activity real and		and the second	1		0.0
Start Freq 5.765000000 GHz							.00
5.765000000 GHz	1	X			1),0
Stop Fred 5.805000000 GHz	humaniumneshapintataylana	` ``			AN .	LANG HAT AND	0.0 0.0
CF Step 4.000000 MH							0.0
<u>Auto</u> Mar							0.0
Freq Offse 0 Hi		_					0,0
							0.0
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	5 MHz*	#VBW		.78500 GHz / 510 kHz	
-		STATUS		D.png> save	MO_5785	<vht20_a0_mi< td=""><td>G 🕕 File</td></vht20_a0_mi<>	G 🕕 File

	Concernance of the second				ght Spectrum Analyzer - Swe	Keysig
Frequency	Avg Type: RMS TRACE 1 2 3 4 5 6 Trig: Free Run Avg/Hold:>100/100 TYPE A WWWW		SENSE(INT		RF 50 Ω Freq 5.82500	" Cente
Auto Tune	5.820 664 GHz	Ext Gain: -1.70 dB	#Atten: 38 dB	IFGain:Low		-
	10.109 dBm			1Bm	liv Ref 20.00 d	
Center Freq 5.825000000 GHz		**************************************	 			10.0 —
Start Freq 5.805000000 GHz						0.00 — -10.0 —
Stop Freq 5.845000000 GHz	The and the state of the state				and the second state of th	-20,0 -
CF Step 4.000000 MHz Auto Mar						40.0
Freq Offset 0 Hz						60.0 —
1	2				a	70.0 —
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	1.5 MHz*	#VBW	r 5.82500 GHz BW 510 kHz	
		STATUS				ISG

Product	Wireless-AC2900 Dual Band Gigabit Ro	Wireless-AC2900 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)	
Date of Test	2017/02/27	Test Site	SR10-H	

IEEE 802.11n(20MH	lz) (ANT 2)			
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
149	5745	9.736	≤29.38	Pass
157	5785	10.182	≤29.38	Pass
165	5825	10.145	≤29.38	Pass

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

	State State State					-	it SA	ectrum Analyzer - Swep	Keysight Sp
Frequency	09:18:28 PM Feb 27, 2017 TRACE 1 2 3 4 5 6		ALIGN	SELINT	1.00	RF 50 Ω DC Fr Freq 5.745000000 GHz			Zenter F
Auto Tun	TYPE A WWWWW DET A NNNNN	в	vg Hold:>100/ xt Gain: -1.70		Trig: Free #Atten: 38	NO: Fast 😱 Gain:Low	PN		
Auto Tuli	5.747 592 GHz 9.736 dBm	kr1	N				Bm	Ref 20.00 di	10 dB/div
Center Fre						1	164		
5.745000000 GHz Start Freq 5.725000000 GHz					Martin and Andrewson	wainen an	m		10.0
									0.00
5.725000000 GH:		*			-		1		10.0
Stop Freq	Wangertan Anothin Manager	MA					×	1 A	-20,0
5.765000000 GH	and a start of the	_						hild and a second	-30:0
CF Ste									40.0
4.000000 MH Auto Ma					14				50.0
Freq Offse	1								60.0
0 H									00,0
			- 11						70.0
	Span 40.00 MHz 333 ms (10001 pts)	12	Gwoo		1.5 MHz*	#\/D)A/		74500 GHz	Center 5. #Res BW
1		TATUS			0		10 5745	VHT20 a1 MIN	

			opooliai De			ectrum Analyzer - Swep	Keysight Sp
Frequency	09:24:55 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO Type: RMS Hold:>100/100	SENSE:INT		DOOO GHz	RF 50 Ω req 5.785000	enter F
Auto Tune	DETANNNN	Sain: -1.70 dB	: Free Run en: 38 dB				
	5.788 692 GHz 10.182 dBm	MKr1		1	Bm	Ref 20.00 dl	0 dB/div
Center Fred 5.785000000 GH:							.og
		massing	man provident	alana ang ang ang ang ang ang ang ang ang	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		10.0
Start Fre 5.765000000 GH							0.00
							10.0
Stop Fre	and sold representations and sold and the	New			JAN		20,0
5.805000000 GHz	and a stranger warding					from partitions that the set	30.0
CF Step							40.0
4.000000 MHz Auto Mar							
F							50,0
Freq Offse 0 Ha		-		-			50,0
							70.0
	Span 40.00 MHz	_	-			78500 GHz	enter 5.
	333 ms (10001 pts)	Sweep 1.3	/IHz*	#VBW 1		510 kHz	
		STATUS	1.1				SG

📜 Keysight Spectrum Analyzer - Swept SA				
Center Freq 5.825000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: RMS Avg Hold:>100/100	09:38:10 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	
PNO: Fa IFGain:L		Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNN	Sec. 25-
10 dB/div Ref 20.00 dBm		Mkr1	5.829 964 GHz 10.145 dBm	Auto Tune
		♦ ¹		Center Freq
10.0	and all a set of the s	and here and here and here and here and		5.825000000 GHz
0.00				Start Freq 5.805000000 GHz
-10.0				
-20.0		<u> </u>	Horseman Annual Hilling Horse San Hardware	Stop Freq 5.845000000 GHz
-30.0				CF Step
				4.000000 MHz <u>Auto</u> Man
-50.0				
-60.0				Freq Offset 0 Hz
+70.0				•
Center 5.82500 GHz #Res BW 510 kHz #	VBW 1.5 MHz*	Sweep 1.3	Span 40.00 MHz 33 ms (10001 pts)	
MSG JFile <vht40_a1_mimo_5825_d.png< td=""><td>g> saved</td><td>STATUS</td><td></td><td></td></vht40_a1_mimo_5825_d.png<>	g> saved	STATUS		

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)	
Date of Test	2017/02/27	Test Site	SR10-H	

IEEE 802.11n(20MHz) (ANT 3)							
Channel Ne	Frequency	Measure Level	Limit	Decult			
Channel No.	(MHz)	(dBm)	(dBm)	Result			
149	5745	9.857	≤29.38	Pass			
157	5785	10.027	≤29.38	Pass			
165	5825	10.010	≤29.38	Pass			

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA	_			C. C	- 6 ×
RF 50 Ω DC		SENSE:INT ALIO		09:18:45 PM Feb 27, 2017	Frequency
Center Freq 5.745000000 G	Hz	Talas Free Daw	Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE A WWWW	
	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	DETANNNN	
10 dB/div Ref 20.00 dBm			Mkr1	5.748 588 GHz 9.857 dBm	
	1 1 1 1		1		Center Free
10.0		********			5.745000000 GH
0.00					Start Free
10.0					5.725000000 GH:
-20.0			×	and the second second second second	Stop Free
				A MARKANA AND A MARKANA	5.765000000 GHz
40.0					CF Step
50.0					4.000000 MH <u>Auto</u> Mar
				1	Freq Offse
60,0					он
70.0					
Center 5.74500 GHz #Res BW 510 kHz	#\/B\//	1.5 MHz*	Sweep 1	Span 40.00 MHz 333 ms (10001 pts)	
	Car Company		Letter and		
ISG JFile <vht20_a2_mimo_5745< td=""><td>_D.png> save</td><td>bq</td><td>STATU</td><td>5</td><td></td></vht20_a2_mimo_5745<>	_D.png> save	bq	STATU	5	

	and the second		,	nor opeoardi		pt SA	ctrum Analyzer - Swe	Keysight Sp
Frequency	09:33:03 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO be: RMS d:>100/100		SENSE(INT	z	0000 GH	RF 50 Ω req 5.78500	enter F
Auto Tune	DETANNNN	n: -1.70 dB		#Atten: 38 dB	NO: Fast 😱 Gain:Low	PI IF(
Auto Tun	5.790 100 GHz 10.027 dBm	Mkr1				Bm	Ref 20.00 d	0 dB/div
Center Fred 5.785000000 GH2		(Tari			1	165		
		the second se				M		10.0
Start Free 5.765000000 GH			1					0.00
		- ML				of	-	10.0
Stop Freq 5.805000000 GHz	the state of the s	- Thu				physics .	len latar lan an barland	30.0
CF Step 4.000000 MHz								40.0
<u>Auto</u> Man		-			_			50.0
Freq Offset 0 Hz			-					60,0
								70.0
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	-	1.5 MHz*	#VBW		78500 GHz 510 kHz	enter 5. Res BW
		STATUS						SG

	Sector Contractor					wept SA	ectrum Analyzer - Sw	Keysight Sp
Frequency	09:39:34 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO Type: RMS Iold:>100/100			GHz	00000 G	RF 50 Ω req 5.82500	enter F
Auto Tune	DETANNNN	ain: -1.70 dB		#Atten: 38	PNO: Fast G			
Autorun	5.828 812 GHz 10.010 dBm	MKr1		- 1		dBm	Ref 20.00 d	0 dB/div
Center Fred 5,825000000 GH:			1		11.1		1.0	.og
		and the second		and the second se	1 marine marine	1		10.0
Start Fre								0.00
5.80500000 GH				-	-			10.0
Stop Fre	Auguran manager and the second second	No.				Without	when the state of the state of the	20,0
5.845000000 GH								30.0
CF Step								40.0
4.000000 MH Auto Mar					1.000			50.0
Freq Offse					111			
0 H					-	1		60,0
+								70.0
	Span 40.00 MHz 33 ms (10001 pts)	Sween 13		W 1.5 MHz*	#\/B)		82500 GHz 510 kHz	
12	55 ma (1000 r pta)	STATUS	-	1.5 14112	#VDV		VIV NIIZ	SG SG

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	MIMO Mode (802.1	1 n20/40)	
Date of Test	2017/02/27	Test Site	SR10-H	

IEEE 802.11n(20MH	lz) (ANT 0+1+2+3)			
Channel No.	Frequency	Measure Level	Limit	Decult
Channel No.	(MHz) (dBm) (dBm) Result	Result		
149	5745	15.793	≤29.38	Pass
157	5785	16.165	≤29.38	Pass
165	5825	16.183	≤29.38	Pass

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Product	Wireless-AC2900 Dual Band Gigabit Router		
Test Item	Peak Power Spectral Density		
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)
Date of Test	2017/02/27	Test Site	SR10-H

IEEE 802.11n(40MHz)(ANT 0)						
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
151	5755	6.452	≤29.38	Pass		
159	5795	7.075	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

					ectrum Analyzer - Swept SA	📕 Keysight Spe
Frequency	09:43:25 PM Feb 27, 2017 TRACE 1 2 3 4 5 6	ALIGN AUTO	SENSE	0 GHz	RF 50 Ω DC req 5.755000000 G	Zenter Fi
Su altre	TYPE A WWWWW DET A NNNN	vg Hold:>100/100 xt Gain: -1.70 dB	Trig: Free Run #Atten: 38 dB	PNO: Fast 😱 IFGain:Low		
Auto Tune	5.762 432 GHz 6.452 dBm	Mkr1			Ref 20.00 dBm	10 dB/div
Center Free 5.755000000 GH						10.0
					· · · · · ·	
Start Fre 5.715000000 GH			Y			0.00
5.7 1000000 0112				1		-10.0
Stop Freq 5.795000000 GHz	maritations and and any internet states and	manente		/	the state and the state of the	-20.0
CF Step 8.000000 MHz					T plant (12)	-40.0
<u>Auto</u> Man						-50.0
Freq Offset 0 Hz						-60,0
						-70.0
	Span 80.00 MHz 33 ms (10001 pts)	Sweep 1.3	1.5 MHz*	#VBW	75500 GHz 510 kHz	Center 5.7 #Res BW
C		STATUS				MSG

📜 Keysight Spectrum Analyzer - Swept SA			and the second	
Center Freq 5.795000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: RMS	09:49:12 PM Feb 27, 2017 TRACE 1 2 3 4 5 6	Frequency
PNO:	Fast Frig: Free Run Hatten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWWW DET A NNNNN	
10 dB/div Ref 20.00 dBm		Mkr1	5.804 456 GHz 7.075 dBm	Auto Tune
10.0		● ¹		Center Freq 5.79500000 GHz
0.00				Start Freq
-20.0		- Low	Malayn Balling in an and how when the	5.755000000 GHz Stop Freq
-20.0 -30.0			and the second sec	5.835000000 GHz
-40,0				CF Step 8.000000 MHz <u>Auto</u> Man
-50,0				
-60,0				Freq Offset 0 Hz
-70.0			2.000	
Center 5.79500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*	Sweep 1.3	Span 80.00 MHz 333 ms (10001 pts)	
мsg 🤳 File <vht40_a0_mimo_5795_d.,< td=""><td>ong> saved</td><td>STATUS</td><td></td><td></td></vht40_a0_mimo_5795_d.,<>	ong> saved	STATUS		

Product	Wireless-AC2900 Dual Band Gigabit Ro	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density					
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)			
Date of Test	2017/02/27	Test Site	SR10-H			

IEEE 802.11n(40MHz) (ANT 1)								
Channel No.	Frequency (MHz)	Measurement (dBm)	Limit (dBm)	Result				
151	5755	6.326	≤29.38	Pass				
159	5795	7.118	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA					- 6 ×
RF 50 Ω DC Center Freq 5.755000000	GHz	SENSE(INT	ALIGN AUTO Avg Type: RMS	Avg Type: RMS TRACE 1 2 3 4 5 6 Freq	
	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNN	I I I I I COLUMN TO AND
10 dB/div Ref 20.00 dBm			Mkr	1 5.763 440 GHz 6.326 dBm	Auto Tune
10.0			1		Center Fred 5.755000000 GHz
10,00					Start Free 5.715000000 GH:
-20.0 	/		hund	m twee with the tradition of the standard	Stop Frec 5.795000000 GH2
-40.0					CF Step 8.000000 MH: Auto Mar
-60,0					Freq Offse 0 Ha
-70.0					1.
Center 5.75500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.	Span 80.00 MHz .333 ms (10001 pts)	
usg 🤑 File <vht40_a0_mimo_5< td=""><td>755_D.png> save</td><td>d</td><td>STATU</td><td></td><td>I<u>I</u></td></vht40_a0_mimo_5<>	755_D.png> save	d	STATU		I <u>I</u>

	-		-					rum Analyzer - Swep	Keysight Spe		
Frequency		Avg Type: RMS TRACE 1.2.3		00 GHz Avg Type: RMS TRACE 1 2 3 4 5 6				HZ Trig: Free Run		RF 50 Ω eq 5.795000	Zenter Fr
Auto Tune	DETANNNN	Þ	-1.70 dB	Ext Gain:	ten: 38 dB		PNO: Fas IFGain:Lo	1			
Auto Tune	440 GHz 118 dBm	5.802 4 7.1	Mkr1			· .	m	Ref 20.00 dE	10 dB/div		
Center Fred				¥1		1	111				
5.795000000 GH				-	-	New Marine	Annan		10.0		
Start Fred						-			0.00		
5.755000000 GHz		_	-					-	-10.0		
Stop Free	And a second of the second of	want want	have a	-				المسيدينين المدالية	20,0		
5.835000000 GHz	A A A A A A A A A A A A A A A A A A A					-		hereite and the state of the st	-30.0		
CF Step							1211122	1 1 1 1	40.0		
8.000000 MHz <u>Auto</u> Mar									-50.0		
Freq Offset	1		1.2				44.144		-50,0		
0 Hz			1						-60,0		
+				-		-		-	-70.0		
	80.00 MHz 10001 pts)	Span 8 333 ms (1	ween 1:	s	MHz*	VBW 1.	#\		Center 5.7 #Res BW		
		1	STATUS						ISG		

Product	Wireless-AC2900 Dual Band Gigabit Ro	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density					
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)			
Date of Test	2017/02/27	Test Site	SR10-H			

IEEE 802.11n(40MHz) (ANT 2)								
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result				
151	5755	6.149	≤29.38	Pass				
159	5795	7.588	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA					
enter Freq 5.755000000 G	Hz	SENSE:INT	Avg Type: RMS Avg Hold:>100/100	09:46:35 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	Frequency
1	PNO: Fast 😱 Gain:Low	#Atten: 38 dB	Ext Gain: -1.70 dB	DETANNNN	
dB/div Ref 20.00 dBm			Mkr1	5.761 840 GHz 6.149 dBm	Auto Tune
			1		Center Freq 5.755000000 GHz
.00	****	warman and have a second			
0,0		¥			Start Freq 5.715000000 GHz
0.0 Miner Harrison Survey Andrew Married Constraints			trans	· Bion report of the state of t	Stop Freq 5.795000000 GHz
0.0					CF Step 8.000000 MH Auto Mar
0.0					Freq Offse 0 Hi
0.0		-			1.
enter 5.75500 GHz Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.3	Span 80.00 MHz 333 ms (10001 pts)	
G	2 (Ca / 1)		STATUS		I <u>F</u>

📕 Keysight Sp	ectrum Analyzer - Swe									
Zenter F	RF 50 Ω req 5.79500	5.795000000 GHz Avg Type: RMS TRACE 1 2 3 4 5 6						MS TRACE 1 2 3 4 5 6		Frequency
	1		PNO: Fast 🖕 FGain:Low	#Atten: 3		Ext Gain: -	1.70 dB	DE	08 GHz	8 - 4 - T
10 dB/div	Ref 20.00 c	Bm	_				WIKI I	7.5	88 dBm	
	1 1 1				Â	1		12-1	in the	Center Freq 5.795000000 GHz
10.0		r			-	****	mary			
0.00					Į –					Start Freq
-10.0							-			5.755000000 GHz
-20.0	worth and a state of the state	AND					Marin	-	and the second state of th	Stop Freq
-30.0	Note to						-		a a have	5.835000000 GHz
40.0									1:22(CF Step
										8.000000 MHz <u>Auto</u> Man
50.0								1.1.1		Eron Offent
60,0				e e				-		Freq Offset 0 Hz
70.0							-			1.
Center 5.	79500 GHz				-		-	Span 8	0.00 MHz	
#Res BW			#VBW	1.5 MHz	*	Sv	Sweep 1.333 ms (10001 pts)			
G							STATUS	5		-

Product	Wireless-AC2900 Dual Band Gigabit Ro	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density					
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)			
Date of Test	2017/02/27	Test Site	SR10-H			

IEEE 802.11n(40MHz) (ANT 3)								
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result				
151	5755	6.278	≤29.38	Pass				
159	5795	7.190	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

								trum Analyzer - Swep	Keysight Spec
Frequency	09:46:53 PM Feb 27, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW		Avg Type: R Avg Hold:>10			RF 50 Ω DC SENSE(INT) Freq 5.755000000 GHz PNO: Fast Trig: Free Run			× Center Fr
Auto Tune	DETANNNN	dB	Ext Gain: -1.7		#Atten: 38	Sain:Low	IFG		
Autorune	5.760 328 GHz 6.278 dBm	lkr1				1	Bm	Ref 20.00 dl	10 dB/div
Center Freq 5.755000000 GHz	1.00			£1		12.5	1.74	1 - 1	S. in the
				-	-	*****			10.0
Start Free				Į.					0.00
5.715000000 GH:		-							-10.0
Stop Free	and a state of the	A MANAGER					ment		20.0
5.795000000 GH;	and the second second			-				parahasing the star particular	io.o wantan
CF Step 8.000000 MH									40.0
<u>Auto</u> Mar							<u>[]</u>	-	-50.0
Freq Offse								1 4 1	-60.0
0 H							1-1		
	,			1			1.1	1	-70.0
	Span 80.00 MHz 33 ms (10001 pts)	. 12	Que	*	1.5 MHz*	#\/D)A/			Center 5.7 #Res BW 3
	55 ms (10001 pts)	STATUS	SWE	2		ALCONTA L	10 5755	VHT40_a2_MIN	

📕 Keysight Spectrum Analyzer - Swept SA				and the second second	
Center Freq 5.7950000		SENSE:INT	ALIGN AUTO Avg Type: RMS	09:50:58 PM Feb 27, 2017 TRACE 1 2 3 4 5 6	Frequency
Center Freq 5.7550000	PNO: Fast C IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNNN	Su 25-
10 dB/div Ref 20.00 dBm	i.		Mkr1	5.801 608 GHz 7.190 dBm	Auto Tune
10.0	لاست. الاست. ماینده موزید است. الاست. ماینده موزید است.	rarprosenting physics and	1		Center Freq 5.795000000 GHz
-10.0					Start Freq 5.755000000 GHz
-20.0			hime	hapman addition of the for the second	Stop Freq 5.835000000 GHz
-40.0					CF Step 8.000000 MHz <u>Auto</u> Man
-60.0			* * *		Freq Offset 0 Hz
+70.0	d junt			2 -	
Center 5.79500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.3	Span 80.00 MHz 33 ms (10001 pts)	
MSG 🤳 File <vht40_a2_mimo< td=""><td>_5795_D.png> save</td><td>d</td><td>STATUS</td><td>in the second se</td><td></td></vht40_a2_mimo<>	_5795_D.png> save	d	STATUS	in the second se	

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode (802.11 n20/40)				
Date of Test	2017/02/27	2017/02/27	2017/02/27		

IEEE 802.11n(40MHz) (ANT 0+1+2+3)							
Channel No.	Frequency	Measure Level	Measure Level Limit				
	(MHz)	(dBm) (dBm)		Result			
151	5755	12.323	≤29.38	Pass			
159	5795	13.268	≤29.38	Pass			

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode (802.11 n20/40)				
Date of Test	2017/02/27	Test Site	SR10-H		

IEEE 802.11ac(80MHz)(ANT 0)						
Channel No.	Frequency	Measure Level	Limit	Popult		
	(MHz)	(dBm) (dBm)		Result		
155	5775	3.583	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

📕 Keysight Sp	ectrum Analyzer - Sv								1	
× Center F	RF 50 S		IZ NO: Fast 😱	SEI	NSE:INT	Avg Type Avg Hold:		TYPE	123456 A WWWW	Frequency
			Gain:Low	#Atten: 3		Ext Gain:	-1.70 dB	5.801 3	52 GHZ	11
10 dB/div	Ref 20.00	dBm			_		MINIT		3 dBm	
3	1.0	1.75	15.5						100	Center Freq
10.0		T.	1 I.		¢	1	- 1 			5.775000000 GHz
0.00		Jeyin	A riensender under Ander 16	and the second	Part of the second seco	and and the state of the state	alordal .			Start Freq
-10,0				_						5.695000000 GHz
-20,0		++		-						Stop Freq
-30.0	30.0 manungeneration water and the state of					here and he		un managed and	5.855000000 GHz	
-40.0		10:	1222						1.17	CF Step
									1111	16.000000 MHz <u>Auto</u> Man
-50.0										
-60.0					-	****	-			Freq Offset 0 Hz
-70.0										1.
	77500.01			_		· ·				
Center 5. #Res BW	77500 GHz 510 kHz		#VBW	1.5 MHz	*	SI	weep 1.:	Span 16 333 ms (10	60.0 MHz 0001 pts)	
MSG							STATUS			

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode (802.11 n20/40)				
Date of Test	2017/02/27	Test Site	SR10-H		

IEEE 802.11ac(80MHz) (ANT 1)							
Channel No. (MHz)		Measurement (dBm)	Limit (dBm)	Result			
155	5775	3.341	≤29.38	Pass			

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC Center Freq 5.775000000 GH	15	SENSE(INT	ALIGN AUTO	09:53:08 PM Feb 27, 2017 TRACE 1 2 3 4 5 6	Frequency
P	NO: Fast	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNN	the second se
10 dB/div Ref 20.00 dBm	11		Mkr	1 5.791 400 GHz 3.341 dBm	Auto Tune
-og					Center Fred
10.0	- transferrantes -	way way and a stranger	1 million and a market		5.775000000 GHz
		ľ			Start Fred 5.695000000 GHz
-10,0					
-20.0				the state of the s	Stop Fred 5.855000000 GHz
30.0 North Alter And Alter					1
40.0					CF Step 16.000000 MH: Auto Mar
-50.0					
-60.0					Freq Offse 0 Ha
-70.0					1+
Center 5.77500 GHz #Res BW 510 kHz	#VBW 1	.5 MHz*	Sweep 1	Span 160.0 MHz .333 ms (10001 pts)	l
usg 🤳 File <vht80_a0_mimo_5775_< td=""><td></td><td></td><td>STAT</td><td></td><td><u> </u></td></vht80_a0_mimo_5775_<>			STAT		<u> </u>

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode (802.11 n20/40)				
Date of Test	2017/02/27	Test Site	SR10-H		

IEEE 802.11ac(80MHz) (ANT 2)							
Channel No. (MHz)		Measure Level (dBm)	Limit (dBm)	Result			
155 5775		3.694	≤29.38	Pass			

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer	- Swept SA				
Center Freq 5.77		SENSERINT	ALIGN AUTO Avg Type: RMS	09:57:06 PM Feb 27, 2017 TRACE 1 2 3 4 5 6	Frequency
Center Freq 5.77	PNO: Fast (IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNNN	
10 dB/div Ref 20.0	00 dBm		Mkr1	5.790 216 GHz 3.694 dBm	Auto Tune
10.0					Center Freq 5.775000000 GHz
0.00		water a second providence			Start Freq 5.695000000 GHz
-20.0	wasan warman and		human	noder-antropoliticsection-dependent and the	Stop Free 5.855000000 GH;
-40.0					CF Step 16.000000 MH: <u>Auto</u> Mar
60,0			-		Freq Offse 0 H
-70.0				2.77	
Center 5.77500 GH #Res BW 510 kHz		W 1.5 MHz*	Sweep 1.	Span 160.0 MHz 333 ms (10001 pts)	
MSG			STATUS		

Product	Wireless-AC2900 Dual Band Gigabit Ro	uter	
Test Item	Peak Power Spectral Density		
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)
Date of Test	2017/02/27	Test Site	SR10-H

IEEE 802.11ac(80MHz)(ANT 3)					
Channel No.	Frequency	Measure Level Limit		Result	
Channel No.	(MHz)	(dBm)	(dBm)	Result	
155	5775	3.628	≤29.38	Pass	

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC Center Freq 5.775000000	GHz	SENSE(INT	ALIGN AUTO Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNNN	1 State of the last sector with the last sector
10 dB/div Ref 20.00 dBm	11		Mkr	1 5.788 984 GHz 3.628 dBm	Auto Tune
-og	4 14 6				Center Freq
10.0	A starte				5.775000000 GHz
0.00	*****	manufindering productions			Start Freq
-10.0					5.695000000 GHz
20,0			- ha		Stop Freq
-30.0 atring to the second sec				Herman Branner Warranner and	5.855000000 GHz
40.0					CF Step 16.000000 MHz
50.0					Auto Man
-60.0	114			1	Freq Offset
					0 Hz
-70.0					
Center 5.77500 GHz #Res BW 510 kHz		1.5 MHz*	Sween 1	Span 160.0 MHz .333 ms (10001 pts)	
MSG JFile <vht80_a2_mimo_57< td=""><td></td><td>Parameter and the second se</td><td>STAT</td><td></td><td></td></vht80_a2_mimo_57<>		Parameter and the second se	STAT		

Product	Wireless-AC2900 Dual Band Gigabit Ro	uter	
Test Item	Peak Power Spectral Density		
Test Mode	Mode 2: Tx_ADP: AD890326010-2LF_ N	/IMO Mode (802.1	1 n20/40)
Date of Test	2017/02/27	Test Site	SR10-H

IEEE 802.11ac(80MHz)(ANT 0+1+2+3)					
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
155	5775	9.584	≤29.38	Pass	

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Product	Wireless-AC2900 Dual Band Gigabit Ro	uter	
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ E	Beamforming Mode	e (802.11 n20/40)
Date of Test	2017/03/03	Test Site	SR10-H

IEEE 802.11n(20MHz)(ANT 0)						
Channel No.	Frequency	Measure Level	Limit	Result		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
149	5745	8.885	≤29.38	Pass		
157	5785	9.249	≤29.38	Pass		
165	5825	9.074	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

📕 Keysight Spectrum Analyzer - Swept SA - 6 X 50 \$2 RF SENSE: INT ALIGN AUTO 07:46:58 PM Mar 03, 2017 Frequency TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN Center Freq 5.745000000 GHz Avg Type: RMS Trig: Free Run Avg|Hold:>100/100 PNO: Fast G #Atten: 38 dB Ext Gain: -1.70 dB Auto Tune Mkr1 5.748 772 GHz 8.885 dBm 10 dB/div Log Ref 20.00 dBm Center Freq 10.0 5.745000000 GHz 0.00 Start Freq 5.725000000 GHz -10.0 -20.0 Stop Freq Manual in the second way -30.0 minuter with the the 5.765000000 GHz CF Step -40.0 4.000000 MHz Auto Man -50.0 **Freq Offset** -60.0 0 Hz -70.0 Center 5.74500 GHz Span 40.00 MHz Sweep 1.333 ms (10001 pts) #Res BW 510 kHz #VBW 1.5 MHz* STATUS MSG

			_		i outri o	pt SA	ectrum Analyzer - Swe	Keysight S
Frequency	07:51:17 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO pe: RMS ld:>100/100		SENSE(INT	Hz	0000 GH	RF 50 Ω req 5.78500	enter F
Auto Tune	DETANNNN	n: -1.70 dB		Trig: Free Run #Atten: 38 dB	PNO: Fast 🖵 Gain:Low	PI		
AutoTune	5.788 700 GHz 9.249 dBm	Mkr1				Bm	Ref 20.00 d	0 dB/div
Center Free		7.5	 ▲1				1.0	
5.785000000 GH		many		man and and and and and and and and and a		~		10.0
Start Fred								0.00
5.765000000 GH						1	_	10.0
Stop Free						-		20.0
5.80500000 GH	the second and a second s		_			e	enterneting	30.0 twin
CF Step								40.0
4.000000 MHz Auto Mar								
Freq Offse								50.0
0 Ha							-	60,0
								70.0
	Span 40.00 MHz 333 ms (10001 pts)	Swoon 13		1.5 MHz*	#\/D\//		78500 GHz 510 kHz	
		STATUS	_		#V DVV		VIV KIIZ	SG

				nor opecaal		ot SA	ectrum Analyzer - Swep	Keysight S
Frequency	07:54:01 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO be: RMS d:>100/100			łz	DC 0000 GH	RF 50 Ω req 5.825000	enter f
Auto Tune	DETANNNN	: -1.70 dB		Trig: Free Run #Atten: 38 dB	NO: Fast 😱 Gain:Low	PI IF(
Auto Tune	5.828 984 GHz 9.074 dBm	Mkr1				Bm	Ref 20.00 dl	0 dB/div
Center Freq			1	Sec. T	12.5	1-1		5
5,825000000 GHz		-				1*		10.0
Start Freq								0.00
5.805000000 GHz		X				1		10.0
Stop Freq	A	- NA				unt		20.0
5.845000000 GHz	And work with the second second						ananite and a feature in the same	30.0
CF Step	1					12:		40.0
4.000000 MHz <u>Auto</u> Man								
Ener Office								50.0
Freq Offset 0 Hz			-					60.0
								70.0
	Span 40.00 MHz 333 ms (10001 pts)	Sween 43		1.5 MHz*	#\/D\//		82500 GHz 510 kHz	
		sweep 1.3	_		#VBW		510 KHZ	ISG

Product	Wireless-AC2900 Dual Band Gigabit Ro	uter	
Test Item	Peak Power Spectral Density		
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ E	Beamforming Mode	e (802.11 n20/40)
Date of Test	2017/03/03	Test Site	SR10-H

IEEE 802.11n(20MHz) (ANT 1)						
Channel No.	Frequency	Measurement	Limit	Result		
	(MHz)	(dBm)	(dBm)	rtooun		
149	5745	9.209	≤29.38	Pass		
157	5785	9.075	≤29.38	Pass		
165	5825	9.070	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

M RF 50 Ω DC SENSE:INT A Center Freq 5.745000000 GHz Trig: Free Run IFGain:Low Avg Type: #Atten: 38 dB Avg Type: Avg Hold:> Ext Gain: - 10 dB/div Ref 20.00 dBm	100/100 TYPE A WWWWW 1.70 dB DET A NNNN Mkr1 5.740 932 GHz 9.209 dBm
IFGain:Low #Atten: 38 dB Ext Gain: -	Mkr1 5.740 932 GHz 9.209 dBm
	9.209 dBm
	Center Fre
10.0	5.745000000 GH
0.00	Start Free
10.0	5.725000000 GH:
20.0	Stop Free
30.0 Martin A Analder Martin Altre Martin	Stop Fre 5.76500000 GH
40.0	CF Ste
	4.000000 MH <u>Auto</u> Ma
50.0	Freq Offse
60,0	ОН
70.0	
Center 5.74500 GHz	Span 40.00 MHz
#Res BW 510 kHz #VBW 1.5 MHz* Sv Isg J File <ht20 5745="" a0="" bf="" d.png=""> saved Sv</ht20>	veep 1.333 ms (10001 pts)

						pt SA	ectrum Analyzer - Swej	Keysight S	
Frequency	07:51:52 PM Mar 03, 2017 TRACE 1 2 3 4 5 6	ALIGN AUTO Avg Type: RMS		SENSE:INT	z	DC 0000 GH	RF 50 Ω req 5.78500	enter F	
Auto Tune	TYPE A WWWW DET A N N N N N	d:>100/100 h: -1.70 dB		Trig: Free Run #Atten: 38 dB	NO: Fast 😱 Gain:Low	PI			
	Mkr1 5.788 708 GHz 10 dB/div Ref 20.00 dBm 9.075 dBm								
Center Freq 5.785000000 GHz			¥1			151	1.0	og	
		*****			and the strength of the state o	r		10.0	
Start Freq								0.00	
5.765000000 GHz						1		10.0	
Stop Free		1				/		20.0	
5.805000000 GHz	Wyarminipher and a state of the					1	the ward hits and an	30.0	
CF Step							C21	40.0	
4.000000 MHz Auto Man								50.0	
Freq Offset						4.			
0 Hz								60.0	
								70.0	
	Center 5.78500 GHz Span 40.00 MHz #Res BW 510 kHz #VBW 1.5 MHz* Sweep 1.333 ms (10001 pts)								
		STATUS		GV 191112	#* U VV		VIV MIL	ISG	

						200 C 20	trum Analyzer - Swej	Keysight Spe
Frequency	07:54:40 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO pe: RMS d:>100/100	A	SENS	lz	0000 GHz	RF 50 Ω eq 5.82500	enter Fr
Auto Tune	5.828 332 GHz	n: -1.70 dB		#Atten: 38	NO: Fast 🕞 Gain:Low			_
	9.070 dBm					Bm	Ref 20.00 d	dB/div
Center Free	19 (pr. 1)		A 1		12.5			
5,825000000 GH:			,,),+i,,,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			1		
Start Free					-			00
5.80500000 GH:		- h				1),0
Stop Fre 5.845000000 GH	Meshani dur J.C. 1					w l),σ
	Manhadenia and a shere and						lawawan manager and the second	1.0
CF Ste 4.000000 MH								
Auto Mai								0.0
Freq Offse					11			0
он							-),0
+								
	Span 40.00 MHz			4 C BALL-*	49 (D14)		2500 GHz	
	33 ms (10001 pts)	Sweep 1.3	_	1.5 MHz*		5825 D ppg	HT20_a0_BF_5	Res BW

Product	Wireless-AC2900 Dual Band Gigabit Router					
Test Item	Peak Power Spectral Density					
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)					
Date of Test	2017/03/03	Test Site	SR10-H			

IEEE 802.11n(20MHz) (ANT 2)								
Channel No.	Frequency	Measure Level	Limit	Result				
	(MHz)	(dBm)	(dBm)					
149	5745	8.906	≤29.38	Pass				
157	5785	9.158	≤29.38	Pass				
165	5825	9.089	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA								
4 RF 50Ω DC		SENSE(INT	ALIGN AUTO 07:48:24 PM Mar 03, 2017		Frequency			
and the second s	rer Freq 5.745000000 GHz PNO: Fast IFGain:Low #Atten:		Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.70 dB	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN				
Mkr1 5.748 944 GHz 10 dB/div Ref 20.00 dBm 8.906 dBm								
10.0			1		Center Free			
	propries and in the second		and a set of the second second		5.745000000 GH			
0.00			1		Start Free			
10.0			1		5.725000000 GH			
20.0 30.0				white we have the state of the second streams	Stop Fre 5.765000000 GH			
40.0					CF Ste 4.000000 MH <u>Auto</u> Ma			
60.0					Freq Offse 0 H			
70.0								
Center 5.74500 GHz Span 40.00 MHz #Res BW 510 kHz #VBW 1.5 MHz* Sweep 1.333 ms (10001 pts)								
usg 🤳 File <ht20_a1_bf_5745_d.p< td=""><td>no> saved</td><td></td><td>STATL</td><td></td><td></td></ht20_a1_bf_5745_d.p<>	no> saved		STATL					

				oun ron	t SA	ctrum Analyzer - Swep	Keysight Sp
Frequency	07:52:10 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	ALIGN AUTO g Type: RMS g Hold:>100/100	SENSE:INT	z	DC D	RF 50 Ω eq 5.785000	enter F
Auto Tune	DETANNNN	Gain: -1.70 dB	ten: 38 dB	D: Fast 😱 ain:Low			
	5.788 228 GHz 9.158 dBm	Mkr1		1	Зm	Ref 20.00 dE	0 dB/div
Center Freq			A1		1.5.5	1 1 1	J
5.785000000 GH			and a second	Alternation of the second	m		10.0
Start Free							0.00
5.765000000 GH					\rightarrow	-	10.0
Stop Free 5.805000000 GH;					1		20.0
	who are the second and a second				/	munupulation	30.0
CF Step		_					40.0
4.000000 MH Auto Mar							
							50.0
Freq Offse 0 Hi						-	60.0
							70.0
	Span 40.00 Mills			10.1		8500 GHz	
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	MHz*	#VBW			Res BW
		STATUS		> saved	785_D.png>	HT20_a1_BF_5	sg 🤳 File

							pectrum Analyzer - Swe	Keysigh	
Frequency	07:54:57 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW		Avg Ty	SENSE:INT	z	00000 GH	RF 50 Ω Freq 5.82500	<mark>#</mark> Center	
-51.50	DETANNNN	:>100/100 -1.70 dB		rig: Free Run Atten: 38 dB	NO: Fast 😱 Gain:Low	PN			
Auto Tune	0 dB/div Ref 20.00 dBm 9.089 dBm 9.089 dBm								
Center Fred 5,825000000 GHz					(minus stary of the open			10.0	
Start Free 5.80500000 GHz								0.00	
Stop Freq 5.845000000 GHz	the second state of the second s	******				harden	midistry the significant as presented	20.0 — 30.0 "" Å	
CF Step 4.000000 MH: <u>Auto</u> Mar								40.0	
Freq Offse 0 Hi								50.0	
	2.000 1.000							70.0	
	Span 40.00 MHz 333 ms (10001 pts)	weep 1.3		5 MHz*	#VBW		.82500 GHz		
		STATUS			Contraction (Contraction	5825 D.pnc	<ht20_a1_bf_!< td=""><td></td></ht20_a1_bf_!<>		

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)				
Date of Test	2017/03/03	Test Site	SR10-H		

IEEE 802.11n(20MHz) (ANT 3)								
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result				
149	5745	9.065	≤29.38	Pass				
157	5785	9.113	≤29.38	Pass				
165	5825	9.134	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

					n Analyzer - Swept SA	Keysight Spectn
Frequency	07:48:44 PM Mar 03, 2017	ALIGN AUTO	SENSE:INT		RF 50 Ω DC	<u>×</u>
Trequency	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.70 dB	Trig: Free Run #Atten: 38 dB	HZ PNO: Fast		Center Fre
Auto Tun	5.742 132 GHz 9.065 dBm	an tan tan sa sa -	match. oo ab	IF Galli.Low	ef 20.00 dBm	
Center Fre 5.745000000 GH			▲1 →		(10.0
Start Fre 5.725000000 GH		- h				0.00
Stop Fre 5.765000000 GH	+ Lintrage Antopia appropriate and	7			an sur her and have	20.0 30.0
CF Ste 4.000000 MH Auto Ma						40.0
Freq Offse 0 H						60.0
	2 - 154					-70.0
	Span 40.00 MHz 333 ms (10001 pts)	Sweep 1.3	1.5 MHz*	#VBW		Center 5.74 #Res BW 51
		STATUS		ono> saved	20 a2 BF 5745 D.pn	usg i File <h< td=""></h<>

Peak Power Spectral Density – Channel 149

📜 Keysight Spectrum Analyzer - Swept SA				
₩ RF 50 Ω DC Center Freq 5.785000000 G	HZ Trig: Free Run	ALIGN AUTO 07:5 Avg Type: RMS Avg Hold:>100/100	2:40 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	Frequency
	PNO: Fast Trig: Free Run Gain:Low #Atten: 38 dB	Ext Gain: -1.70 dB	90 648 GHz	Auto Tune
10 dB/div Ref 20.00 dBm		WKT 5.7	9.113 dBm	
이 아이는 아이는 아이는 것	1. 5. 1 12.	≜ 1		Center Freq
10.0				5.785000000 GHz
0.00				Start Freq
-10,0				5.765000000 GHz
-20.0 -30.0			derythingson	Stop Freq 5.805000000 GHz
-40.0				CF Step 4.000000 MHz Auto Man
-50.0				le an an a
-60,0		· · · · · · · · · · · · · · · · · · ·		Freq Offset 0 Hz
-70.0			-	1.
Center 5.78500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*	Sp Sweep 1.333 n	an 40.00 MHz ns (10001 pts)	
мsg 🧼 File <ht20_a2_bf_5785_d.p< td=""><td>ng> saved</td><td>STATUS</td><td></td><td></td></ht20_a2_bf_5785_d.p<>	ng> saved	STATUS		

Peak Power Spectral Density – Channel 157

							trum Analyzer - Swe	Keysight Sp
Frequency	07:55:12 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	ALIGN AUTO Type: RMS told:>100/100			Hz	0000 GH	RF 50 Ω eq 5.82500	enter F
Auto Tune	DETANNNN	ain: -1.70 dB		#Atten: 38	PNO: Fast G Gain:Low			
Auto Tulle	5.828 324 GHz 9.134 dBm	Mkr1	_	_		IBm	Ref 20.00 d) dB/div
Center Fred			A 1		1.5			, a
5.825000000 GHz		wearing	-	The second second	and the second standard and the second stand and the second standard standard standard stand stand stand stand	~		0.0
Start Fred							-).00
5.80500000 GHz						A		0.0
Stop Free		- N.		10		1		.0.0
5.845000000 GHz	and a transferration of the test and the terms					M ^C	harrighterships and and	io.o water
CF Step					1 = 1		11111	0.0
4.000000 MH Auto Mar								
								10,0
Freq Offse 0 Hi								i0,0
								ro.o
	Span 40.00 MHz						2500 GHz	enter 5.3
	333 ms (10001 pts)	Sweep 1.3	ŧ	V 1.5 MHz*	#VBW			Res BW
		STATUS			ng> saved	5825_D.png	HT20_a2_BF_	G 🤳 File

Peak Power Spectral Density – Channel 165

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)				
Date of Test	2017/03/03	Test Site	SR10-H		

IEEE 802.11n(20MHz) (ANT 0+1+2+3)								
Channel No	Frequency Mea		Limit	Desult				
Channel No.	(MHz)	(dBm)	(dBm)	Result				
149	5745	15.039	≤29.38	Pass				
157	5785	15.170	≤29.38	Pass				
165	5825	15.112	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)				
Date of Test	2017/03/03	Test Site	SR10-H		

IEEE 802.11n(40MHz)(ANT 0)								
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result				
151	5755	6.349	≤29.38	Pass				
159	5795	6.009	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA				the second second second	
RF 50 Ω DC Center Freq 5.755000000		SENSERINT	ALIGN AUTO Avg Type: RMS Avg Hold:>100/100	08:00:24 PM Mar 03, 2017 TRACE 1, 2, 3, 4, 5, 6 TYPE A WWWW	Frequency
	PNO: Fast 😱 IFGain:Low	#Atten: 38 dB	Ext Gain: -1.70 dB	DETANNNN	Auto Tupo
10 dB/div Ref 20.00 dBm			Mkr1	5.761 904 GHz 6.349 dBm	Auto Tune
10.0			↓1		Center Freq 5.755000000 GHz
.0.00	/*************************************				Start Freq 5.715000000 GHz
20.0				the artista war we have been a greater and the	Stop Freq 5.795000000 GHz
-40.0					CF Step 8.000000 MHz <u>Auto</u> Man
60,0					Freq Offset 0 Hz
70.0					
Center 5.75500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.3	Span 80.00 MHz 333 ms (10001 pts)	
MSG			STATUS		

Keysight Sp	ectrum Analyzer - Sw	ept SA							
× Center F	RF 50 Ω req 5.79500	00000 G		SENSE:INT	Avg Typ	ALIGN AUTO be: RMS d:>100/100	TRACE	Mar 03, 2017	Frequency
	11	1	PNO: Fast 😱 FGain:Low	#Atten: 38 dB		n: -1.70 dB	DE	ANNNN	
10 dB/div	Ref 20.00 (dBm	- 7			Mkr1	5.802 0 6.00	80 GHz)9 dBm	Auto Tune
10.0	1		44.4		1				Center Freq 5.795000000 GHz
		r		-					5.795000000 GHz
0.00				V					Start Freq 5.755000000 GHz
-10.0									
-20.0	1 10 Mink MA	howard	1			hitlester to	harringentingforme	have been a	Stop Freq 5.835000000 GHz
-30.0	and the second second second second	1.0							CF Step
-40.0		1					1		8.000000 MHz Auto Man
-50.0									
-60,0					_	-		_	Freq Offset 0 Hz
-70.0									+
Center 5. #Res BW	79500 GHz 510 kHz		#VBW	1.5 MHz*		Sweep 1.	Span 80 333 ms (10).00 MHz)001 pts)	
MSG	AUTO PLAN			and the second second		STATUS	1		L

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)				
Date of Test	2017/03/03	Test Site	SR10-H		

IEEE 802.11n(40MHz) (ANT 1)						
Channel No.	Frequency (MHz)	Measurement (dBm)	Limit (dBm)	Result		
151	5755	6.045	≤29.38	Pass		
159	5795	6.170	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA					
RF 50 Q DC Center Freq 5.755000000 C		SENSE(INT	ALIGN AUTO Avg Type: RMS	08:00:44 PM Mar 03, 2017 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWW DET A NNNN	the second se
10 dB/div Ref 20.00 dBm	-77-		Mkr1	5.763 064 GHz 6.045 dBm	Auto Tune
10.0			↓ 1		Center Freq 5.755000000 GHz
10,0	, 1999 () , 1999 ()				Start Fred 5.715000000 GH2
20.0 /			hun	mander an interesting and and	Stop Frec 5.795000000 GHz
40.0					CF Step 8.000000 MH: <u>Auto</u> Mar
60,0					Freq Offset 0 Hz
-70.0					1+
Center 5.75500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.	Span 80.00 MHz 333 ms (10001 pts)	
usg 🤑 File <ht40_a0_bf_5755_d.< td=""><td>png> saved</td><td></td><td>STATUS</td><td></td><td>L</td></ht40_a0_bf_5755_d.<>	png> saved		STATUS		L

📕 Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC		SENSE:INT	ALIGN AUTO	08:04:04 PM Mar 03, 2017	Frequency
	IZ NO: Fast Gain:Low #Atten	ree Run : 38 dB	Avg Type: RMS Avg Hold:>100/100 Ext Gain: -1.70 dB	TRACE 1, 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	
10 dB/div Ref 20.00 dBm			Mkr1	5.802 736 GHz 6.170 dBm	Auto Tune
10.0			1		Center Freq 5.795000000 GHz
-10,0		Y			Start Freq 5.755000000 GHz
-20.0			hunse	way and a second and a second and	Stop Freq 5.835000000 GHz
-40.0					CF Step 8.000000 MHz <u>Auto</u> Man
-60.0					Freq Offset 0 Hz
-70.0)+
Center 5.79500 GHz #Res BW 510 kHz	#VBW 1.5 MH	łz*	Sweep 1.	Span 80.00 MHz 333 ms (10001 pts)	
мsg 🤳 File <НТ40_а0_ВF_5795_D.pr	g> saved		STATU	s	

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)			
Date of Test	2017/03/03	Test Site	SR10-H	

IEEE 802.11n(40MHz) (ANT 2)						
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
151	5755	6.423	≤29.38	Pass		
159	5795	6.104	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA						
RF 50 Ω DC Center Freq 5.755000000 GH	z	SENSE:INT	ALIGN A Avg Type: RMS	TRAC	Mar 03, 2017	Frequency
PN	O: East	Trig: Free Run ¥Atten: 38 dB	Avg Hold:>100/ Ext Gain: -1.70 c		E A WWWWW T A N N N N N	the second second second
10 dB/div Ref 20.00 dBm	1		M	lkr1 5.764 4 6.42	80 GHz 23 dBm	Auto Tune
10.0			♦ ¹			Center Fred 5.755000000 GH:
0.00						Start Free 5.715000000 GH:
20,0 30.0				willy and interest where and	handman	Stop Fred 5.795000000 GH;
40.0						CF Step 8.000000 MH <u>Auto</u> Mar
60,0				-		Freq Offse 0 H
-70.0					1.6	1+
Center 5.75500 GHz #Res BW 510 kHz	#VBW 1	.5 MHz*	Sweer	Span 8 1.333 ms (1	0.00 MHz 0001 pts)	
usg 🤳 File <ht40_a1_bf_5755_d.png< td=""><td>> saved</td><td></td><td></td><td>STATUS</td><td>. ,</td><td>F</td></ht40_a1_bf_5755_d.png<>	> saved			STATUS	. ,	F

Keysight Spectrum Analyzer - Swept S	A				
₩ RF 50 Ω D Center Freq 5.7950000		SENSE:INT	ALIGN AUTO	08:04:21 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	DET A NNNN	and the second sec
10 dB/div Ref 20.00 dBr	n		Mkr1	5.801 432 GHz 6.104 dBm	Auto Tune
10.0			1		Center Freq 5.795000000 GHz
.00					Start Freq 5.755000000 GHz
-20.0	met			the manufacture and a large of the second and a second second and a second second and a second s	Stop Freq 5.835000000 GHz
-40.0					CF Step 8.000000 MHz <u>Auto</u> Man
60,0					Freq Offset 0 Hz
-70.0				2.00	
Center 5.79500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1.3	Span 80.00 MHz 333 ms (10001 pts)	
MSG JFile <ht40_a1_bf_579< td=""><td>)5_D.png> saved</td><td></td><td>STATUS</td><td></td><td></td></ht40_a1_bf_579<>)5_D.png> saved		STATUS		

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)			
Date of Test	2017/03/03	Test Site	SR10-H	

IEEE 802.11n(40MHz) (ANT 3)						
Channel No.	Frequency	Measure Level	Limit	Result		
	(MHz)	(dBm)	(dBm)			
151	5755	6.097	≤29.38	Pass		
159	5795	6.197	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Keysight Spectrum Analyzer - Swept SA			And the second second second	
RF 50 Ω DC Center Freq 5.755000000 GH	Z IO: Fast C Trig: Free Run	Avg Type: RMS	08:02:10 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWW	Frequency
PN IFG	io: Fast 😱 Trig: Free Run ain:Low #Atten: 38 dB	Ext Gain: -1.70 dB	DETANNNN	1
10 dB/div Ref 20.00 dBm		Mkr1	5.763 840 GHz 6.097 dBm	Auto Tune
10.0		.1	1.1	Center Freq 5.755000000 GHz
· · · · ·	ware to any way was a series and a series	and the second second second		5.75500000 GH2
10.0				Start Fred 5.715000000 GHz
20.0				
30.0		Never	head-in-providing of the second with some with	Stop Fred 5.795000000 GH2
40.0			100 (L. 10)	CF Step
50.0				8.000000 MH: <u>Auto</u> Mar
60.0				Freq Offse
				0 H:
-70.0			2.00	
Center 5.75500 GHz #Res BW 510 kHz	#VBW 1.5 MHz*	Sweep 1.	Span 80.00 MHz 333 ms (10001 pts)	
ISG		STATU		IL

Keysight Spectrum Analyzer - S	wept SA			-		
₩ RF 50 Center Freq 5.7950	000000 GHz	SENS	Avg Type	RMS	08:04:36 PM Mar 03, 2017 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
	PNO: F IFGain:	ast 😱 Trig: Free F ow #Atten: 38 d		-1.70 dB	DETANNNN	1
10 dB/div Ref 20.00	dBm	1.7		Mkr1 5	.805 576 GHz 6.197 dBm	Auto Tune
			*1		· · · ·	Center Fred
10.0			and the section of the state of the section of the			5.795000000 GHz
0.00		I V				Start Fred
-10.0						5.755000000 GHz
-20,0	- water			Manufactor	linear I. I.	Stop Free
30.0 million all water when					under and the state of the stat	5.835000000 GHz
40.0						CF Step 8.000000 MH
50.0					_	<u>Auto</u> Mar
60.0						Freq Offse
70.0						0 H2
100			-		1.1.1	
Center 5.79500 GHz #Res BW 510 kHz		#VBW 1.5 MHz*	s	weep 1.33	Span 80.00 MHz 3 ms (10001 pts)	
usg 🤳 File <ht40_a2_bf< td=""><td></td><td></td><td></td><td>STATUS</td><td></td><td><u> </u></td></ht40_a2_bf<>				STATUS		<u> </u>

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)			
Date of Test	2017/03/03	Test Site	SR10-H	

IEEE 802.11n(40MHz) (ANT 0+1+2+3)						
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
151	5755	12.252	≤29.38	Pass		
159	5795	12.141	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)			
Date of Test	2017/03/03	Test Site	SR10-H	

IEEE 802.11ac(80MHz)(ANT 0)						
Channel No.	Frequency	Measure Level	Limit	Result		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
155	5775	3.387	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

						ectrum Analyzer - Sw	📕 Keysight Sp
Frequency	08:06:44 PM Mar 03, 2017 TRACE 1, 2, 3, 4, 5, 6 TYPE A WWWWW	g Type: RMS g Hold:>100/100	SENSE:INT		0000 GH	RF 50 Ω req 5.77500	Zenter F
	DETANNNN	Gain: -1.70 dB	Atten: 38 dB	0: Fast 😱 ain:Low	PNO: Fast 😱 IFGain:Low		
Auto Tune	5.788 984 GHz 3.387 dBm	Mkr1			1Bm	Ref 20.00 c	10 dB/div
Center Free		-		15.5	1.71	1 1 1	3.11
5.775000000 GH:							10.0
Start Free		uniter thereightere	and the second s	here and a second and a second s	- Muga		0.00
5.695000000 GH:							-10.0
Stop Free							-20.0
5.855000000 GH	white and the second	. Andrew			J.O war-many warden and a second and the		-30.0
CF Step							40.0
16.000000 MH: <u>Auto</u> Mar							
							-50.0
Freq Offse 0 Hi						-	-60,0
						_	-70.0
	Span 160.0 MHz					77500 GHz	Center 5
	33 ms (10001 pts)	Sweep 1.3	5 MHz*	#VBW 1			#Res BW
		STATUS					MSG

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)			
Date of Test	2017/03/03	Test Site	SR10-H	

IEEE 802.11ac(80MHz) (ANT 1)						
Channel No.	Frequency	Measurement	Limit	Result		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
155	5775	3.483	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

|--|

Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC Center Freq 5.775000000	GH7	SENSE:INT	ALIGN AUTO Avg Type: RMS	08:07:04 PM Mar 03, 2017 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast CP IFGain:Low	Trig: Free Run #Atten: 38 dB	Avg Hold:>100/100 Ext Gain: -1.70 dB	TYPE A WWWWW DET A NNNN	
10 dB/div Ref 20.00 dBm			Mkr	1 5.788 984 GHz 3.483 dBm	
10.0					Center Free 5.775000000 GH2
.10,0	YL/W MARANA AND AND AND AND AND AND AND AND AND		-		Start Free 5.69500000 GH2
-20.0			-	win for the section of the section o	Stop Fred 5.855000000 GHz
-40.0					CF Step 16.000000 MH: <u>Auto</u> Mar
60,0		-			Freq Offse 0 H
-70.0					
Center 5.77500 GHz #Res BW 510 kHz	#VBW	1.5 MHz*	Sweep 1	Span 160.0 MHz .333 ms (10001 pts)	
ASG JFile <vht80_a0_bf_5775_< td=""><td>D.png> saved</td><td></td><td>STATI</td><td>JS</td><td></td></vht80_a0_bf_5775_<>	D.png> saved		STATI	JS	

Product	Wireless-AC2900 Dual Band Gigabit Router			
Test Item	Peak Power Spectral Density			
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)			
Date of Test	2017/03/03	Test Site	SR10-H	

IEEE 802.11ac(80MHz) (ANT 2)						
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
155	5775	3.485	≤29.38	Pass		

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

08:07:21 PM Mar 03, 2017 TRACE 1, 2 3 4 5 6 TYPE A WWWWW DET A NNNN		Avg Type	SENSE:INT			RF 50 Ω	LX4
TYPE A WWWW DET A NNNN			and the second se	7		rog 5 7750	Contor E
		Avg Hold: Ext Gain:	Trig: Free Run #Atten: 38 dB	NO: Fast 😱 Gain:Low	P	req 5.7750	Center F
5.789 000 GHz 3.485 dBm	Mkr1			11	dBm	Ref 20.00	10 dB/div
		×1					10.0
		ner and whether	and a second	Annughaded all and a			0.00
maynumes the synthesis and	Withingto				www.	L. U. W. S.	-20,0
							-40.0
		+ +					-60.0
2.782 (1974)							-70.0
Span 160.0 MHz 333 ms (10001 pts)	eep 1.3	S	1.5 MHz*	#VBW		77500 GHz 510 kHz	Center 5. #Res BW
) MHz	Span 160.	Span 160.4	Span 160.0 Sweep 1.333 ms (1000	Span 160.0 Span 160.0 Sweep 1.333 ms (1000	Span 160.4 #VBW 1.5 MHz*	www.www.www.www.www.www.www.www.www.ww	77500 GHz 510 kHz 77500 GHz 510 kHz 77500 GHz 510 kHz 77500 GHz 510 kHz 77500 GHz 510 kHz 77500 GHz 77500

Product	Wireless-AC2900 Dual Band Gigabit Router				
Test Item	Peak Power Spectral Density				
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)				
Date of Test	2017/03/03	Test Site	SR10-H		

IEEE 802.11ac(80MHz)(ANT 3)								
Channel No.Frequency (MHz)Measure Level (dBm)Limit (dBm)Resu								
155	5775	3.673	≤29.38	Pass				

Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

		Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
IFGain:Low	#Atten: 38 dB	Ext Gain: -1.70 dB	DETANNNN	Auto Tune
		IVIKT I	3.673 dBm	
				Center Freq
		1		5.775000000 GHz
providence and a second	Warran and a second	and the second sec		Start Fred
				5.695000000 GHz
			· · · · · · · · · · · · · · · · · · ·	Stop Freq
1		"Hunged	and the second and the second second	5.855000000 GHz
				CF Step
				16.000000 MHz <u>Auto</u> Man
				Eron Official
				Freq Offset 0 Hz
				1.
10 (5)11			Span 160.0 MHz	
#vBW	1.9 IVIHZ*	Sweep 1.		
		PNO: Fast Trig: Free Run IFGain:Low #Atten: 38 dB	0 GHz Trig: Free Run Avg Type: RMS PNO: Fast () #Atten: 38 dB AvgHold:>100/100 Ext Gain: Low #Mkr1 Mkr1 #VBW 1.5 MHz* Sweep 1.1	0 GHz Trig: Free Run Avg Type: RMS TrACE 1 2 3 4 5 6 PN0: Fast Trig: Free Run Avg Hold:>100/100 TrACE 1 2 3 4 5 6 Mkr1 5.787 608 GHz 3.673 dBm John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Strate John Stratee

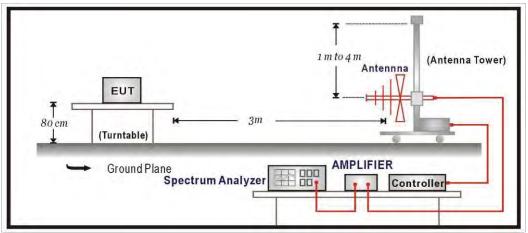
Product	Wireless-AC2900 Dual Band Gigabit Router					
Test Item	Peak Power Spectral Density					
Test Mode	Mode 3: Tx_ADP: AD890326010-2LF_ Beamforming Mode (802.11 n20/40)					
Date of Test	2017/03/03 Test Site SR10-H					

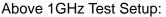
IEEE 802.11ac(80MHz)(ANT 0+1+2+3)							
Channel No. Frequency Measure (MHz) (dBm			Limit (dBm)	Result			
155 5775		9.529	≤29.38	Pass			

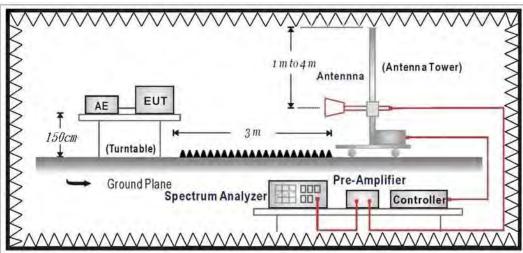
Limit =30dBm-(6.62dBi-6dBi)=29.38dBm

6. Radiated Emission

6.1. Test Equipment


The following test equipments are used during the radiated emission test: Radiated Emission / CB4-H


	1 1 1			
Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Bilog Antenna	Schaffner	CBL6112B	2891	2017/08/14
Horn Antenna	Schwarzbeck	BBHA 9120	D312	2017/10/25
Pre-Amplifier	EMCI	EMC0031835	980233	2018/02/02
Pre-Amplifier	Schwarzbeck	DBL-1840N506	013	2017/09/29
Pre-Amplifier	Miteq	JS41-001040000-58-5P	1573954	2017/10/04
Horn Antenna	Schwarzbeck	BBHA 9170	203	2017/08/28
Signal & Spectrum	R&S	FSV40	101049	2018/01/22
Analyzer				


Note: All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

Under 1GHz Test Setup:

6.3. Limits

General Radiated Emission Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section. Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30 - 88	100	40					
88 - 216	150	43.5					
216 - 960	200	46					
Above 960	500	54					

Remark:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

> Unwanted Emission out of the restricted bands Limits

FCC Part 15 Subpart C Paragraph 15.407(b) Limits							
Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength (dBuV/m@3m)					
5150 - 5250	-27	68.3					
5250 - 5350	-27	68.3					
5470 - 5725	-27	68.3					
5705 5050	-27 (Note1)	68.3					
5725 - 5850	-17 (Note2)	78.3					

Remark:

- 1. For frequencies more than 10 MHz above or below the band edges.
- 2. For frequency range from the band edges to 10 MHz above or below the band edges.

3.
$$uV/m = \frac{1000000\sqrt{30 \times EIRP}}{3}$$
, RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

6.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

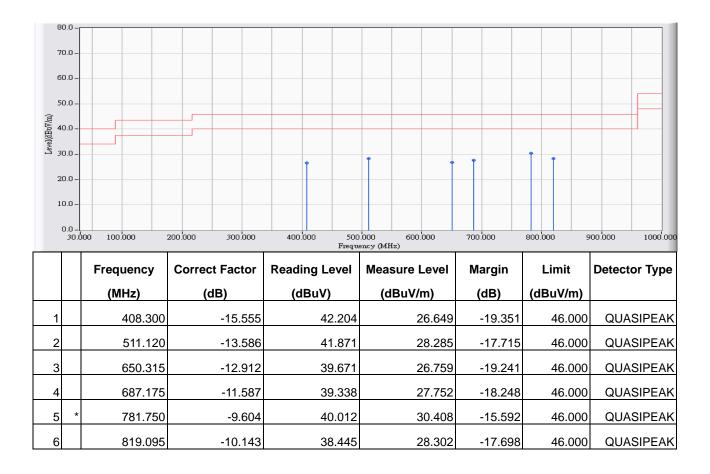
Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The additional latch filter below 1GHz was used to measure the level of harmonics radiated emission during field dtrength of harmonics measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 KHz, above 1GHz are 1 MHz.

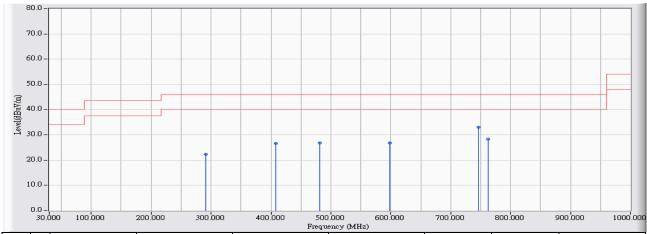
The frequency range from 30MHz to 10th harminics is checked.

6.5. Uncertainty


The measurement uncertainty $30MHz \sim 1GHz$ as $\pm 3.43dB$ $1GHz \sim 26.5Ghz$ as $\pm 3.65dB$

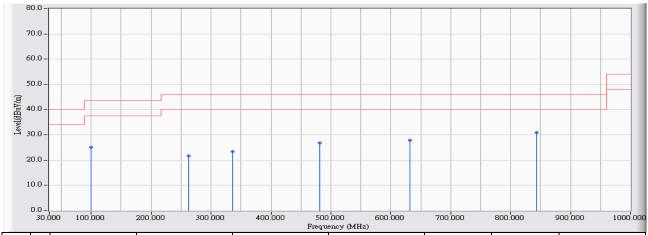
6.6. Test Result

30MHz-1GHz Spurious


Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

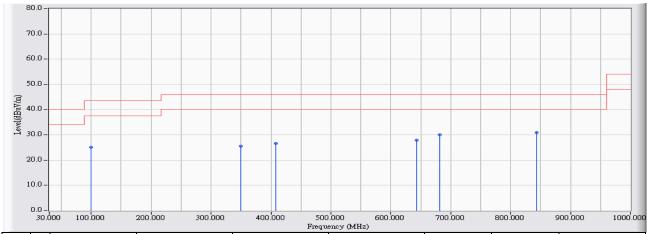
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		290.930	-19.308	41.669	22.361	-23.639	46.000	QUASIPEAK
2		408.300	-15.555	42.204	26.649	-19.351	46.000	QUASIPEAK
3		482.020	-14.451	41.364	26.914	-19.086	46.000	QUASIPEAK
4		598.420	-12.783	39.573	26.790	-19.210	46.000	QUASIPEAK
5	*	746.830	-11.144	44.067	32.923	-13.077	46.000	QUASIPEAK
6		761.865	-10.991	39.246	28.255	-17.745	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

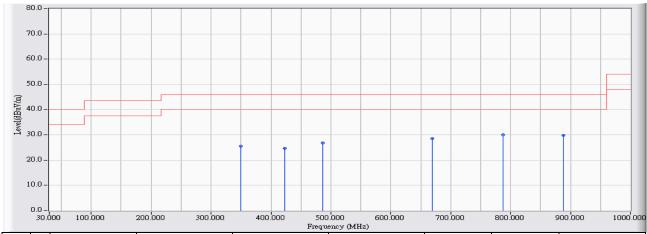
Time : 2017/02/23
Margin : 6
Power : AC 120V/60Hz
Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode (802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		99.840	-23.412	48.457	25.045	-18.455	43.500	QUASIPEAK
2		262.315	-20.159	41.718	21.559	-24.441	46.000	QUASIPEAK
3		336.520	-17.869	41.282	23.413	-22.587	46.000	QUASIPEAK
4		482.020	-14.451	41.364	26.914	-19.086	46.000	QUASIPEAK
5		632.370	-12.284	40.167	27.883	-18.117	46.000	QUASIPEAK
6	*	843.345	-9.232	40.118	30.886	-15.114	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

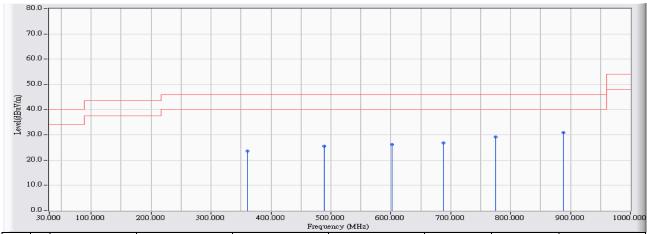
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		99.840	-23.412	48.457	25.045	-18.455	43.500	QUASIPEAK
2		349.130	-17.343	42.911	25.567	-20.433	46.000	QUASIPEAK
3		408.300	-15.555	42.204	26.649	-19.351	46.000	QUASIPEAK
4		642.555	-12.775	40.657	27.882	-18.118	46.000	QUASIPEAK
5		681.355	-11.378	41.473	30.094	-15.906	46.000	QUASIPEAK
6	*	843.345	-9.232	40.118	30.886	-15.114	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

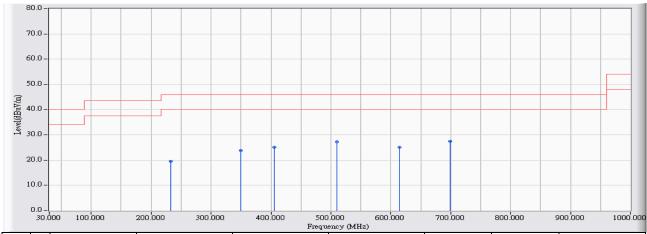
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		349.130	-17.343	42.911	25.567	-20.433	46.000	QUASIPEAK
2		423.335	-15.735	40.454	24.719	-21.281	46.000	QUASIPEAK
3		486.385	-14.310	41.220	26.910	-19.090	46.000	QUASIPEAK
4		669.230	-11.552	40.129	28.577	-17.423	46.000	QUASIPEAK
5	*	787.085	-9.759	39.700	29.940	-16.060	46.000	QUASIPEAK
6		887.480	-8.394	38.265	29.871	-16.129	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

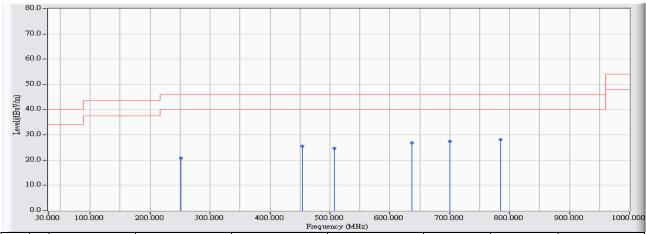
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		360.285	-17.202	40.880	23.678	-22.322	46.000	QUASIPEAK
2		488.325	-14.246	39.814	25.567	-20.433	46.000	QUASIPEAK
3		602.300	-12.579	38.757	26.178	-19.822	46.000	QUASIPEAK
4		688.145	-11.621	38.325	26.704	-19.296	46.000	QUASIPEAK
5		774.475	-10.050	39.196	29.146	-16.854	46.000	QUASIPEAK
6	*	887.965	-8.377	39.278	30.900	-15.100	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

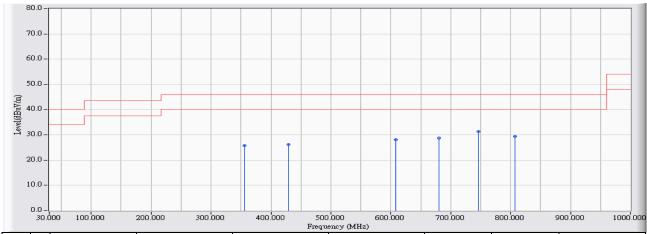
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		232.730	-21.250	40.781	19.531	-26.469	46.000	QUASIPEAK
2		349.615	-17.330	41.178	23.848	-22.152	46.000	QUASIPEAK
3		405.875	-15.608	40.610	25.002	-20.998	46.000	QUASIPEAK
4		509.665	-13.609	40.946	27.338	-18.662	46.000	QUASIPEAK
5		613.940	-12.069	37.248	25.178	-20.822	46.000	QUASIPEAK
6	*	699.300	-11.996	39.366	27.370	-18.630	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

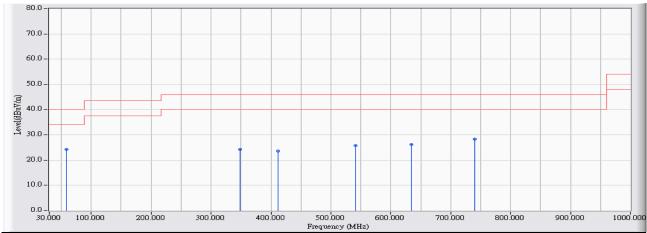
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		251.160	-20.126	40.949	20.823	-25.177	46.000	QUASIPEAK
2		454.375	-14.579	40.017	25.438	-20.562	46.000	QUASIPEAK
3		507.240	-13.716	38.488	24.772	-21.228	46.000	QUASIPEAK
4		637.220	-12.560	39.327	26.767	-19.233	46.000	QUASIPEAK
5		699.785	-12.007	39.403	27.396	-18.604	46.000	QUASIPEAK
6	*	784.660	-9.689	37.862	28.173	-17.827	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

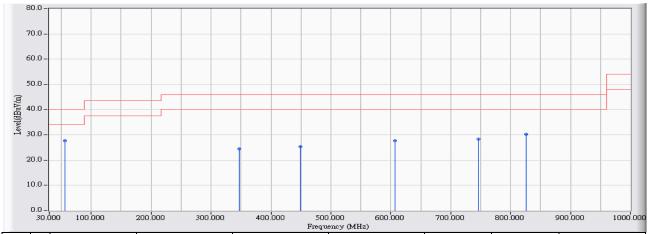
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		355.920	-17.245	42.900	25.655	-20.345	46.000	QUASIPEAK
2		428.670	-15.539	41.613	26.075	-19.925	46.000	QUASIPEAK
3		608.605	-12.298	40.378	28.079	-17.921	46.000	QUASIPEAK
4		679.900	-11.333	40.179	28.846	-17.154	46.000	QUASIPEAK
5	*	745.860	-11.072	42.465	31.392	-14.608	46.000	QUASIPEAK
6		806.970	-10.439	39.882	29.443	-16.557	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

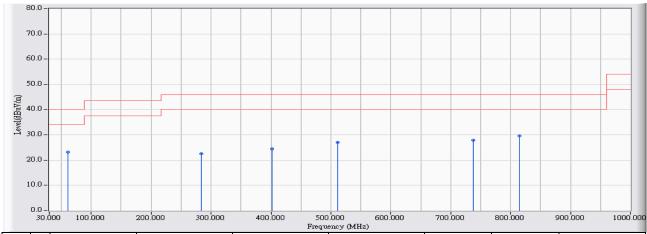
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	58.615	-27.936	52.153	24.217	-15.783	40.000	QUASIPEAK
2		348.645	-17.359	41.498	24.139	-21.861	46.000	QUASIPEAK
3		411.210	-15.552	39.079	23.527	-22.473	46.000	QUASIPEAK
4		541.675	-13.380	39.157	25.777	-20.223	46.000	QUASIPEAK
5		634.795	-12.422	38.631	26.209	-19.791	46.000	QUASIPEAK
6		739.555	-10.636	38.915	28.279	-17.721	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

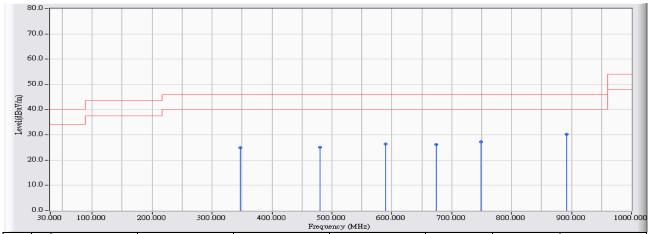
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	56.190	-27.274	55.003	27.729	-12.271	40.000	QUASIPEAK
2		347.190	-17.405	41.926	24.521	-21.479	46.000	QUASIPEAK
3		449.525	-14.684	39.885	25.202	-20.798	46.000	QUASIPEAK
4		607.150	-12.364	39.991	27.627	-18.373	46.000	QUASIPEAK
5		746.345	-11.109	39.490	28.381	-17.619	46.000	QUASIPEAK
6		825.885	-9.853	39.995	30.142	-15.858	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

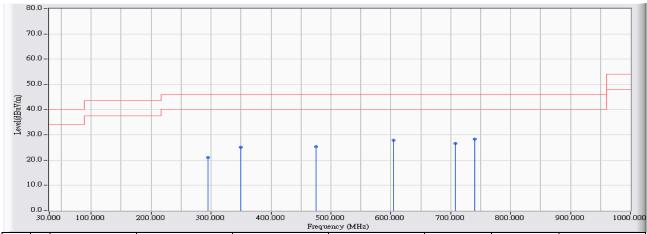
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		61.525	-28.250	51.313	23.063	-16.937	40.000	QUASIPEAK
2		283.170	-19.328	41.793	22.465	-23.535	46.000	QUASIPEAK
3		401.510	-15.705	40.073	24.369	-21.631	46.000	QUASIPEAK
4		511.605	-13.585	40.619	27.035	-18.965	46.000	QUASIPEAK
5		737.130	-10.612	38.429	27.817	-18.183	46.000	QUASIPEAK
6	*	815.215	-10.263	39.857	29.594	-16.406	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

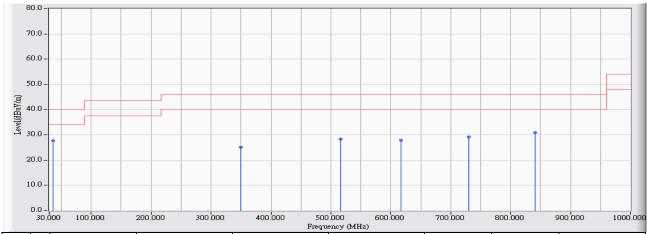
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		347.190	-17.405	42.315	24.910	-21.090	46.000	QUASIPEAK
2		480.080	-14.513	39.626	25.113	-20.887	46.000	QUASIPEAK
3		589.690	-13.317	39.800	26.483	-19.517	46.000	QUASIPEAK
4		674.080	-11.426	37.626	26.200	-19.800	46.000	QUASIPEAK
5		748.770	-11.288	38.521	27.233	-18.767	46.000	QUASIPEAK
6	*	891.845	-8.397	38.551	30.154	-15.846	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

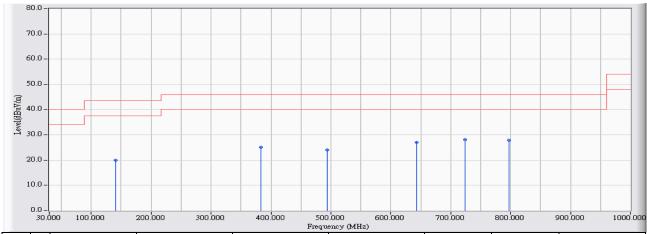
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		294.325	-19.345	40.321	20.975	-25.025	46.000	QUASIPEAK
2		349.130	-17.343	42.519	25.175	-20.825	46.000	QUASIPEAK
3		475.715	-14.537	39.890	25.353	-20.647	46.000	QUASIPEAK
4		604.725	-12.473	40.286	27.814	-18.186	46.000	QUASIPEAK
5		708.030	-11.918	38.419	26.501	-19.499	46.000	QUASIPEAK
6	*	739.555	-10.636	38.888	28.252	-17.748	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

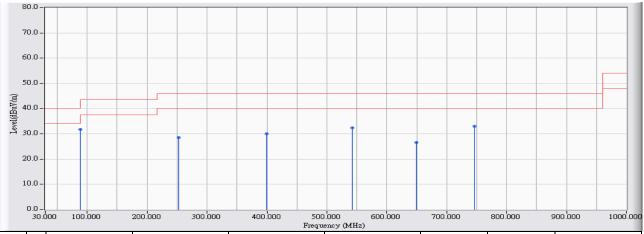
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	35.820	-16.715	44.478	27.762	-12.238	40.000	QUASIPEAK
2		349.130	-17.343	42.519	25.175	-20.825	46.000	QUASIPEAK
3		516.455	-13.568	41.931	28.363	-17.637	46.000	QUASIPEAK
4		617.335	-11.927	39.853	27.926	-18.074	46.000	QUASIPEAK
5		730.340	-10.545	39.765	29.220	-16.780	46.000	QUASIPEAK
6		840.920	-9.181	40.022	30.842	-15.158	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

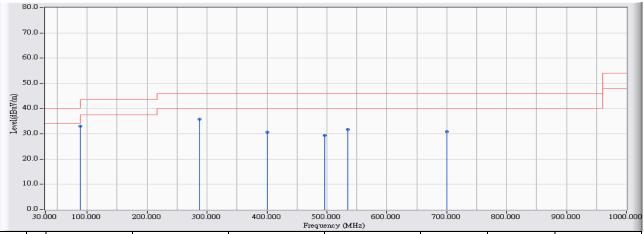
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		141.065	-21.658	41.659	20.001	-23.499	43.500	QUASIPEAK
2		382.595	-16.503	41.654	25.151	-20.849	46.000	QUASIPEAK
3		493.660	-14.139	38.118	23.979	-22.021	46.000	QUASIPEAK
4		643.525	-12.797	39.806	27.010	-18.990	46.000	QUASIPEAK
5	*	724.520	-10.845	38.874	28.029	-17.971	46.000	QUASIPEAK
6		796.785	-10.270	38.227	27.957	-18.043	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

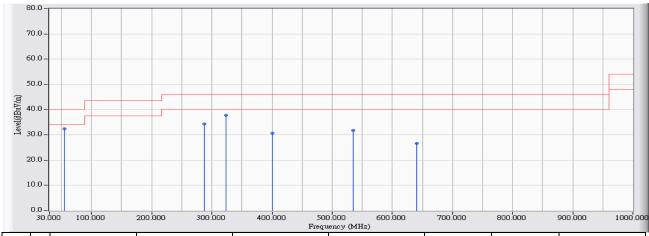
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_ 802.11a_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	88.873	-25.650	57.292	31.642	-11.858	43.500	QUASIPEAK
2		252.011	-20.309	48.936	28.628	-17.372	46.000	QUASIPEAK
3		399.921	-16.019	46.044	30.026	-15.974	46.000	QUASIPEAK
4		542.206	-13.768	46.208	32.440	-13.560	46.000	QUASIPEAK
5		649.089	-13.395	39.931	26.535	-19.465	46.000	QUASIPEAK
6		746.564	-11.650	44.780	33.131	-12.869	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

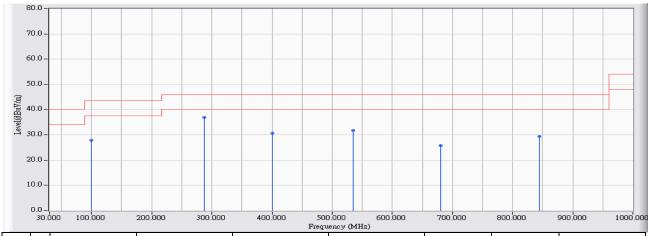
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx ADP: ADP-33AW 802.11a 5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		88.776	-25.664	58.786	33.122	-10.378	43.500	QUASIPEAK
2	*	287.994	-19.503	55.414	35.911	-10.089	46.000	QUASIPEAK
3		400.018	-16.015	46.651	30.636	-15.364	46.000	QUASIPEAK
4		496.717	-14.470	43.831	29.360	-16.640	46.000	QUASIPEAK
5		535.125	-14.069	45.775	31.707	-14.293	46.000	QUASIPEAK
6		700.009	-12.593	43.511	30.918	-15.082	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

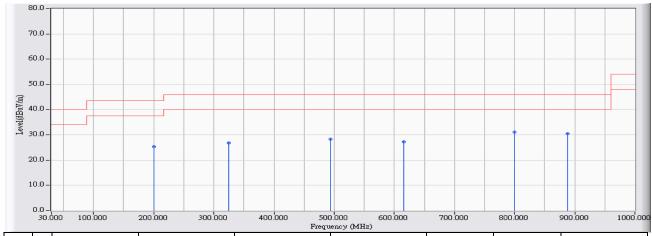
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	54.345	-26.613	59.044	32.431	-7.569	40.000	QUASIPEAK
2		287.897	-19.502	53.829	34.326	-11.674	46.000	QUASIPEAK
3		324.075	-18.885	56.731	37.846	-8.154	46.000	QUASIPEAK
4		400.018	-16.015	46.651	30.636	-15.364	46.000	QUASIPEAK
5		535.125	-14.069	45.775	31.707	-14.293	46.000	QUASIPEAK
6		640.360	-13.165	39.685	26.520	-19.480	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

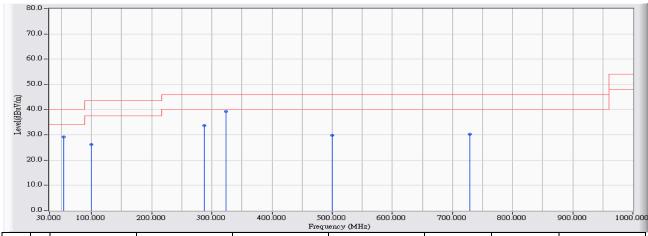
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		100.027	-23.401	51.335	27.934	-15.566	43.500	QUASIPEAK
2	*	287.994	-19.503	56.376	36.873	-9.127	46.000	QUASIPEAK
3		400.018	-16.015	46.651	30.636	-15.364	46.000	QUASIPEAK
4		535.125	-14.069	45.775	31.707	-14.293	46.000	QUASIPEAK
5		679.835	-11.800	37.490	25.690	-20.310	46.000	QUASIPEAK
6		844.719	-9.808	39.163	29.355	-16.645	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

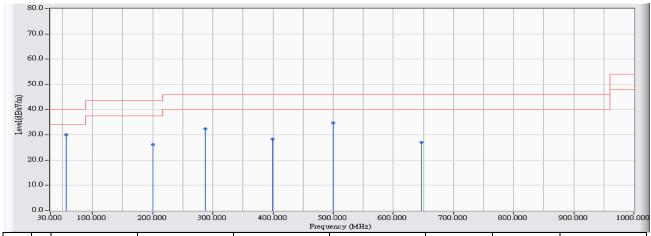
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(40M)_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		199.927	-23.336	48.729	25.392	-18.108	43.500	QUASIPEAK
2		324.366	-18.868	45.573	26.706	-19.294	46.000	QUASIPEAK
3		493.614	-14.511	42.803	28.292	-17.708	46.000	QUASIPEAK
4		616.015	-12.424	39.625	27.201	-18.799	46.000	QUASIPEAK
5	*	800.006	-10.974	42.157	31.183	-14.817	46.000	QUASIPEAK
6		888.364	-8.854	39.203	30.350	-15.650	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

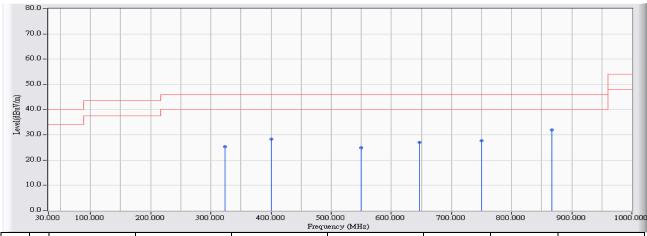
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(40M)_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		53.957	-26.504	55.716	29.212	-10.788	40.000	QUASIPEAK
2		100.027	-23.401	49.461	26.060	-17.440	43.500	QUASIPEAK
3		287.897	-19.502	53.174	33.671	-12.329	46.000	QUASIPEAK
4	*	323.978	-18.890	58.093	39.203	-6.797	46.000	QUASIPEAK
5		500.015	-14.418	44.264	29.845	-16.155	46.000	QUASIPEAK
6		729.009	-11.137	41.327	30.190	-15.810	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

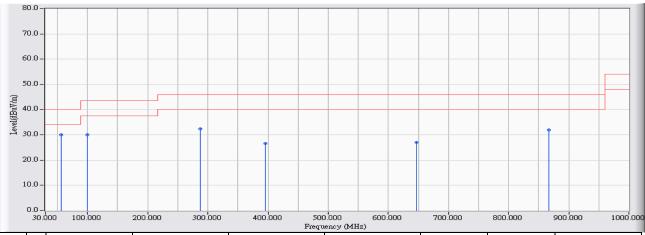
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	55.605	-26.967	56.952	29.984	-10.016	40.000	QUASIPEAK
2		200.024	-23.331	49.581	26.250	-17.250	43.500	QUASIPEAK
3		287.994	-19.503	51.914	32.411	-13.589	46.000	QUASIPEAK
4		399.921	-16.019	44.302	28.284	-17.716	46.000	QUASIPEAK
5		500.015	-14.418	49.214	34.795	-11.205	46.000	QUASIPEAK
6		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

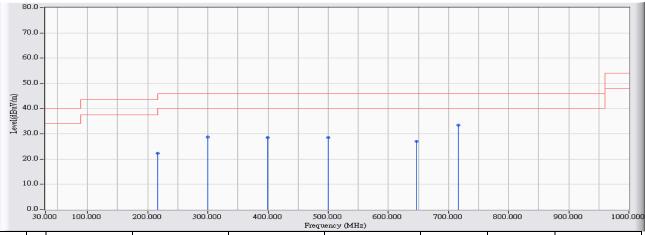
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		323.978	-18.890	44.265	25.375	-20.625	46.000	QUASIPEAK
2		400.018	-16.015	44.294	28.279	-17.721	46.000	QUASIPEAK
3		550.062	-13.603	38.461	24.858	-21.142	46.000	QUASIPEAK
4		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK
5		749.959	-11.873	39.440	27.567	-18.433	46.000	QUASIPEAK
6	*	866.638	-10.252	42.260	32.008	-13.992	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

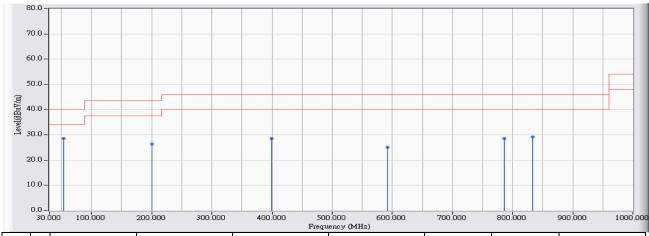
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	55.605	-26.967	56.952	29.984	-10.016	40.000	QUASIPEAK
2		100.027	-23.401	53.374	29.973	-13.527	43.500	QUASIPEAK
3		287.994	-19.503	51.914	32.411	-13.589	46.000	QUASIPEAK
4		395.944	-16.245	42.859	26.615	-19.385	46.000	QUASIPEAK
5		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK
6		866.638	-10.252	42.260	32.008	-13.992	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		215.930	-22.352	44.552	22.201	-21.299	43.500	QUASIPEAK
2		299.924	-19.598	48.424	28.827	-17.173	46.000	QUASIPEAK
3		399.921	-16.019	44.579	28.561	-17.439	46.000	QUASIPEAK
4		500.112	-14.416	42.982	28.566	-17.434	46.000	QUASIPEAK
5		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK
6	*	715.915	-11.860	45.255	33.395	-12.605	46.000	QUASIPEAK

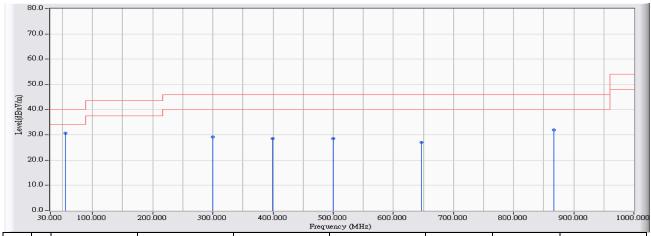
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(20M)_5785MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	53.957	-26.504	55.099	28.595	-11.405	40.000	QUASIPEAK
2		199.927	-23.336	49.678	26.341	-17.159	43.500	QUASIPEAK
3		399.921	-16.019	44.579	28.561	-17.439	46.000	QUASIPEAK
4		591.671	-13.574	38.603	25.029	-20.971	46.000	QUASIPEAK
5		785.651	-10.247	38.762	28.515	-17.485	46.000	QUASIPEAK
6		833.371	-10.014	39.185	29.171	-16.829	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

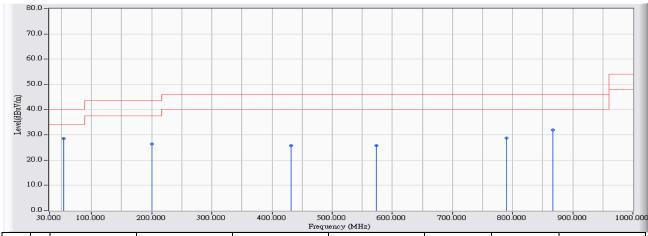
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		137.950	-21.558	46.268	24.710	-18.790	43.500	QUASIPEAK
2		399.921	-16.019	44.579	28.561	-17.439	46.000	QUASIPEAK
3	*	499.918	-14.422	48.748	34.326	-11.674	46.000	QUASIPEAK
4		563.641	-13.417	38.673	25.256	-20.744	46.000	QUASIPEAK
5		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK
6		790.307	-10.405	39.053	28.648	-17.352	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

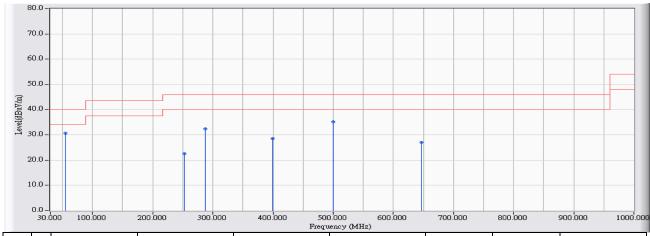
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(40M)_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	54.830	-26.750	57.488	30.738	-9.262	40.000	QUASIPEAK
2		300.021	-19.597	48.685	29.088	-16.912	46.000	QUASIPEAK
3		399.921	-16.019	44.579	28.561	-17.439	46.000	QUASIPEAK
4		500.112	-14.416	42.982	28.566	-17.434	46.000	QUASIPEAK
5		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK
6		866.638	-10.252	42.260	32.008	-13.992	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

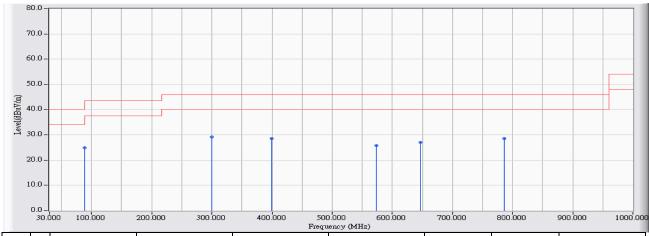
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(40M)_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	53.957	-26.504	55.099	28.595	-11.405	40.000	QUASIPEAK
2		199.927	-23.336	49.678	26.341	-17.159	43.500	QUASIPEAK
3		432.025	-15.749	41.467	25.719	-20.281	46.000	QUASIPEAK
4		573.728	-13.451	39.098	25.646	-20.354	46.000	QUASIPEAK
5		790.307	-10.405	39.053	28.648	-17.352	46.000	QUASIPEAK
6		866.638	-10.252	42.260	32.008	-13.992	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

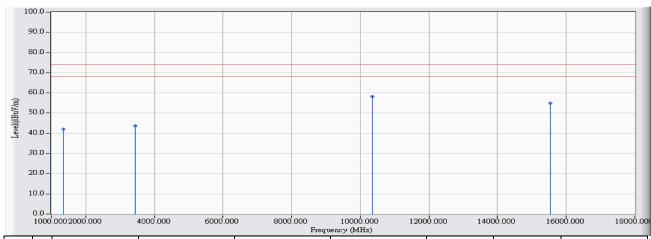
Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	54.830	-26.750	57.488	30.738	-9.262	40.000	QUASIPEAK
2		252.011	-20.309	42.750	22.442	-23.558	46.000	QUASIPEAK
3		287.994	-19.503	51.914	32.411	-13.589	46.000	QUASIPEAK
4		399.921	-16.019	44.579	28.561	-17.439	46.000	QUASIPEAK
5		500.015	-14.418	49.538	35.119	-10.881	46.000	QUASIPEAK
6		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB4-H	Time : 2017/02/23
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 4: Tx_ADP: ADP-33AW_
	802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		88.194	-25.751	50.679	24.929	-18.571	43.500	QUASIPEAK
2	*	300.021	-19.597	48.685	29.088	-16.912	46.000	QUASIPEAK
3		399.921	-16.019	44.579	28.561	-17.439	46.000	QUASIPEAK
4		573.728	-13.451	39.098	25.646	-20.354	46.000	QUASIPEAK
5		647.052	-13.342	40.436	27.094	-18.906	46.000	QUASIPEAK
6		785.651	-10.247	38.762	28.515	-17.485	46.000	QUASIPEAK

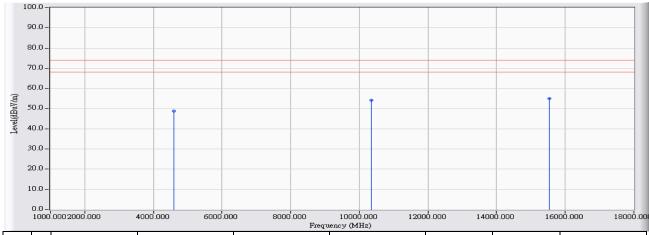
- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Harmonic & Spurious:	-
Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1356.000	-12.944	55.150	42.206	-31.794	74.000	PEAK
2		3431.000	-6.223	49.880	43.658	-30.342	74.000	PEAK
3	*	10358.000	13.683	44.420	58.103	-15.897	74.000	PEAK
4		15541.000	15.883	39.180	55.063	-18.937	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

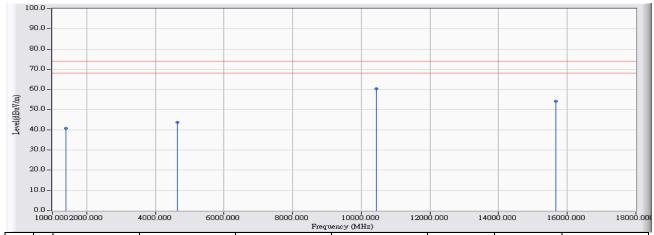

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4597.000	-1.400	50.110	48.709	-25.291	74.000	PEAK
2		10358.000	13.683	40.450	54.133	-19.867	74.000	PEAK
3	*	15543.000	15.880	38.970	54.850	-19.150	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

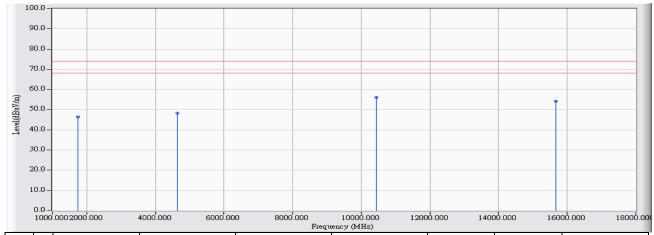

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1383.000	-12.842	53.690	40.848	-33.152	74.000	PEAK
2		4640.000	-1.158	44.820	43.662	-30.338	74.000	PEAK
3	*	10439.000	14.013	46.380	60.394	-13.606	74.000	PEAK
4		15661.000	15.685	38.350	54.035	-19.965	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

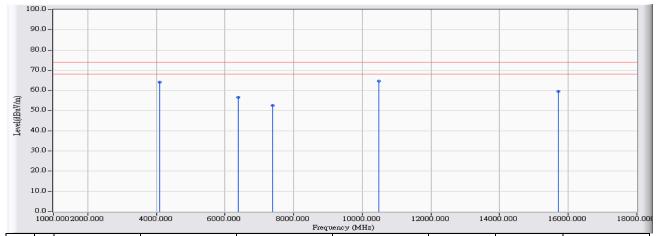

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz

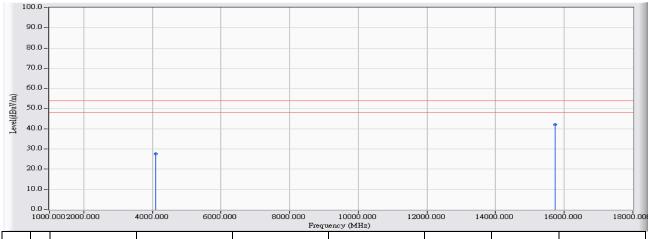
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1748.000	-11.513	57.880	46.367	-27.633	74.000	PEAK
2		4636.000	-1.181	49.530	48.349	-25.651	74.000	PEAK
3	*	10438.000	14.010	42.000	56.010	-17.990	74.000	PEAK
4		15662.000	15.683	38.360	54.043	-19.957	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

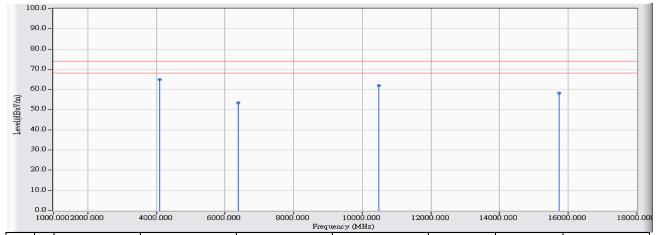
Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4087.000	-3.846	68.000	64.154	-9.846	74.000	PEAK
2		6391.000	3.291	53.190	56.481	-17.519	74.000	PEAK
3		7387.000	7.056	45.390	52.446	-21.554	74.000	PEAK
4	*	10480.000	14.186	50.550	64.736	-9.264	74.000	PEAK
5		15721.000	15.590	43.850	59.440	-14.560	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

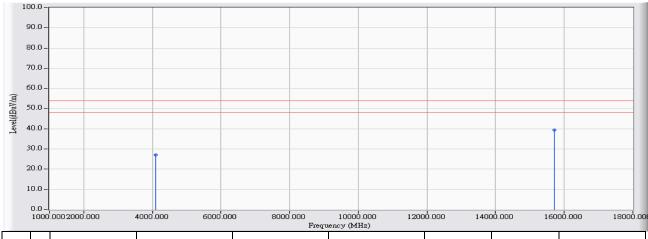
Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4090.000	-3.834	31.320	27.486	-26.514	54.000	AVERAGE
2	*	15724.000	15.585	26.420	42.006	-11.994	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

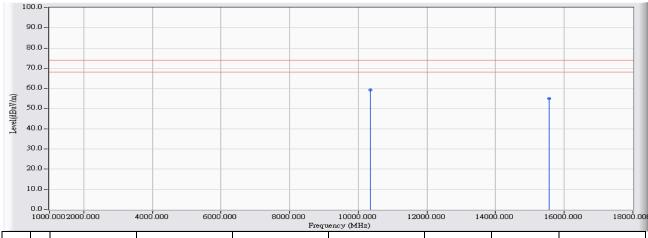
Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4091.000	-3.829	68.740	64.911	-9.089	74.000	PEAK
2		6389.000	3.283	50.110	53.392	-20.608	74.000	PEAK
3		10479.000	14.182	47.660	61.841	-12.159	74.000	PEAK
4		15723.000	15.587	42.520	58.107	-15.893	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

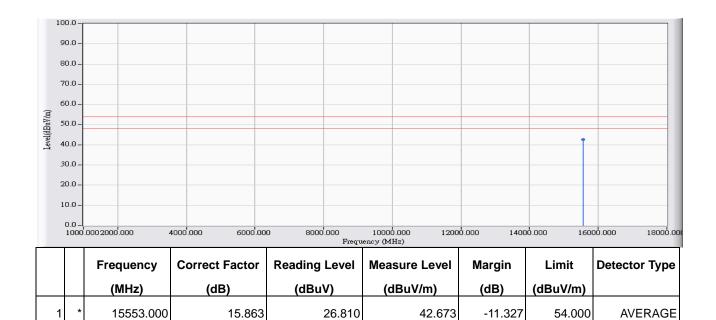
Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4093.000	-3.821	30.860	27.039	-26.961	54.000	AVERAGE
2	*	15717.000	15.596	23.780	39.376	-14.624	54.000	AVERAGE

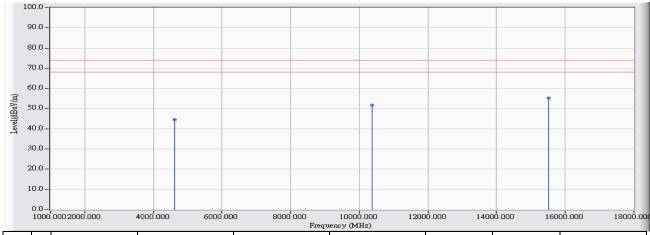
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz



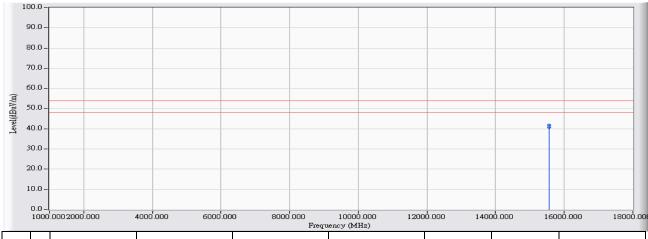
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	10360.000	13.691	45.680	59.371	-14.629	74.000	PEAK
2		15556.000	15.858	39.190	55.048	-18.952	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

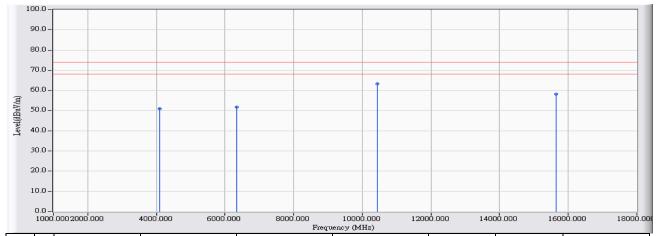
Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4609.000	-1.332	45.750	44.417	-29.583	74.000	PEAK
2		10366.000	13.715	37.970	51.685	-22.315	74.000	PEAK
3	*	15522.000	15.916	39.380	55.296	-18.704	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	15552.000	15.865	25.840	41.705	-12.295	54.000	AVERAGE
2		15552.000	15.865	24.840	40.705	-13.295	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Time : 2017/02/17
Margin : 6
Power : AC 120V/60Hz
Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode (802.11 n20/40)_ 802.11ac(20M)_5220MHz
-

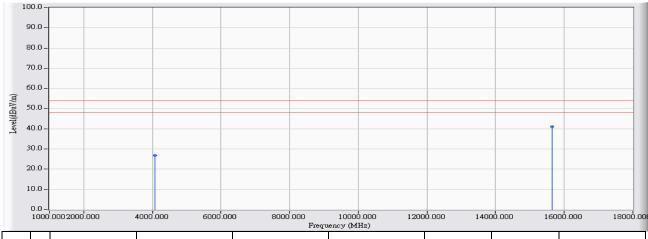
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
	1	4089.000	-3.838	54.670	50.832	-23.168	74.000	PEAK
	2	6336.000	3.036	48.670	51.707	-22.293	74.000	PEAK
	3 *	10435.000	13.997	49.370	63.367	-10.633	74.000	PEAK
4	1	15657.000	15.691	42.430	58.121	-15.879	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

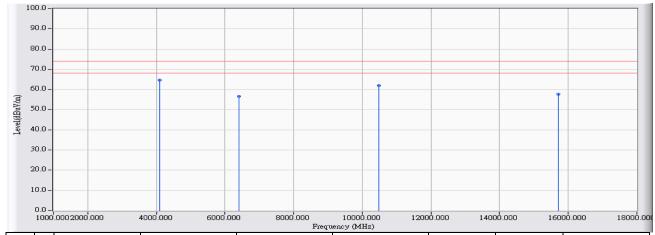
Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4086.000	-3.850	60.200	56.350	-17.650	74.000	PEAK
2		6353.000	3.115	49.570	52.685	-21.315	74.000	PEAK
3	*	10442.000	14.026	47.110	61.136	-12.864	74.000	PEAK
4		15664.000	15.680	39.260	54.940	-19.060	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4082.000	-3.867	30.780	26.913	-27.087	54.000	AVERAGE
2	*	15655.000	15.694	25.340	41.034	-12.966	54.000	AVERAGE

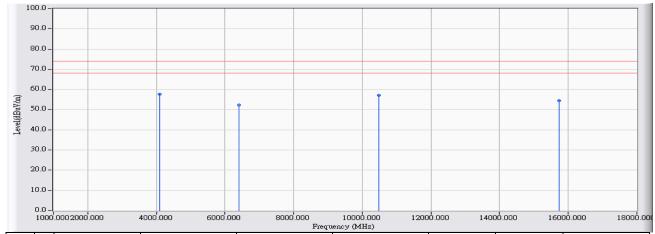
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5240MHz



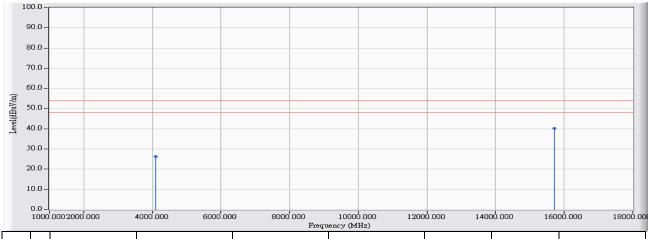
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
	1	4092.000	-3.825	68.305	64.480	-9.520	74.000	PEAK
	2	6396.000	3.315	53.310	56.625	-17.375	74.000	PEAK
:	3	10475.000	14.165	47.720	61.885	-12.115	74.000	PEAK
	1	* 15716.000	15.598	42.160	57.758	-16.242	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5240MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

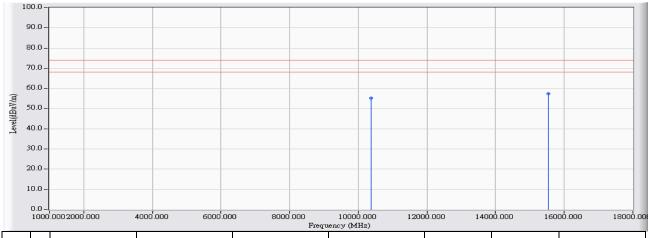
Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4104.000	-3.774	61.370	57.596	-16.404	74.000	PEAK
2		6397.000	3.319	48.920	52.240	-21.760	74.000	PEAK
3		10482.000	14.194	42.880	57.074	-16.926	74.000	PEAK
4		15725.000	15.584	38.940	54.524	-19.476	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5240MHz



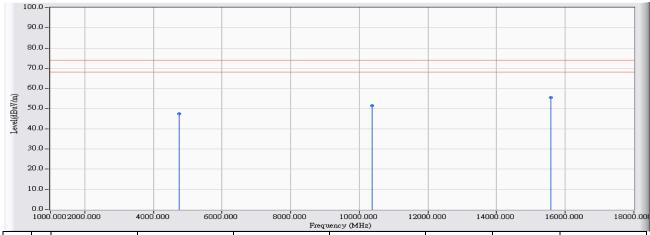
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4096.000	-3.808	30.070	26.262	-27.738	54.000	AVERAGE
2	*	15721.000	15.590	24.550	40.140	-13.860	54.000	AVERAGE

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5240MHz

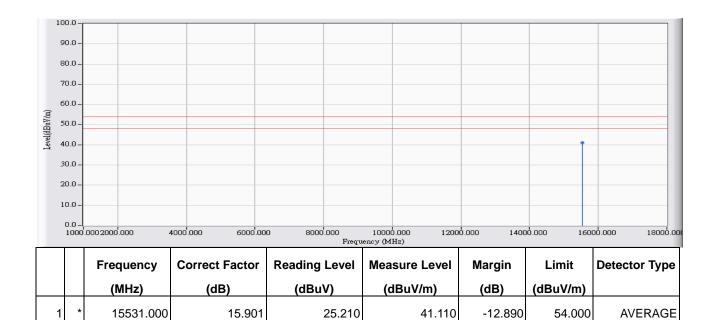
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		10380.000	13.771	41.490	55.261	-18.739	74.000	PEAK
2	*	15539.000	15.887	41.390	57.277	-16.723	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5190MHz

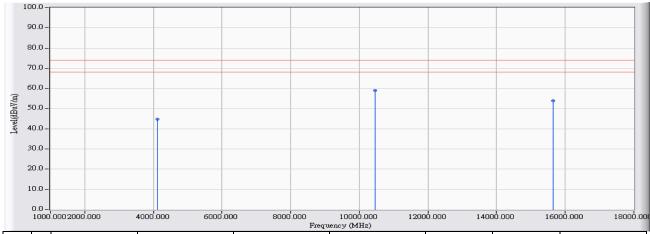
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4757.000	-0.533	48.120	47.587	-26.413	74.000	PEAK
2		10382.000	13.779	37.690	51.469	-22.531	74.000	PEAK
3	*	15571.000	15.832	39.560	55.392	-18.608	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

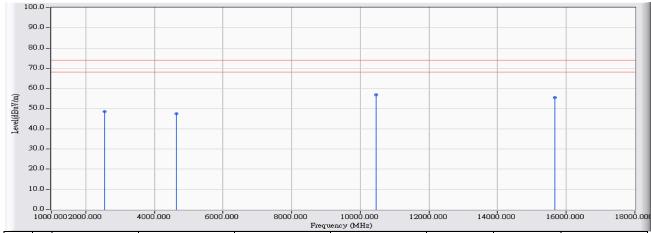

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5190MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5230MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4108.000	-3.757	48.550	44.793	-29.207	74.000	PEAK
2	*	10457.000	14.089	44.990	59.079	-14.921	74.000	PEAK
3		15652.000	15.699	38.190	53.889	-20.111	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5230MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5230MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2544.000	-8.123	56.700	48.577	-25.423	74.000	PEAK
2		4648.000	-1.113	48.510	47.397	-26.603	74.000	PEAK
3	*	10460.000	14.102	42.760	56.862	-17.138	74.000	PEAK
4		15672.000	15.667	39.920	55.587	-18.413	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

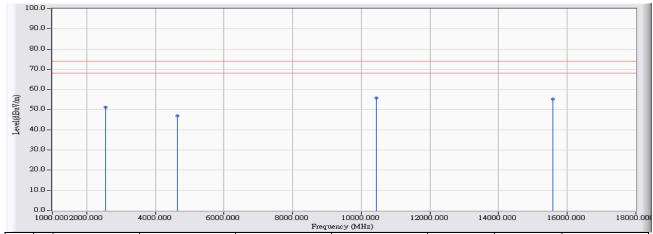

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5230MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz

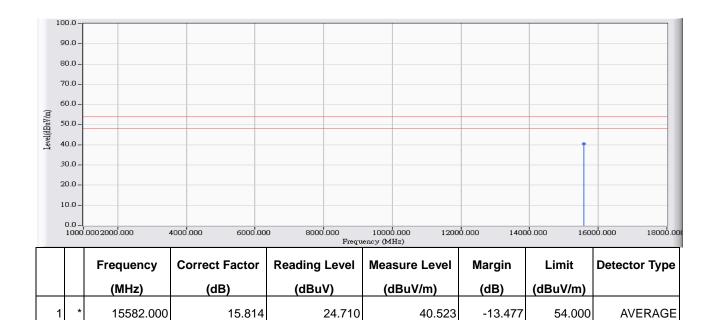
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2542.000	-8.129	55.100	46.971	-27.029	74.000	PEAK
2		6368.000	3.184	44.880	48.065	-25.935	74.000	PEAK
3	*	10436.000	14.002	43.490	57.491	-16.509	74.000	PEAK
4		15586.000	15.807	38.540	54.347	-19.653	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz

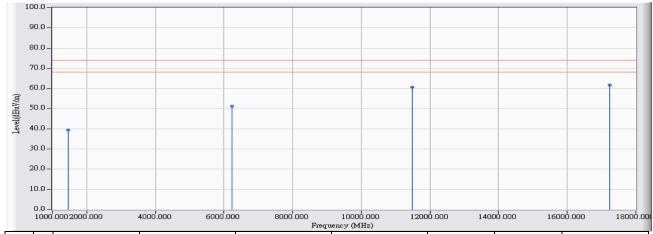
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz



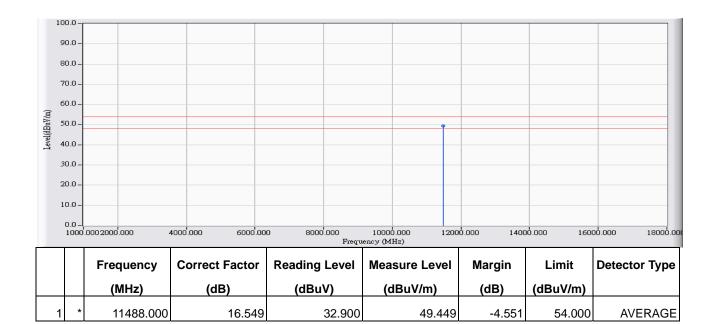
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2557.000	-8.088	59.260	51.172	-22.828	74.000	PEAK
2		4631.000	-1.209	48.140	46.931	-27.069	74.000	PEAK
3	*	10439.000	14.013	41.880	55.894	-18.106	74.000	PEAK
4		15586.000	15.807	39.470	55.277	-18.723	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/17
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz

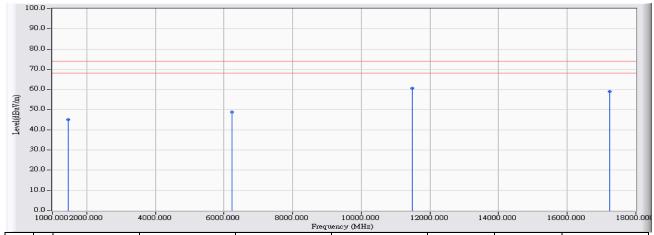
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz



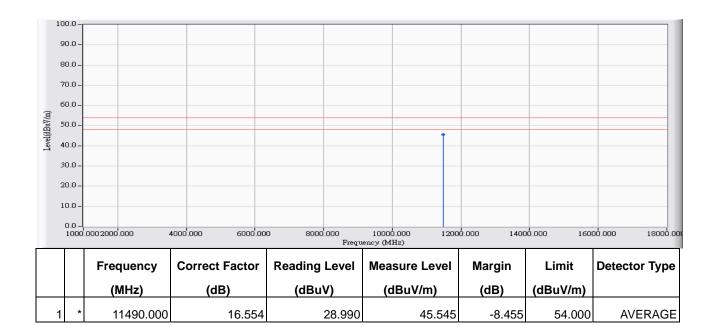
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1455.000	-12.564	51.850	39.286	-34.714	74.000	PEAK
2		6227.000	2.528	48.550	51.078	-22.922	74.000	PEAK
3		11488.000	16.549	44.160	60.709	-13.291	74.000	PEAK
4	*	17236.000	17.893	43.790	61.683	-12.317	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz

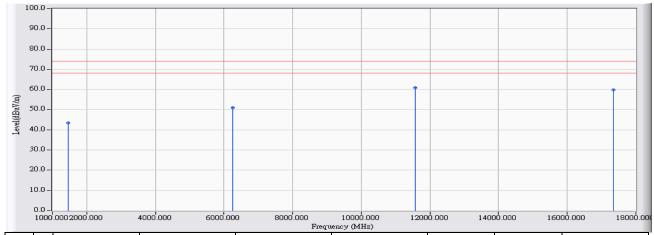
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz



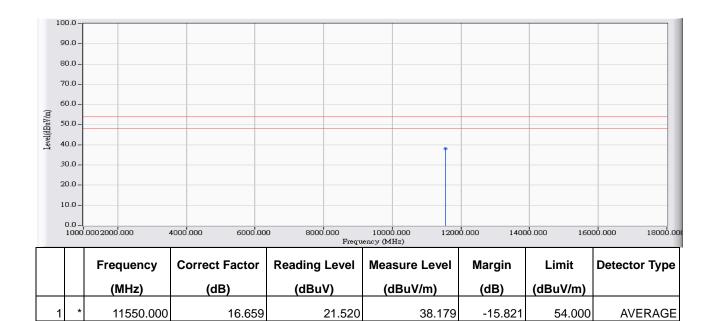
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
	1	1459.000	-12.549	57.640	45.091	-28.909	74.000	PEAK
	2	6224.000	2.515	46.190	48.705	-25.295	74.000	PEAK
	3 *	11488.000	16.549	44.130	60.679	-13.321	74.000	PEAK
4	1	17236.000	17.893	41.030	58.923	-15.077	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz

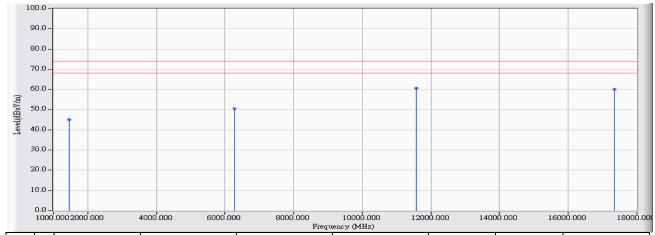
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz



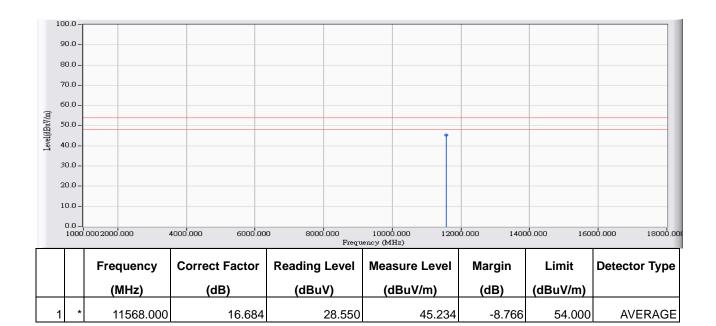
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1456.000	-12.561	55.860	43.300	-30.700	74.000	PEAK
2		6263.000	2.691	48.380	51.071	-22.929	74.000	PEAK
3	*	11575.000	16.694	44.090	60.784	-13.216	74.000	PEAK
4		17356.000	18.433	41.430	59.863	-14.137	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz

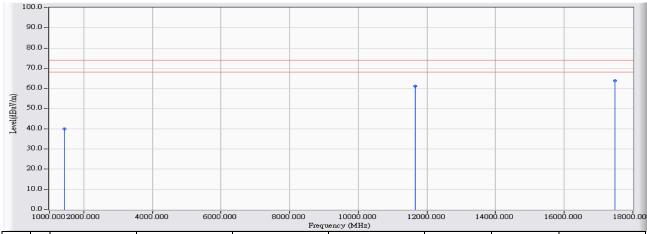
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz



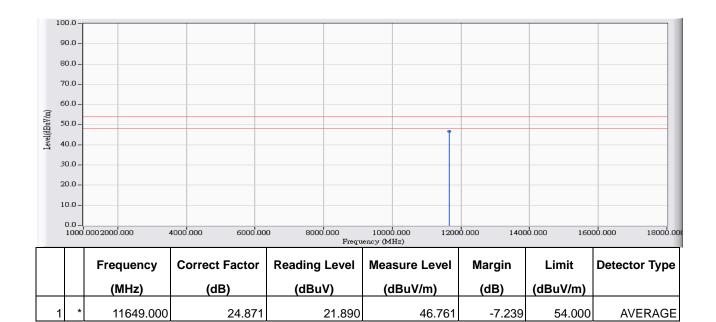
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1458.000	-12.552	57.630	45.077	-28.923	74.000	PEAK
2		6265.000	2.701	47.780	50.481	-23.519	74.000	PEAK
3	*	11568.000	16.684	43.850	60.534	-13.466	74.000	PEAK
4		17356.000	18.433	41.490	59.923	-14.077	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/18
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz

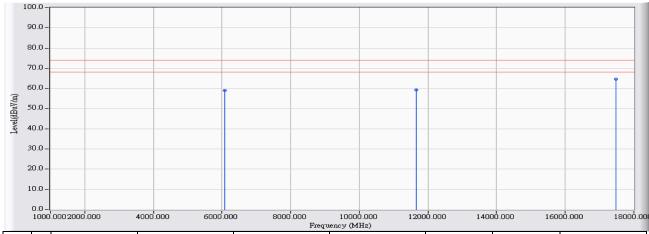
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/19
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin		Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	44.460	39.904	-34.096	74.000	PEAK
2		11648.000	24.869	36.300	61.170	-12.830	74.000	PEAK
3	*	17468.000	31.521	32.220	63.741	-10.259	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

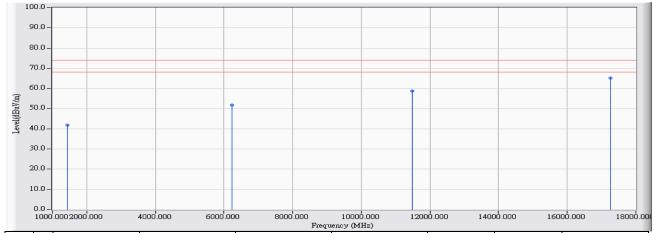

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz

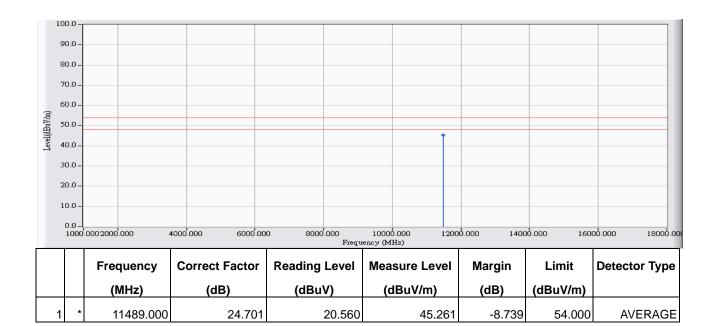
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		6074.000				-15.073	74.000	PEAK
2		11648.000	24.869			-14.700	74.000	
3	*	17477.000				-9.276	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz

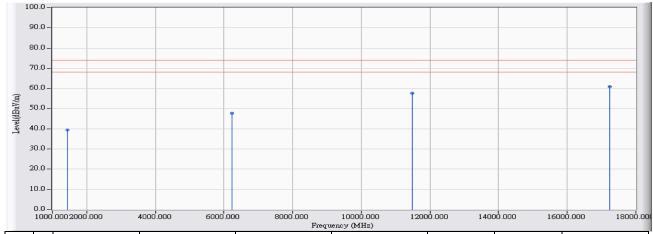
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5745MHz



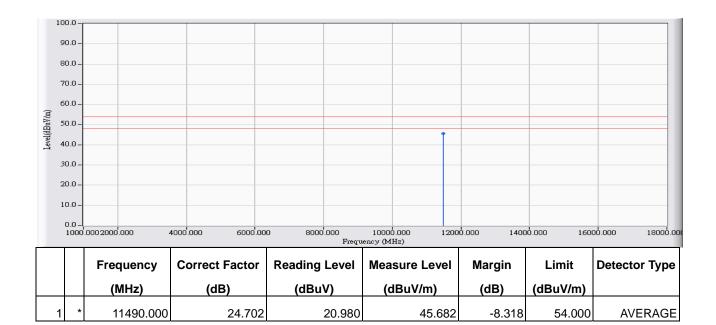
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	46.450	41.894	-32.106	74.000	PEAK
2		6227.000	10.932	40.740	51.672	-22.328	74.000	PEAK
3		11491.000	24.703	34.010	58.713	-15.287	74.000	PEAK
4	*	17249.000	31.942	33.290	65.232	-8.768	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5745MHz

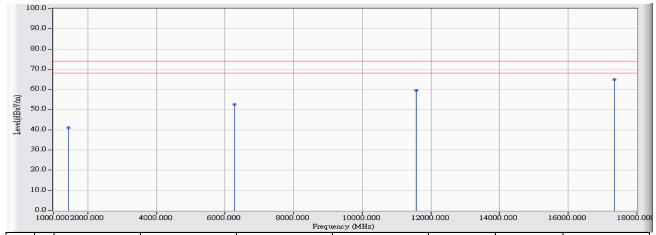
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5745MHz



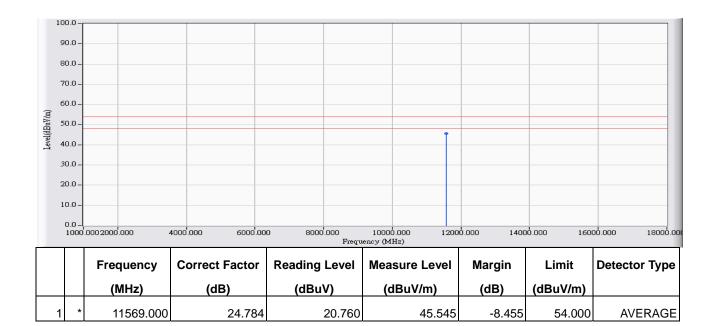
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	43.970	39.414	-34.586	74.000	PEAK
2		6227.000	10.932	36.770	47.702	-26.298	74.000	PEAK
3		11489.000	24.701	32.920	57.621	-16.379	74.000	PEAK
4	*	17234.000	31.971	28.890	60.861	-13.139	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5745MHz

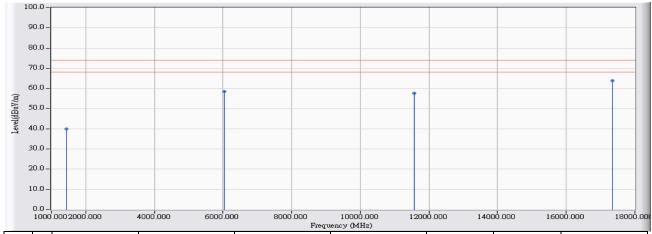
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5745MHz



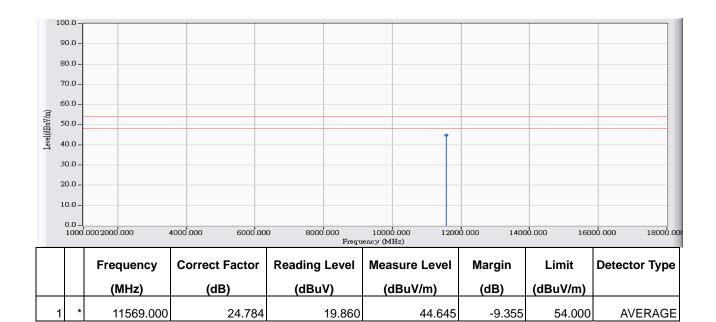
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	45.560	41.004	-32.996	74.000	PEAK
2		6270.000	11.209	41.260	52.469	-21.531	74.000	PEAK
3		11569.000	24.784	34.800	59.585	-14.415	74.000	PEAK
4	*	17355.000	31.739	33.250	64.988	-9.012	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5785MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5785MHz



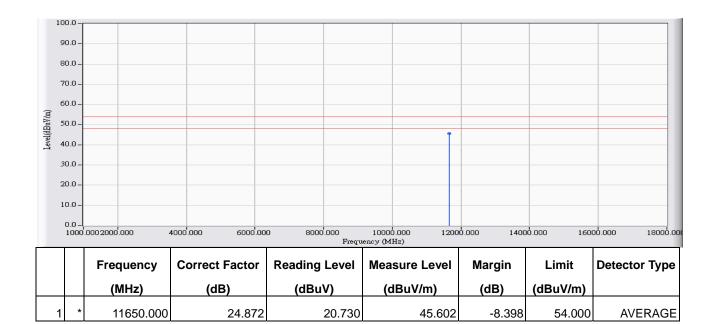
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	44.560	40.004	-33.996	74.000	PEAK
2		6032.000	9.676	48.740	58.416	-15.584	74.000	PEAK
3		11577.000	24.794	32.950	57.743	-16.257	74.000	PEAK
4	*	17348.000	31.752	31.940	63.692	-10.308	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5785MHz

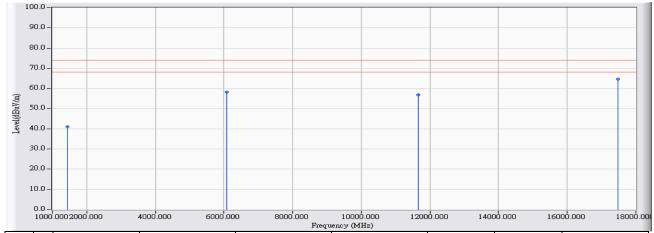
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5825MHz



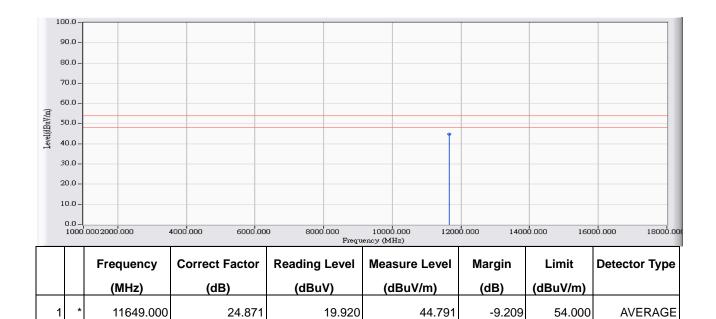
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	46.110	41.554	-32.446	74.000	PEAK
2		6074.000	9.947	46.570	56.517	-17.483	74.000	PEAK
3		11658.000	24.881	34.110	58.991	-15.009	74.000	PEAK
4	*	17479.000	31.501	33.290	64.790	-9.210	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5825MHz

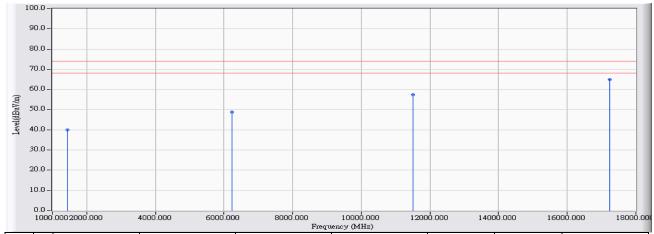
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5825MHz



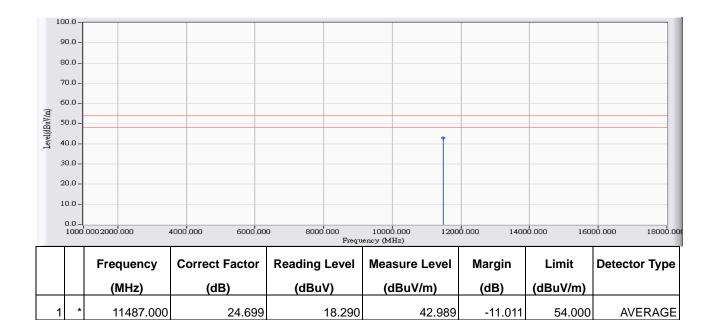
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	45.660	41.104	-32.896	74.000	PEAK
2		6074.000	9.947	48.110	58.057	-15.943	74.000	PEAK
3		11651.000	24.873	31.850	56.723	-13.277	74.000	PEAK
4	*	17468.000	31.521	33.010	64.531	-9.469	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5825MHz

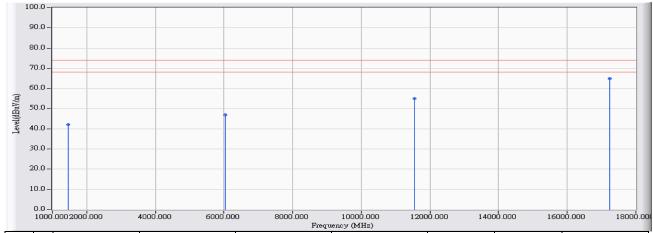
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5755MHz



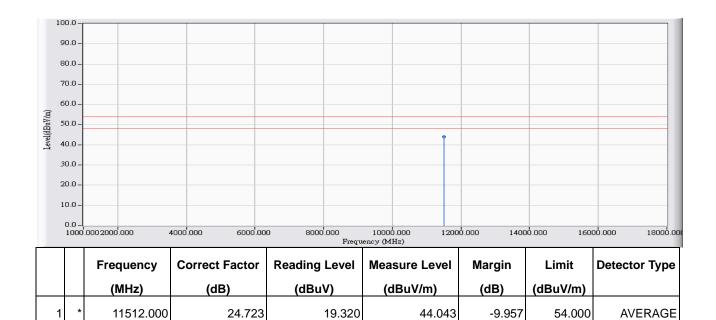
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	44.380	39.824	-34.176	74.000	PEAK
2		6236.000	10.989	37.920	48.910	-25.090	74.000	PEAK
3		11516.000	24.727	32.580	57.307	-16.693	74.000	PEAK
4	*	17244.000	31.951	32.940	64.891	-9.109	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5755MHz

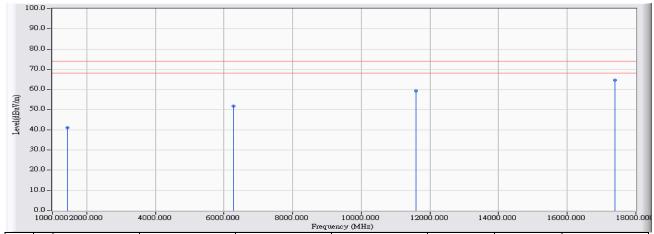
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5755MHz



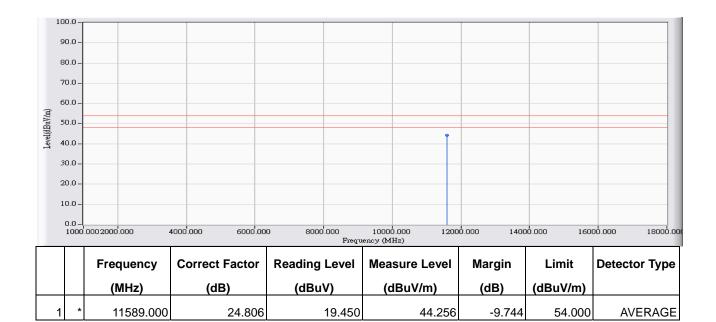
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1450.000	-4.521	46.710	42.189	-31.811	74.000	PEAK
2		6032.000	9.676	37.310	46.986	-27.014	74.000	PEAK
3		11549.000	24.763	30.330	55.093	-18.907	74.000	PEAK
4	*	17232.000	31.975	32.800	64.775	-9.225	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5755MHz

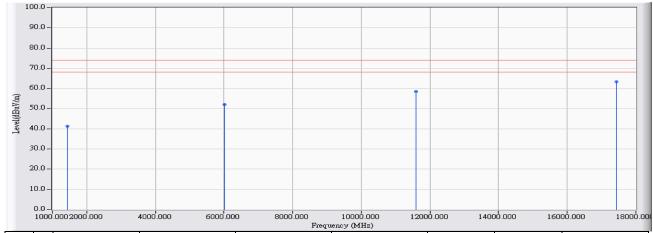
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5795MHz



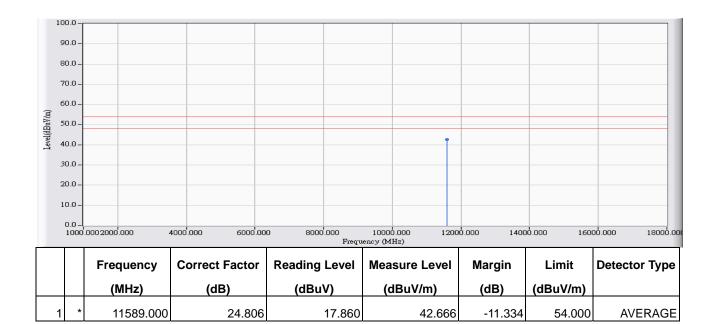
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	45.660	41.104	-32.896	74.000	PEAK
2		6278.000	11.260	40.580	51.840	-22.160	74.000	PEAK
3		11591.000	24.808	34.460	59.268	-14.732	74.000	PEAK
4	*	17383.000	31.685	33.050	64.735	-9.265	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5795MHz

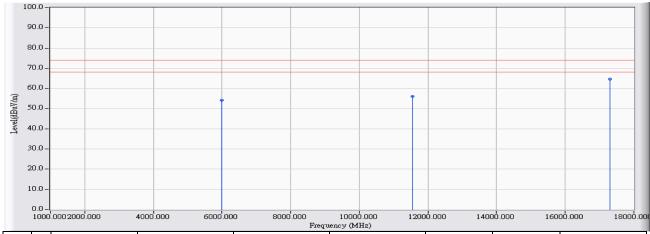
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5795MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1442.000	-4.556	45.880	41.324	-32.676	74.000	PEAK
2	*	6015.000	9.566	42.550	52.117	-21.883	74.000	PEAK
3		11590.000	24.808	33.610	58.417	-15.583	74.000	PEAK
4		17423.000	31.608	31.650	63.258	-10.742	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

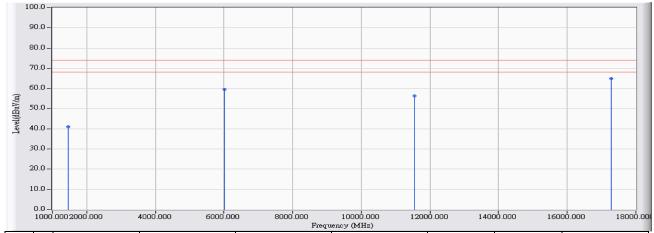

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(40M)_5795MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz

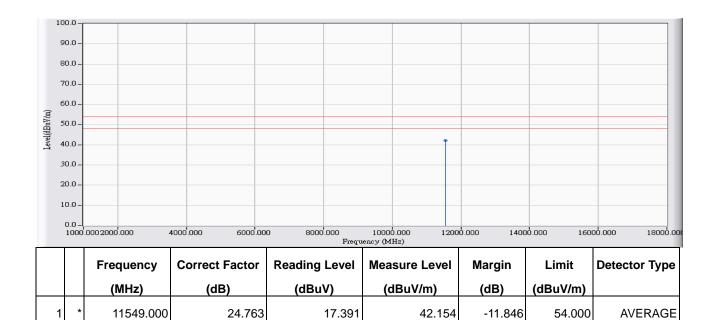
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1		6000.000	9.477	44.760	54.237	-19.763	74.000	PEAK
2		11557.000	24.772	31.310	56.082	-17.918	74.000	PEAK
3	*	17312.000	31.821	32.660	64.481	-9.519	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. " # ", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		1450.000	-4.521	45.660	41.139	-32.861	74.000	PEAK
2		6006.000	9.513	49.980	59.493	-14.507	74.000	PEAK
3		11546.000	24.760	31.660	56.420	-18.580	74.000	PEAK
4	*	17276.000	31.890	32.860	64.750	-9.250	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

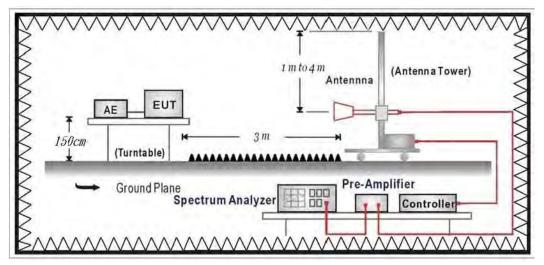
Site : CB4-H	Time : 2017/02/20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. " * ", means this data is the worst emission level.
- 5. "#", means the frequency is out of the restricted band.
- 6. Measurement Level = Reading Level + Correct Factor.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Band Edge

7.1. Test Equipment

The following test equipments are used during the band edge tests:


Band Edge / CB4-H

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Horn Antenna	Schwarzbeck	BBHA 9120	D312	2017/10/25
Signal & Spectrum	R&S	FSV40	101049	2018/01/22
Analyzer				

Note: All equipments that need to calibrate are with calibration period of 1 year.

7.2. Test Setup

RF Radiated Measurement:

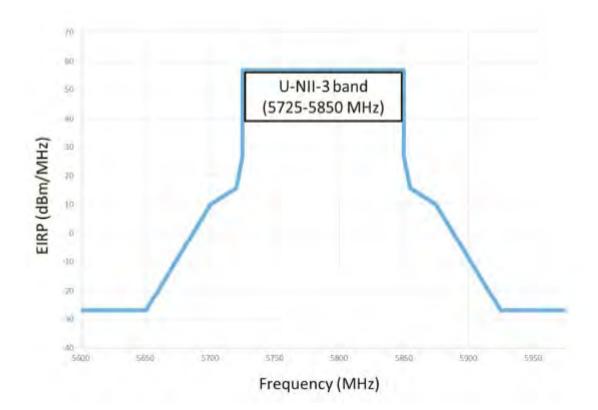
7.3. Limits

General Radiated Emission Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section. Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency uV/m @3m dBuV/m@3m MHz						
30 - 88	100	40				
88 - 216	150	43.5				
216 - 960	200	46				
Above 960	500	54				

Remark:


- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

> Unwanted Emission out of the restricted bands Limits

FCC Part 15 Subpart E Paragraph 15.407(b) Limits						
Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength (dBuV/m@3m)				
5150 - 5250	-27	68.3				
5250 - 5350	-27	68.3				
5470 - 5725	-27	68.3				
	-27 (Note1)	68.3				
5725 - 5850	-17 (Note2)	78.3				

- 4. For transmitters operating in the 5.725-5.85 GHz band
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in Section 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in Section 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

Remark:

- 1. For frequencies more than 10 MHz above or below the band edges.
- 2. For frequency range from the band edges to 10 MHz above or below the band edges.

3.
$$uV/m = \frac{1000000\sqrt{30 \times EIRP}}{3}$$
, RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

7.4. Test Procedure

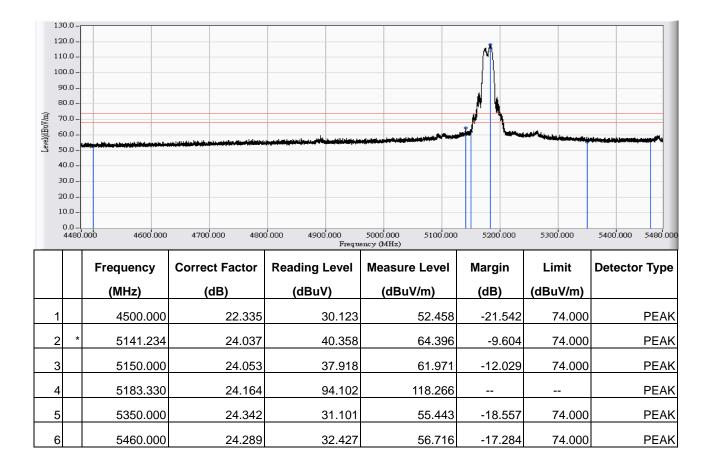
The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013on radiated measurement.

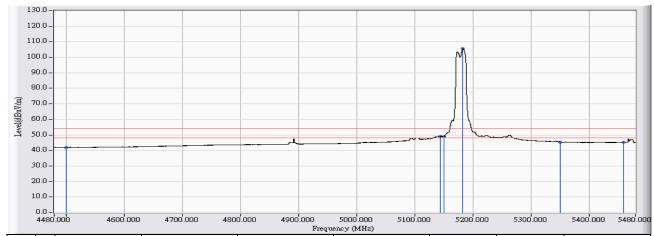
The bandwidth below 1GHz setting on the field strength meter is 120 KHz, above 1GHz are 1 MHz.

7.5. Uncertainty


The measurement uncertainty is defined as ± 3.65 dB

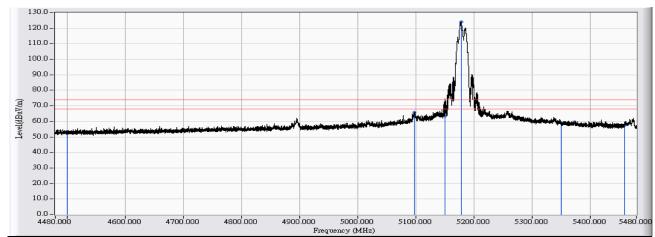
7.6. Test Result

Radiated is defined as


Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

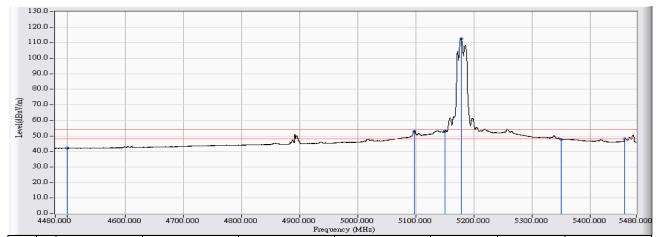
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	19.624	41.959	-12.041	54.000	AVERAGE
2	*	5143.534	24.041	25.004	49.046	-4.954	54.000	AVERAGE
3		5150.000	24.053	24.865	48.918	-5.082	54.000	AVERAGE
4		5183.130	24.164	81.602	105.766			AVERAGE
5		5350.000	24.342	21.059	45.401	-8.599	54.000	AVERAGE
6		5460.000	24.289	21.010	45.299	-8.701	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

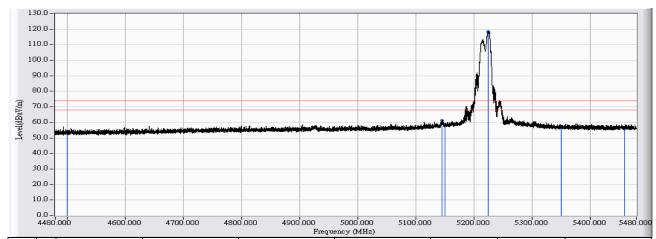
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	30.936	53.271	-20.729	74.000	PEAK
2	*	5097.438	23.975	41.917	65.891	-8.109	74.000	PEAK
3		5150.000	24.053	39.411	63.464	-10.536	74.000	PEAK
4		5178.230	24.147	99.929	124.076			PEAK
5		5350.000	24.342	34.467	58.809	-15.191	74.000	PEAK
6		5460.000	24.289	33.348	57.637	-16.363	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

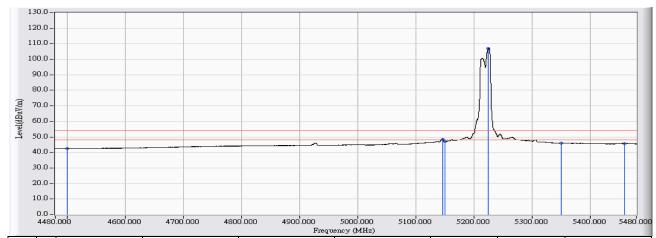
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	19.738	42.073	-11.927	54.000	AVERAGE
2		5097.838	23.974	28.932	52.906	-1.094	54.000	AVERAGE
3	*	5150.000	24.053	28.875	52.928	-1.072	54.000	AVERAGE
4		5178.130	24.147	88.577	112.724			AVERAGE
5		5350.000	24.342	23.544	47.886	-6.114	54.000	AVERAGE
6		5460.000	24.289	23.706	47.995	-6.005	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

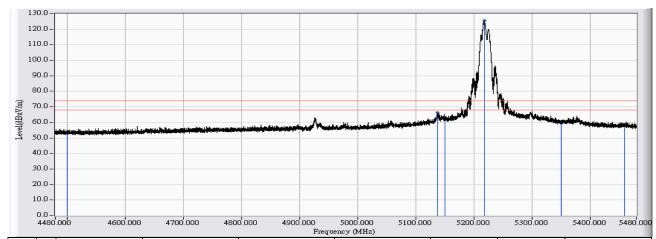
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	30.737	53.072	-20.928	74.000	PEAK
2	*	5144.934	24.044	37.146	61.190	-12.810	74.000	PEAK
3		5150.000	24.053	34.510	58.563	-15.437	74.000	PEAK
4		5225.125	24.250	94.411	118.661			PEAK
5		5350.000	24.342	33.025	57.367	-16.633	74.000	PEAK
6		5460.000	24.289	31.643	55.932	-18.068	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

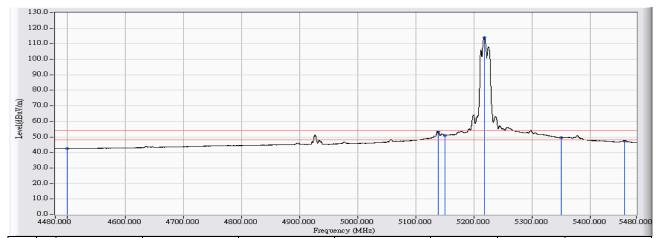
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	20.130	42.465	-11.535	54.000	AVERAGE
2	*	5146.033	24.045	24.460	48.506	-5.494	54.000	AVERAGE
3		5150.000	24.053	23.030	47.083	-6.917	54.000	AVERAGE
4		5225.425	24.251	82.797	107.048			AVERAGE
5		5350.000	24.342	21.574	45.916	-8.084	54.000	AVERAGE
6		5460.000	24.289	21.455	45.744	-8.256	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

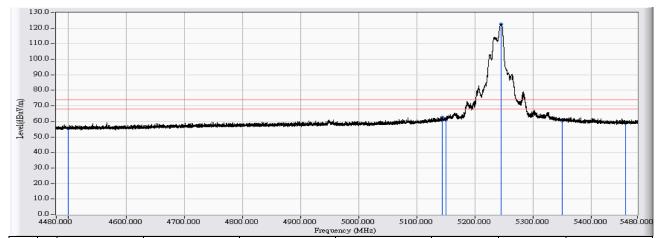
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	30.643	52.978	-21.022	74.000	PEAK
2	*	5137.934	24.033	42.271	66.304	-7.696	74.000	PEAK
3		5150.000	24.053	38.916	62.969	-11.031	74.000	PEAK
4		5218.126	24.242	101.143	125.385			PEAK
5		5350.000	24.342	35.319	59.661	-14.339	74.000	PEAK
6		5460.000	24.289	33.955	58.244	-15.756	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

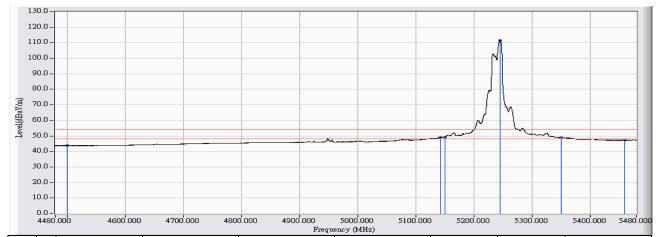
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	20.236	42.571	-11.429	54.000	AVERAGE
2	*	5138.334	24.033	29.426	53.459	-0.541	54.000	AVERAGE
3		5150.000	24.053	26.954	51.007	-2.993	54.000	AVERAGE
4		5218.226	24.243	89.655	113.897			AVERAGE
5		5350.000	24.342	25.080	49.422	-4.578	54.000	AVERAGE
6		5460.000	24.289	23.219	47.508	-6.492	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

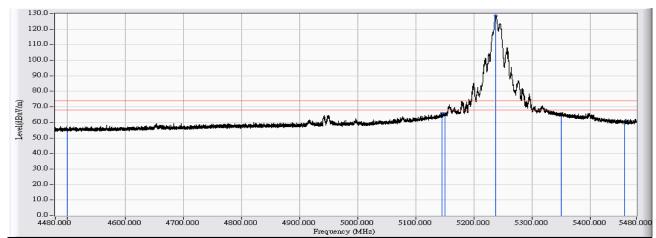
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	33.185	55.520	-18.480	74.000	PEAK
2	*	5144.534	24.042	38.582	62.625	-11.375	74.000	PEAK
3		5150.000	24.053	36.927	60.980	-13.020	74.000	PEAK
4		5244.924	24.274	98.531	122.805			PEAK
5		5350.000	24.342	36.018	60.360	-13.640	74.000	PEAK
6		5460.000	24.289	34.722	59.011	-14.989	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

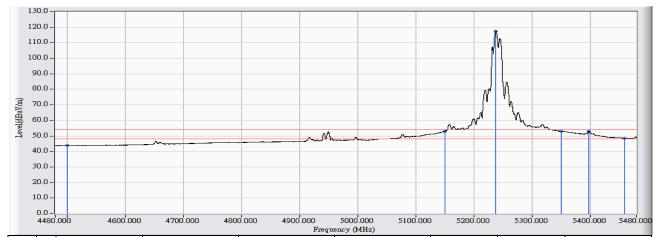
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	21.428	43.763	-10.237	54.000	AVERAGE
2		5143.434	24.041	25.016	49.057	-4.943	54.000	AVERAGE
3	*	5150.000	24.053	25.181	49.234	-4.766	54.000	AVERAGE
4		5245.123	24.274	87.295	111.569			AVERAGE
5		5350.000	24.342	24.557	48.899	-5.101	54.000	AVERAGE
6		5460.000	24.289	22.980	47.269	-6.731	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

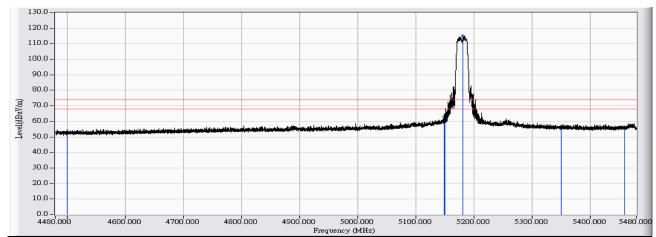
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	33.063	55.398	-18.602	74.000	PEAK
2	*	5144.834	24.044	41.869	65.913	-8.087	74.000	PEAK
3		5150.000	24.053	41.449	65.502	-8.498	74.000	PEAK
4		5238.024	24.266	104.510	128.775			PEAK
5		5350.000	24.342	40.582	64.924	-9.076	74.000	PEAK
6		5460.000	24.289	36.477	60.766	-13.234	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

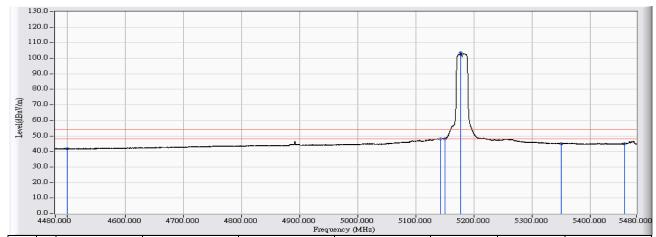
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	21.494	43.829	-10.171	54.000	AVERAGE
2		5150.000	24.053	28.883	52.936	-1.064	54.000	AVERAGE
3		5238.324	24.266	93.206	117.472			AVERAGE
4		5350.000	24.342	28.618	52.960	-1.040	54.000	AVERAGE
5	*	5398.408	24.293	28.682	52.975	-1.025	54.000	AVERAGE
6		5460.000	24.289	24.256	48.545	-5.455	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

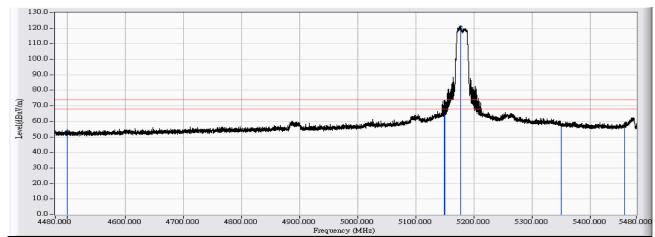
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	30.141	52.476	-21.524	74.000	PEAK
2	*	5149.133	24.052	38.643	62.695	-11.305	74.000	PEAK
3		5150.000	24.053	35.921	59.974	-14.026	74.000	PEAK
4		5181.730	24.159	90.825	114.984			PEAK
5		5350.000	24.342	31.828	56.170	-17.830	74.000	PEAK
6		5460.000	24.289			-18.283	74.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	19.411	41.746	-12.254	54.000	AVERAGE
2		5142.234	24.040	24.102	48.141	-5.859	54.000	AVERAGE
3	*	5150.000	24.053	24.216	48.269	-5.731	54.000	AVERAGE
4		5177.730	24.145	79.327	103.473			AVERAGE
5		5350.000	24.342	20.524	44.866	-9.134	54.000	AVERAGE
6		5460.000	24.289	20.702	44.991	-9.009	54.000	AVERAGE

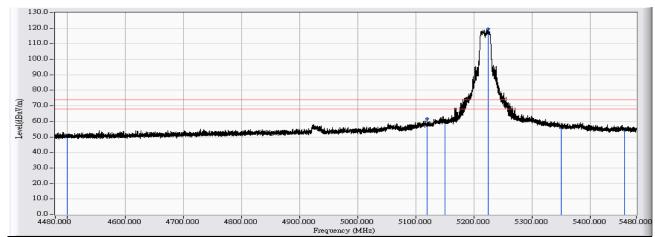
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	31.340	53.675	-20.325	74.000	PEAK
2	*	5149.433	24.052	48.559	72.611	-1.389	74.000	PEAK
3		5150.000	24.053	42.867	66.920	-7.080	74.000	PEAK
4		5176.930	24.142	96.966	121.109			PEAK
5		5350.000	24.342	33.630	57.972	-16.028	74.000	PEAK
6		5460.000	24.289			-16.241	74.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

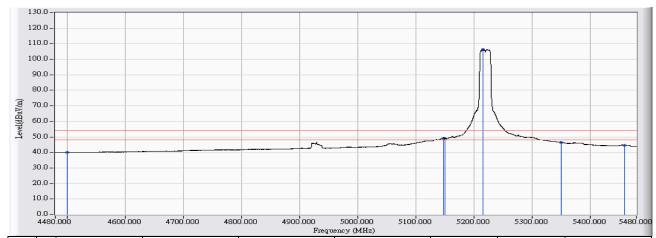
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5180MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	18.963	41.298	-12.702	54.000	AVERAGE
2	*	5148.033	24.050	28.892	52.942	-1.058	54.000	AVERAGE
3		5150.000	24.053	28.855	52.908	-1.092	54.000	AVERAGE
4		5177.630	24.145	84.799	108.944			AVERAGE
5		5350.000	24.342	22.507	46.849	-7.151	54.000	AVERAGE
6		5460.000	24.289	22.611	46.900	-7.100	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

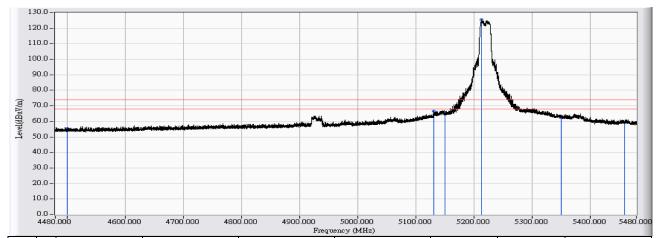
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	28.501	50.836	-23.164	74.000	PEAK
2	*	5119.236	24.002	37.540	61.542	-12.458	74.000	PEAK
3		5150.000	24.053	35.386	59.439	-14.561	74.000	PEAK
4		5225.225	24.250	95.343	119.593			PEAK
5		5350.000	24.342	31.599	55.941	-18.059	74.000	PEAK
6		5460.000	24.289	30.023	54.312	-19.688	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

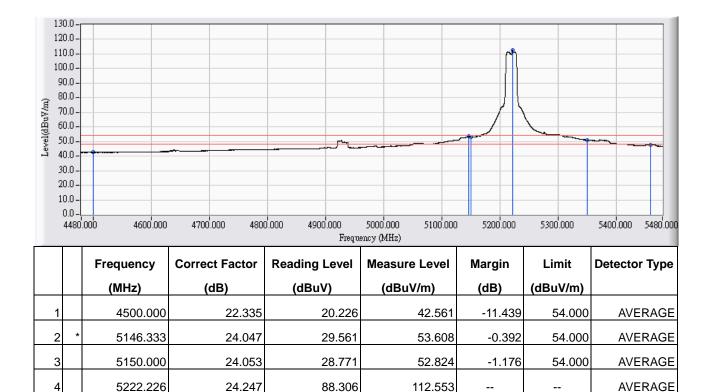
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	17.701	40.036	-13.964	54.000	AVERAGE
2	*	5147.333	24.049	25.229	49.277	-4.723	54.000	AVERAGE
3		5150.000	24.053	24.838	48.891	-5.109	54.000	AVERAGE
4		5215.926	24.239	82.226	106.465			AVERAGE
5		5350.000	24.342	22.088	46.430	-7.570	54.000	AVERAGE
6		5460.000	24.289	20.237	44.526	-9.474	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(20M)_5220MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	33.125	55.460	-18.540	74.000	PEAK
2	*	5131.835	24.023	42.372	66.395	-7.605	74.000	PEAK
3		5150.000	24.053	40.686	64.739	-9.261	74.000	PEAK
4		5213.527	24.236	101.227	125.463			PEAK
5		5350.000	24.342	38.372	62.714	-11.286	74.000	PEAK
6		5460.000	24.289	34.999	59.288	-14.712	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5220MHz

5

6

5222.226

5350.000

5460.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

88.306

26.676

23.203

112.553

51.018

47.492

-2.982

-6.508

54.000

54.000

AVERAGE

AVERAGE AVERAGE

- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

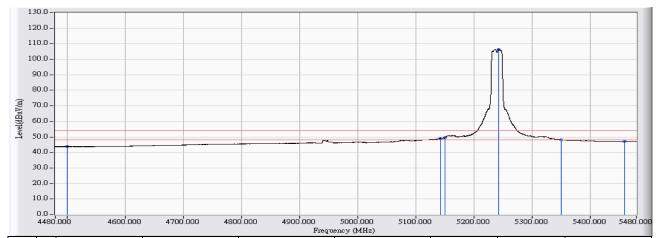
24.247

24.342

24.289

- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit 6. of average detection.

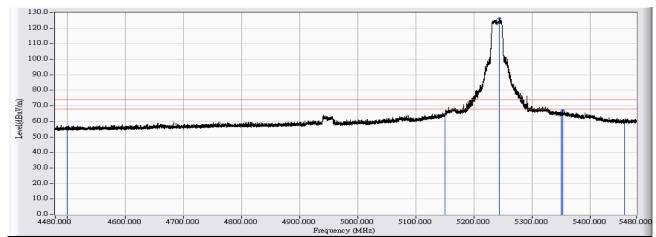
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	31.408	53.743	-20.257	74.000	PEAK
2	*	5134.435	24.026	38.023	62.050	-11.950	74.000	PEAK
3		5150.000	24.053	36.248	60.301	-13.699	74.000	PEAK
4		5243.724	24.272	94.327	118.599			PEAK
5		5350.000	24.342	35.071	59.413	-14.587	74.000	PEAK
6		5460.000	24.289			-15.828	74.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

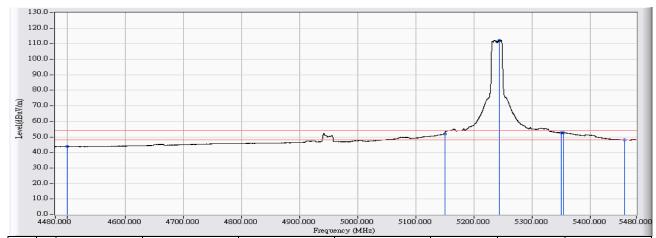
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	21.437	43.772	-10.228	54.000	AVERAGE
2		5142.634	24.040	25.004	49.044	-4.956	54.000	AVERAGE
3	*	5150.000	24.053	25.299	49.352	-4.648	54.000	AVERAGE
4		5242.324	24.271	82.021	106.292			AVERAGE
5		5350.000	24.342	23.802	48.144	-5.856	54.000	AVERAGE
6		5460.000	24.289	22.790	47.079	-6.921	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

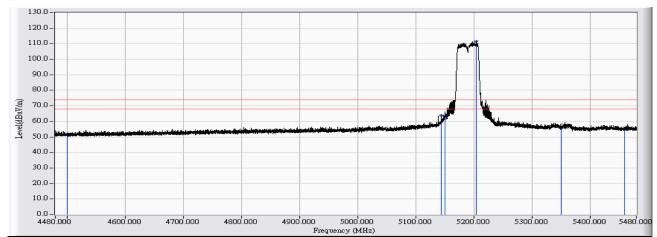
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	33.865	56.200	-17.800	74.000	PEAK
2		5150.000	24.053	40.311	64.364	-9.636	74.000	PEAK
3		5244.423	24.273	101.756	126.029			PEAK
4		5350.000	24.342	40.766	65.108	-8.892	74.000	PEAK
5	*	5353.513	24.338	42.752		-6.910	74.000	PEAK
6		5460.000	24.289			-14.149	74.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

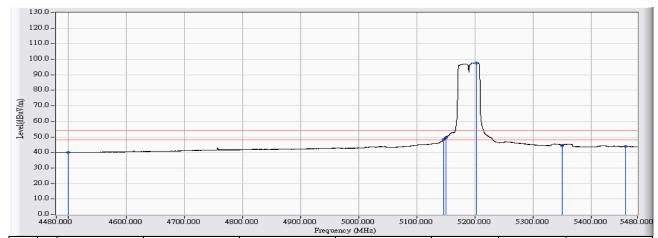
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5240MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	21.469	43.804	-10.196	54.000	AVERAGE
2		5150.000	24.053	27.987	52.040	-1.960	54.000	AVERAGE
3		5243.624	24.272	88.095	112.367			AVERAGE
4		5350.000	24.342	28.356	52.698	-1.302	54.000	AVERAGE
5	*	5354.612	24.338	28.425	52.762	-1.238	54.000	AVERAGE
6		5460.000	24.289	23.780	48.069	-5.931	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

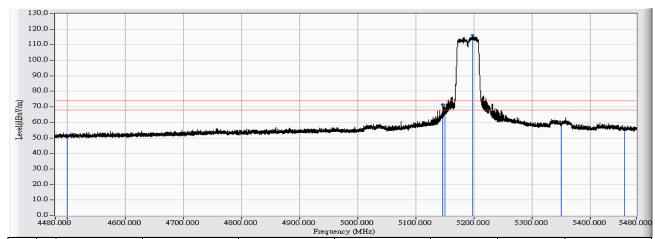
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	29.324	51.659	-22.341	74.000	PEAK
2	*	5144.633	24.044	39.702	63.745	-10.255	74.000	PEAK
3		5150.000	24.053	37.747	61.800	-12.200	74.000	PEAK
4		5204.828	24.226	87.372	111.598			PEAK
5		5350.000	24.342	31.428	55.770	-18.230	74.000	PEAK
6		5460.000	24.289			-19.373	74.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

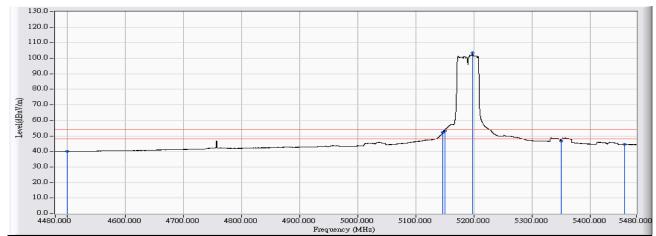
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	17.792	40.127	-13.873	54.000	AVERAGE
2		5147.233	24.049	24.457	48.505	-5.495	54.000	AVERAGE
3	*	5150.000	24.053	25.549	49.602	-4.398	54.000	AVERAGE
4		5202.628	24.224	73.479	97.703			AVERAGE
5		5350.000	24.342	20.073	44.415	-9.585	54.000	AVERAGE
6		5460.000	24.289	19.523	43.812	-10.188	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

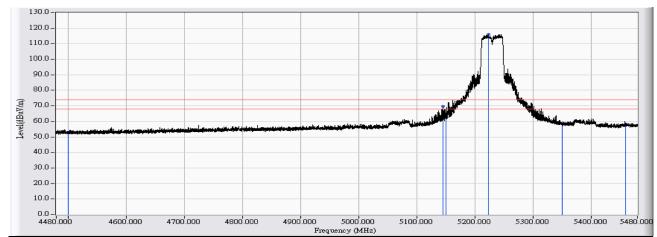
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	28.367	50.702	-23.298	74.000	PEAK
2	*	5146.733	24.047	47.412	71.459	-2.541	74.000	PEAK
3		5150.000	24.053	42.406	66.459	-7.541	74.000	PEAK
4		5198.228	24.215	91.770	115.985			PEAK
5		5350.000	24.342	34.508	58.850	-15.150	74.000	PEAK
6		5460.000	24.289	32.197	56.486	-17.514	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

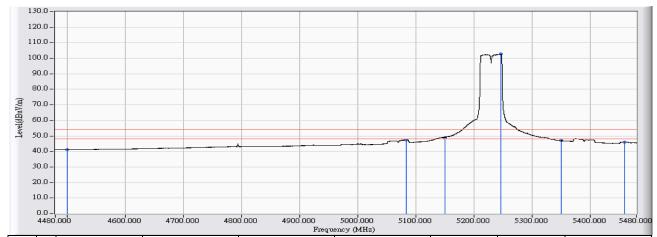
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5190MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	17.740	40.075	-13.925	54.000	AVERAGE
2		5147.033	24.047	28.288	52.336	-1.664	54.000	AVERAGE
3	*	5150.000	24.053	29.402	53.455	-0.545	54.000	AVERAGE
4		5197.728	24.213	79.183	103.396			AVERAGE
5		5350.000	24.342	22.440	46.782	-7.218	54.000	AVERAGE
6		5460.000	24.289	20.256	44.545	-9.455	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

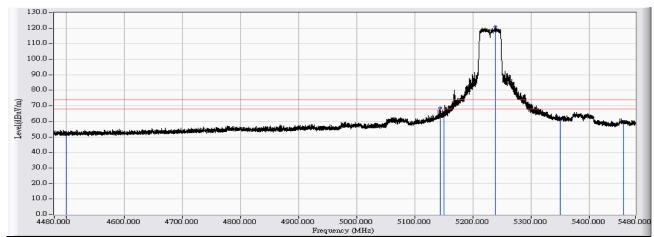
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5230MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	30.538	52.873	-21.127	74.000	PEAK
2	*	5145.533	24.045	45.691	69.736	-4.264	74.000	PEAK
3		5150.000	24.053	39.497	63.550	-10.450	74.000	PEAK
4		5223.526	24.248	91.825	116.073			PEAK
5		5350.000	24.342	34.125	58.467	-15.533	74.000	PEAK
6		5460.000	24.289	33.430	57.719	-16.281	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

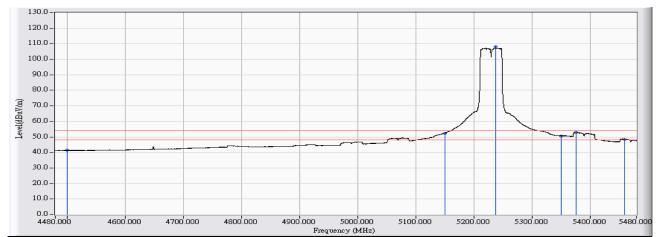
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5230MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	18.937	41.272	-12.728	54.000	AVERAGE
2		5083.340	23.982	23.417	47.399	-6.601	54.000	AVERAGE
3	*	5150.000	24.053	24.855	48.908	-5.092	54.000	AVERAGE
4		5246.624	24.276	78.586	102.862			AVERAGE
5		5350.000	24.342	22.576	46.918	-7.082	54.000	AVERAGE
6		5460.000	24.289	21.744	46.033	-7.967	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

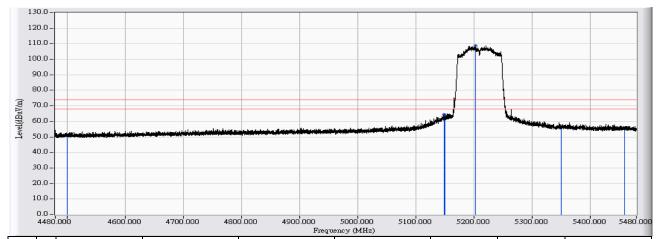
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5230MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	29.347	51.682	-22.318	74.000	PEAK
2	*	5143.534	24.041	44.670	68.712	-5.288	74.000	PEAK
3		5150.000	24.053	41.052	65.105	-8.895	74.000	PEAK
4		5239.324	24.267	96.701	120.968			PEAK
5		5350.000	24.342	36.544	60.886	-13.114	74.000	PEAK
6		5460.000			59.909		74.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

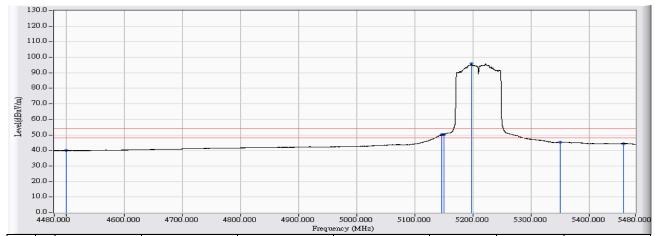
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5230MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	18.999	41.334	-12.666	54.000	AVERAGE
2		5150.000	24.053	28.264	52.317	-1.683	54.000	AVERAGE
3		5237.624	24.265	83.696	107.961			AVERAGE
4		5350.000	24.342	26.340	50.682	-3.318	54.000	AVERAGE
5	*	5376.210	24.314	28.672	52.987	-1.013	54.000	AVERAGE
6		5460.000	24.289	24.221	48.510	-5.490	54.000	

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

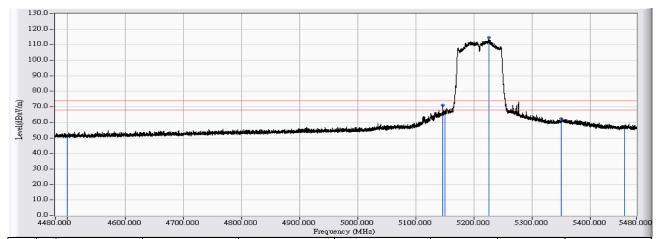
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	28.467	50.802	-23.198	74.000	PEAK
2	*	5149.433	24.052	40.285	64.337	-9.663	74.000	PEAK
3		5150.000	24.053	37.767	61.820	-12.180	74.000	PEAK
4		5203.627	24.225	84.618	108.843			PEAK
5		5350.000	24.342	32.069	56.411	-17.589	74.000	PEAK
6		5460.000	24.289	31.509	55.798	-18.202	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

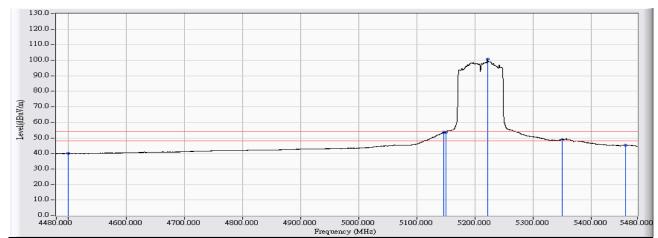
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	17.575	39.910	-14.090	54.000	AVERAGE
2		5146.333	24.047	26.057	50.104	-3.896	54.000	AVERAGE
3	*	5150.000	24.053	26.210	50.263	-3.737	54.000	AVERAGE
4		5197.728	24.213	71.530	95.743			AVERAGE
5		5350.000	24.342	20.964	45.306	-8.694	54.000	AVERAGE
6		5460.000	24.289	20.089	44.378	-9.622	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

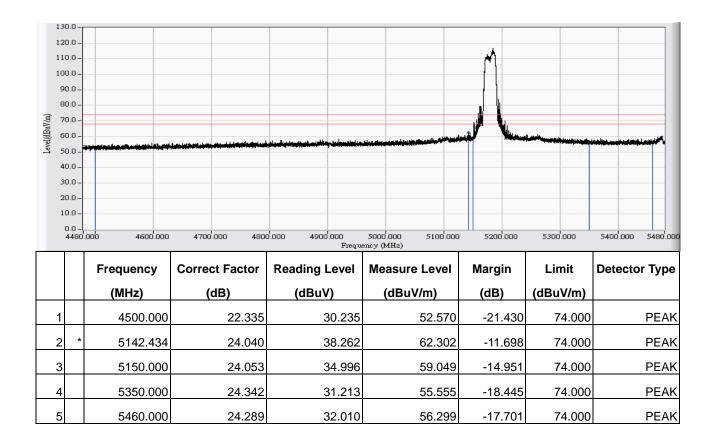
Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	29.042	51.377	-22.623	74.000	PEAK
2	*	5146.733	24.047	46.985	71.032	-2.968	74.000	PEAK
3		5150.000	24.053	41.947	66.000	-8.000	74.000	PEAK
4		5225.925	24.251	90.367	114.618			PEAK
5		5350.000	24.342	37.963	62.305	-11.695	74.000	PEAK
6		5460.000	24.289	32.003	56.292	-17.708	74.000	PEAK

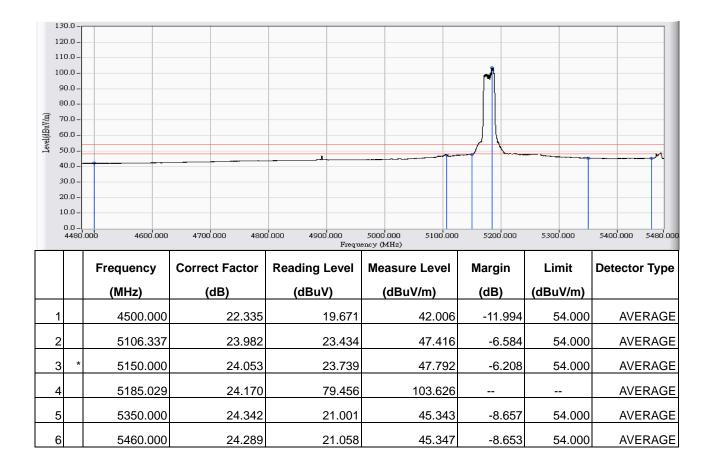
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/15
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V / 60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5210MHz

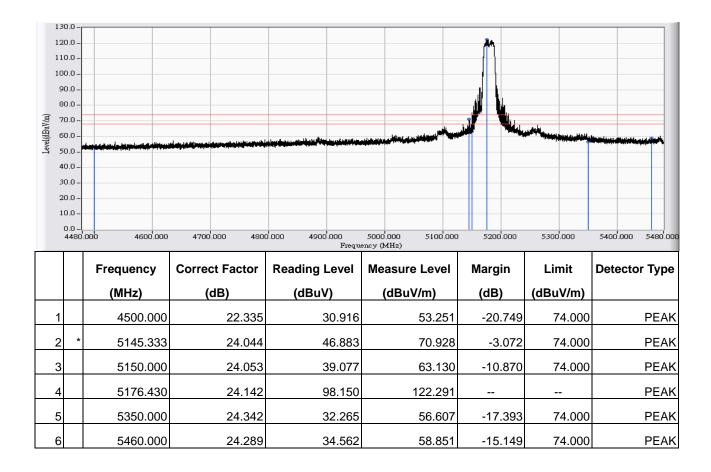


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4500.000	22.335	17.600	39.935	-14.065	54.000	AVERAGE
2		5146.433	24.047	29.467	53.514	-0.486	54.000	AVERAGE
3		5150.000	24.053	29.540	53.593	-0.407	54.000	AVERAGE
4	*	5150.000	24.053	29.740	53.793	-0.207	54.000	AVERAGE
5		5222.126	24.247	76.530	100.777			AVERAGE
6		5350.000	24.342	24.550	48.892	-5.108	54.000	AVERAGE
7		5460.000	24.289	20.960	45.249	-8.751	54.000	AVERAGE

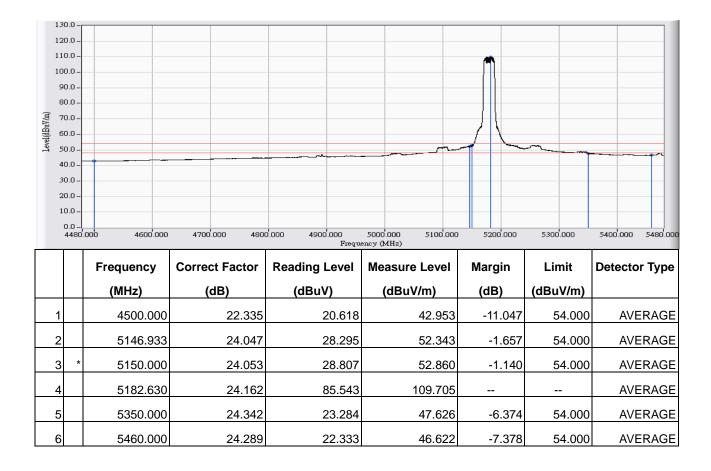
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5180MHz

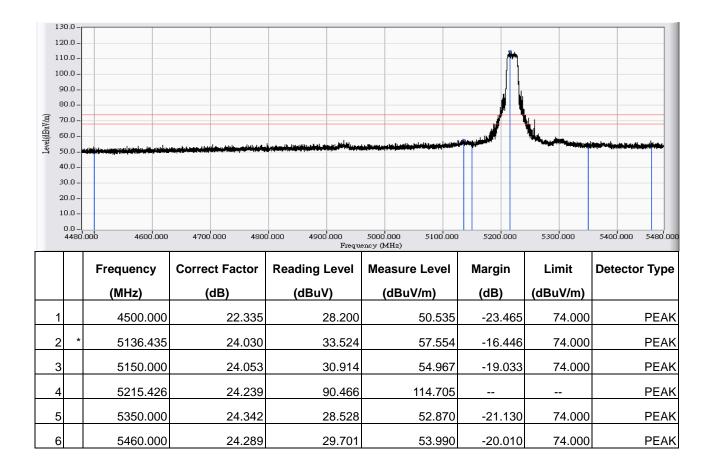
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5180MHz

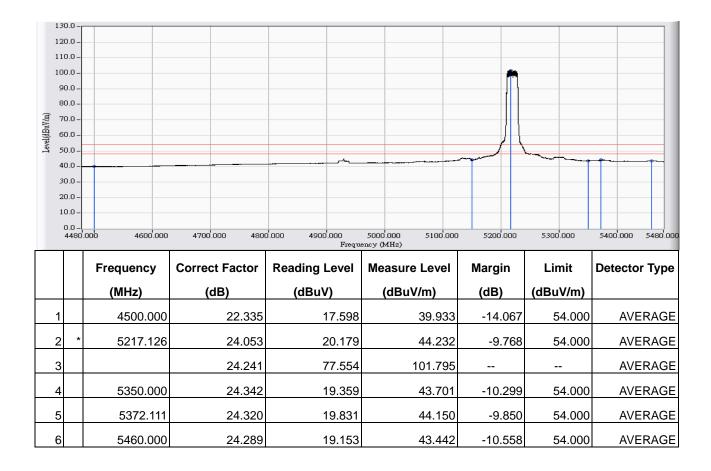
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5180MHz

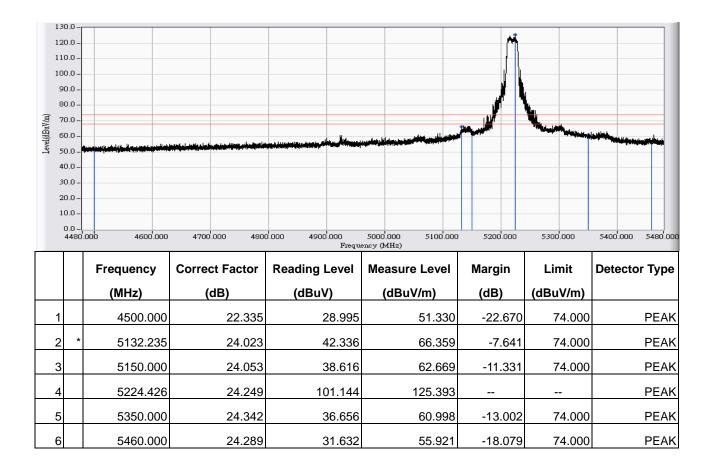
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5180MHz

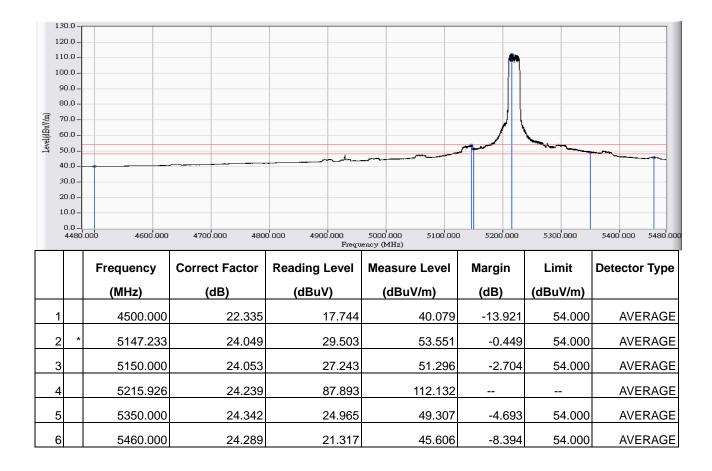
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5220MHz

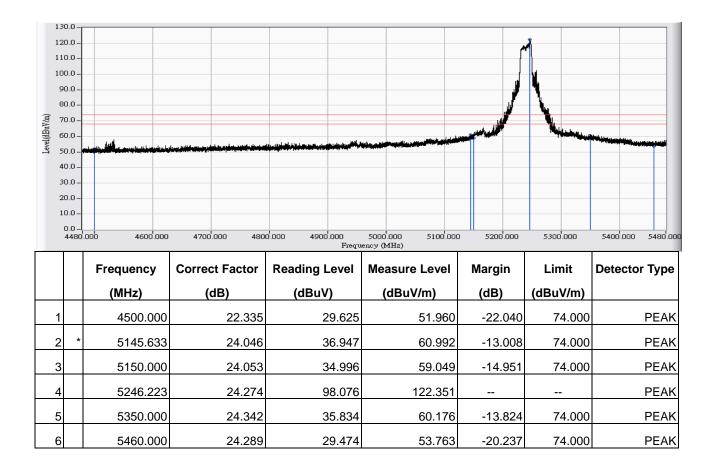
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5220MHz

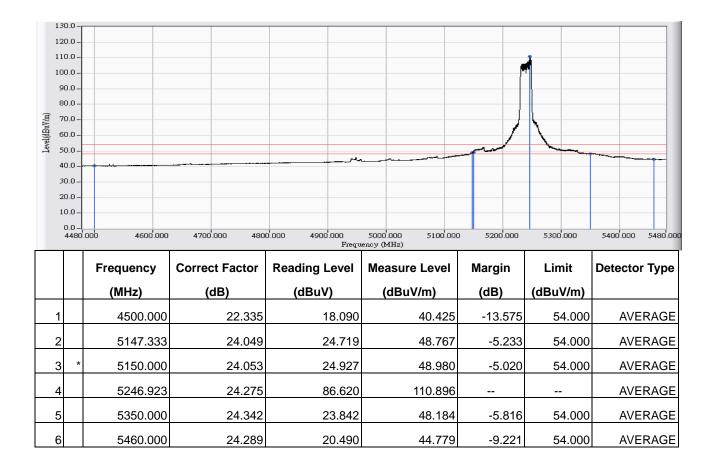
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5220MHz

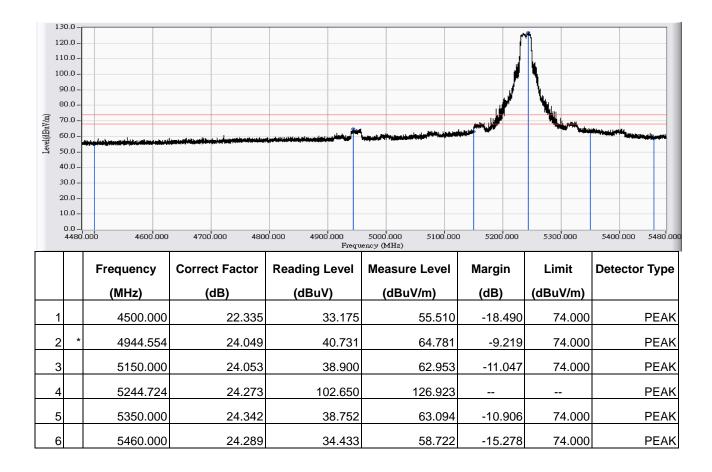
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5220MHz

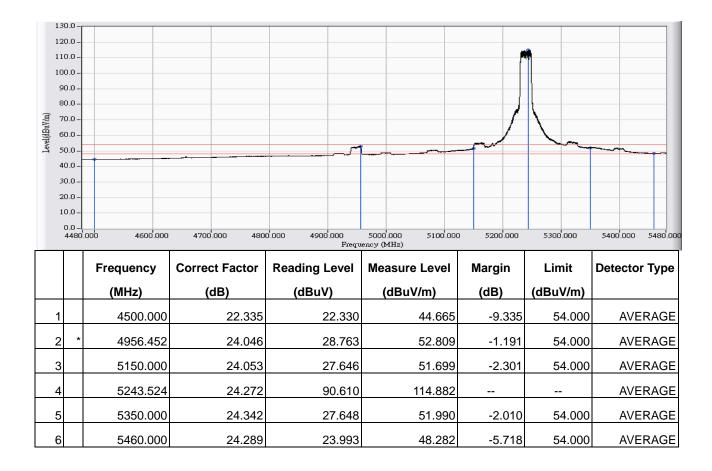
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5240MHz

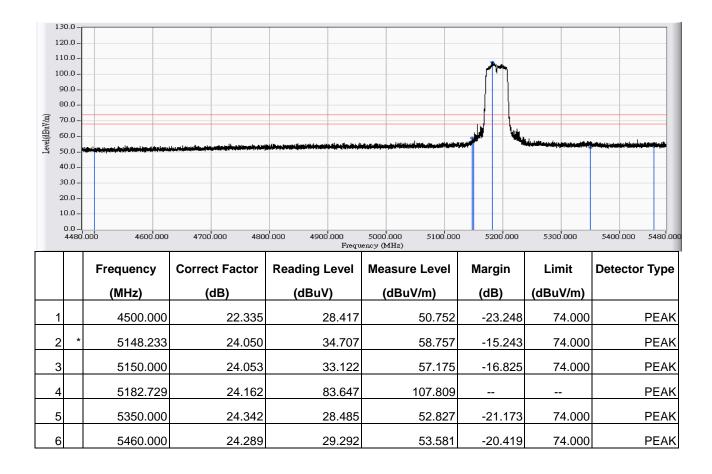
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5240MHz

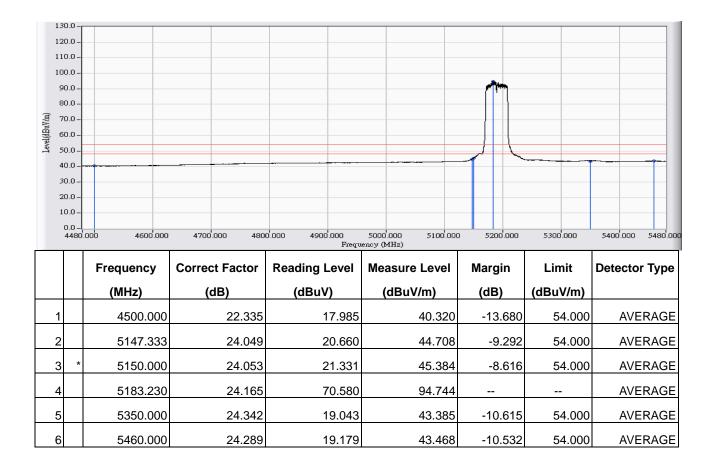
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5240MHz

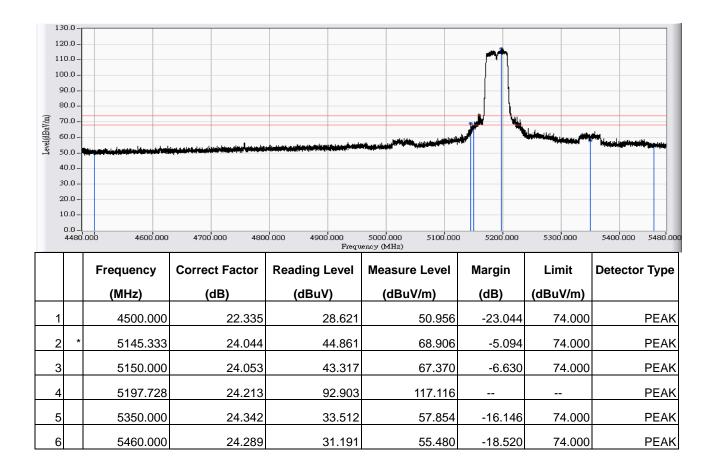
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5240MHz

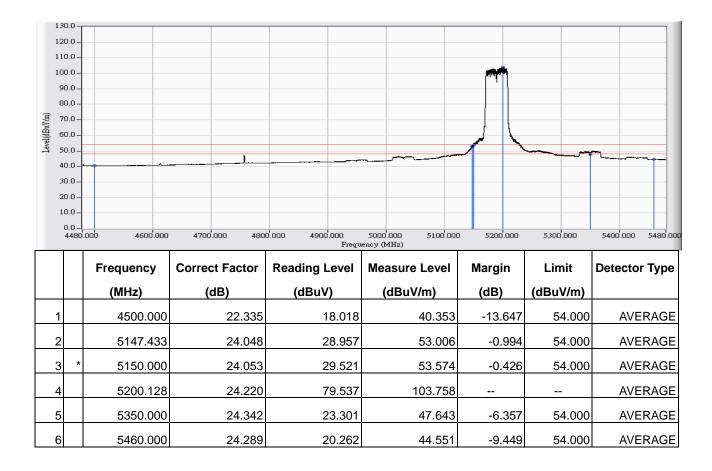
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5190MHz

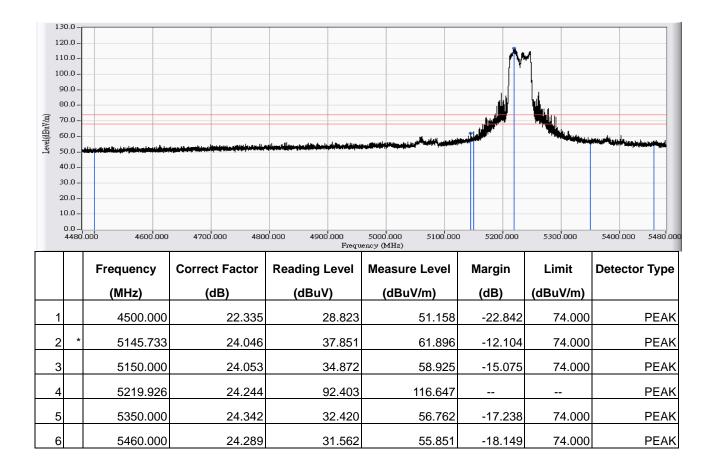
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5190MHz

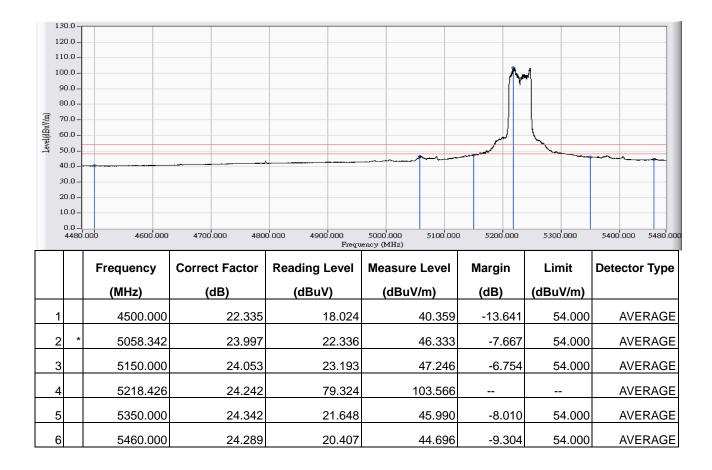
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5190MHz

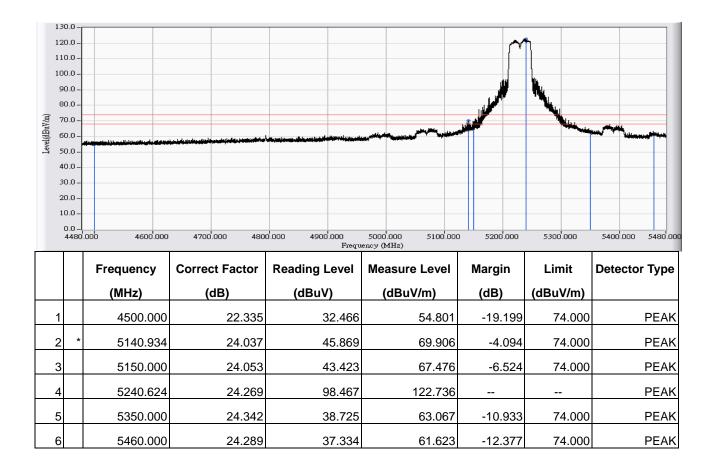
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5190MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5230MHz

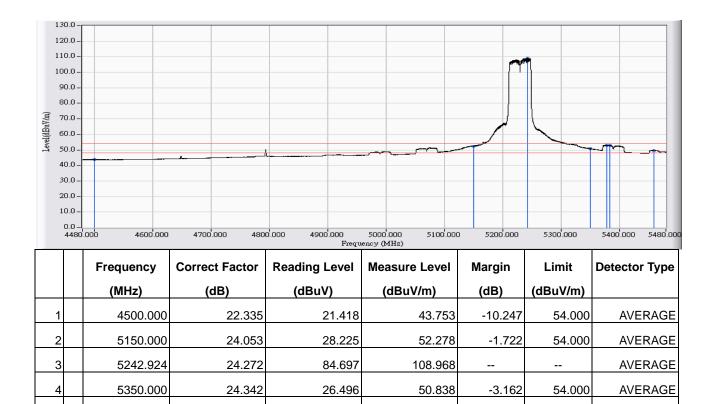
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5230MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5230MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



AVERAGE

AVERAGE

AVERAGE

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5230MHz

Note:

5

6

7

5379.010

5384.010

5460.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

28.669

28.624

25.306

52.981

52.931

49.595

-1.019

-1.069

-4.405

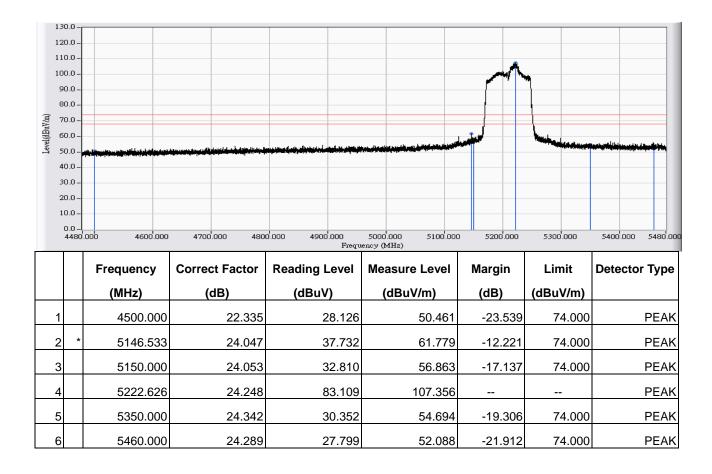
54.000

54.000

54.000

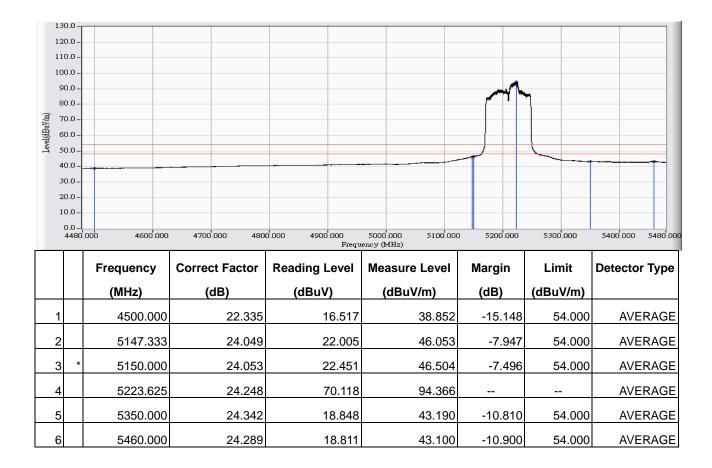
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.

24.313

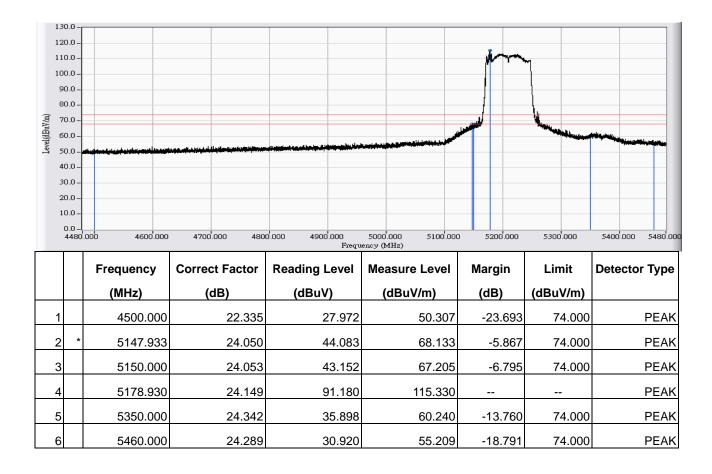

24.307

24.289

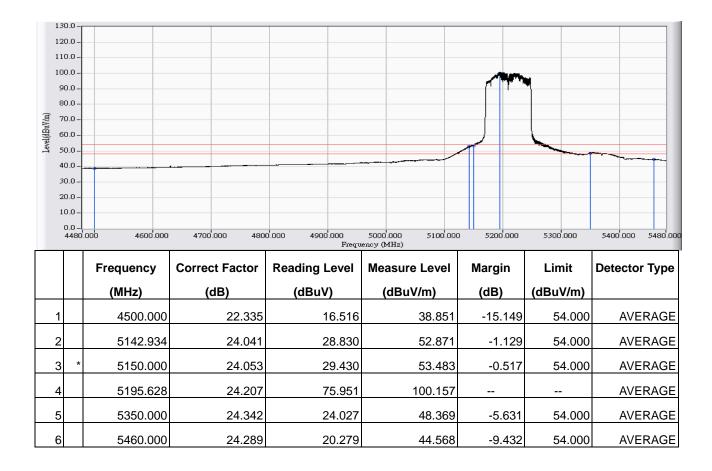
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5210MHz

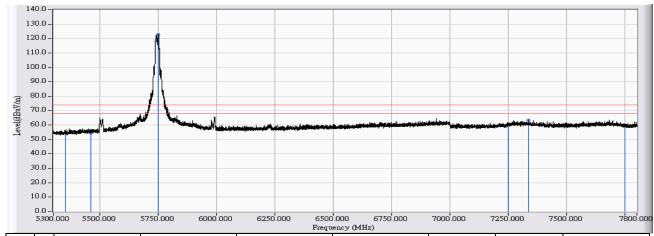
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5210MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

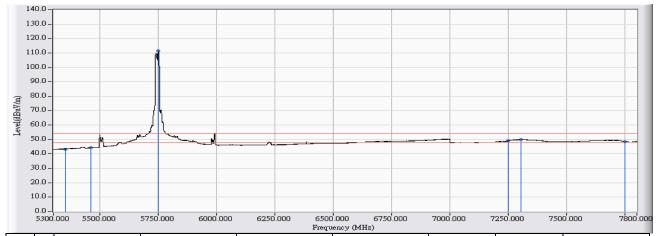

Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5210MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/16
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5210MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

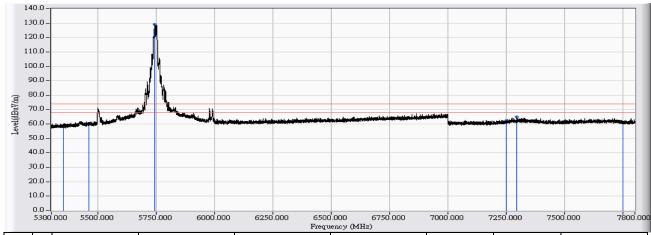
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	30.415	54.757	-19.243	74.000	PEAK
2		5460.000	24.289	30.165	54.454	-19.546	74.000	PEAK
3		5748.455	25.041	97.825	122.866			PEAK
4		7250.000	30.207	29.772	59.978	-14.022	74.000	PEAK
5	*	7336.546	30.485	32.844	63.329	-10.671	74.000	PEAK
6		7750.000	31.338	28.721	60.060	-13.940	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

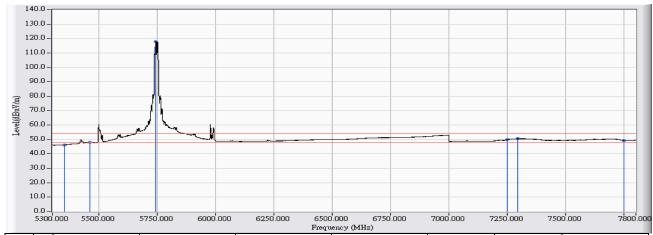
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	18.980	43.322	-10.678	54.000	AVERAGE
2		5460.000	24.289	19.938	44.227	-9.773	54.000	AVERAGE
3		5749.455	25.042	86.292	111.334			AVERAGE
4		7250.000	30.207	18.968	49.174	-4.826	54.000	AVERAGE
5	*	7302.800	30.375	19.507	49.883	-4.117	54.000	AVERAGE
6		7750.000	31.338	17.066	48.405	-5.595	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

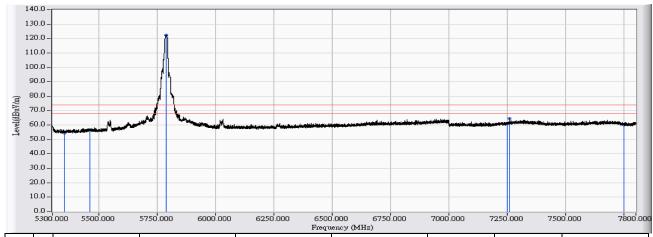
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	34.258	58.600	-15.400	74.000	PEAK
2		5460.000	24.289	36.307	60.596	-13.404	74.000	PEAK
3		5743.206	25.033	104.163	129.196			PEAK
4		7250.000	30.207	31.920	62.126	-11.874	74.000	PEAK
5	*	7294.550	30.350	34.618	64.967	-9.033	74.000	PEAK
6		7750.000	31.338	29.708	61.047	-12.953	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

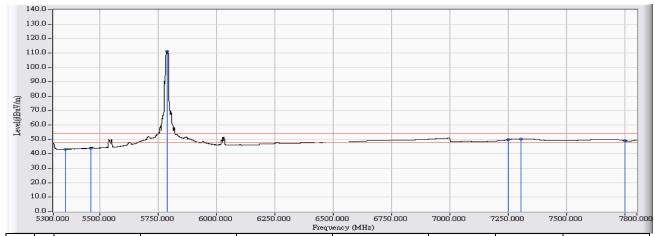
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	21.836	46.178	-7.822	54.000	AVERAGE
2		5460.000	24.289	23.678	47.967	-6.033	54.000	AVERAGE
3		5742.955	25.032	92.835	117.867			AVERAGE
4		7250.000	30.207	19.746	49.952	-4.048	54.000	AVERAGE
5	*	7294.550	30.350	20.171	50.520	-3.480	54.000	AVERAGE
6		7750.000	31.338	17.877	49.216	-4.784	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

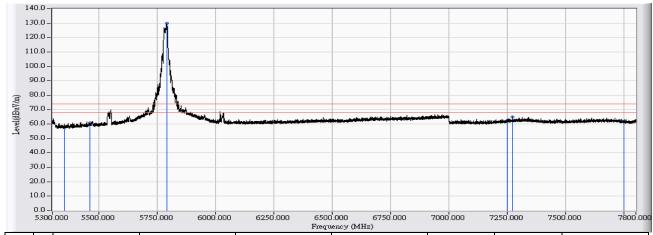
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	29.925	54.267	-19.733	74.000	PEAK
2		5460.000	24.289	32.542	56.831	-17.169	74.000	PEAK
3		5786.451	25.099	97.396	122.495			PEAK
4		7250.000	30.207	31.049	61.255	-12.745	74.000	PEAK
5	*	7258.304	30.234	34.223	64.456	-9.544	74.000	PEAK
6		7750.000	31.338	28.754	60.093	-13.907	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

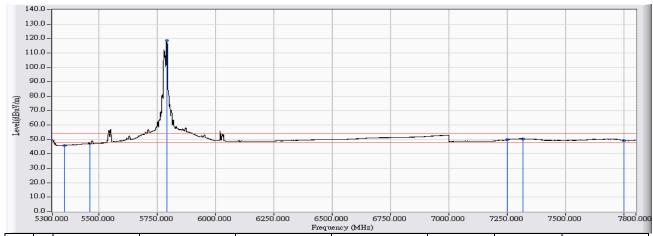
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	18.840	43.182	-10.818	54.000	AVERAGE
2		5460.000	24.289	19.761	44.050	-9.950	54.000	AVERAGE
3		5786.201	25.098	86.124	111.222			AVERAGE
4		7250.000	30.207	19.725	49.931	-4.069	54.000	AVERAGE
5	*	7303.050	30.377	20.082	50.459	-3.541	54.000	AVERAGE
6		7750.000	31.338	17.682	49.021	-4.979	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

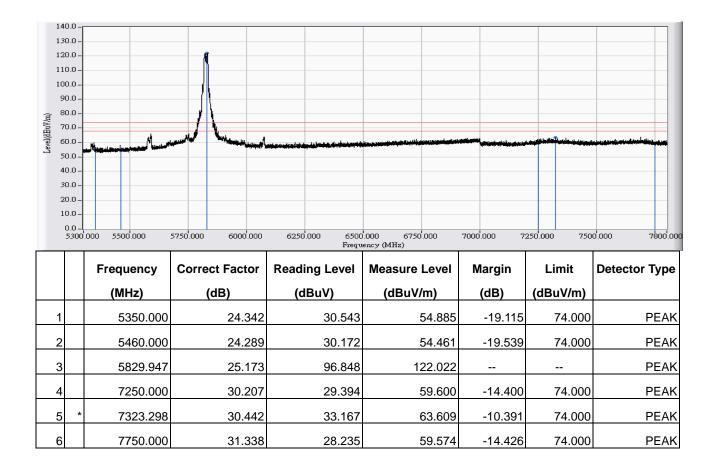
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	33.208	57.550	-16.450	74.000	PEAK
2		5460.000	24.289	36.543	60.832	-13.168	74.000	PEAK
3		5790.201	25.104	104.943	130.047			PEAK
4		7250.000	30.207	32.001	62.207	-11.793	74.000	PEAK
5	*	7270.053	30.271	34.603	64.874	-9.126	74.000	PEAK
6		7750.000	31.338	30.370	61.709	-12.291	74.000	PEAK

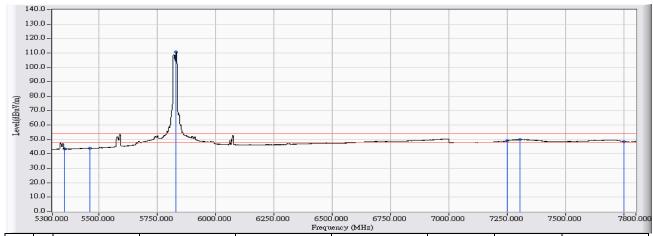
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5785MHz



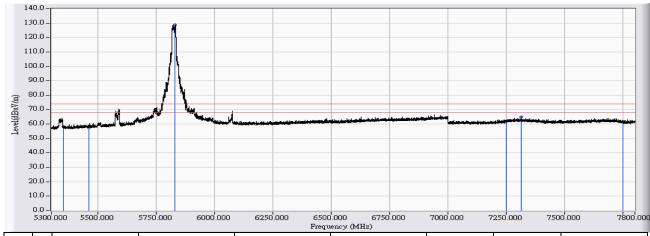
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	21.493	45.835	-8.165	54.000	AVERAGE
2		5460.000	24.289	23.082	47.371	-6.629	54.000	AVERAGE
3		5790.201	25.104	93.654	118.758			AVERAGE
4		7250.000	30.207	19.755	49.961	-4.039	54.000	AVERAGE
5	*	7314.798	30.414	20.063	50.478	-3.522	54.000	AVERAGE
6		7750.000	31.338	17.876	49.215	-4.785	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

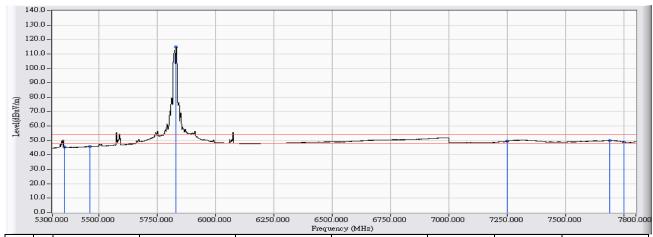
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	19.024	43.366	-10.634	54.000	AVERAGE
2		5460.000	24.289	19.728	44.017	-9.983	54.000	AVERAGE
3		5830.447	25.175	85.480	110.655			AVERAGE
4		7250.000	30.207	19.040	49.246	-4.754	54.000	AVERAGE
5	*	7302.300	30.374	19.504	49.878	-4.122	54.000	AVERAGE
6		7750.000	31.338	17.058	48.397	-5.603	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

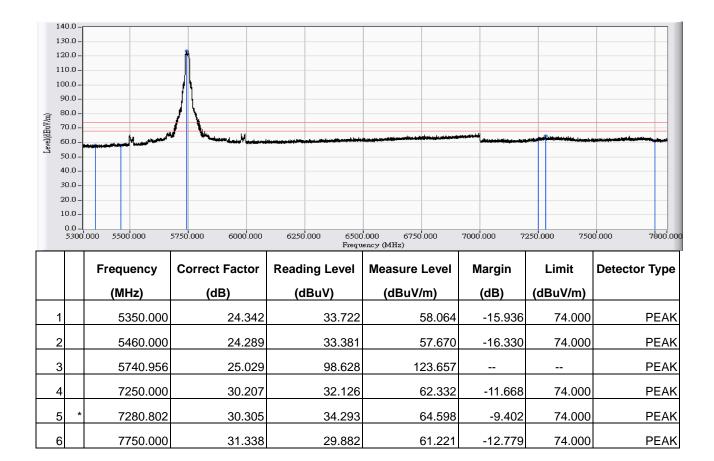
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	33.926	58.268	-15.732	74.000	PEAK
2		5460.000	24.289	33.264	57.553	-16.447	74.000	PEAK
3		5830.197	25.174	103.619	128.793			PEAK
4		7250.000	30.207	31.839	62.045	-11.955	74.000	PEAK
5	*	7313.799	30.412	34.630	65.041	-8.959	74.000	PEAK
6		7750.000	31.338	30.130	61.469	-12.531	74.000	PEAK

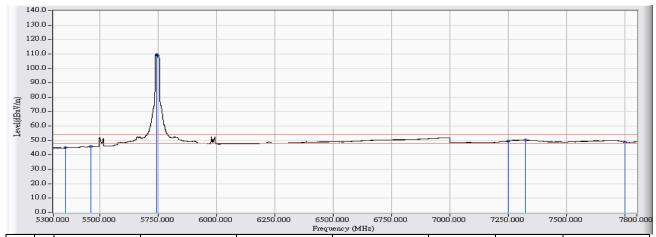
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 1: Tx_ADP: AD890326010-2LF_ CDD Mode
	(802.11 a)_ 802.11a_5825MHz



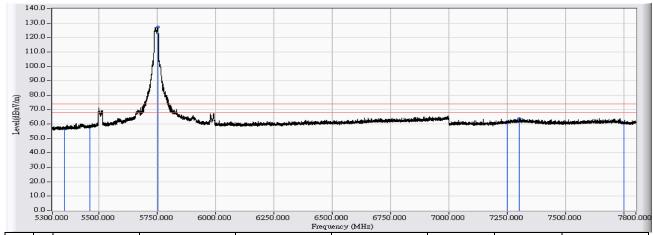
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.916	45.258	-8.742	54.000	AVERAGE
2		5460.000	24.289	21.495	45.784	-8.216	54.000	AVERAGE
3		5830.197	25.174	89.493	114.667			AVERAGE
4		7250.000	30.207	19.425	49.631	-4.369	54.000	AVERAGE
5	*	7688.261	31.258	18.660	49.917	-4.083	54.000	AVERAGE
6		7750.000	31.338	17.504	48.843	-5.157	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5745MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

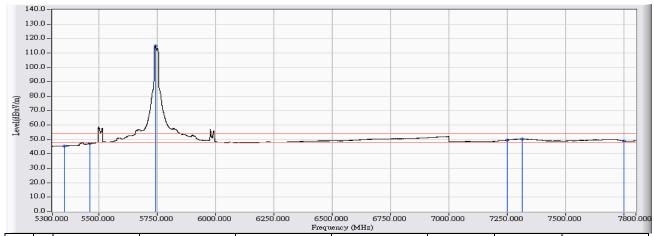
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.547	44.889	-9.111	54.000	AVERAGE
2		5460.000	24.289	21.519	45.808	-8.192	54.000	AVERAGE
3		5742.706	25.033	84.549	109.581			AVERAGE
4		7250.000	30.207	19.427	49.633	-4.367	54.000	AVERAGE
5	*	7321.048	30.435	19.770	50.205	-3.795	54.000	AVERAGE
6		7750.000	31.338	17.547	48.886	-5.114	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

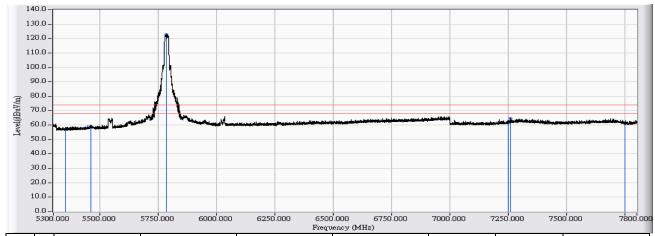
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	32.624	56.966	-17.034	74.000	PEAK
2		5460.000	24.289	34.204	58.493	-15.507	74.000	PEAK
3		5750.705	25.044	102.087	127.131			PEAK
4		7250.000	30.207	31.194	61.400	-12.600	74.000	PEAK
5	*	7299.300	30.364	33.597	63.962	-10.038	74.000	PEAK
6		7750.000	31.338	29.388	60.727	-13.273	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

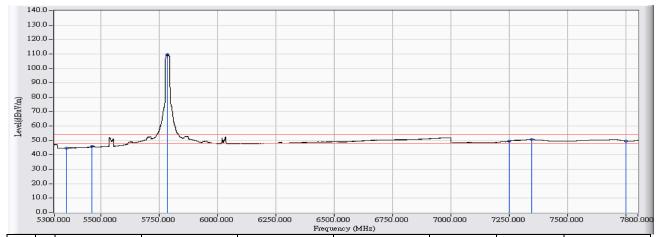
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5745MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.985	45.327	-8.673	54.000	AVERAGE
2		5460.000	24.289	22.855	47.144	-6.856	54.000	AVERAGE
3		5742.706	25.033	89.966	114.998			AVERAGE
4		7250.000	30.207	19.417	49.623	-4.377	54.000	AVERAGE
5	*	7311.299	30.403	19.893	50.296	-3.704	54.000	AVERAGE
6		7750.000	31.338	17.534	48.873	-5.127	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

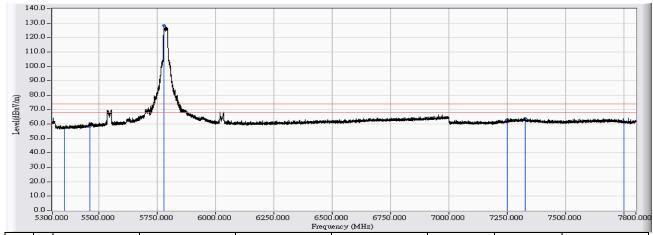
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	32.714	57.056	-16.944	74.000	PEAK
2		5460.000	24.289	34.617	58.906	-15.094	74.000	PEAK
3		5782.452	25.093	97.699	122.792			PEAK
4		7250.000	30.207	31.258	61.464	-12.536	74.000	PEAK
5	*	7256.804	30.229	34.177	64.405	-9.595	74.000	PEAK
6		7750.000	31.338	29.701	61.040	-12.960	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

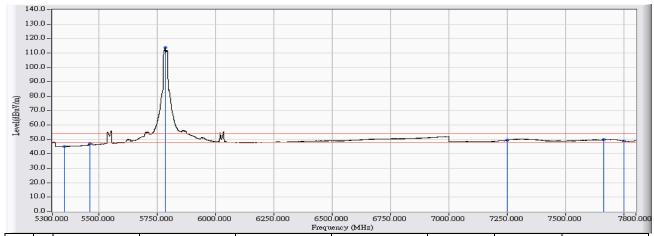
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.438	44.780	-9.220	54.000	AVERAGE
2		5460.000	24.289	21.635	45.924	-8.076	54.000	AVERAGE
3		5782.702	25.093	84.343	109.436			AVERAGE
4		7250.000	30.207	19.468	49.674	-4.326	54.000	AVERAGE
5	*	7343.295	30.507	20.109	50.615	-3.385	54.000	AVERAGE
6		7750.000	31.338	18.236	49.575	-4.425	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

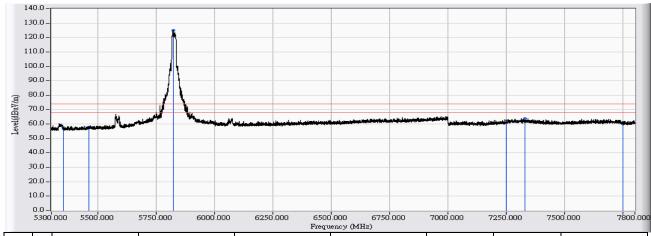
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	33.065	57.407	-16.593	74.000	PEAK
2		5460.000	24.289	34.269	58.558	-15.442	74.000	PEAK
3		5778.202	25.086	103.092	128.178			PEAK
4		7250.000	30.207	32.900	63.106	-10.894	74.000	PEAK
5	*	7326.297	30.451	33.518	63.970	-10.030	74.000	PEAK
6		7750.000	31.338	30.079	61.418	-12.582	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

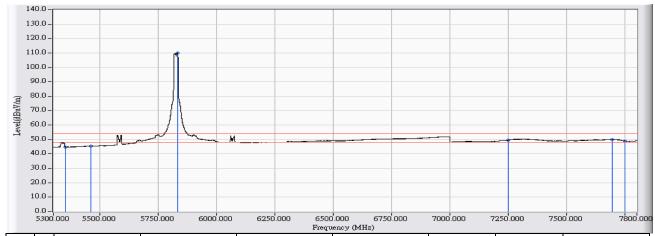
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5785MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.822	45.164	-8.836	54.000	AVERAGE
2		5460.000	24.289	22.618	46.907	-7.093	54.000	AVERAGE
3		5782.452	25.093	88.471	113.564			AVERAGE
4		7250.000	30.207	19.437	49.643	-4.357	54.000	AVERAGE
5	*	7660.764	31.222	18.514	49.735	-4.265	54.000	AVERAGE
6		7750.000	31.338	17.516	48.855	-5.145	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

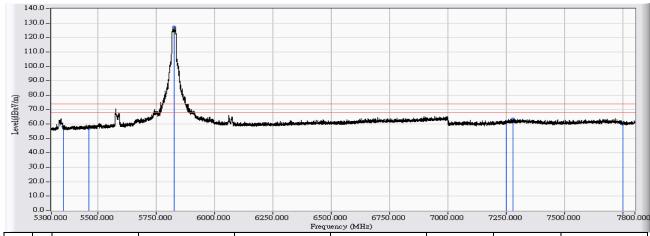
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	32.922	57.264	-16.736	74.000	PEAK
2		5460.000	24.289	33.465	57.754	-16.246	74.000	PEAK
3		5820.948	25.158	99.768	124.925			PEAK
4		7250.000	30.207	31.349	61.555	-12.445	74.000	PEAK
5	*	7328.547	30.459	33.201	63.660	-10.340	74.000	PEAK
6		7750.000	31.338	28.814	60.153	-13.847	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

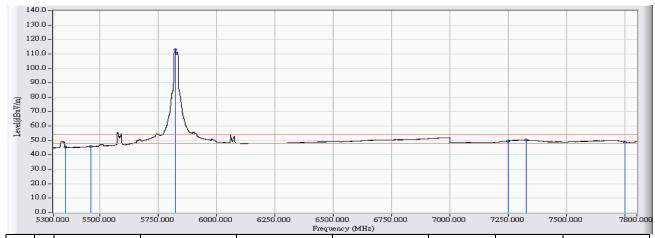
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.479	44.821	-9.179	54.000	AVERAGE
2		5460.000	24.289	21.186	45.475	-8.525	54.000	AVERAGE
3		5831.197	25.176	84.661	109.837			AVERAGE
4		7250.000	30.207	19.412	49.618	-4.382	54.000	AVERAGE
5	*	7693.261	31.264	18.625	49.889	-4.111	54.000	AVERAGE
6		7750.000	31.338	17.483	48.822	-5.178	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

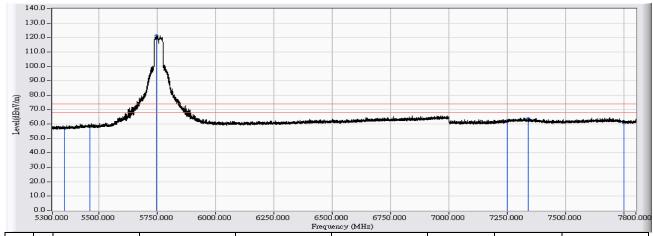
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	33.978	58.320	-15.680	74.000	PEAK
2		5460.000	24.289	32.664	56.953	-17.047	74.000	PEAK
3		5826.197	25.166	102.130	127.297			PEAK
4		7250.000	30.207	31.212	61.418	-12.582	74.000	PEAK
5	*	7278.802	30.299	33.031	63.330	-10.670	74.000	PEAK
6		7750.000	31.338	28.700	60.039	-13.961	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

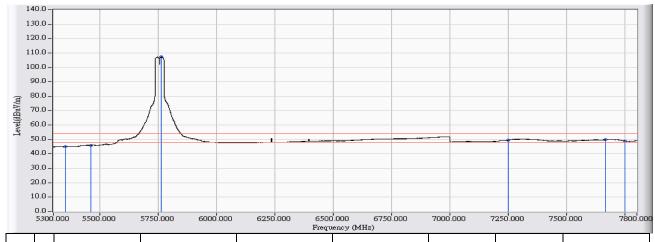
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(20M)_5825MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	21.061	45.403	-8.597	54.000	AVERAGE
2		5460.000	24.289	21.568	45.857	-8.143	54.000	AVERAGE
3		5822.698	25.161	87.976	113.137			AVERAGE
4		7250.000	30.207	19.434	49.640	-4.360	54.000	AVERAGE
5	*	7324.047	30.445	19.803	50.247	-3.753	54.000	AVERAGE
6		7750.000	31.338	17.566	48.905	-5.095	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

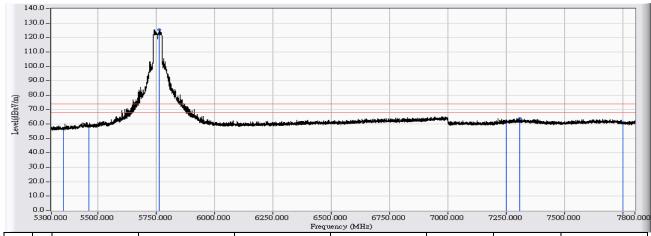
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	33.207	57.549	-16.451	74.000	PEAK
2		5460.000	24.289	34.098	58.387	-15.613	74.000	PEAK
3		5744.955	25.036	96.338	121.373			PEAK
4		7250.000	30.207	31.989	62.195	-11.805	74.000	PEAK
5	*	7337.546	30.488	33.417	63.905	-10.095	74.000	PEAK
6		7750.000	31.338	29.413	60.752	-13.248	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

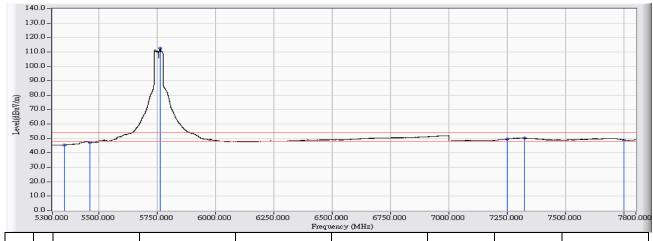
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.534	44.876	-9.124	54.000	AVERAGE
2		5460.000	24.289	21.657	45.946	-8.054	54.000	AVERAGE
3		5762.454	25.062	82.321	107.383			AVERAGE
4		7250.000	30.207	19.382	49.588	-4.412	54.000	AVERAGE
5	*	7665.264	31.227	18.652	49.879	-4.121	54.000	AVERAGE
6		7750.000	31.338	17.488	48.827	-5.173	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

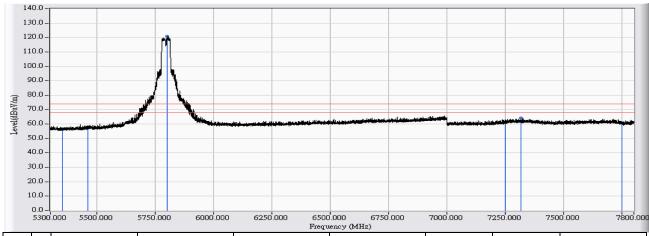
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	32.628	56.970	-17.030	74.000	PEAK
2		5460.000	24.289	34.346	58.635	-15.365	74.000	PEAK
3		5760.454	25.060	100.239	125.298			PEAK
4		7250.000	30.207	31.190	61.396	-12.604	74.000	PEAK
5	*	7305.049	30.383	33.553	63.936	-10.064	74.000	PEAK
6		7750.000	31.338	30.014	61.353	-12.647	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

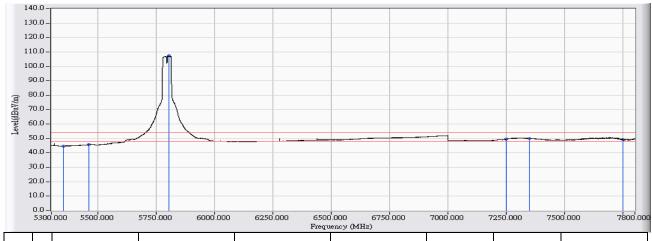
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5755MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	21.094	45.436	-8.564	54.000	AVERAGE
2		5460.000	24.289	22.997	47.286	-6.714	54.000	AVERAGE
3		5762.704	25.063	87.605	112.668			AVERAGE
4		7250.000	30.207	19.378	49.584	-4.416	54.000	AVERAGE
5	*	7321.048	30.435	19.754	50.189	-3.811	54.000	AVERAGE
6		7750.000	31.338	17.548	48.887	-5.113	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

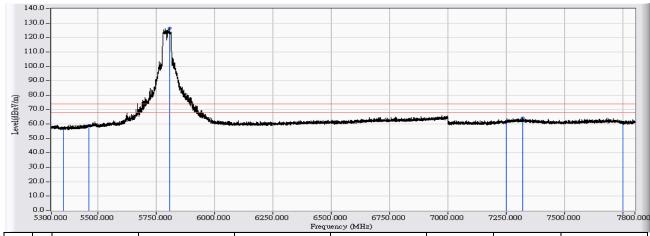
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5795MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	31.985	56.327	-17.673	74.000	PEAK
2		5460.000	24.289	33.063	57.352	-16.648	74.000	PEAK
3		5799.950	25.119	95.681	120.801			PEAK
4		7250.000	30.207	31.062	61.268	-12.732	74.000	PEAK
5	*	7316.798	30.422	33.687	64.108	-9.892	74.000	PEAK
6		7750.000	31.338	29.296	60.635	-13.365	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

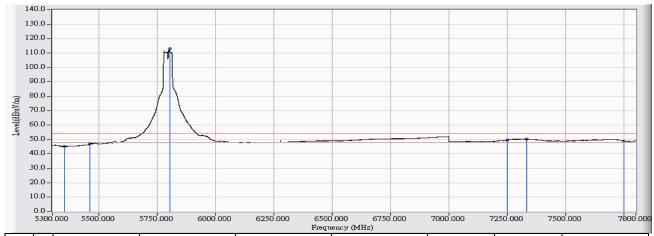
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5795MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.358	44.700	-9.300	54.000	AVERAGE
2		5460.000	24.289	21.470	45.759	-8.241	54.000	AVERAGE
3		5802.700	25.125	82.357	107.481			AVERAGE
4		7250.000	30.207	19.425	49.631	-4.369	54.000	AVERAGE
5	*	7346.545	30.517	19.466	49.983	-4.017	54.000	AVERAGE
6		7750.000	31.338	17.769	49.108	-4.892	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

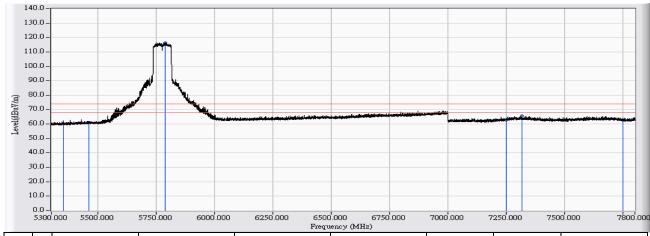
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5795MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	32.660	57.002	-16.998	74.000	PEAK
2		5460.000	24.289	34.684	58.973	-15.027	74.000	PEAK
3		5807.449	25.132	101.328	126.461			PEAK
4		7250.000	30.207	31.347	61.553	-12.447	74.000	PEAK
5	*	7319.048	30.428	33.646	64.074	-9.926	74.000	PEAK
6		7750.000	31.338	29.366	60.705	-13.295	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

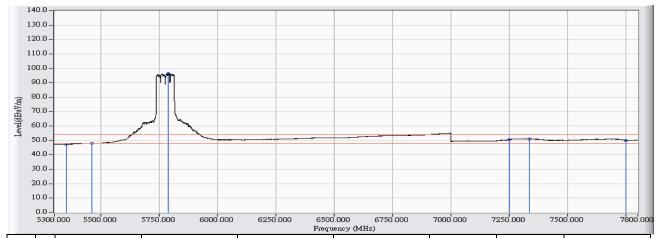
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : RT-AC86U # 8	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11n(40M))_5795MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	20.847	45.189	-8.811	54.000	AVERAGE
2		5460.000	24.289	22.660	46.949	-7.051	54.000	AVERAGE
3		5802.700	25.125	87.952	113.076			AVERAGE
4		7250.000	30.207	19.392	49.598	-4.402	54.000	AVERAGE
5	*	7330.547	30.465	19.645	50.110	-3.890	54.000	AVERAGE
6		7750.000	31.338	17.532	48.871	-5.129	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

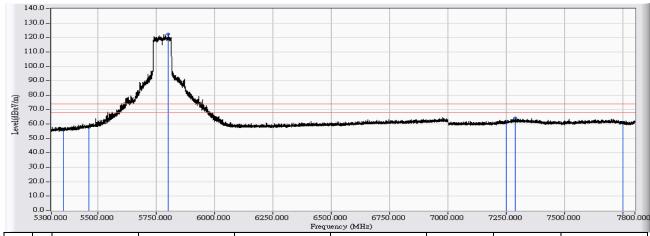
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	35.949	60.291	-13.709	74.000	PEAK
2		5460.000	24.289	36.937	61.226	-12.774	74.000	PEAK
3		5788.451	25.102	91.321	116.423			PEAK
4		7250.000	30.207	32.457	62.663	-11.337	74.000	PEAK
5	*	7314.798	30.414	35.453	65.868	-8.132	74.000	PEAK
6		7750.000	31.338	31.226	62.565	-11.435	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

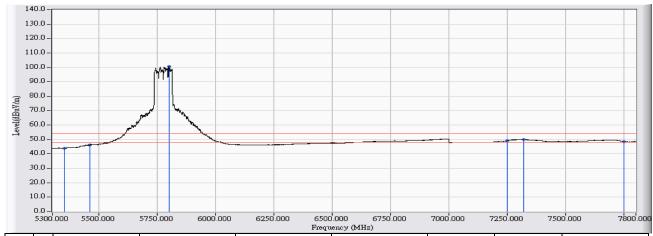
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	22.976	47.318	-6.682	54.000	AVERAGE
2		5460.000	24.289	23.912	48.201	-5.799	54.000	AVERAGE
3		5788.201	25.102	71.372	96.473			AVERAGE
4		7250.000	30.207	20.439	50.645	-3.355	54.000	AVERAGE
5	*	7333.796	30.476	20.510	50.986	-3.014	54.000	AVERAGE
6		7750.000	31.338	18.712	50.051	-3.949	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

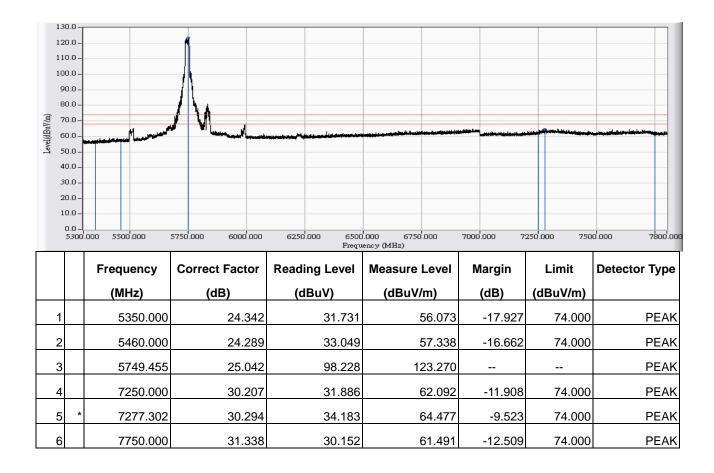
Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz



		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	31.437	55.779	-18.221	74.000	PEAK
2		5460.000	24.289	33.522	57.811	-16.189	74.000	PEAK
3		5800.200	25.119	97.340	122.460			PEAK
4		7250.000	30.207	31.229	61.435	-12.565	74.000	PEAK
5	*	7286.301	30.322	33.695	64.018	-9.982	74.000	PEAK
6		7750.000	31.338	29.868	61.207	-12.793	74.000	PEAK

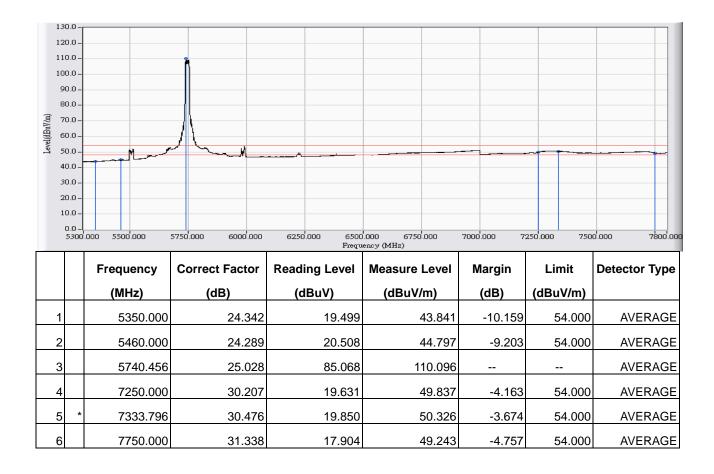
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/02/22
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 2: Tx_ADP: AD890326010-2LF_ MIMO Mode
	(802.11 n20/40)_ 802.11ac(80M)_5775MHz

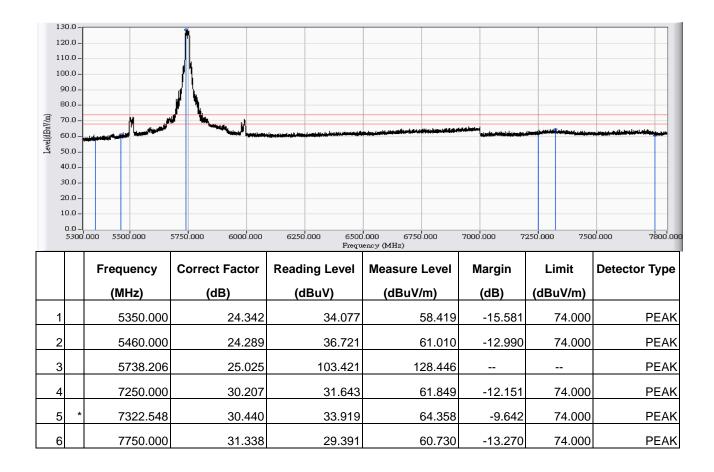


		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	24.342	19.556	43.898	-10.102	54.000	AVERAGE
2		5460.000	24.289	22.061	46.350	-7.650	54.000	AVERAGE
3		5798.450	25.117	75.349	100.466			AVERAGE
4		7250.000	30.207	19.048	49.254	-4.746	54.000	AVERAGE
5	*	7317.798	30.423	19.504	49.928	-4.072	54.000	AVERAGE
6		7750.000	31.338	17.075	48.414	-5.586	54.000	AVERAGE

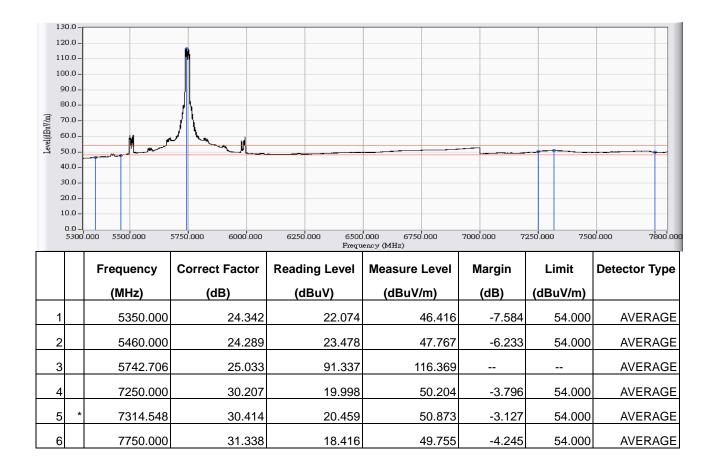
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5745MHz

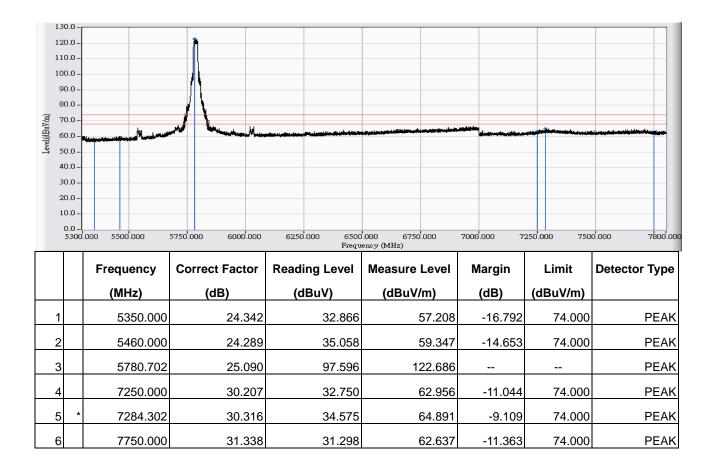
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5745MHz

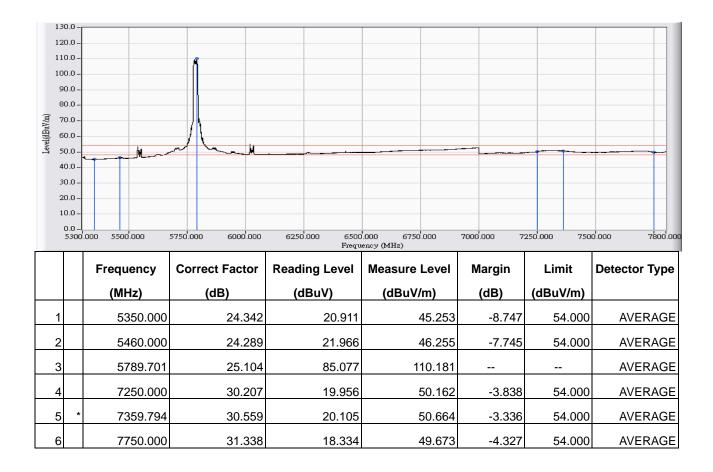
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5745MHz

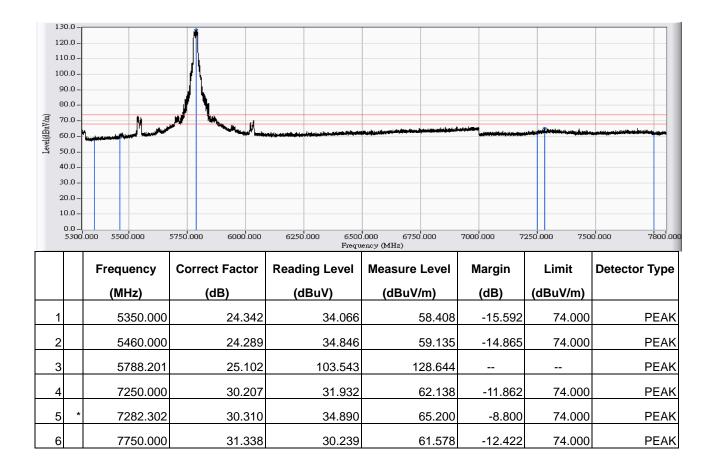
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5745MHz

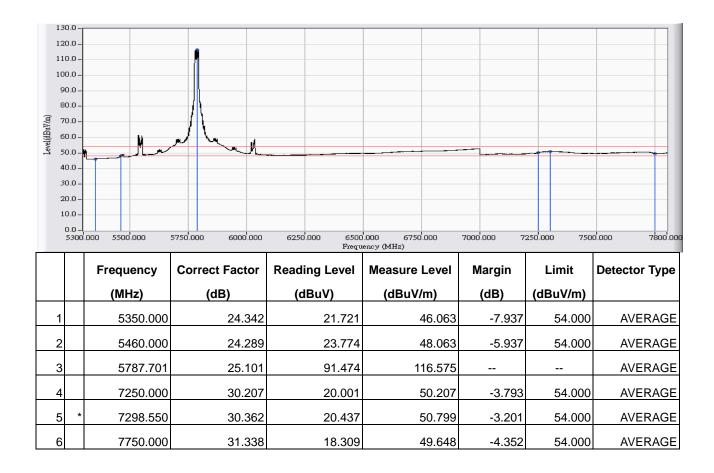
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5785MHz

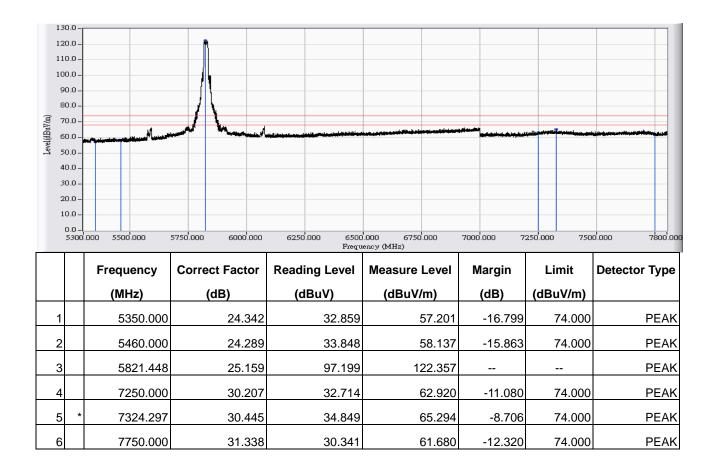
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5785MHz

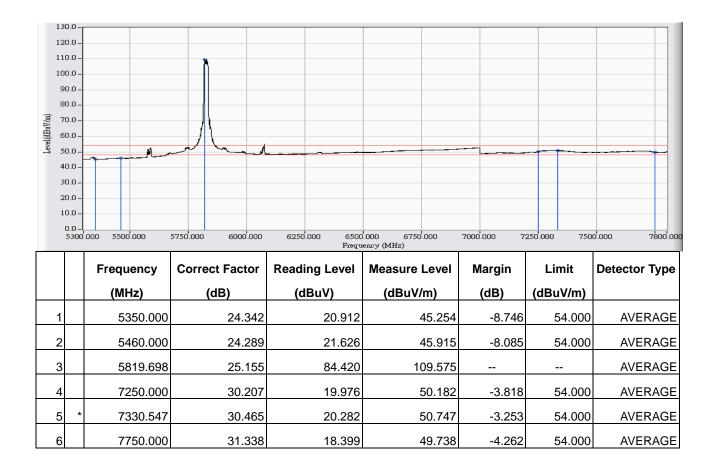
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5785MHz

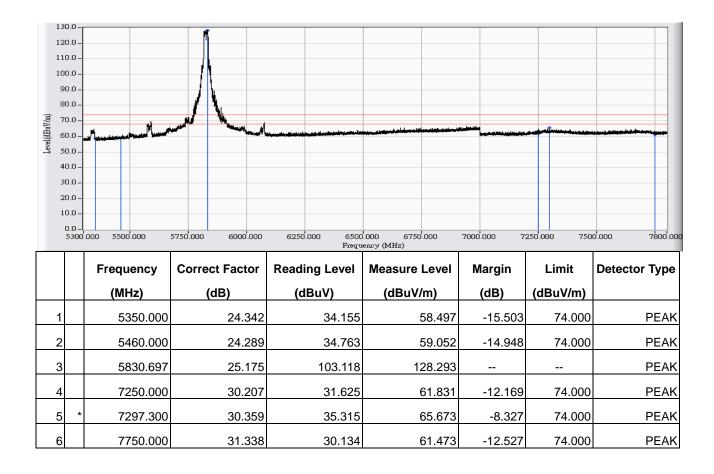
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5785MHz

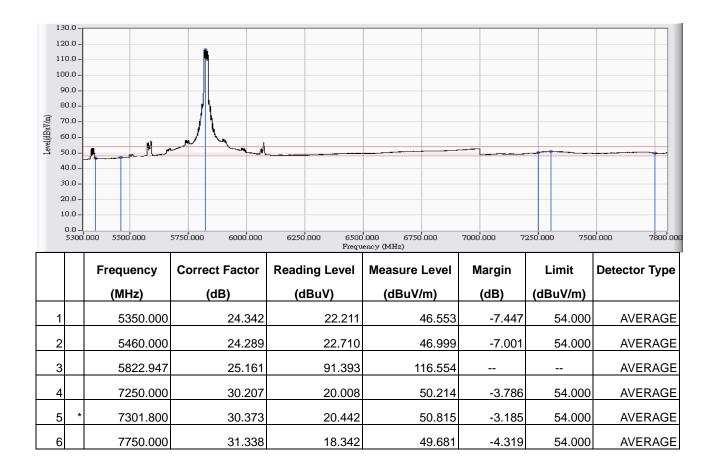
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5825MHz

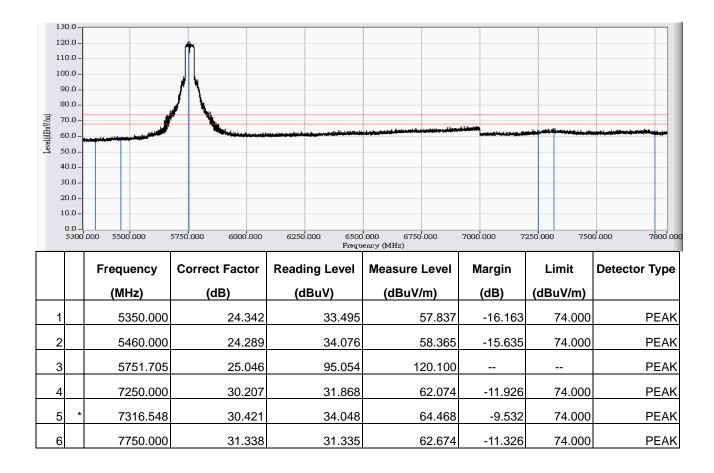
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5825MHz

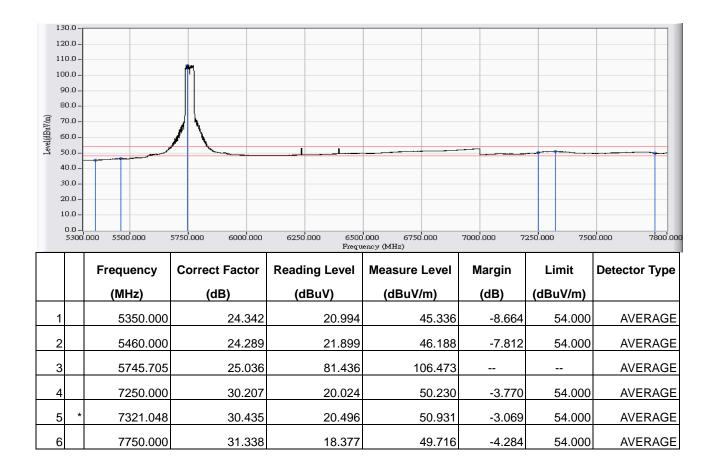
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5825MHz

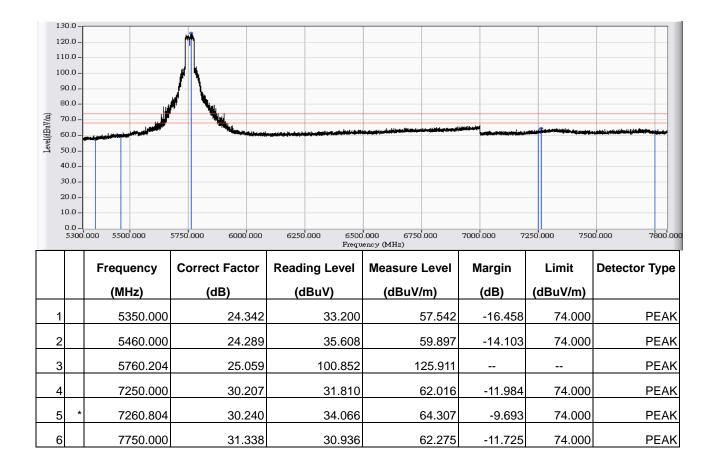
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(20M)_5825MHz

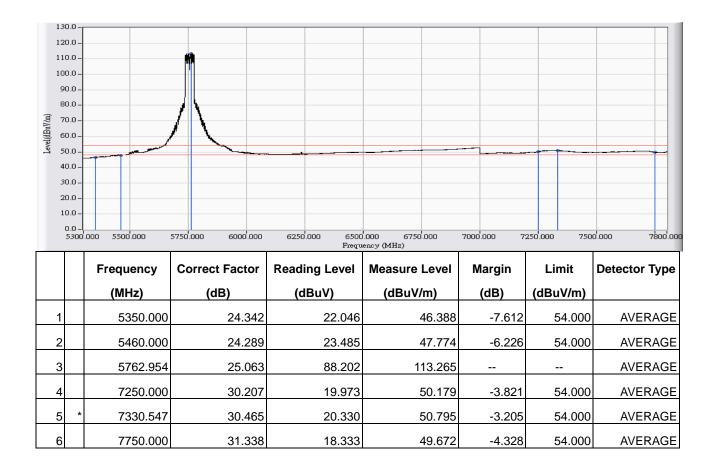
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5755MHz

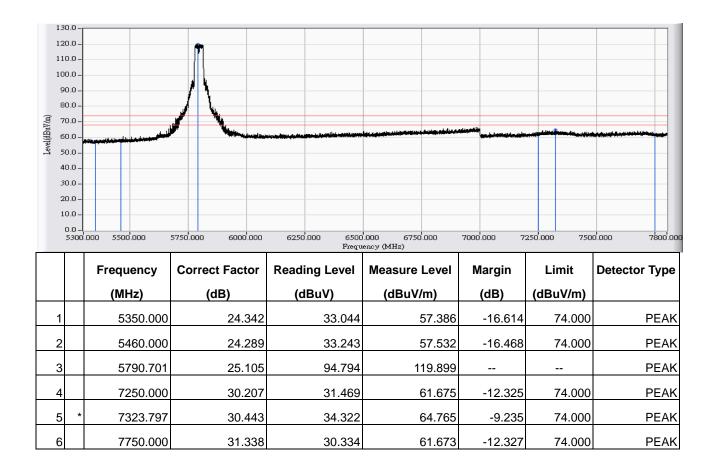
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5755MHz

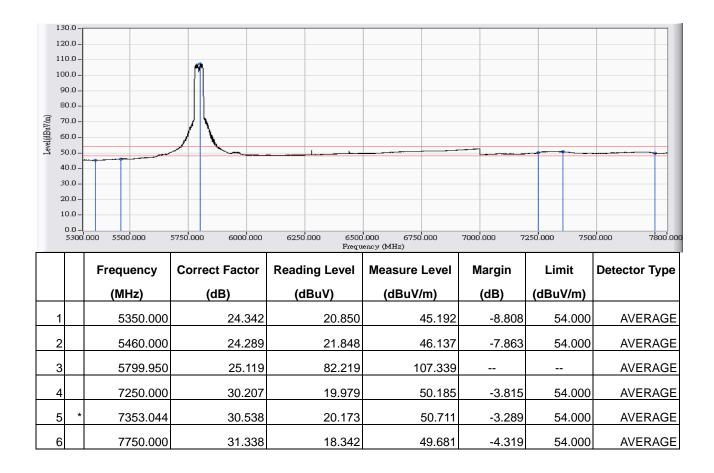
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5755MHz

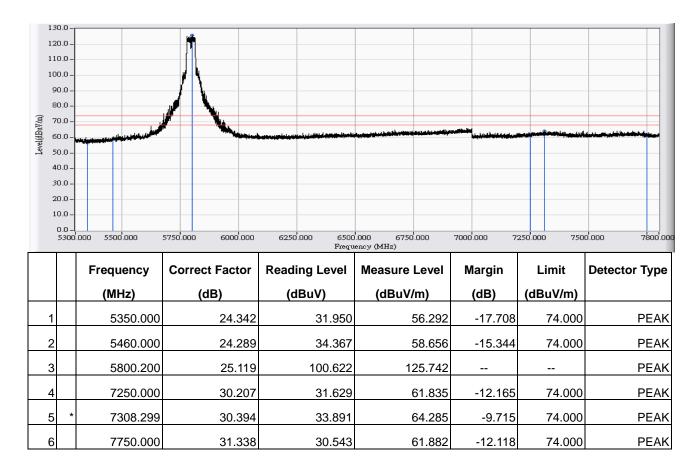
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5755MHz

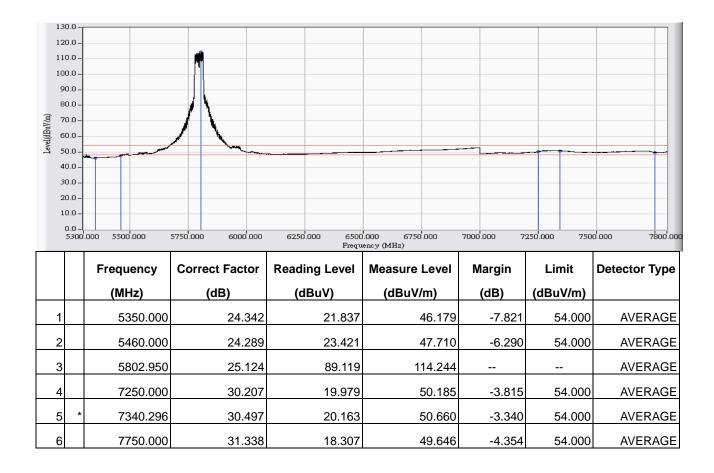
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5795MHz

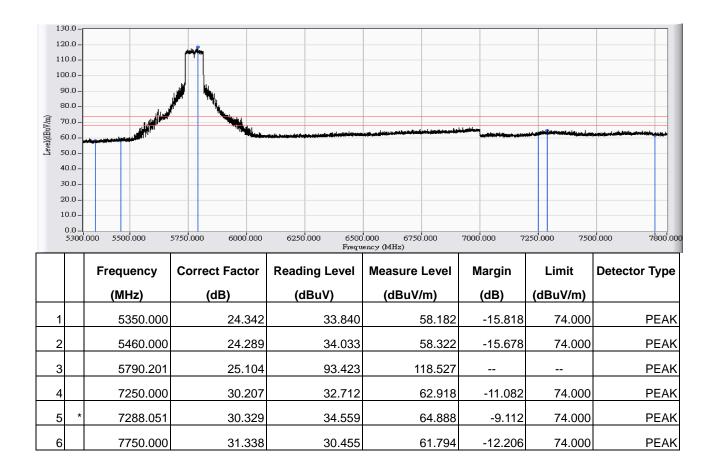
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5795MHz

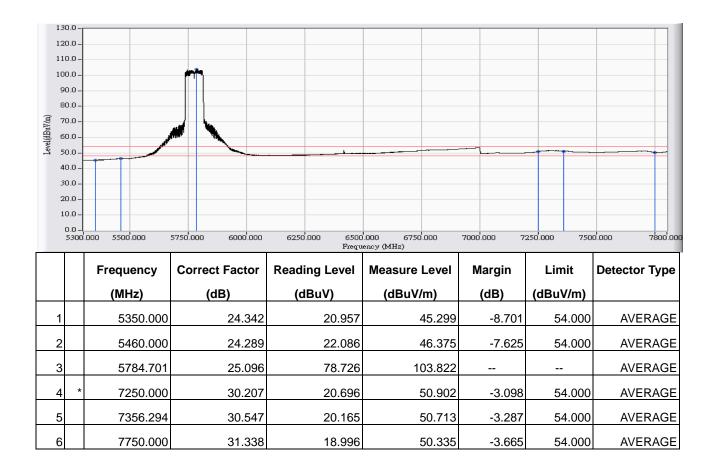
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5795MHz

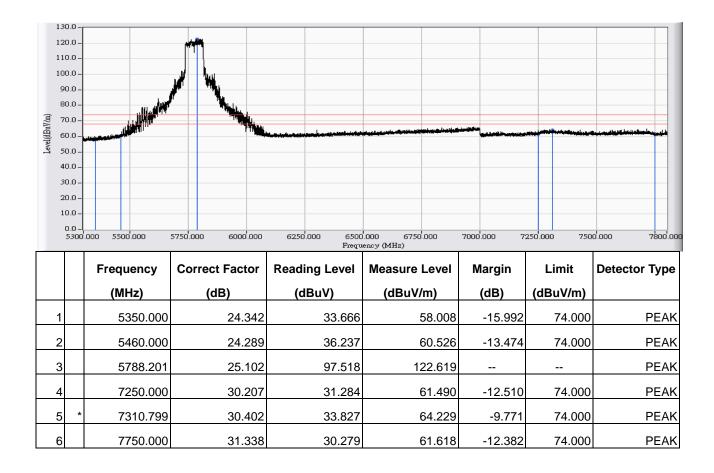
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11n(40M))_5795MHz

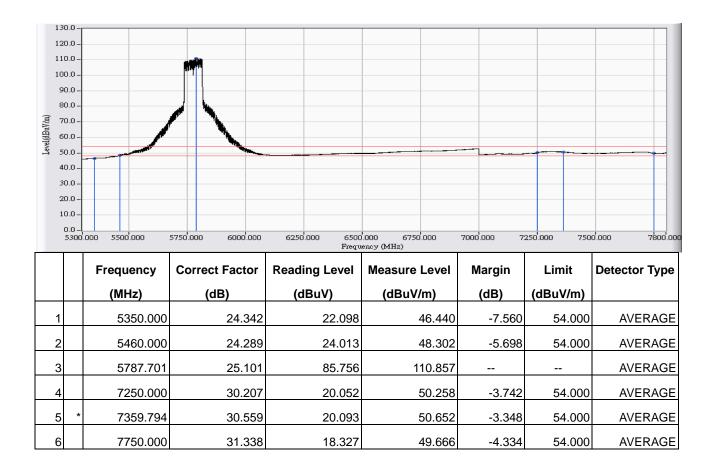
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5775MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
HORIZONTAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5775MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5775MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB4-H	Time : 2017/03/03
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B091_1-18GHz_3M_0117 -	Power : AC 120V/60Hz
VERTICAL	
EUT : Wireless-AC2900 Dual Band Gigabit Router	Note : Mode 3: Tx_ADP: AD890326010-2LF_
	Beamforming Mode (802.11 n20/40)_
	802.11ac(80M)_5775MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 1MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.