Product	Wireless-AC1900 Dual Band Gigabit Router						
Test Item	RF antenna conducted test						
Test Mode	Mode 1: Transmit (CDD Mode)_Adapter: EXA1206UH						
Date of Test	2013/08/28 Test Site SR7						

5745MHz (30MHz~25GHz)-802.11a-ANT0

💴 Agilent Spectrum Analyzer - S	iwept SA				
تم الحمال محمال محم مالي مالي محمال محم	0 MHz	AC SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 3/100	08:14:17 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 24.00 c	IFGain:Low	#Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 46.834 dB	Auto Tune
14.0	•1∆2				Center Freq 12.515000000 GHz
-6.00					Start Free 30.000000 MHz
-16.0					Stop Fred 25.000000000 GHz
-36.0	2 unt hard hard hard hard hard hard hard hard	Aroundered repeating all the galance areas	- and a production as the second state	matter with a state of the second	CF Step 2.497000000 GH: <u>Auto</u> Mar
-56.0					Freq Offse 0 H
-66.0				Stop 25.00 GHz	
#Res BW 100 kHz	#VBW	/ 300 kHz	Sweep Status	2.39 s (1001 pts)	

5825MHz (30MHz~25GHz)-802.11a-ANT0

🛚 Agilent Spectrum Anal	yzer - Swept SA	• 	e W		
diart Freq 30.00	Input: RF PNO: Fast C	AC SENSE:INT Trig: Free Run #Atten: 40 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 2/100 Ext Gain: -1.00 dB	08:13:51 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
	IFGain:Low	#Atten: 40 GB	Ext Gain1.00 GB	ΔMkr1 0 Hz 44.622 dB	Auto Tur
-og	▲ 1Δ2				Center Fre
14.0					12.515000000 GI
6.00					Start Fr 30.000000 M
6.0					Stop Fr
6.0					25.00000000 G
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	notice the state of the state o	an anaround and and	are brighten with providing in	and the state of t	CF St 2.497000000 G <u>Auto</u> N
6.0					Freq Offs 0
6.0					
tart 30 MHz Res BW 100 kHz		AV 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
SG		nn - salasiandaphilitig anna an b	STATUS		

	01 4010112		50112 <i>)</i> -002.118		
🛙 Agilent Spectrum Analyzer -	Swept SA				
50 Ω Start Freg 30.0000	00 MHz	AC SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	08:12:11 PM Aug 27, 2013 TRACE 1 2 3 4 5 6	Frequency
ln	iput: RF PNO: Fast 🕞 IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Hold: 3/100 Ext Gain: -1.00 dB	DET P N N N N	
0 dB/div Ref 24.00	dBm	16 D		∆Mkr1 0 Hz 51.032 dB	Auto Tun
og					Center Fre
14.0	1∆2				12.515000000 GH
.00					Start Fre
5.00					30.000000 MH
6.0					Stop Fre
26.0					25.00000000 GH
16.0					CF Ste
16.0 Martin Later Martin 2	man hunder washingthe free the	Marshall Marshall Marshall Marshall	windown and the second and	and a fart way be a far and a far a fart	2.497000000 GH <u>Auto</u> Ma
					Freq Offs
6.0					01
6.0					
tart 30 MHz				Stop 25.00 GHz	
Res BW 100 kHz	#VBV	/ 300 kHz	Sweep	2.39 s (1001 pts)	
SG			STATUS		

5745MHz (30MHz~25GHz)-802.11a-ANT1

5825MHz (30MHz~25GHz)-802.11a-ANT1

Agilent Spectrum Analyze	r - Swept SA								
50 Ω	000 MU	A(I SEN	ISE:INT		ALIGNAUTO : Log-Pwr		Aug 27, 2013	Frequency
start Freq 30.000	000 MHz Input: RF PI IFC	NO: Fast 😱 Gain:Low	Trig: Free #Atten: 40		Avg Hold: Ext Gain:	5/100	TYP	E MWWWWW T P N N N N N	
0 dB/div Ref 24.0	0 dBm							r1 0 Hz 515 dB	Auto Tun
og	▲1∆2								Center Fre
14.0		0							12.515000000 GH
4.00									Start Fre
5.00									30.000000 MH
6.0									Stop Fre
26.0									25.00000000 GI
16.0									CF Ste
16.0 Anter Anter Ball Card Maria	ara Viliana	Ministration	white the second stands	eny they at here	Pharitat and the face	m-theory and grange	phanelline	Mile with Million of	2.497000000 GI <u>Auto</u> Ma
6.0									FreqOffs
									01
66.0									
tart 30 MHz Res BW 100 kHz		#VBW	300 kHz		· · ·	Sweep		5.00 GHz 1001 pts)	
6G						STATUS			

DAgilent Spect	rum Analyzer - Sv	wept SA								
UXI	50 Ω		A	C SEI	VSE:INT		ALIGN AUTO		M Aug 27, 2013	Frequency
Start Freq	30.00000 Inp	ut: RF PM	10: Fast 😱 iain:Low	Trig: Free #Atten: 40		Avg Type Avg Hold: Ext Gain:		TYP	E 1 2 3 4 5 6 E MWWWWW T P NNNN	
	Ref 24.00 d	Bm							(r1 0 Hz .002 dB	Auto Tune
Log										Center Freq
14.0										12.515000000 GHz
4.00										
										Start Freq
-6.00										30.000000 MHz
-16.0										Stop Freq
-26.0	_									25.00000000 GHz
-36.0		Xa							مار	CF Step
-46.0 Name	ليمنى يعسمهم لم	n hander here	have a strate and a strate of the strate of	mailediation	freed the second	alphaner they	down had	and all the shaked as	alahurahitelahurahite	2.497000000 GHz <u>Auto</u> Man
-40.0 NW	hyperr			8						
-56.0										Freq Offset 0 Hz
-66.0										
Start 30 MH #Res BW 1	Contraction of the second s		#VBW	300 kHz			Sweep		5.00 GHz 1001 pts)	
MSG							STATUS	•		

5745MHz (30MHz~25GHz)-802.11a-ANT2

5825MHz (30MHz~25GHz)-802.11a-ANT2

🚺 Agilent Spectrum Analyzer -	Swept SA				
M 50 Ω Start Freg 30.00000		AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	08:02:00 PM Aug 27, 2013 TRACE 1 2 3 4 5 6	Frequency
In	put: RF PNO: Fast 🕞 IFGain:Low	┘ Trig: Free Run #Atten: 40 dB	Avg Hoid: 3/100 Ext Gain: -1.00 dB	ΔMkr1 0 Hz 44.461 dB	Auto Tune
10 dB/div Ref 24.00 d	↓1∆2				Center Fred 12.515000000 GH
6.00					Start Free 30.000000 MH
-16.0					Stop Fre 25.00000000 GH
36.0 46.0 +144+184+184+144+144+144+144+144+144+144	2 nord Why look wind and have	Marine marine marine	hor made and man mark made which	perhabent formand and a formation	CF Ste j 2.497000000 GH <u>Auto</u> Ma
56.0					Freq Offse 0 H
Start 30 MHz #Res BW 100 kHz	#VBV	/ 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	

	/Hz)-ANT 0	n(201	-802.1	JGHZ	HZ~2	IZ (301V	43111	574	
							Swept SA	um Analyzer - S	Agilent Spec
Frequency	08:14:58 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW		Avg Type Avg Hold:	NSE:INT]	PNO: Fast		50 Ω 30.00000	Start Freq
Auto Tune	ΔMkr1 0 Hz 46.802 dB	00 dB	Ext Gain:	0 dB	#Atten: 4	FGain:Low	. <u> </u>	Ref 24.00 (10 dB/div
Center Fred 12.515000000 GHz							●1∆2		14.0
Start Free 30.000000 MH									6.00
Stop Fre 25.00000000 GH									16.0 <u> </u>
CF Step 2.497000000 GH <u>Auto</u> Mar	- Harden and a who have a	Mahabarranistra	ninderstand and the standard	plyshamber	Maldelan belter dise	and an and the product of	2 mr limine	m huthy	36.0
Freq Offse 0 H									-56.0
									-66.0
	Stop 25.00 GHz 2.39 s (1001 pts)	Sweep			300 kHz	#VBW			Start 30 M #Res BW 1
		STATUS							MSG

5745MHz (30MHz~25GHz)-802.11n(20MHz)-ANT 0

5825MHz (30MHz~25GHz) -802.11n(20MHz)-ANT 0

Agilent Spectrum Analyzer - 5 50 Ω	Anopt SA	AC SENSE:INT	ALIGN AUTO	08:15:56 PM Aug 27, 2013					
tart Freq 30.0000	out: RF PNO: Fast		Avg Type: Log-Pwr Avg Hold: 3/100 Ext Gain: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency				
۲۰۰۵ ΔMkr1 0 Hz ۵۵ dB/div Ref 24.00 dBm 50.600 dB									
4.0	•1∆2				Center Fre 12.515000000 Gi				
.00					Start Fr 30.000000 M				
6.0					Stop Fr 25.00000000 G				
6.0 generation 1 24	WW BOUNDARD	nortical content and a state of the second of the second	arthurseithlaturturristiant	formulations and the observed the	CF St (2.497000000 G <u>Auto</u> M				
6.0					Freq Offs 0				
tart 30 MHz				Stop 25.00 GHz					
Res BW 100 kHz	#VB	W 300 kHz	Sweep	2.39 s (1001 pts)					

	/IHz)-ANT 1	1n(20N	1Z)-8UZ	HZ~250	IZ (301V	43IVIH	5/	
						- Swept SA	ctrum Analyzer	🗊 Agilent Spe
Frequency	08:09:45 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE M	ALIGN AUTO E: Log-Pwr : 4/100		AC SENSE	PNO: Fast 🕞			X Start Fre
Auto Tune	ΔMkr1 0 Hz 45.580 dB	-1.00 dB	Ext Ga	#Atten: 40 d	FGain:Low		Ref 24.00	10 dB/div
Center Freq 12.515000000 GHz						•1∆2		14.0
Start Free 30.000000 MH:								6.00
Stop Free 25.00000000 GH								26.0
CF Step 2.497000000 GH: <u>Auto</u> Mar	grown water to be to be able	here write	_{nt-1} udge/4 th -wr ² utwig _t w ²	Any and the second second	n here and the second sec	2	now the work	-36.0
Freq Offse 0 H								56.0
								-66.0
	Stop 25.00 GHz 2.39 s (1001 pts)	Sweep		300 kHz	#VBW			Start 30 N #Res BW
		STATUS						MSG

5745MHz (30MHz~25GHz)-802.11n(20MHz)-ANT 1

5825MHz (30MHz~25GHz) -802.11n(20MHz)-ANT 1

Agilent Spectrum Analyze	т эпертан	AC SENSE:INT	ALIGNAUTO	08:11:34 PM Aug 27, 2013					
	000 MHz Input: RF PNO: F IFGain:	ast 🕞 Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 4/100 Ext Gain: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency				
ΔMkr1 0 Hz 10 dB/div Ref 24.00 dBm 44.266 dB									
14.0	•1∆2				Center Fro 12.515000000 Gi				
3.00					Start Fr 30.000000 M				
6.0					Stop Fr 25.00000000 G				
6.0	ay hy annow have a second	مالىر الرياقاني المرمية المحمد بالري المراجع	when blen, and the work of the second of the	man and a state of the state of	CF St 2.497000000 G <u>Auto</u> M				
56.0					Freq Offs 0				
6.0									
tart 30 MHz Res BW 100 kHz		#VBW 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)					
sg			STATUS						

574	45IVIHZ (3UIV	IHZ~25GH	z)-802.11n(20l	VIHZ)-ANT Z	
🗊 Agilent Spectrum Analyzer - S	Swept SA				
Start Freq 30.00000		AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg[Hold: 3/100	08:02:37 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Ref 24.00 c	IFGain:Low	#Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 47.050 dB	Auto Tune
14.0	•1∆2				Center Freq 12.515000000 GHz
-6.00					Start Freq 30.000000 MHz
-16.0					Stop Freq 25.000000000 GHz
-36.0	2 mell manufact madalingen	Michael and a start and a start and a start and a start	Kallar top to stady at Mary and an in the s	her to be a stand of the solit of	CF Step 2.497000000 GHz <u>Auto</u> Man
-56.0					Freq Offset 0 Hz
-66.0					
Start 30 MHz #Res BW 100 kHz	#VBW	/ 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
MSG			STATUS		

5745MHz (30MHz~25GHz)-802.11n(20MHz)-ANT 2

5825MHz (30MHz~25GHz) -802.11n(20MHz)-ANT 2

Agilent Spectrum Analyzer - 50 Ω	swept sk	AC SE	NSE:INT	ALIGNAUTO	08:03:23 PM Aug 27, 2013	
tart Freq 30.0000	DO MHz put: RF PNO: F IEGain:L	ast 😱 Trig: Free	A Run Av	/g Type: Log-Pwr g Hold: 9/100 t Gain: -1.00 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div Ref 24.00					ΔMkr1 0 Hz 46.505 dB	Auto Tui
og 14.0	•1∆2					Center Fr 12.515000000 G
.00						Start Fr 30.000000 M
6.0						Stop Fr 25.00000000 G
6.0	2 1000 Hourson	murlanandra	an yong a share a shall be	ward water a the	way want and	CF St 2.497000000 G <u>Auto</u> M
6.0						Freq Offs 0
tart 30 MHz ^	#	¢VBW 300 kHz		Sween	Stop 25.00 GHz 2.39 s (1001 pts)	
G				STATUS		

573	SSINIEZ (SUINIE	IZ~25GHZ)	-802.11n(40I	VIHZ)-ANI U	
💴 Agilent Spectrum Analyzer - S	Swept SA				
کن ۵۵ کر ۲۵ Start Freq 30.00000	O MHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 3/100	08:16:35 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 24.00 c	IFGain:Low	#Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 49.924 dB	Auto Tune
14.0	1∆2				Center Freq 12.515000000 GHz
-6.00					Start Freq 30.000000 MHz
-16.0					Stop Fred 25.000000000 GHz
-36.0	we have have have a factor	weiserstoren meserialiter	phile-water man Maldamar and the second second second	hand all work and the second of the second	CF St ep 2.497000000 GHz <u>Auto</u> Mar
-56.0					Freq Offset 0 Hz
-66.0					
Start 30 MHz #Res BW 100 kHz	#VBW 3	00 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
MSG			STATUS		

5755MHz (30MHz~25GHz)-802.11n(40MHz)-ANT 0

5795MHz (30MHz~25GHz) -802.11n(40MHz)-ANT 0

	3 PM Aug 27, 2013	08:17:03E	ALIGN AUTO		NSE:INT	AC SE		ipt SA		ent Spectrum 50	XI XI
Frequency	RACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	TRA	: Log-Pwr 3/100	Avg Typ Avg Hold Ext Gain:	Run]	IO: Fast 😱	RF PM).000000 Inpu		Star
Auto Tu	/kr1 0 Hz I9.111 dB						ann.cow	181.0126	⁷ 24.00 di	3/div Re	0 dE
Center Fr 12.515000000 G							12	1∆2 [−]			. og 14.0
Start Fr 30.000000 M											4.00 5.00
Stop Fr 25.00000000 G											6.0 6.0
CF St 2.497000000 G Auto M	marille Birrington	riftalasulvummar	18-billiolastaria	and wards and the second s	an and the particular of the second	hijh _{alan} patha	MALLENN MAL	herythered	with the second	wood and the second	6.0
Freq Off											6.0
											6.0
	o 25.00 GHz s (1001 pts)		Sweep		1	300 kHz	#VBW		kHz	t 30 MHz s BW 100	
			STATUS								SG

573	SOINIEZ (SUIN	HZ~25GHZ)-802.11n(40	MHZ)-ANT T	
Agilent Spectrum Analyzer - !	Swept SA			and the second sec	
2 50 Ω Start Freq 30.00000 Im		Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 4/100	08:08:35 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	Frequency
0 dB/div Ref 24.00 d	IFGain:Low	#Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 49.392 dB	Auto Tun
14.0	•1∆2				Center Fre 12.515000000 GH
3.00					Start Fro 30.000000 Mi
6.0					Stop Fr 25.00000000 G
6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	with Industry unsurgery market	nyo soldon	whether and the second s	a another the stand all the second	CF Sto 2.497000000 G <u>Auto</u> M
6.0					Freq Offs 0
tart 30 MHz Res BW 100 kHz	#VBW	300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
SG			STATUS	;	

5755MHz (30MHz~25GHz)-802.11n(40MHz)-ANT 1

5795MHz (30MHz~25GHz) -802.11n(40MHz)-ANT 1

🖉 Agilent Spectrum Analyzer - S	iwept SA				
20 Ω Start Freq 30.00000	0 MHz	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 3/100	08:09:05 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 24.00 d	IFGain:Low	#Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 49.287 dB	Auto Tune
14.0	1∆2				Center Free 12.515000000 GH
6.00					Start Fre 30.000000 MH
-16.0					Stop Fre 25.000000000 G⊢
36.0 46.0 Jan Huller and Martin Martin	Now low standing way and a provide standing to	the stand of the s	and not a second start and the second s	white the state of	CF Ste 2.497000000 G⊦ <u>Auto</u> Ma
56.0					Freq Offs 0 F
66.0					
Start 30 MHz #Res BW 100 kHz	#VBW	300 kHz	Sweep	[°] Stop 25.00 GHz 2.39 s (1001 pts)	
MSG			STATUS		

5755WIHZ	(30MHz~25GHz	z)-802.11n(40i	VHZ)-ANI Z	
Agilent Spectrum Analyzer - Swept SA				
50 Ω Start Freq 30.000000 MHz	AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 2/100	08:04:07 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	D: Fast Trig: Free Run ain:Low #Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 47.464 dB	Auto Tun
og 14.0 φ1Δ2				Center Fre 12.515000000 GF
.00				Start Fre 30.000000 Mi
6.0				Stop Fr 25.00000000 G
16.0	Instanting Conference and the second second	yorkon and you wanted and a second	winder and	CF Ste 2.497000000 GI <u>Auto</u> Ma
36.0				Freq Offs 0 H
tart 30 MHz Res BW 100 kHz	#VBW 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
SG		STATUS		

5755MHz (30MHz~25GHz)-802.11n(40MHz)-ANT 2

5795MHz (30MHz~25GHz) -802.11n(40MHz)-ANT 2

🗊 Agilent Spectrum Analyzer -	Swept SA				
M 50 Ω Start Freq 30.00000		AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 2/100	08:04:39 PM Aug 27, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 24.00	put: RF PNO: Fast G IFGain:Low dBm	#Atten: 40 dB	Ext Gain: -1.00 dB	ΔMkr1 0 Hz 50.269 dB	Auto Tune
14.0	• ^{1∆2}				Center Fred 12.515000000 GH:
-6.00					Start Free 30.000000 MH
-16.0					Stop Fre 25.000000000 GH
-36.0	where the sort flood war follow the	ghtedrogen with the strategy and the state of the strategy and the state of the sta	iteration aloge to service and the service of the	utition with a mail of the second	CF Ste 2.497000000 GH <u>Auto</u> Ma
-56.0					Freq Offse
-66.0					
Start 30 MHz #Res BW 100 kHz	#VBV	V 300 kHz	Sweep	Stop 25.00 GHz 2.39 s (1001 pts)	
MSG			STATUS		

577	75MHz (30N	HZ~25G	ةHZ)-۵	302.11	ac(80	NHZ)-	ANIU	
Agilent Spectrum Analyzer -	Swept SA							
50 Ω tart Freq 30.00000	DOMHZ put: RF PNO: Fast G	AC SENSE	lun	Avg Type Avg Hold:	2/100	TRACI TYP	1 Aug 27, 2013 E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
0 dB/div Ref 24.00 (IFGain:Low	#Atten: 40 d	В	Ext Gain: ·	-1.00 dB	ΔMk	r1 0 Hz 074 dB	Auto Tur
4.0	▲ 1Δ2				-		2	Center Fro 12.515000000 GI
00								Start Fr 30.000000 M
6.0								Stop Fr 25.00000000 G
6.0	and the marking drow way on	warment and and a	has when the state of the state	www.lye	หษณุปานกษณุษ	allower and the second	it Windowskie Hill	CF St (2.497000000 G <u>Auto</u> M
6.0								Freq Offs 0
tart 30 MHz						Ŝtop 2	5.00 GHz	
Res BW 100 kHz	#VB	V 300 kHz			Sweep		1001 pts)	
SG					STATUS			

5775MHz (30MHz~25GHz)-802.11ac(80MHz)-ANT 0

5775MHz (30MHz~25GHz) -802.11ac(80MHz)-ANT 1

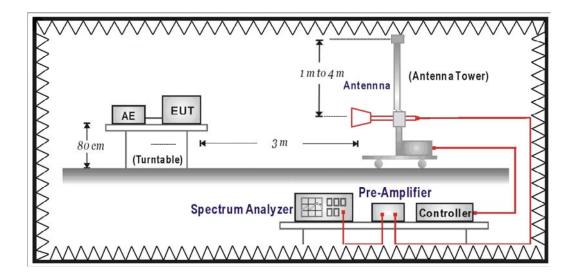
Agilent Spectrum Analy	zer - Swept SA							
X 50 Ω Start Freg 30.00	00000 MHz	AC	SENSE:INT		LIGNAUTO		23456	Frequency
			Free Run n: 40 dB	Avg Hold: Ext Gain:		DET F ΔMkr	1 0 Hz 81 dB	Auto Tune
14.0	▲1∆2							Center Fre 12.515000000 GH
6.00								Start Fre 30.000000 M⊦
26.0								Stop Fre 25.00000000 GH
36.0	worked the handling	Warenautration	Mushrandorga, Marrison at	ula stan of the	ทั่งสถางในสมาร์เกมได้	all-dational Astrophy of the	Montrespond	CF Ste 2.497000000 GH Auto Ma
56.0	·							Freq Offs 0 F
66.0								
Start 30 MHz #Res BW 100 kHz			(Hz	1	Sweep	Stop 25.0 2.39 s (10		
MSG					STATUS			

							ept SA	Analyzer - Sv	lent Spectrum
Frequency	08:17:43 PM Aug 27, 2013 TRACE 1 2 3 4 5 6	LIGN AUTO	Avg Type	VSE:INT	.C SEI	A			50 9
	DET P N N N N	1100	Avg Type Avg Hold Ext Gain:		Trig: Free #Atten: 40	l0: Fast 😱 iain:Low	t:RF PI		t Freq 30
Auto Tun	ΔMkr1 0 Hz 44.313 dB						3m	24.00 dl	3/div Re l
Center Fre									
12.515000000 GH						0			
							1∆2		
Start Fre									
30.00000 MH)	2			
Stop Fre									
25.00000000 Gr					2		1		
CF Ste	العربين						1		
2.497000000 GH Auto Ma	Agree Minder & Mary Mary Market	har the second for the	alabaraphya phatangh	การเป็นเหล	-up-lainerververver	Municharly	y bookyykky	MA 2 MAR	where alowed where
Freq Offs								- 1	
	Stop 25.00 GHz .39 s (1001 pts)	Sween			300 kHz	#\/B\M		kH7	t 30 MHz s BW 100
		STATUS			000 MIZ	#* U V4			5 294 100

5775MHz (30MHz~25GHz) -802.11ac(80MHz)-ANT 2

6. Radiated Emission Band Edge

6.1. Test Equipment


The following test equipments are used during the test:

Radiated Emission Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Double Ridged Guide	Schwarzback	BBHA 9120	D743	2014/02/17
Horn Antenna				
Spectrum Analyzer	Agilent	E4440A	MY46187335	2014/01/27
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2014/02/21

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

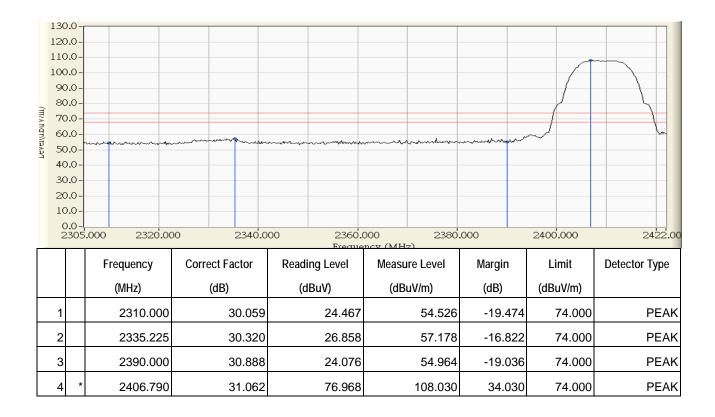
The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Oct. 2012 KDB5580744 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

6.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012


6.6. Uncertainty

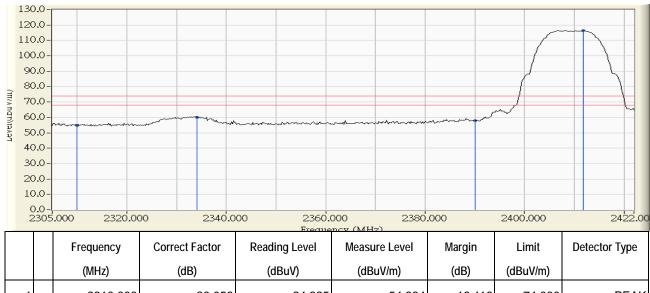
The measurement uncertainty ± 3.9 dB above 1GHz

6.7. Test Result

Radiated is defined as

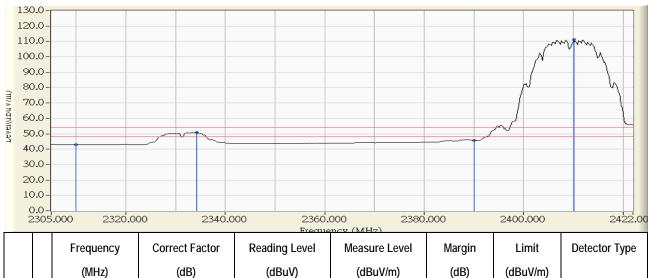
Site : CB1	Time : 2013/08/26 - 15:14
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11b 2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:15			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11b 2412MHz			

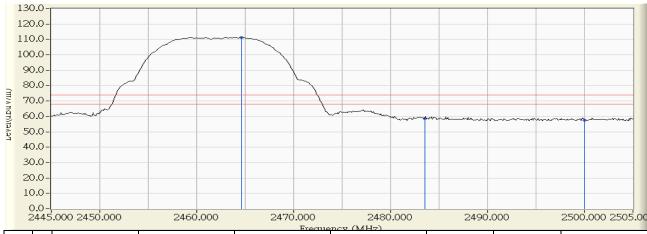
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	11.955	42.014	-11.986	54.000	AVERAGE
2		2333.470	30.302	15.227	45.529	-8.471	54.000	AVERAGE
3		2390.000	30.888	12.485	43.373	-10.627	54.000	AVERAGE
4	*	2406.595	31.061	72.091	103.151	49.151	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:10
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11b 2412MHz

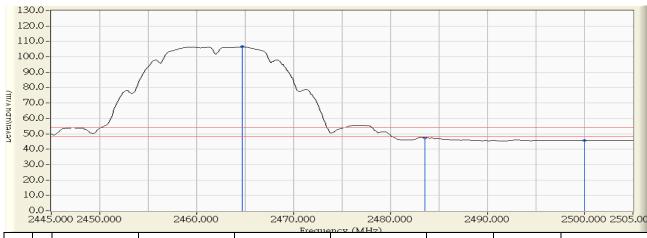
1	2310.000	30.059	24.825	54.884	-19.116	74.000	PEAK
2	2334.055	30.308	29.661	59.969	-14.031	74.000	PEAK
3	2390.000	30.888	26.822	57.710	-16.290	74.000	PEAK
4	* 2411.860	31.115	85.223	116.338	42.338	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:10
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11b 2412MHz

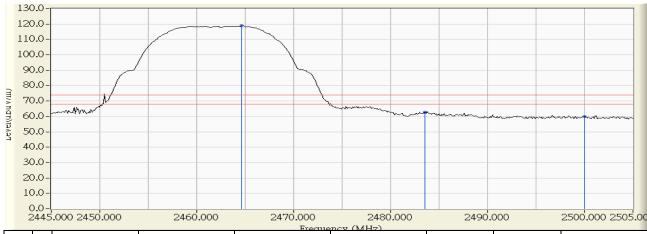
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	12.795	42.854	-11.146	54.000	AVERAGE
2		2334.250	30.310	20.625	50.935	-3.065	54.000	AVERAGE
3		2390.000	30.888	14.693	45.581	-8.419	54.000	AVERAGE
4	*	2410.105	31.097	80.004	111.101	57.101	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:21			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11b 2462MHz			

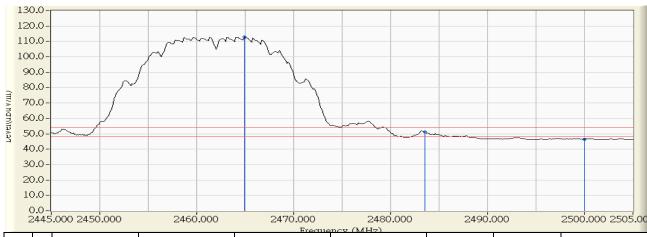
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.600	31.662	79.597	111.259	37.259	74.000	PEAK
2		2483.500	31.858	26.741	58.599	-15.401	74.000	PEAK
3		2500.000	31.988	25.578	57.567	-16.433	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:22
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11b 2462MHz

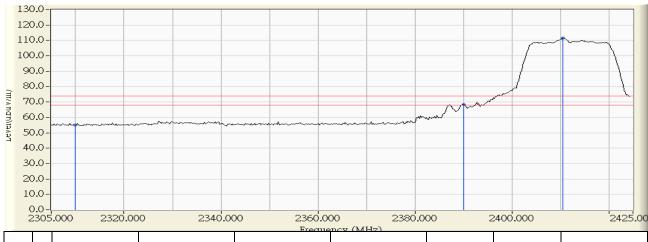
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.700	31.663	74.946	106.609	52.609	54.000	AVERAGE
2		2483.500	31.858	15.594	47.452	-6.548	54.000	AVERAGE
3		2500.000	31.988	13.616	45.605	-8.395	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:18
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11b 2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.600	31.662	87.269	118.931	44.931	74.000	PEAK
2		2483.500	31.858	30.772	62.630	-11.370	74.000	PEAK
3		2500.000	31.988	27.796	59.785	-14.215	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:18
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11b 2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.900	31.665	81.420	113.085	59.085	54.000	AVERAGE
2		2483.500	31.858	19.257	51.115	-2.885	54.000	AVERAGE
3		2500.000	31.988	14.530	46.519	-7.481	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/08/26 - 15:32			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11g 2412MHz			

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	24.918	54.977	-19.023	74.000	PEAK
2		2390.000	30.888	37.380	68.268	-5.732	74.000	PEAK
3	*	2410.600	31.102	80.384	111.486	37.486	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:32			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11g 2412MHzi			

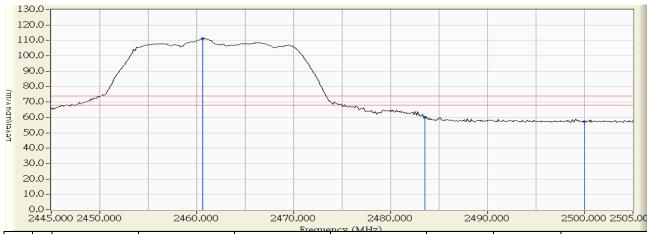
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	12.297	42.356	-11.644	54.000	AVERAGE
2		2390.000	30.888	15.163	46.051	-7.949	54.000	AVERAGE
3	*	2411.000	31.106	70.599	101.705	47.705	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/08/26 - 15:28
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11g 2412MHz

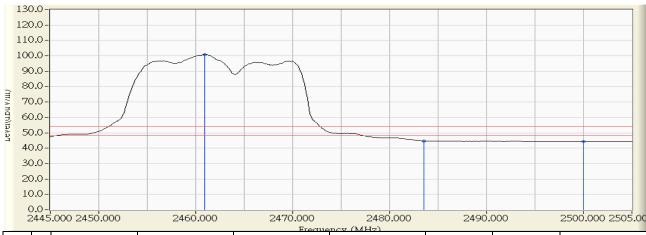
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	24.134	54.193	-19.807	74.000	PEAK
2		2384.200	30.829	41.173	72.001	-1.999	74.000	PEAK
3		2390.000	30.888	39.286	70.174	-3.826	74.000	PEAK
4	*	2414.200	31.140	91.318	122.457	48.457	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:29			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11g 2412MHz			

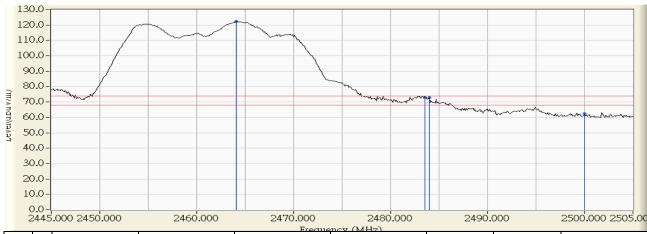
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	12.483	42.542	-11.458	54.000	AVERAGE
2		2334.600	30.313	18.776	49.090	-4.910	54.000	AVERAGE
3	5	2390.000	30.888	18.684	49.572	-4.428	54.000	AVERAGE
4	*	2414.200	31.140	81.486	112.625	58.625	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:49			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11g 2462MHz			

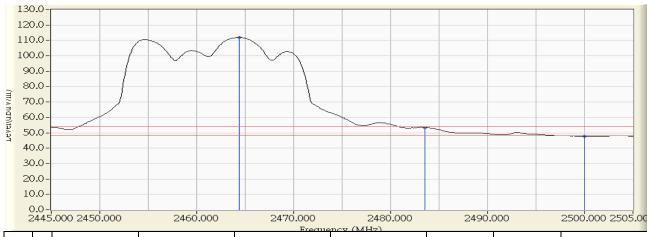
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2460.600	31.621	79.570	111.190	37.190	74.000	PEAK
2		2483.500	31.858	28.129	59.987	-14.013	74.000	PEAK
3		2500.000	31.988	25.145	57.134	-16.866	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:50
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11g 2462MHz

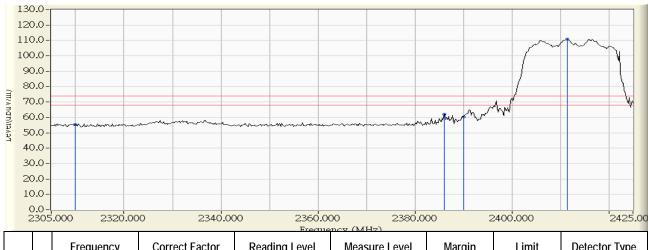
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2460.900	31.623	69.059	100.683	46.683	54.000	AVERAGE
2		2483.500	31.858	12.927	44.785	-9.215	54.000	AVERAGE
3		2500.000	31.988	12.190	44.179	-9.821	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:46
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11g 2462MHz

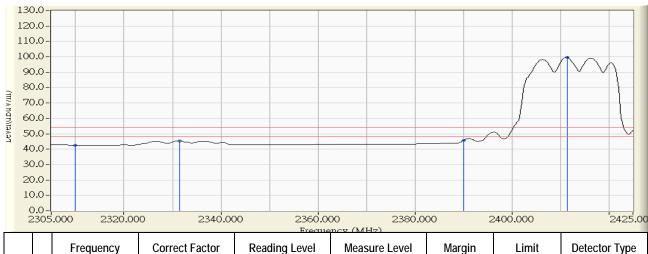
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.100	31.657	90.509	122.166	48.166	74.000	PEAK
2		2483.500	31.858	41.045	72.903	-1.097	74.000	PEAK
3		2484.000	31.863	41.122	72.985	-1.015	74.000	PEAK
4		2500.000	31.988	30.333	62.322	-11.678	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:46
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11g 2462MHz

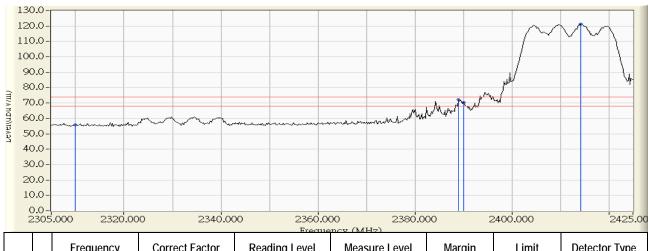
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.400	31.659	80.297	111.957	57.957	54.000	AVERAGE
2		2483.500	31.858	21.574	53.432	-0.568	54.000	AVERAGE
3		2500.000	31.988	15.774	47.763	-6.237	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:30
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	25.463	55.522	-18.478	74.000	PEAK
2		2386.000	30.847	31.105	61.952	-12.048	74.000	PEAK
3		2390.000	30.888	29.497	60.385	-13.615	74.000	PEAK
4	*	2411.400	31.110	79.640	110.750	36.750	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:31
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2412MHz

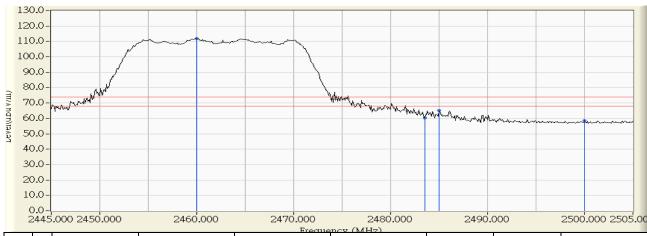
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	12.585	42.644	-11.356	54.000	AVERAGE
2		2331.400	30.281	15.138	45.419	-8.581	54.000	AVERAGE
3		2390.000	30.888	14.614	45.502	-8.498	54.000	AVERAGE
4	*	2411.400	31.110	68.483	99.593	45.593	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/08/26 - 15:57
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2412MHz

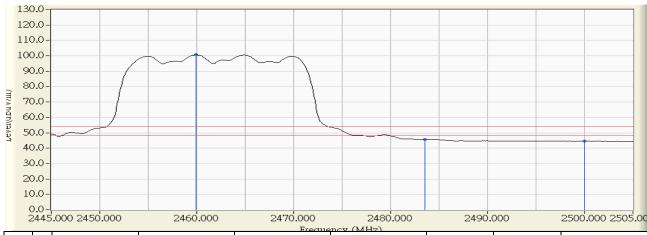
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	25.829	55.888	-18.112	74.000	PEAK
2		2389.000	30.878	41.324	72.202	-1.798	74.000	PEAK
3		2390.000	30.888	39.653	70.541	-3.459	74.000	PEAK
4	*	2414.200	31.140	90.081	121.220	47.220	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/26 - 15:58
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2412MHz

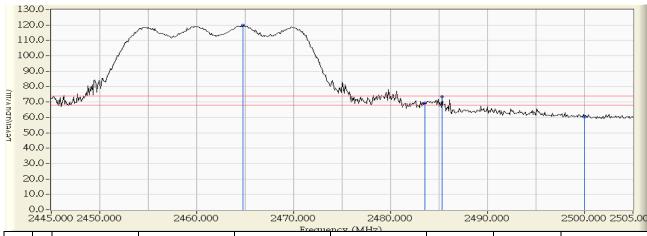
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	13.354	43.413	-10.587	54.000	AVERAGE
2		2390.000	30.888	19.815	50.703	-3.297	54.000	AVERAGE
3	*	2414.600	31.143	76.538	107.681	53.681	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:41
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2462MHz

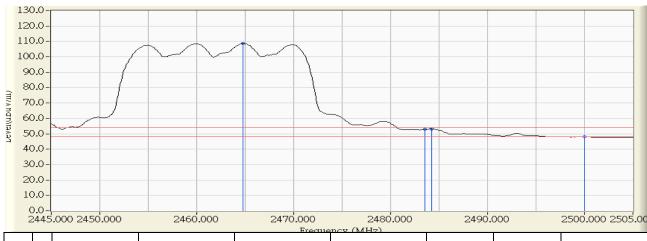
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2460.000	31.614	80.194	111.808	37.808	74.000	PEAK
2		2483.500	31.858	28.334	60.192	-13.808	74.000	PEAK
3		2485.000	31.874	33.436	65.310	-8.690	74.000	PEAK
4		2500.000	31.988	26.601	58.590	-15.410	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:42
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2462MHz

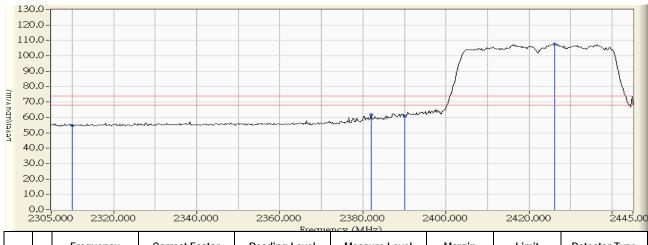
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2459.900	31.613	68.998	100.611	46.611	54.000	AVERAGE
2		2483.500	31.858	13.846	45.704	-8.296	54.000	AVERAGE
3		2500.000	31.988	12.513	44.502	-9.498	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:37
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 2462MHz

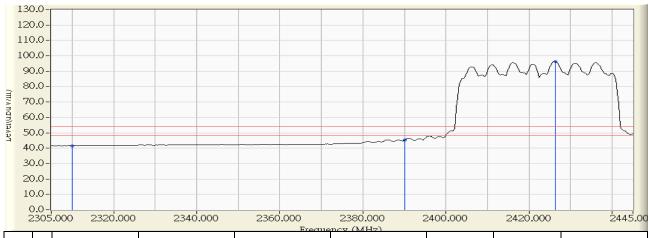
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.800	31.664	88.364	120.028	46.028	74.000	PEAK
2		2483.500	31.858	37.479	69.337	-4.663	74.000	PEAK
3		2485.300	31.877	41.677	73.554	-0.446	74.000	PEAK
4		2500.000	31.988	28.420	60.409	-13.591	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:38			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n20 2462MHz			

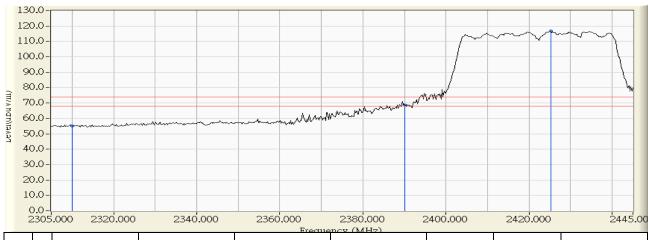
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2464.800	31.664	76.942	108.606	54.606	54.000	AVERAGE
2		2483.500	31.858	21.182	53.040	-0.960	54.000	AVERAGE
3		2484.200	31.866	21.273	53.138	-0.862	54.000	AVERAGE
4		2500.000	31.988	16.175	48.164	-5.836	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:49			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n40 2422MHz			

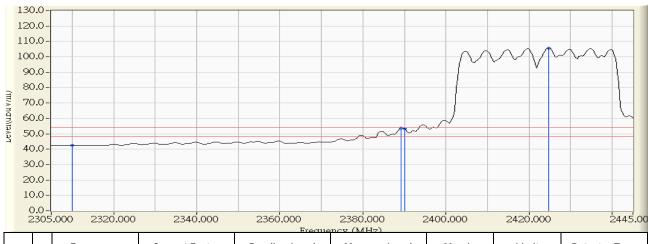
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	24.628	54.687	-19.313	74.000	PEAK
2		2382.000	30.805	30.972	61.777	-12.223	74.000	PEAK
3		2390.000	30.888	29.908	60.796	-13.204	74.000	PEAK
4	*	2426.100	31.263	76.420	107.683	33.683	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:50			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n40 2422MHz			

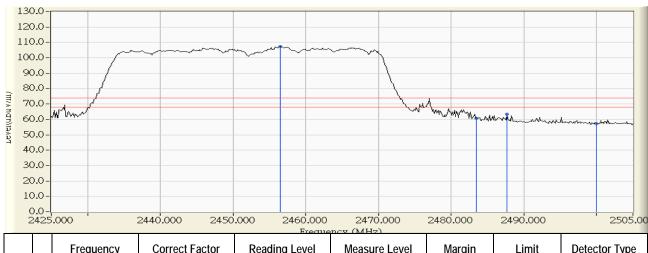
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	11.582	41.641	-12.359	54.000	AVERAGE
2		2390.000	30.888	14.269	45.157	-8.843	54.000	AVERAGE
3	*	2426.333	31.265	64.979	96.244	42.244	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:45			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n40 2422MHz			

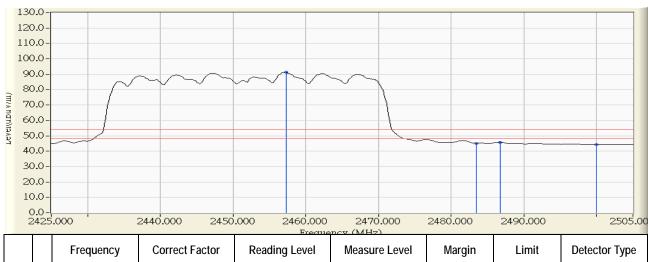
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	25.062	55.121	-18.879	74.000	PEAK
2		2390.000	30.888	37.842	68.730	-5.270	74.000	PEAK
3	*	2425.167	31.253	85.345	116.598	42.598	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:46			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n40 2422MHz			

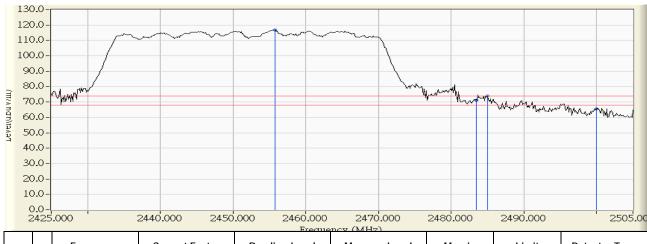
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	12.402	42.461	-11.539	54.000	AVERAGE
2		2389.233	30.880	22.918	53.798	-0.202	54.000	AVERAGE
3		2390.000	30.888	22.584	53.472	-0.528	54.000	AVERAGE
4	*	2424.700	31.248	74.365	105.613	51.613	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 10:00			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n40 2452MHz			

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2456.467	31.577	75.755	107.333	33.333	74.000	PEAK
2		2483.500	31.858	28.900	60.758	-13.242	74.000	PEAK
3	3	2487.667	31.902	31.690	63.591	-10.409	74.000	PEAK
4	ŀ	2500.000	31.988	25.203	57.192	-16.808	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 10:01				
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6				
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz				
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:				
	EXA1206UH-802.11n40 2452MHz				

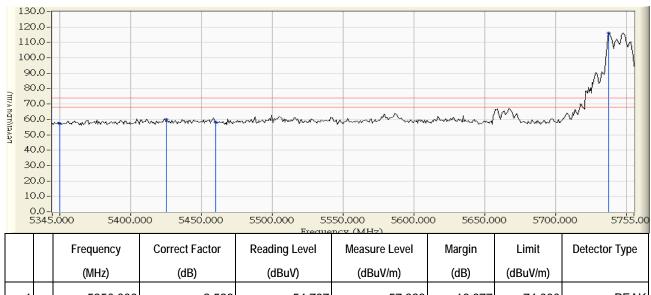
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2457.267	31.586	59.631	91.217	37.217	54.000	AVERAGE
2		2483.500	31.858	13.269	45.127	-8.873	54.000	AVERAGE
3		2486.733	31.892	13.929	45.820	-8.180	54.000	AVERAGE
4		2500.000	31.988	12.308	44.297	-9.703	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:57				
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6				
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:				
	EXA1206UH-802.11n40 2452MHz				

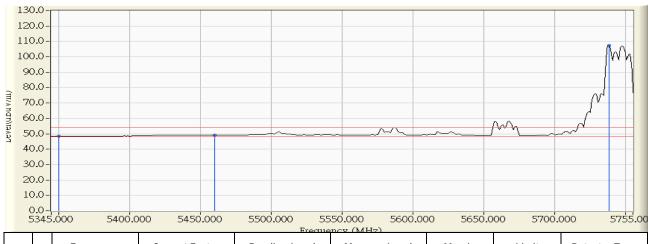
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2455.800	31.570	85.345	116.916	42.916	74.000	PEAK
2		2483.500	31.858	39.258	71.116	-2.884	74.000	PEAK
3		2485.000	31.874	41.993	73.867	-0.133	74.000	PEAK
4		2500.000	31.988	33.576	65.565	-8.435	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 09:58				
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6				
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:				
	EXA1206UH-802.11n40 2452MHz				

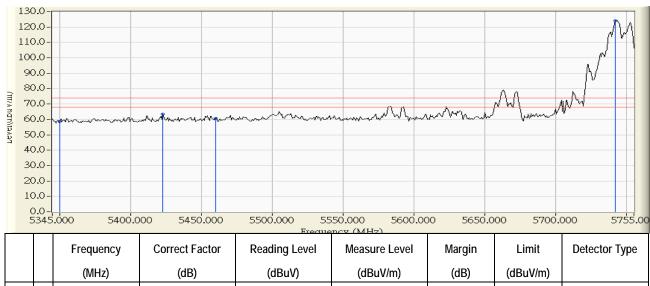
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2455.533	31.568	68.803	100.371	46.371	54.000	AVERAGE
2		2483.500	31.858	20.479	52.337	-1.663	54.000	AVERAGE
3		2484.867	31.872	21.791	53.663	-0.337	54.000	AVERAGE
4		2500.000	31.988	15.806	47.795	-6.205	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:13				
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6				
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz				
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:				
	EXA1206UH-802.11a 5745MHz				

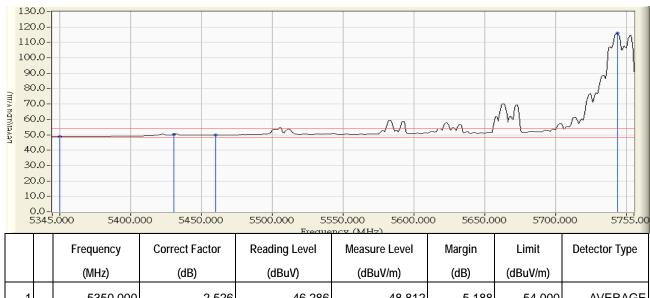
		(=)	(42)	(4241)	((42)	(424111)	
1		5350.000	2.526	54.797	57.323	-16.677	74.000	PEAK
2		5425.633	3.113	56.745	59.858	-14.142	74.000	PEAK
3		5460.000	3.379	54.996	58.375	-15.625	74.000	PEAK
4	*	5737.233	2.773	113.458	116.232	42.232	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:14				
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6				
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz				
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:				
	EXA1206UH-802.11a 5745MHz				

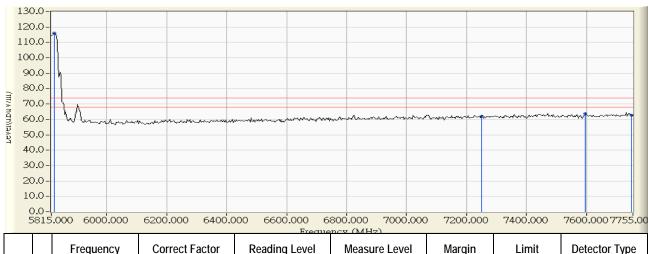
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.865	48.391	-5.609	54.000	AVERAGE
2		5460.000	3.379	45.752	49.131	-4.869	54.000	AVERAGE
3	*	5737.917	2.771	104.419	107.190	53.190	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:09				
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6				
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz				
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:				
	EXA1206UH-802.11a 5745MHz				

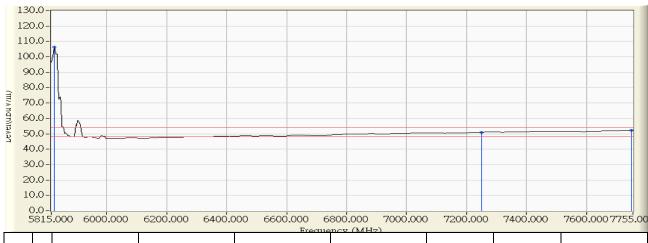
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	56.054	58.580	-15.420	74.000	PEAK
2		5422.900	3.091	60.402	63.494	-10.506	74.000	PEAK
3		5460.000	3.379	57.242	60.621	-13.379	74.000	PEAK
4	*	5742.017	2.755	121.430	124.185	50.185	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:10			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11a 5745MHz			

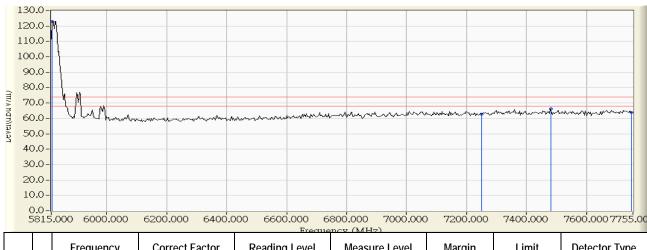
I.		5350.000	2.526	46.286	48.812	-5.188	54.000	AVERAGE
2		5430.417	3.150	47.100	50.250	-3.750	54.000	AVERAGE
3		5460.000	3.379	46.493	49.872	-4.128	54.000	AVERAGE
4	*	5743.383	2.749	113.136	115.886	61.886	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:16			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11a 5825MHz			

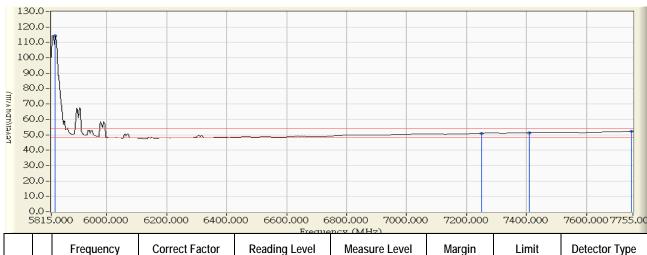
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5824.700	2.436	113.646	116.082	42.082	74.000	PEAK
2		7250.000	5.476	56.717	62.193	-11.807	74.000	PEAK
3		7596.567	6.182	57.638	63.820	-10.180	74.000	PEAK
4		7750.000	6.446	56.378	62.824	-11.176	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:20			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11a 5825MHz			

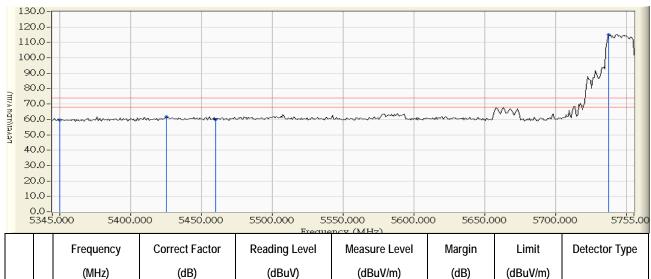
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5824.700	2.436	103.703	106.139	52.139	54.000	AVERAGE
2		7250.000	5.476	45.394	50.870	-3.130	54.000	AVERAGE
3		7750.000	6.446	45.780	52.226	-1.774	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:26
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11a 5825MHz

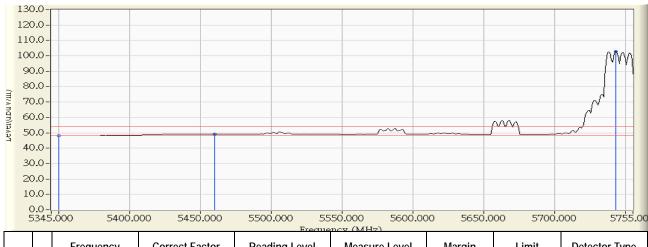
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5818.233	2.461	120.615	123.076	49.076	74.000	PEAK
2		7250.000	5.476	57.408	62.884	-11.116	74.000	PEAK
3		7480.167	5.973	60.229	66.202	-7.798	74.000	PEAK
4		7750.000	6.446	57.448	63.894	-10.106	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:28			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11a 5825MHz			

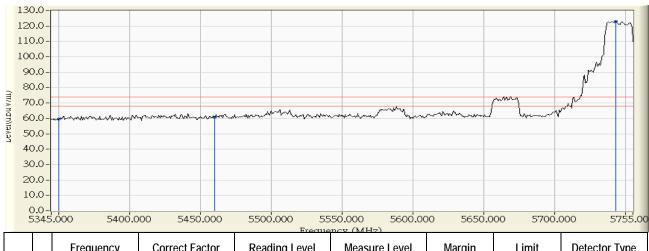
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5827.933	2.424	112.052	114.476	60.476	54.000	AVERAGE
2		7250.000	5.476	45.379	50.855	-3.145	54.000	AVERAGE
3		7409.033	5.819	45.513	51.333	-2.667	54.000	AVERAGE
4		7750.000	6.446	45.724	52.170	-1.830	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:35			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n20 5745MHz			

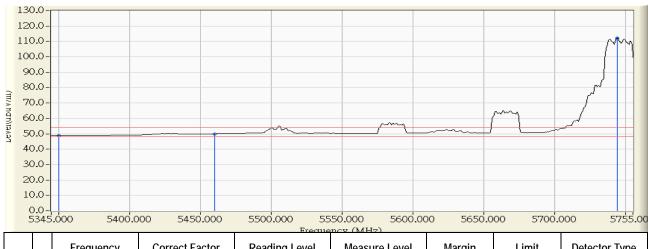
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	56.984	59.510	-14.490	74.000	PEAK
2		5425.633	3.113	58.520	61.633	-12.367	74.000	PEAK
3		5460.000	3.379	56.497	59.876	-14.124	74.000	PEAK
4	*	5737.233	2.773	112.365	115.139	41.139	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:41
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5745MHz

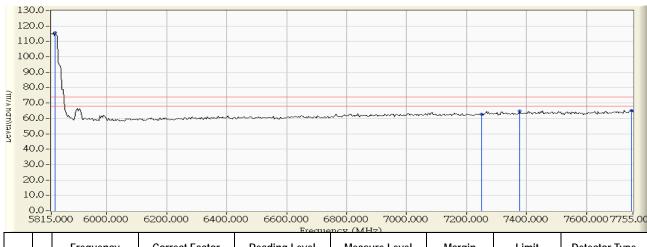
			Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
			(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
	1		5350.000	2.526	45.725	48.251	-5.749	54.000	AVERAGE
	2		5460.000	3.379	45.690	49.069	-4.931	54.000	AVERAGE
	3	*	5742.700	2.752	99.902	102.654	48.654	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:32
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5745MHz

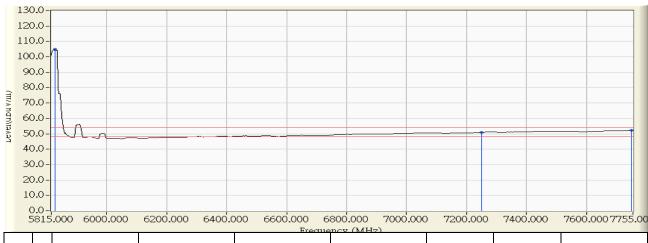
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	57.001	59.527	-14.473	74.000	PEAK
2		5460.000	3.379	57.382	60.761	-13.239	74.000	PEAK
3	*	5742.700	2.752	120.255	123.007	49.007	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:32
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5745MHz

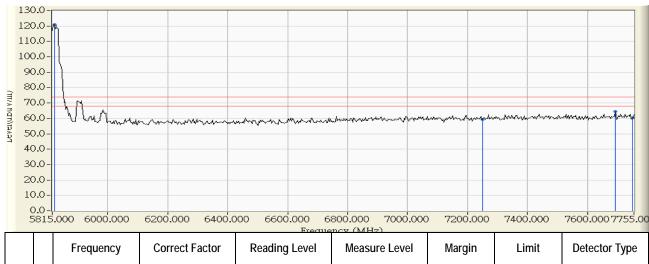
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	46.243	48.769	-5.231	54.000	AVERAGE
2		5460.000	3.379	46.567	49.946	-4.054	54.000	AVERAGE
3	*	5744.067	2.747	109.426	112.173	58.173	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:37
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5825MHz

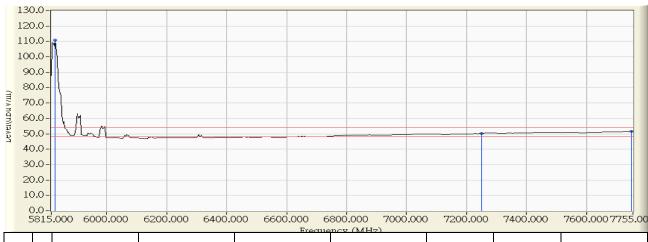
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5827.933	2.424	113.179	115.603	41.603	74.000	PEAK
2		7250.000	5.476	57.409	62.885	-11.115	74.000	PEAK
3		7376.700	5.750	58.937	64.687	-9.313	74.000	PEAK
4		7750.000	6.446	58.582	65.028	-8.972	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:40
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5825MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5827.933	2.424	102.377	104.801	50.801	54.000	AVERAGE
2		7250.000	5.476	45.310	50.786	-3.214	54.000	AVERAGE
3		7750.000	6.446	45.678	52.124	-1.876	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:52
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5825MHz

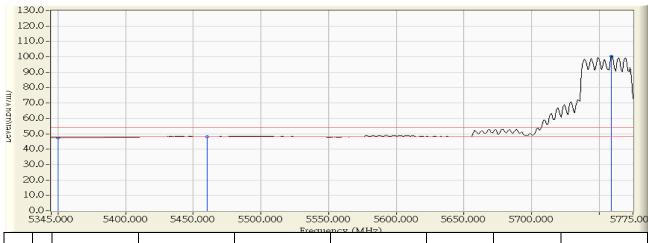
	Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	* 5821.467	2.449	118.635	121.084	47.084	74.000	PEAK
2	7250.000	5.476	53.804	59.280	-14.720	74.000	PEAK
3	7693.567	6.349	58.199	64.548	-9.452	74.000	PEAK
4	7750.000	6.446	53.686	60.132	-13.868	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/08/27 - 13:55
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n20 5825MHz

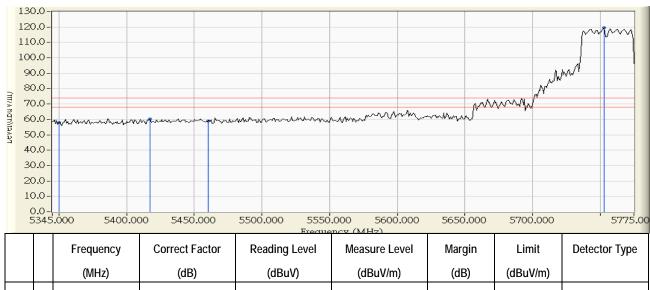
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5827.933	2.424	108.479	110.903	56.903	54.000	AVERAGE
2		7250.000	5.476	44.631	50.107	-3.893	54.000	AVERAGE
3		7750.000	6.446	45.018	51.464	-2.536	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:00			
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11n40 5755MHz			

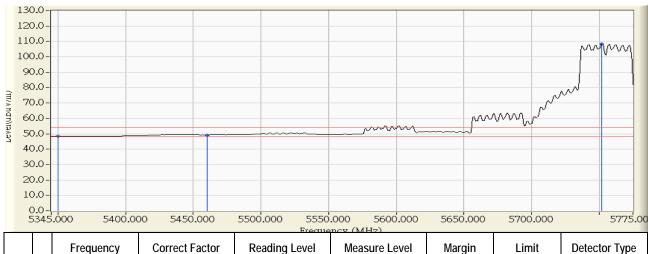
		ricquericy	Concernacion	Reduing Level		wai yiri	LIIIII	Delector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	56.604	59.130	-14.870	74.000	PEAK
2		5420.250	3.071	58.231	61.302	-12.698	74.000	PEAK
3		5460.000	3.379	56.595	59.974	-14.026	74.000	PEAK
4	*	5759.950	2.686	108.755	111.441	37.441	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:03
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n40 5755MHz

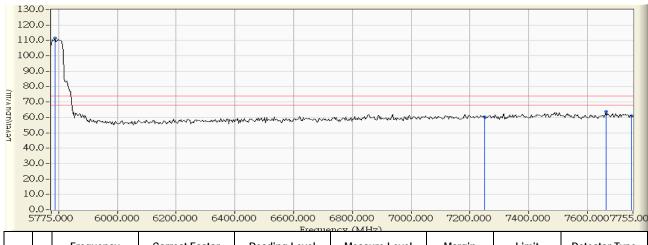
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	44.991	47.517	-6.483	54.000	AVERAGE
2		5460.000	3.379	44.829	48.208	-5.792	54.000	AVERAGE
3	*	5759.233	2.689	97.603	100.292	46.292	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:56		
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6		
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz		
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:		
	EXA1206UH-802.11n40 5755MHz		

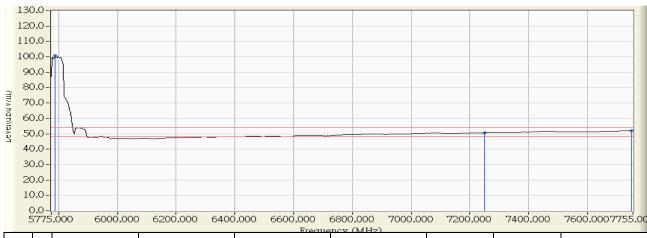
		(MHZ)	(ab)	(aBuv)	(aBuv/m)	(aB)	(aBuv/m)	
1		5350.000	2.526	55.208	57.734	-16.266	74.000	PEAK
2		5417.383	3.050	57.226	60.275	-13.725	74.000	PEAK
3		5460.000	3.379	55.593	58.972	-15.028	74.000	PEAK
4	*	5752.783	2.714	116.809	119.523	45.523	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 13:58		
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6		
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz		
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:		
	EXA1206UH-802.11n40 5755MHz		

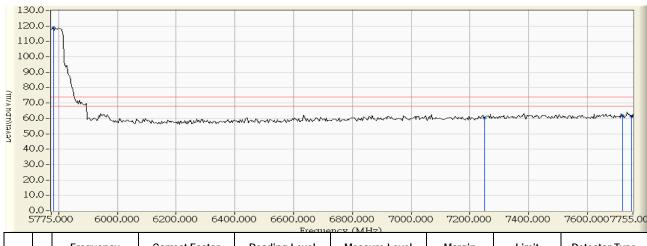
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.821	48.347	-5.653	54.000	AVERAGE
2		5460.000	3.379	45.914	49.293	-4.707	54.000	AVERAGE
3	*	5752.067	2.717	105.718	108.434	54.434	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:06		
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6		
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz		
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:		
	EXA1206UH-802.11n40 5795MHz		

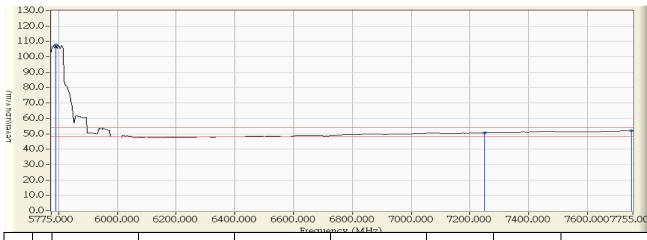
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5788.200	2.577	108.811	111.388	37.388	74.000	PEAK
2	2	7250.000	5.476	54.776	60.252	-13.748	74.000	PEAK
3	3	7662.600	6.296	57.404	63.700	-10.300	74.000	PEAK
4	ł	7750.000	6.446	54.503	60.949	-13.051	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:09
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n40 5795MHz

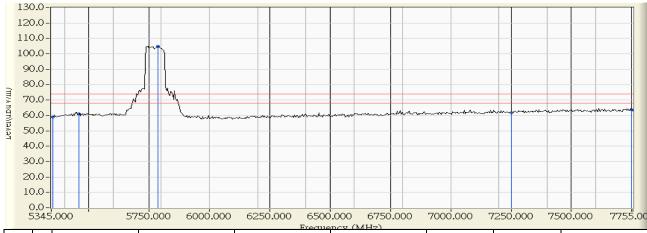
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5788.200	2.577	98.098	100.675	46.675	54.000	AVERAGE
2		7250.000	5.476	45.205	50.681	-3.319	54.000	AVERAGE
3		7750.000	6.446	45.537	51.983	-2.017	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:11
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n40 5795MHz

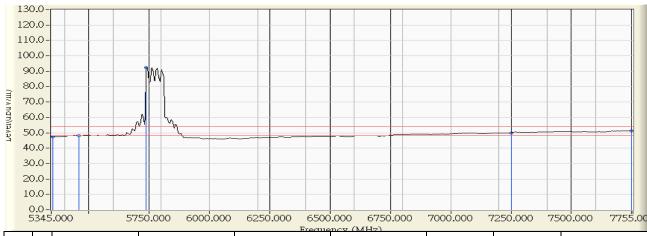
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5781.600	2.603	116.213	118.815	44.815	74.000	PEAK
2	2	7250.000	5.476	54.796	60.272	-13.728	74.000	PEAK
3	3	7718.700	6.392	55.416	61.809	-12.191	74.000	PEAK
4	Ļ	7750.000	6.446	54.824	61.270	-12.730	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:20
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11n40 5795MHz

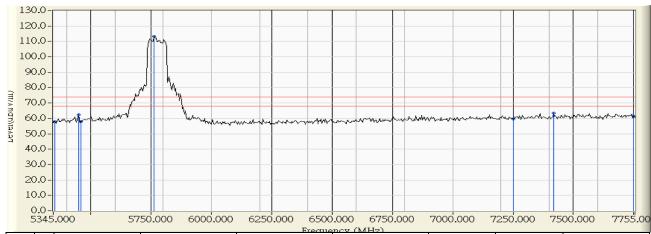
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	5791.500	2.564	105.146	107.710	53.710	54.000	AVERAGE
2		7250.000	5.476	45.170	50.646	-3.354	54.000	AVERAGE
3		7750.000	6.446	45.537	51.983	-2.017	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:34
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11ac80 5775MHz

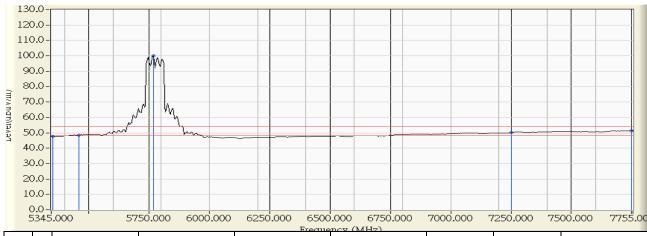
		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	56.524	59.050	-14.950	74.000	PEAK
2		5460.000	3.379	57.516	60.895	-13.105	74.000	PEAK
3	*	5786.833	2.583	102.392	104.974	30.974	74.000	PEAK
4		7250.000	5.476	56.144	61.620	-12.380	74.000	PEAK
5		7750.000	6.446	57.431	63.877	-10.123	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:45
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11ac80 5775MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	44.892	47.418	-6.582	54.000	AVERAGE
2		5460.000	3.379	44.846	48.225	-5.775	54.000	AVERAGE
3	*	5738.633	2.768	89.571	92.339	38.339	54.000	AVERAGE
4		7250.000	5.476	44.513	49.989	-4.011	54.000	AVERAGE
5		7750.000	6.446	44.938	51.384	-2.616	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Site : CB1	Time : 2013/08/27 - 14:21
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:
	EXA1206UH-802.11ac80 5775MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	55.409	57.935	-16.065	74.000	PEAK
2		5449.433	3.297	59.221	62.518	-11.482	74.000	PEAK
3		5460.000	3.379	54.459	57.838	-16.162	74.000	PEAK
4	*	5762.733	2.675	110.563	113.238	39.238	74.000	PEAK
5		7250.000	5.476	54.212	59.688	-14.312	74.000	PEAK
6		7417.600	5.837	57.575	63.413	-10.587	74.000	PEAK
7		7750.000	6.446	54.893	61.339	-12.661	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/08/27 - 14:31			
Limit : FCC_SpartC_15.247_H_03M_AV	Margin : 6			
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz			
EUT : Wireless-AC1900 Dual Band Gigabit Router	Note : Mode 1: Transmit (CDD Mode)_Adapter:			
	EXA1206UH-802.11ac80 5775MHz			

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		5350.000	2.526	45.118	47.644	-6.356	54.000	AVERAGE
2		5460.000	3.379	45.155	48.534	-5.466	54.000	AVERAGE
3	*	5766.750	2.660	97.257	99.917	45.917	54.000	AVERAGE
4		7250.000	5.476	44.569	50.045	-3.955	54.000	AVERAGE
5		7750.000	6.446	44.943	51.389	-2.611	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.