

FCC Test Report

Product Name	ASUS Home Gateway
Model No	HG100
FCC ID.	MSQ-RK903

Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	Nov. 28, 2014
Issue Date	Jan. 22, 2015
Report No.	14C0096R-RFUSP02V00
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issue Date: Jan. 22, 2015 Report No.: 14C0096R-RFUSP02V00

QuieTek

Product Name	ASUS Home Gateway		
Applicant	ASUSTeK COMPUTER INC.		
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan		
Manufacturer	Gemtek Technology Co., Ltd.		
Model No.	HG100		
FCC ID.	MSQ-RK903		
EUT Rated Voltage	AC 100-240V~50/60Hz		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	ASUS		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2013		
	ANSI C63.10: 2009, KDB 558074 D01 DTS Meas Guidance v03r02		
Test Result	Complied		

Documented By

:

:

:

sanne liv

(Senior Adm. Specialist / Joanne Lin)

Tested By

NU Jova C

(Engineer / Nova Chu)

Approved By

(Director / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page	
1.	GENERAL INFORMATION	5	
1.1.	EUT Description	5	
1.2.	Operational Description		
1.3.	Tested System Details		
1.4.	Configuration of Tested System		
1.5.	EUT Exercise Software		
1.6.	Test Facility		
2.	Conducted Emission		
2.1.	Test Equipment		
2.2.	Test Setup		
2.3.	Limits		
2.4.	Test Procedure		
2.5.	Uncertainty		
2.6.	Test Result of Conducted Emission		
3.	Peak Power Output		
3.1.	Test Equipment	14	
3.2.	Test Setup		
3.3.	Limits		
3.4.	Test Procedure		
3.5.	Uncertainty		
3. <i>5</i> . 3.6.	Test Result of Peak Power Output		
4.	Radiated Emission	17	
4.1.	Test Equipment		
4.2.	Test Setup		
4.3.	Limits		
4.4.	Test Procedure		
4.5.	Uncertainty		
4.6.	Test Result of Radiated Emission		
5.	RF antenna conducted test		
5.1.	Test Equipment		
5.2.	Test Setup		
5.3.	Limits		
5.4.	Test Procedure		
5.5.	Uncertainty		
5.6.	Test Result of RF antenna conducted test		
6.	Band Edge		
6.1.	Test Equipment		
6.2.	Test Setup		
6.3.	Limits		
6.4.	Test Procedure		
6.5.	Uncertainty		
6.6.	Test Result of Band Edge		
0.0.	Tost Result of Dana Dage		

7.	Occupied Bandwidth	54
7.1.	Test Equipment	54
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	61
8.1.	Test Equipment	61
8.2.	Test Setup	61
8.3.	Limits	
8.4.	Test Procedure	61
8.5.	Uncertainty	61
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	68

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	ASUS Home Gateway	
Trade Name	ASUS	
Model No.	HG100	
FCC ID.	MSQ-RK903	
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW	
Number of Channels	802.11b/g/n-20MHz: 11	
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 72.2Mbps	
Type of Modulation 802.11b:DSSS (DBPSK, DQPSK, CCK)		
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)	
Antenna type	PIFA Antenna	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	
USB to Power Cable	Non-Shielded, 1.0m	
Power Adapter	MFR: ASUS, M/N: AD897320	
	Input: AC 100-240V~50/60Hz, 0.3A	
	Output: DC 5V, 2A	
	Cable Out: Non-Shielded, 1.0m	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	INPAQ	WA-P-LA-02-143	PIFA	-1.55dBi for 2.4 GHz

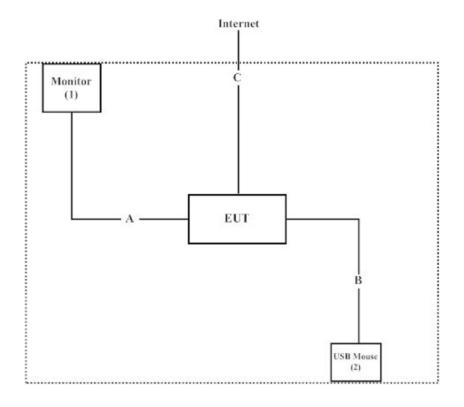
Note: The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is a ASUS Home Gateway with a built-in WLAN
 Solution Bluetooth transceiver, this report for WLAN.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Continuous transmission mode provides a 100% duty cycle to perform the test.
- 5. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 6. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)
Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)	


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	oduct	Manufacturer	Model No.	Serial No.	Power Cord
1	Monitor	Dell	2407WFPb	CN-0YY528-46633-796-12TS	Non-Shielded, 1.8m
2	USB Mouse	Logitech	M-BE58	HCA30103141	N/A

	Signal Cable Type	Signal cable Description
Α	Single Cable	Non-Shielded, 1.2m
В	USB Single Cable	Non-Shielded, 1.8m
С	LAN Cable	Non-Shielded, 1.6m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute software "AmpakRFTestTool v5.0" on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

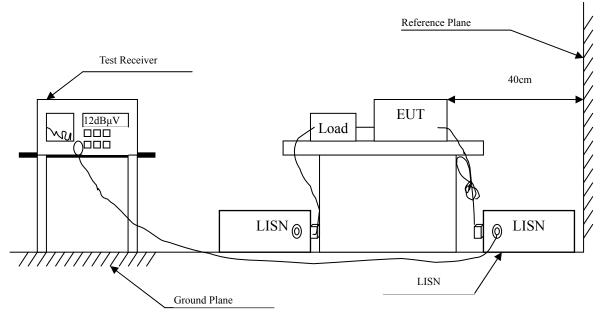
The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2014	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2014	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2014	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar., 2014	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2014	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit					
Frequency	L	limits			
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	ASUS Home Gateway
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
Line 1					
Quasi-Peak					
0.166	9.657	35.420	45.076	-20.467	65.543
0.205	9.651	31.270	40.921	-23.508	64.429
0.248	9.653	31.480	41.133	-22.067	63.200
0.283	9.655	29.050	38.705	-23.495	62.200
0.435	9.663	29.010	38.673	-19.184	57.857
0.572	9.671	25.880	35.551	-20.449	56.000
Average					
0.166	9.657	23.750	33.406	-22.137	55.543
0.205	9.651	20.960	30.611	-23.818	54.429
0.248	9.653	18.220	27.873	-25.327	53.200
0.283	9.655	16.790	26.445	-25.755	52.200
0.435	9.663	23.010	32.673	-15.184	47.857
0.572	9.671	16.040	25.711	-20.289	46.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	ASUS Home Gateway
Test Item	:	Conducted Emission Test
Power Line	:	Line 2
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Frequency	Correct	Reading Measurem		Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV	dB	dBµV
Line 2					
Quasi-Peak					
0.177	9.659	33.900	43.559	-21.670	65.229
0.209	9.661	31.460	41.121	-23.193	64.314
0.439	9.663	30.490	40.153	-17.590	57.743
0.591	9.672	25.340	35.012	-20.988	56.000
0.814	9.694	19.900	29.594	-26.406	56.000
9.459	9.986	17.620	27.606	-32.394	60.000
Average					
0.177	9.659	23.990	33.649	-21.580	55.229
0.209	9.661	22.500	32.161	-22.153	54.314
0.439	9.663	25.260	34.923	-12.820	47.743
0.591	9.672	13.540	23.212	-22.788	46.000
0.814	9.694	8.360	18.054	-27.946	46.000
9.459	9.986	9.980	19.966	-30.034	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment Manufacturer		Model No./Serial No.	Last Cal.		
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2014		
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2014		
Note:						
1.	All equipments are calibrated with traceable calibrations. Each calibration is traceable to the					
	national or international standards.					
2.	The test instruments marked with "X" are used to measure the final test results.					

3.2. Test Setup

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using KDB 558074 D01 DTS Meas Guidance v03r02 section 9.1.2 PKPM1 Peak power meter method.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	ASUS Home Gateway
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Chain A

Channel No	Frequency	Average PowerPeakFrequencyFor different Data Rate (Mbps)Power			Required	Result		
	(MHz)	1	2	5.5	11	1	Limit	Kesun
			Measur	ement Lev	vel (dBm)			
01	2412	13.63				16.74	<30dBm	Pass
06	2437	14.58	14.49	14.41	14.33	17.71	<30dBm	Pass
11	2462	14.61				17.81	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	ASUS Home Gateway
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Chain A

		Average Power Pea							Peak			
	Frequency		For different Data Rate (Mbps) Power						Power	Required		
Channel No	(MHz)	6	9	12	18	24	36	48	54	6	Limit	Result
	Measurement Level (dBm)											
01	2412	15.47								23.56	<30dBm	Pass
06	2437	15.42	15.34	15.26	15.17	15.11	15.03	14.94	14.86	23.35	<30dBm	Pass
11	2462	15.32								23.04	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	ASUS Home Gateway
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Chain A

			Average Power							Peak		
	Frequency		F	for diffe	erent Da	ata Rate	e (Mbps	s)		Power	Required	
Channel No	(MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Limit	Result
	Measurement Level (dBm)											
01	2412	14.32								23.56	<30dBm	Pass
06	2437	14.17	14.09	14.02	13.94	13.87	13.8	13.73	13.66	22.63	<30dBm	Pass
11	2462	14.13								22.39	<30dBm	Pass

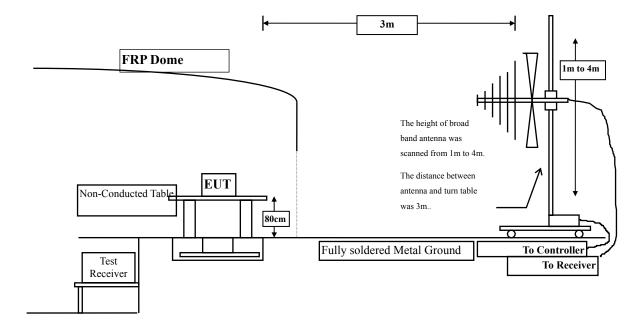
Note: Peak Power Output Value =Reading value on power meter + cable loss

4. Radiated Emission

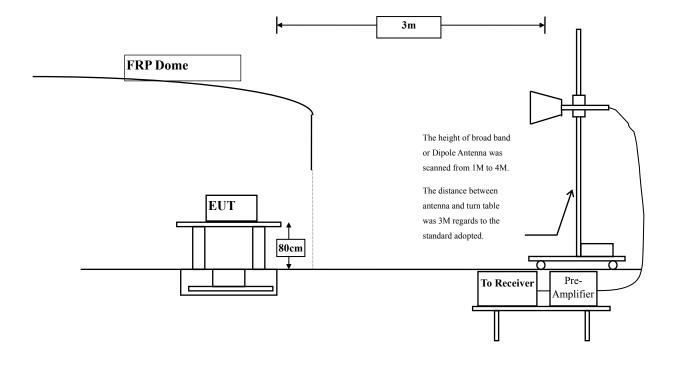
4.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/37133	Sep, 2014
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2014
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun, 2014
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2014
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2014


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2014
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2015
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2014
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2015
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2014
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2014

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	Field strength	Measurement distance						
	(microvolts/meter)	(meter)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30	30	30						
30-88	100	3						
88-216	150	3						
216-960	200	3						
Above 960	500	3						

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 9kHz to 10th harmonics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	ASUS Home Gateway
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
4824.000	3.261	41.630	44.891	-29.109	74.000
7236.000	10.650	44.090	54.740	-19.260	74.000
9648.000	13.337	37.270	50.606	-23.394	74.000
Average Detector:					
7236.000	10.650	37.470	48.120	-5.880	54.000
Vertical					
Peak Detector:					
4824.000	6.421	38.650	45.071	-28.929	74.000
7236.000	11.495	45.950	57.445	-16.555	74.000
9648.000	13.807	37.020	50.826	-23.174	74.000
Average Detector:					
7236.000	11.495	38.420	49.915	-4.085	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS Home Gateway							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	z)				
Ene av en ev	Compost	Deeding	Measurement	Manain	T ::4			
Frequency	Correct	Reading		Margin	Limit			
	Factor	Level	Level	ID				
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector:								
4874.000	3.038	39.490	42.527	-31.473	74.000			
7311.000	11.795	45.300	57.094	-16.906	74.000			
9748.000	12.635	36.630	49.265	-24.735	74.000			
Average Detector:								
7311.000	11.795	38.170	49.964	-4.036	54.000			
Vertical								
Peak Detector:								
4874.000	5.812	39.450	45.261	-28.739	74.000			
7311.000	12.630	45.140	57.769	-16.231	74.000			
9748.000	13.126	36.690	49.816	-24.184	74.000			
Average Detector:								
7311.000	12.630	37.360	49.989	-4.011	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 ASUS Home Gateway Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBµV	dBµV/m	dB	dBµV/m			
Horizontal								
Peak Detector:								
4924.000	2.858	40.920	43.777	-30.223	74.000			
7386.000	12.127	45.060	57.188	-16.812	74.000			
9848.000	12.852	37.140	49.993	-24.007	74.000			
Average Detector:								
7386.000	12.127	37.720	49.848	-4.152	54.000			
Vertical								
Peak Detector:								
4924.000	5.448	39.550	44.997	-29.003	74.000			
7386.000	13.209	45.420	58.629	-15.371	74.000			
9848.000	13.131	36.810	49.941	-24.059	74.000			
Average Detector:								
7386.000	12.127	37.840	49.968	-4.032	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	ASUS Home Gateway
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
4824.000	3.261	42.480	45.741	-28.259	74.000
7236.000	10.650	55.470	66.120	-7.880	74.000
9648.000	13.337	37.180	50.516	-23.484	74.000
Average Detector:					
7236.000	10.650	38.350	49.000	-5.000	54.000
Vertical					
Peak Detector:					
4824.000	6.421	39.700	46.121	-27.879	74.000
7236.000	11.495	59.070	70.565	-3.435	74.000
9648.000	13.807	37.230	51.036	-22.964	74.000
Average Detector:					
7236.000	13.254	36.650	49.904	-4.096	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: ASUS H	ome Gateway					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	: No.3 OATS					
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
1 5	Factor	Level	Level	C			
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$		
Horizontal							
Peak Detector:							
4874.000	2.076	42.190	44.267	-29.733	74.000		
7311.000	9.512	55.610	65.122	-8.878	74.000		
9748.000	9.630	37.340	46.970	-27.030	74.000		
Average Detector:							
7311.000	9.512	38.490	48.002	-5.998	54.000		
Peak Detector:							
4874.000	2.532	45.260	47.792	-26.208	74.000		
7311.000	10.089	59.230	69.319	-4.681	74.000		
9748.000	10.266	38.230	48.497	-25.503	74.000		
Average Detector:							
7311.000	10.089	40.260	50.349	-4.051	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmon : No.3 OA		sion Data g 6Mbps) (2462 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
4924.000	2.858	39.070	41.927	-32.073	74.000
7386.000	12.127	54.430	66.558	-7.442	74.000
9848.000	12.852	36.790	49.643	-24.357	74.000
Average Detector:					
7386.000	12.127	36.230	48.358	-5.642	54.000
Vertical					
Peak Detector:					
4924.000	5.521	41.030	46.550	-27.450	74.000
7386.000	13.254	56.160	69.414	-4.586	74.000
9848.000	13.367	36.880	50.247	-23.753	74.000
Average Detector:					
7386.000	13.254	37.650	50.904	-3.096	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item		ome Gateway c Radiated Emiss	sion Data		
Test Site	: No.3 OA				
Test Mode			n MCS0 7.2Mbps 20	M-BW)(2412MI	-Iz)
			I I I I I		,
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
4824.000	3.261	39.870	43.131	-30.869	74.000
7236.000	10.650	53.380	64.030	-9.970	74.000
9648.000	13.337	37.720	51.056	-22.944	74.000
Average Detector:					
7236.000	10.650	35.580	46.230	-7.770	54.000
Vertical					
Peak Detector:					
4824.000	6.421	38.500	44.921	-29.079	74.000
7236.000	11.495	56.440	67.935	-6.065	74.000
9648.000	13.807	37.220	51.026	-22.974	74.000
Average Detector:					
7236.000	11.495	37.800	49.295	-4.705	54.000

Note:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	ASUS Home Gateway
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
4874.000	2.076	39.260	41.337	-32.663	74.000
7311.000	9.512	55.260	64.772	-9.228	74.000
9748.000	9.630	37.230	46.860	-27.140	74.000
Average Detector:					
7311.000	9.512	37.230	46.742	-7.258	54.000
Vertical					
Peak Detector:					
4874.000	2.532	42.260	44.792	-29.208	74.000
7311.000	11.180	57.120	68.300	-5.700	74.000
9748.000	10.266	37.150	47.417	-26.583	74.000
Average Detector:					
7311.000	10.089	37.150	47.239	-6.761	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	ASUS Home Gateway
Test Item :	Harmonic Radiated Emission Data
Test Site :	No.3 OATS
Test Mode :	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

FactorLevelLevelMHzdBdB μV dB $\mu V/m$ dBdB $\mu V/m$ HorizontalPeak Detector:4924.0002.85837.81040.667-33.33374.0007386.00012.12751.80063.928-10.07274.0009848.00012.85236.74049.593-24.40774.000Average Detector:7386.00012.12733.19045.318-8.68254.000VerticalPeak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	Frequency	Correct	Reading	Measurement	Margin	Limit
Horizontal Peak Detector: 4924.000 2.858 37.810 40.667 -33.333 74.000 7386.000 12.127 51.800 63.928 -10.072 74.000 9848.000 12.852 36.740 49.593 -24.407 74.000 Average Detector: 7386.000 12.127 33.190 45.318 -8.682 54.000 Vertical 9eak Detector: 9 9 9 9 9 9 74.000 9848.000 12.127 33.190 45.318 -8.682 54.000 Vertical Peak Detector: 9 9 9 9 9 74.000 9848.000 13.254 53.570 66.824 -7.176 74.000 9 9848.000 13.367 37.360 50.727 -23.273 74.000 9		Factor	Level	Level		
Peak Detector: 4924.000 2.858 37.810 40.667 -33.333 74.000 7386.000 12.127 51.800 63.928 -10.072 74.000 9848.000 12.852 36.740 49.593 -24.407 74.000 Average Detector: 7386.000 12.127 33.190 45.318 -8.682 54.000 Vertical Peak Detector: 4924.000 5.521 44.580 50.100 -23.900 74.000 7386.000 13.254 53.570 66.824 -7.176 74.000 9848.000 13.367 37.360 50.727 -23.273 74.000	MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
4924.0002.85837.81040.667-33.33374.0007386.00012.12751.80063.928-10.07274.0009848.00012.85236.74049.593-24.40774.000Average Detector:7386.00012.12733.19045.318-8.68254.000VerticalPeak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	Horizontal					
7386.00012.12751.80063.928-10.07274.0009848.00012.85236.74049.593-24.40774.000Average Detector:7386.00012.12733.19045.318-8.68254.000VerticalPeak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	Peak Detector:					
9848.00012.85236.74049.593-24.40774.000Average Detector:7386.00012.12733.19045.318-8.68254.000Vertical9eak Detector:74.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	4924.000	2.858	37.810	40.667	-33.333	74.000
Average Detector:7386.00012.12733.19045.318-8.68254.000VerticalPeak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	7386.000	12.127	51.800	63.928	-10.072	74.000
7386.00012.12733.19045.318-8.68254.000VerticalPeak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	9848.000	12.852	36.740	49.593	-24.407	74.000
7386.00012.12733.19045.318-8.68254.000VerticalPeak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000						
Vertical Peak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	Average Detector:					
Peak Detector:4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	7386.000	12.127	33.190	45.318	-8.682	54.000
4924.0005.52144.58050.100-23.90074.0007386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	Vertical					
7386.00013.25453.57066.824-7.17674.0009848.00013.36737.36050.727-23.27374.000	Peak Detector:					
9848.000 13.367 37.360 50.727 -23.273 74.000	4924.000	5.521	44.580	50.100	-23.900	74.000
	7386.000	13.254	53.570	66.824	-7.176	74.000
Average Detector:	9848.000	13.367	37.360	50.727	-23.273	74.000
Average Detector:						
11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Average Detector:					
7386.000 13.254 34.290 47.544 -6.456 54.000	7386.000	13.254	34.290	47.544	-6.456	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	ASUS Home Gateway
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)(2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
66.860	-12.355	38.651	26.296	-13.704	40.000
299.660	-3.585	38.199	34.614	-11.386	46.000
350.100	-2.332	35.562	33.230	-12.770	46.000
429.640	-2.242	38.095	35.853	-10.147	46.000
511.120	1.499	31.943	33.442	-12.558	46.000
932.100	6.922	23.297	30.219	-15.781	46.000
Vertical					
99.840	-0.021	28.273	28.252	-15.248	43.500
299.660	-6.855	36.232	29.377	-16.623	46.000
544.100	-0.688	24.926	24.238	-21.762	46.000
788.540	2.952	27.129	30.081	-15.919	46.000
901.060	3.331	27.812	31.143	-14.857	46.000
951.500	6.621	32.924	39.545	-6.455	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product	:	ASUS Home Gateway
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)(2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
66.860	-12.355	43.304	30.949	-9.051	40.000
94.020	-8.189	40.036	31.846	-11.654	43.500
284.140	-4.894	36.126	31.232	-14.768	46.000
466.500	0.794	33.403	34.196	-11.804	46.000
901.060	5.591	33.828	39.419	-6.581	46.000
951.500	6.641	29.696	36.337	-9.663	46.000
Vertical					
94.020	-3.539	32.942	29.402	-14.098	43.500
344.280	-3.171	27.285	24.115	-21.885	46.000
549.920	-2.877	28.785	25.908	-20.092	46.000
749.740	2.510	31.376	33.886	-12.114	46.000
850.620	0.392	32.496	32.888	-13.112	46.000
951.500	6.621	35.277	41.898	-4.102	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

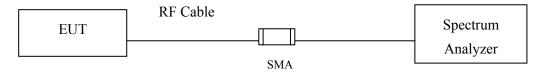
Product	:	ASUS Home Gateway
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2437 MHz)

Correct	Reading	Measurement	Margin	Limit
Factor	Level	Level		
dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
-8.189	38.272	30.082	-13.418	43.500
-4.894	35.948	31.054	-14.946	46.000
-2.332	37.151	34.819	-11.181	46.000
3.512	25.195	28.707	-17.293	46.000
5.012	29.108	34.120	-11.880	46.000
6.641	34.671	41.312	-4.688	46.000
-1.400	31.844	30.443	-13.057	43.500
-6.855	38.997	32.142	-13.858	46.000
-2.877	28.337	25.460	-20.540	46.000
2.510	26.890	29.400	-16.600	46.000
3.331	32.387	35.718	-10.282	46.000
6.621	33.422	40.043	-5.957	46.000
	Factor dB -8.189 -4.894 -2.332 3.512 5.012 6.641 -1.400 -6.855 -2.877 2.510 3.331	Factor Level dB dBμV -8.189 38.272 -4.894 35.948 -2.332 37.151 3.512 25.195 5.012 29.108 6.641 34.671 -1.400 31.844 -6.855 38.997 -2.877 28.337 2.510 26.890 3.331 32.387	FactorLevelLevel dB $dB\mu V$ $dB\mu V/m$ -8.189 38.272 30.082 -4.894 35.948 31.054 -2.332 37.151 34.819 3.512 25.195 28.707 5.012 29.108 34.120 6.641 34.671 41.312 -1.400 31.844 30.443 -6.855 38.997 32.142 -2.877 28.337 25.460 2.510 26.890 29.400 3.331 32.387 35.718	FactorLevelLeveldB $dB\mu V$ $dB\mu V/m$ dB-8.189 38.272 30.082 -13.418 -4.894 35.948 31.054 -14.946 -2.332 37.151 34.819 -11.181 3.512 25.195 28.707 -17.293 5.012 29.108 34.120 -11.880 6.641 34.671 41.312 -4.688 -1.400 31.844 30.443 -13.057 -6.855 38.997 32.142 -13.858 -2.877 28.337 25.460 -20.540 2.510 26.890 29.400 -16.600 3.331 32.387 35.718 -10.282

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

5. **RF** antenna conducted test

5.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

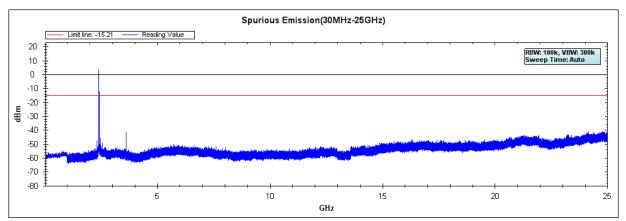
5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

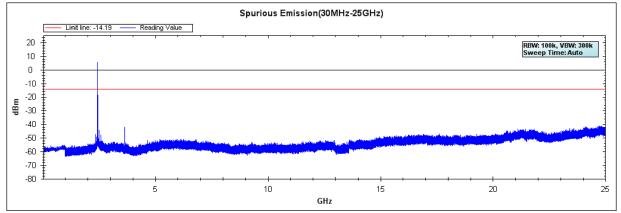
5.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

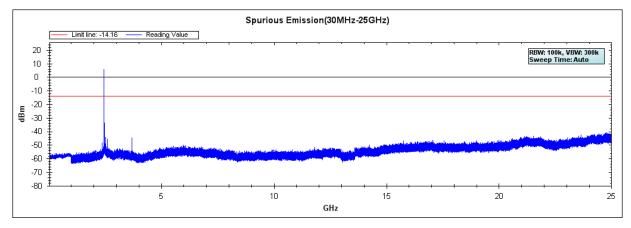
Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.


5.5. Uncertainty

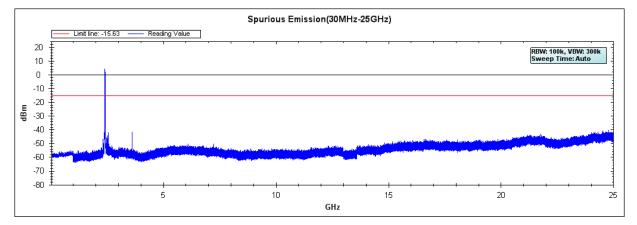
The measurement uncertainty Conducted is defined as ± 1.27 dB


5.6. Test Result of RF antenna conducted test

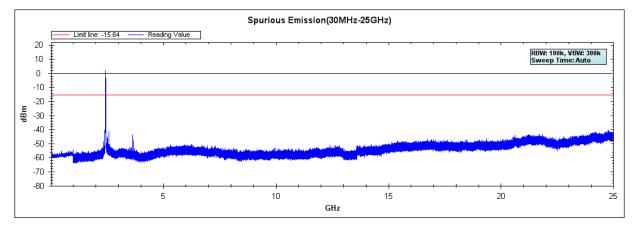
Product	:	ASUS Home Gateway
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)


Channel 01 (2412MHz)

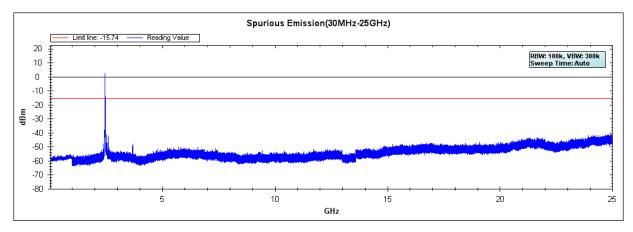
Channel 06 (2437MHz)



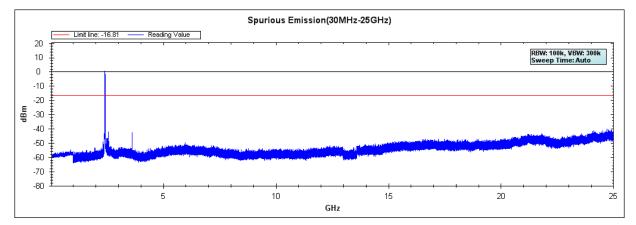
Channel 11 (2462MHz)



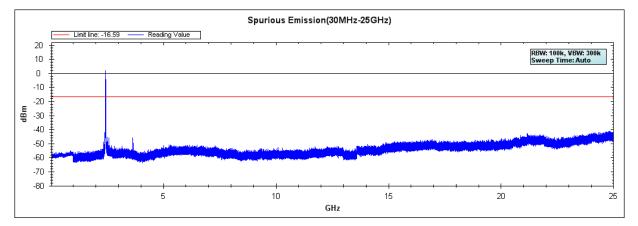
Product	:	ASUS Home Gateway
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)


Channel 01 (2412MHz)

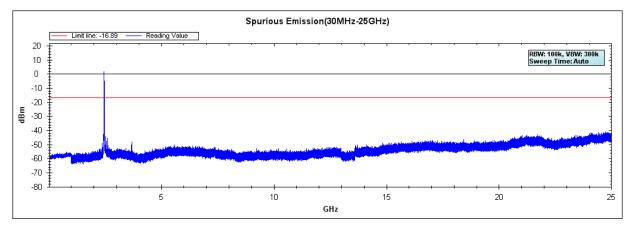
Channel 06 (2437MHz)



Channel 11 (2462MHz)



Product	:	ASUS Home Gateway
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)


Channel 01 (2412MHz)

Channel 06 (2437MHz)

Channel 11 (2462MHz)

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.	
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014	
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014	
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014	

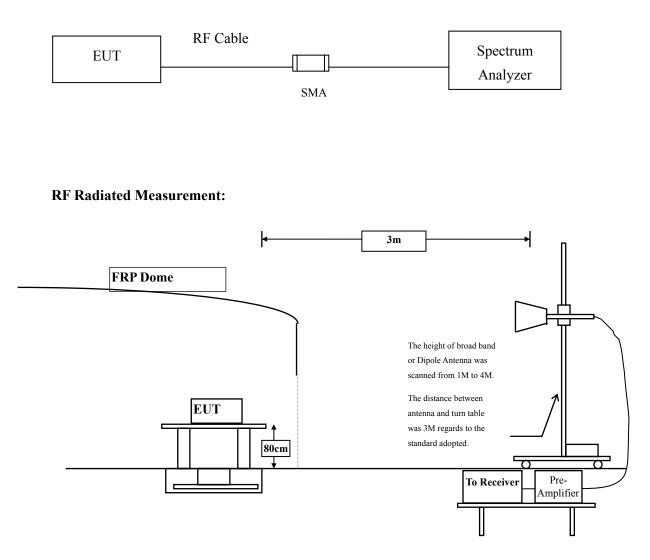
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2014
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

e: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

еек

The EUT was setup according to ANSI C63.10: 2009 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

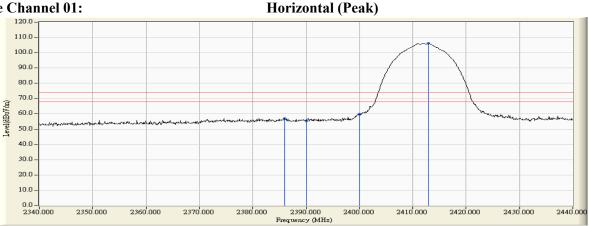
The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

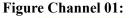
The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

6.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz


6.6. **Test Result of Band Edge**


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

RF Radiated Measurement (Horizontal):

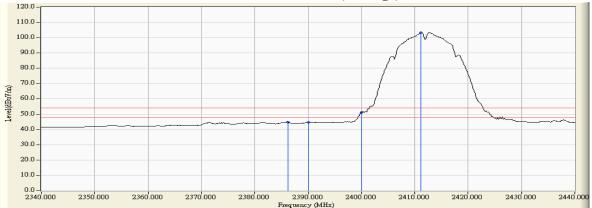
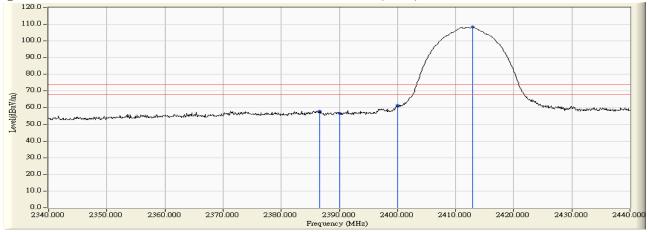

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
01 (Peak)	2386.000	12.635	44.240	56.874	74.00	54.00	Pass
01 (Peak)	2390.000	12.625	42.672	55.297	74.00	54.00	Pass
01 (Peak)	2400.000	12.608	47.081	59.688			
01 (Peak)	2412.900	12.707	93.413	106.120			
01 (Average)	2386.200	12.634	32.168	44.802	74.00	54.00	Pass
01 (Average)	2390.000	12.625	31.996	44.621	74.00	54.00	Pass
01 (Average)	2400.000	12.608	38.423	51.030			
01 (Average)	2411.200	12.691	90.709	103.401			

Figure Channel 01:

Horizontal (Average)

- Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- Measurement Level = Reading Level + Correct Factor. 5.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel NO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dBµV/m)	Result
01 (Peak)	2386.600	12.633	45.126	57.759	74.00	54.00	Pass
01 (Peak)	2390.000	12.625	44.026	56.651	74.00	54.00	Pass
01 (Peak)	2400.000	12.608	48.774	61.381			
01 (Peak)	2412.900	12.707	95.607	108.314			
01 (Average)	2373.800	12.698	33.558	46.257	74.00	54.00	Pass
01 (Average)	2390.000	12.625	32.984	45.609	74.00	54.00	Pass
01 (Average)	2400.000	12.608	38.614	51.221			
01 (Average)	2412.700	12.705	92.723	105.428			

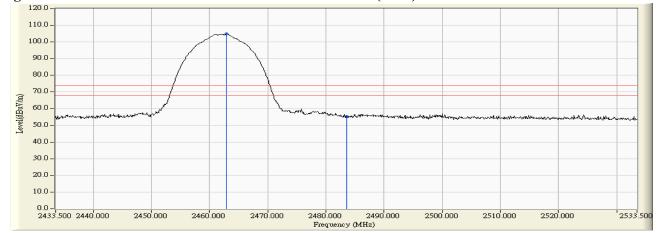

Figure Channel 01:

VERTICAL (Peak)

Figure Channel 01:

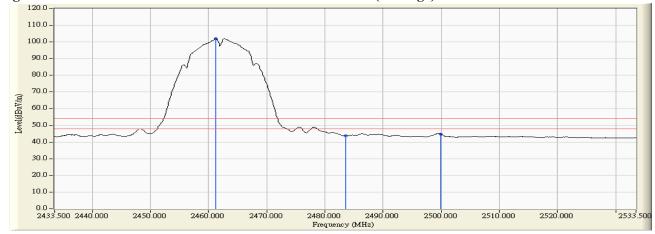
VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

RF Radiated Measurement (Horizontal):


Channel No.	Frequency	Correct Factor	Reading Level	Emission Level		Average Limit	Result
Channel NO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2462.900	12.779	91.951	104.730			
11 (Peak)	2483.500	12.948	42.352	55.301	74.00	54.00	Pass
11 (Average)	2461.200	12.763	89.234	101.996			
11 (Average)	2483.500	12.948	30.673	43.622	74.00	54.00	Pass
11 (Average)	2499.900	12.955	31.886	44.840	74.00	54.00	Pass


Figure Channel 11:

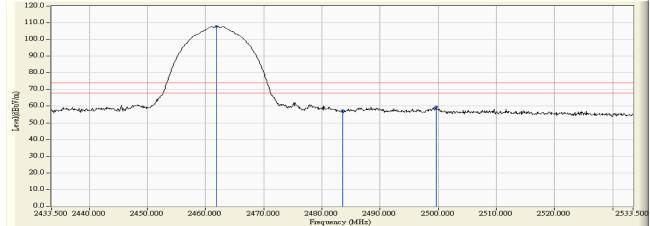
Horizontal (Peak)

Figure Channel 11:

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

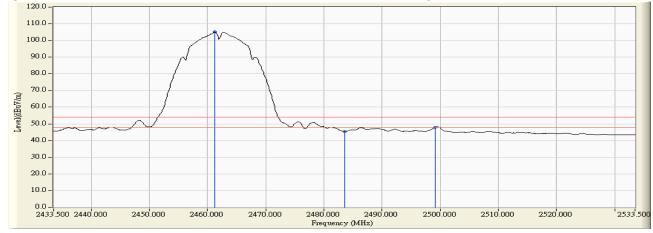
2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2461.800	12.769	94.953	107.721			
11 (Peak)	2483.500	12.948	44.469	57.418	74.00	54.00	Pass
11 (Peak)	2499.600	12.956	46.580	59.536	74.00	54.00	Pass
11 (Average)	2461.200	12.763	92.329	105.091			
11 (Average)	2483.500	12.948	32.528	45.477	74.00	54.00	Pass
11 (Average)	2499.100	12.959	34.917	47.876	74.00	54.00	Pass

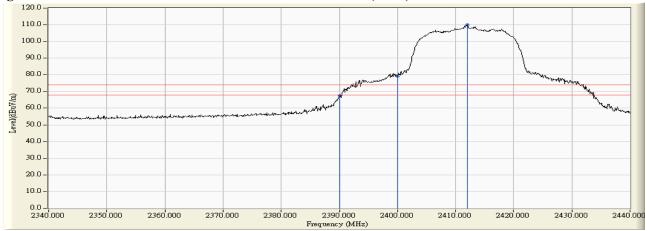

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

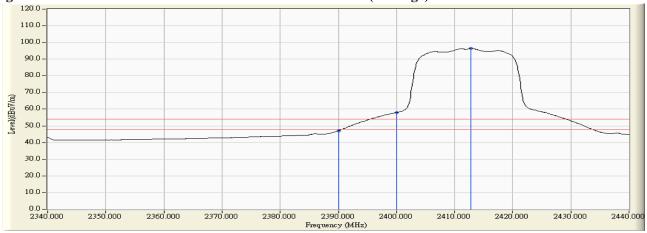
VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2390.000	12.625	54.875	67.500	74.00	54.00	Pass
01 (Peak)	2400.000	12.608	66.550	79.157			
01 (Peak)	2412.000	12.699	97.213	109.912			
01 (Average)	2390.000	12.625	34.447	47.072	74.00	54.00	Pass
01 (Average)	2400.000	12.608	45.349	57.956			
01 (Average)	2412.800	12.706	83.724	96.430			

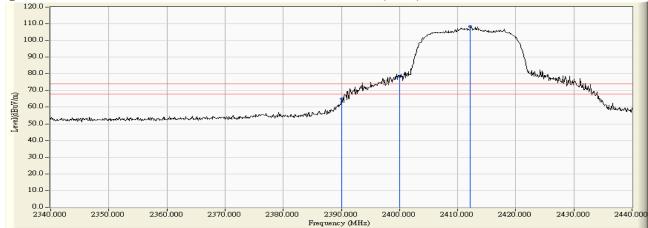

Figure Channel 01:

Horizontal (Peak)

Figure Channel 01:

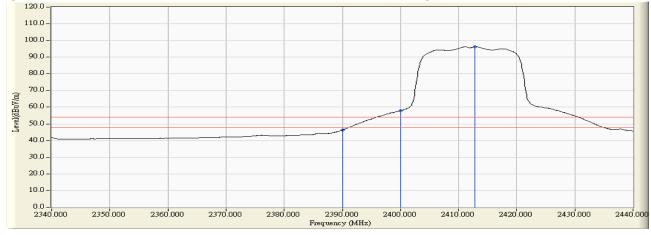
Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

RF Radiated Measurement (VERTICAL):

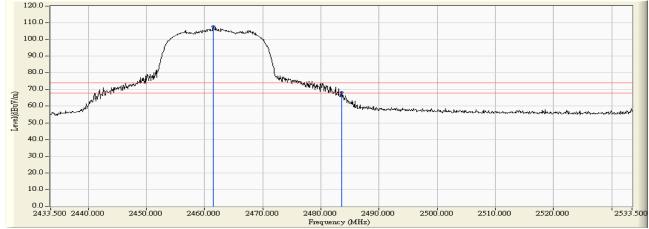
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2390.000	12.625	52.265	64.890	74.00	54.00	Pass
01 (Peak)	2400.000	12.608	66.052	78.659			
01 (Peak)	2412.200	12.700	95.738	108.439			
01 (Average)	2390.000	12.625	33.569	46.194	74.00	54.00	Pass
01 (Average)	2400.000	12.608	45.218	57.825			
01 (Average)	2412.800	12.706	83.552	96.258			


Figure Channel 01:

VERTICAL (Peak)

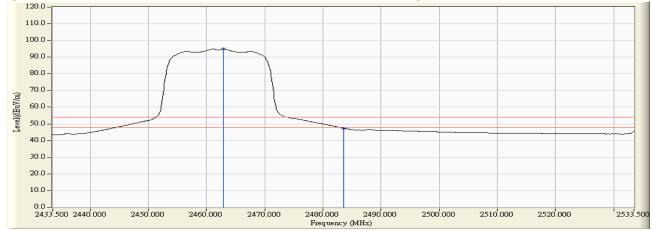
VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

RF Radiated Measurement (Horizontal):

Channel No.	· ·		•	Emission Level			Result
chumer i to.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2461.500	12.765	95.004	107.769			
11 (Peak)	2483.500	12.948	53.262	66.211	74.00	54.00	Pass
11 (Peak)	2483.600	12.949	55.405	68.354	74.00	54.00	Pass
11 (Average)	2462.900	12.779	82.103	94.882			
11 (Average)	2483.500	12.948	34.472	47.421	74.00	54.00	Pass


Figure Channel 11:

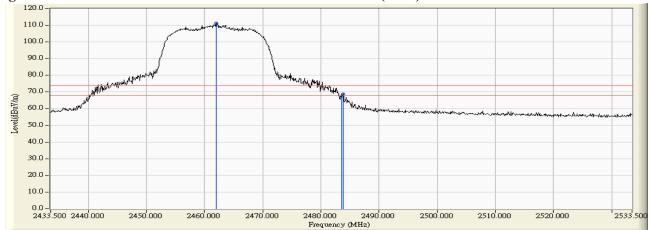
Horizontal (Peak)

Horizontal (Average)

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

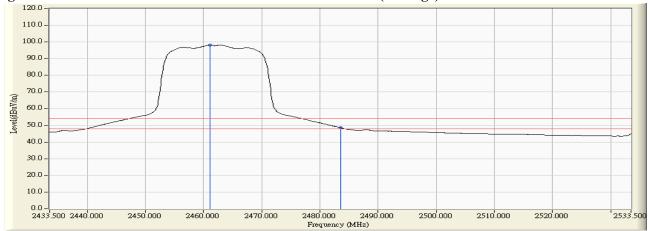
2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency	Correct Factor	•	Emission Level			Result
Chamler IVO.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
11 (Peak)	2462.000	12.771	98.475	111.246			
11 (Peak)	2483.500	12.948	54.604	67.553	74.00	54.00	Pass
11 (Peak)	2483.800	12.951	55.806	68.757	74.00	54.00	Pass
11 (Average)	2461.100	12.761	85.496	98.257			
11 (Average)	2483.500	12.948	35.651	48.600	74.00	54.00	Pass

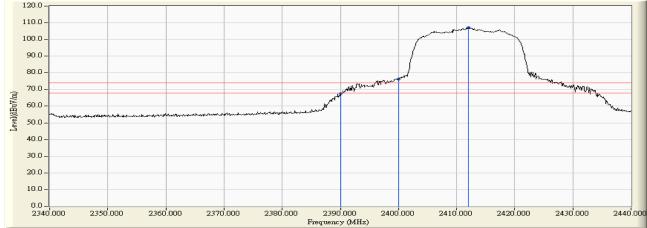

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

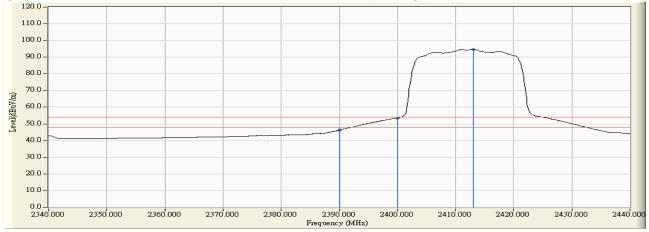
VERTICAL (Average)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

RF Radiated Measurement (Horizontal):

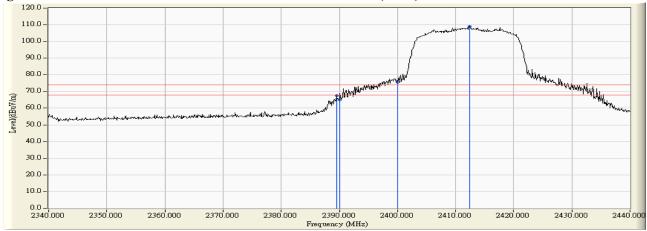
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
01 (Peak)	2390.000	12.625	54.828	67.453	74.00	54.00	Pass
01 (Peak)	2400.000	12.608	63.684	76.291			
01 (Peak)	2412.000	12.699	94.546	107.245			
01 (Average)	2390.000	12.625	33.583	46.208	74.00	54.00	Pass
01 (Average)	2400.000	12.608	40.954	53.561			
01 (Average)	2413.000	12.707	82.010	94.718			


Figure Channel 01:

Horizontal (Peak)

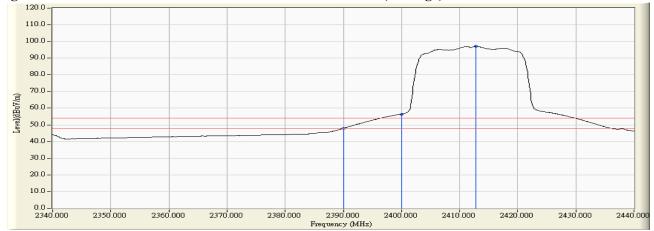
Horizontal (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
01 (Peak)	2389.500	12.627	54.988	67.615	74.00	54.00	Pass
01 (Peak)	2390.000	12.625	52.381	65.006	74.00	54.00	Pass
01 (Peak)	2400.000	12.608	62.992	75.599			
01 (Peak)	2412.400	12.703	96.325	109.027			
01 (Average)	2390.000	12.625	35.233	47.858	74.00	54.00	Pass
01 (Average)	2400.000	12.608	43.810	56.417			
01 (Average)	2412.800	12.706	84.306	97.012			

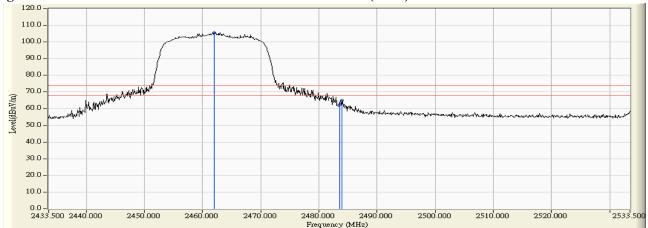

Figure Channel 01:

VERTICAL (Peak)

Figure Channel 01:

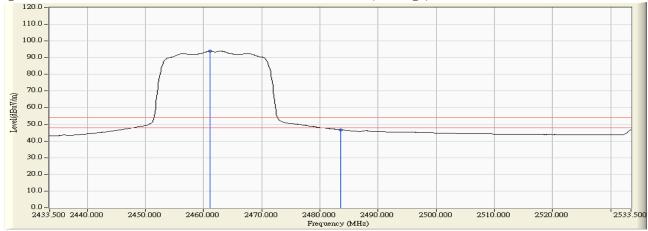
VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency			Emission Level			Result
enamer ro.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	itebuit
11 (Peak)	2462.000	12.771	92.684	105.455			
11 (Peak)	2483.500	12.948	49.355	62.304	74.00	54.00	Pass
11 (Peak)	2483.900	12.952	52.107	65.058	74.00	54.00	Pass
11 (Average)	2461.100	12.761	81.180	93.941			
11 (Average)	2483.500	12.948	33.800	46.749	74.00	54.00	Pass

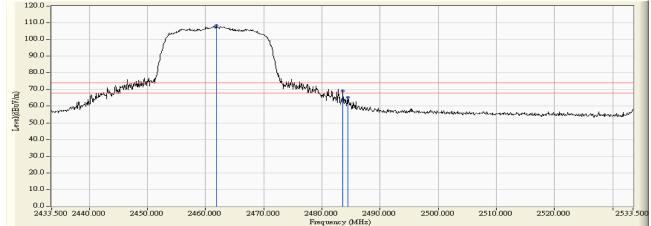

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	ASUS Home Gateway
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

RF Radiated Measurement (VERTICAL):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)	Result
11 (Peak)	2461.800	12.769	95.785	108.553			
11 (Peak)	2483.500	12.948	50.613	63.562	74.00	54.00	Pass
11 (Peak)	2483.600	12.949	56.079	69.028	74.00	54.00	Pass
11 (Peak)	2484.400	12.954	52.359	65.314	74.00	54.00	Pass
11 (Average)	2461.100	12.761	83.799	96.560			
11 (Average)	2483.500	12.948	34.219	47.168	74.00	54.00	Pass

Figure Channel 11:

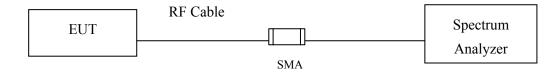
VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	ASUS Home Gateway
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	7150	>500	Pass
6	2437	7200	>500	Pass
11	2462	7200	>500	Pass

Figure Channel 1:

	AC	SENSE:INT	ALIGN AUTO	10:17:11 AM Jan 10, 2015	
enter Freq 2.41200		Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	IFGain:Low	#Atten: 30 dB	Mkr	DET ^P NNNNN 2 2.408 40 GHz -2.55 dBm	Auto Tun
0 dB/div Ref 20.00 d	1Bm			-2.55 dBm	
0.0			3		Center Fre
).00		March March	4	-1.06 dBm	2.412000000 GH
0.0	L wy		M.		
0.0			N N		Start Fr
0.0			<u>\</u>		2.387000000 G
0.0 May My Mary My Mary My Mary	A support of			when the when were	
0.0			· · · · · · · · · · · · · · · · · · ·	analitic and front of	Stop Fr
'0.0					2.437000000 G
	1 1				
enter 2.41200 GHz				Span 50.00 MHz	0.5.04
	#VBW	/ 300 kHz	Sweep	Span 50.00 MHz 4.80 ms (1001 pts)	
Res BW 100 kHz KR MODE TRO SCL	X	Y FU	Sweep		5.000000 M
Res BW 100 kHz X8 MODE TRE SCL 1 N 2 N 1 f	× 2.412 50 GHz 2.408 40 GHz	Y FU 4.94 dBm -2.55 dBm		4.80 ms (1001 pts)	5.000000 M <u>Auto</u> M
Res BW 100 kHz KR M000 THRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4	× 2.412 50 GHz	Y FU 4.94 dBm		4.80 ms (1001 pts)	5.000000 M <u>Auto</u> M Freq Offs
Res BW 100 kHz Ke Mode Tric Sci. 1 N 2 N 3 N 4 - 5 -	× 2.412 50 GHz 2.408 40 GHz	Y FU 4.94 dBm -2.55 dBm		4.80 ms (1001 pts)	5.000000 M <u>Auto</u> M Freq Offs
Res BW 100 kHz KF MODE TFC SQL 1 N 2 N 1 3 N 1 4 - - 5 - - 6 - -	× 2.412 50 GHz 2.408 40 GHz	Y FU 4.94 dBm -2.55 dBm		4.80 ms (1001 pts)	5.000000 M <u>Auto</u> M Freq Offs
2 N 1 f 3 N 1 f 4	× 2.412 50 GHz 2.408 40 GHz	Y FU 4.94 dBm -2.55 dBm		4.80 ms (1001 pts)	5.000000 M <u>Auto</u> M Freq Offs
Res BW 100 kHz KF MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 6 - - - 7 - - -	× 2.412 50 GHz 2.408 40 GHz	Y FU 4.94 dBm -2.55 dBm		4.80 ms (1001 pts)	CF Ste 5.000000 M Auto M Freq Offs 0

Figure Channel 6:

RL	Analyzer - Swept S RF 50 Ω AC		SENS	E:INT		ALIGN AUTO	10:26:55 A	M Jan 10, 2015	
enter Fred	2.4370000	00 GHz PN0: Fast G	Trig: Free	Run	Avg Type	: Log-Pwr	TRACI	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	Frequency
	ef 20.00 dBn	IFGain:Low	F #Atten: 30	dB		Mkr	2 2.433		Auto Tune
.og 10.0 0.00 10.0			2 marran	1 Lung 3	አ			-0.39 dBm	Center Fre 2.437000000 GH
20.0 30.0 40.0					1 % 				Start Fre 2.412000000 GH
50.0 60.0 70.0	A A AND AND AND					hor to	mont of the	in miles of the second	Stop Fre 2.462000000 GH
enter 2.437 Res BW 10	0 kHz		V 300 kHz			<u> </u>	4.80 ms (′		CF Ste 5.000000 MI Auto Mi
2 N 1 3 N 1 4 5 6	f f	× 2.437 50 GHz 2.433 40 GHz 2.440 60 GHz	⊻ <u>5.61 dB</u> -1.81 dB -1.92 dB	m		ICTION WIDTH	FUNCTIO		Freq Offs
7 8 9 10									
2									

Figure Channel 11:

Agilent Spectrum Analyzer - Swe	ept SA						
⊠ RL RF 50 Ω Center Freq 2.46200	AC 0000 GHz PN0: Fast C	SENSE:IN	Avg Type	ALIGNAUTO : Log-Pwr	TRAC TYP	M Jan 10, 2015 E 1 2 3 4 5 6 E MWWWWW	Frequency
10 dB/div Ref 20.00 d	IFGain:Low	#Atten: 30 dB		Mkr	DE 2 2.458		Auto Tune
Log 10.0 0.00		2 morany ha	nd 3			-0.45 dBm	Center Freq 2.462000000 GHz
-20.0 -30.0 -40.0	کانگریس محمد ا						Start Freq 2.437000000 GHz
-50.0	and and the second s		\	the showing the second	<mark>Birding yang yang yang yang yang yang yang ya</mark>	engeger have the	Stop Freq 2.487000000 GHz
Center 2.46200 GHz #Res BW 100 kHz		/ 300 kHz		-	4.80 ms (CF Step 5.000000 MHz Auto Man
MKR MODE TRE SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 5 5 6 6 7 7 7	× 2.462 50 GHz 2.458 40 GHz 2.465 60 GHz	5.55 dBm -1.71 dBm -1.98 dBm	FUNCTION FUN	ICTION WIDTH	FUNCTIO	N VALUE	Freq Offset 0 Hz
8 9 10 11 12 12							
MSG				STATUS			

Product	:	ASUS Home Gateway
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	15200	>500	Pass
6	2437	15200	>500	Pass
11	2462	15200	>500	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - S					
🕅 RL RF 50 Center Freq 2.4120		SENSE:INT	ALIGN AUT Avg Type: Log-Pw	TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	М	түре Мининин Det P N N N N N kr2 2.404 40 GHz -2.83 dBm	Auto Tune
Log 10.0 0.00	2 2 2 2	1	3	-1.64.dFm	Center Freq 2.412000000 GHz
-20.0 -30.0 -40.0 -50.0	www.www.www.www.		V Catrillowigh	and all the al	Start Freq 2.387000000 GHz
-60.0					Stop Freq 2.437000000 GHz
Center 2.41200 GHz #Res BW 100 kHz		/ 300 kHz		Span 50.00 MHz 5 4.80 ms (1001 pts)	
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 6 - - - 7 - - -	× 2.413 25 GHz 2.404 40 GHz 2.419 60 GHz	4.36 dBm -2.83 dBm -3.70 dBm	INCTION FUNCTION WID	TH FUNCTION VALUE	Freq Offset 0 Hz
8 9 9 10 10 11 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10			STA	TUS	

							1.5		lannei					
		rum Ar	nalyzer - Sw	vept SA										
LXI R		RF			NU-		SEN	ISE:INT	Δυσ Τι	ALIGN AU' vpe: Log-P			AM Jan 10, 2015 CE 1 2 3 4 5 6	Frequency
Cen		req	2.4370		PNO: Fast IFGain:Low		Trig: Free #Atten: 30			ype. Log-r	wi	TYI	PE MWWWWW ET P N N N N N	
	B/div	Re	f 20.00	dBm						Μ	lkr2 2.		40 GHz 04 dBm	Auto Tune
Log 10.0 0.00					2 ²	2	all and the second s						-1.70.dBm	Center Freq 2.437000000 GHz
-20.0		. Mrster	wwwww							L. Landardon	mulun	Monney	1 - Contraction of the second	Start Freq 2.412000000 GHz
-50.0 -60.0 -70.0	-												- ANNAN -	Stop Freq 2.462000000 GHz
	ter 2. s BW)0 GHz kHz		#V	BW :	300 kHz			Swee			0.00 MHz (1001 pts)	CF Step 5.000000 MHz
MK 1 2 3 4 5 6		RC SCI 1 f 1 f 1 f		2.429	25 GHz 40 GHz 60 GHz		4.30 dE -3.04 dE -4.22 dE	3m 3m		FUNCTION WI	DTH	FUNCTIO		Auto Man Freq Offset 0 Hz
7 8 9 10 11 12														
MSG										ST	ATUS			

Figure Channel 6:

Figure Channel 11:

Agilent Spectrum Analyzer - Swe					-
⊠ RL RF 50 Ω Center Freq 2.46200		SENSE:INT	ALIGN AL Avg Type: Log-F	Wr TRACE 123456	Frequency
10 dB/div Ref 20.00 (IFGain:Low	#Atten: 30 dB	N	_{Der} PNNNNN /kr2 2.454 40 GHz -3.20 dBm	Auto Tune
10.0	2 All and a second seco	- Andrey marked	3	1 73 dBm	Center Freq 2.462000000 GHz
-20.0 -30.0 -40.0 -50.0 metalawaya ang ang ang ang ang ang ang ang ang an				and with a hard and and a second	Start Fred 2.437000000 GHz
-50.0					Stop Fred 2.487000000 GHz
Center 2.46200 GHz #Res BW 100 kHz MKB MODE TRC SCL	#VBW	300 kHz	Swe	Span 50.00 MHz ep 4.80 ms (1001 pts) IDTH EUNCTION VALUE	CF Step 5.000000 MH <u>Auto</u> Mar
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2.463 25 GHz 2.454 40 GHz 2.469 60 GHz	4.27 dBm -3.20 dBm -3.73 dBm			Freq Offse 0 H;
7 8 9 10 11 12					
MSG			s	TATUS	

Product	:	ASUS Home Gateway
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	15200	>500	Pass
6	2437	15200	>500	Pass
11	2462	15200	>500	Pass

Figure Channel 1:

Center Freq 2.412000000 GHz Trig: Free Run Watten: 30 dB Avg Type: Log-Pwr Trace [1 2 3 4 5 6 Wee [1 2 3 4 5 6] Frequency 0 dB/div Ref 20.00 dBm -4.13 dBm -4.13 dBm Auto Tune 100 -4.13 dBm -4.13 dBm -27-6m Center Freq 2.41200000 GHz -27-6m 000 -27-6m -4.13 dBm -27-6m -4.13 dBm -27-6m 100 -27-6m -4.13 dBm -27-6m -27-6m -27-6m 000 -27-6m -4.13 dBm -27-6m -27-6m -27-6m 000 -27-6m -4.13 dBm -27-6m -27-6m -27-6m -27-6m 000 -27-6m -27-6m <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Avg Type: Log-Pwr Trequency PN0: Fast						
Ingright Dig the Dig this Ingright Dig this Ingright Dig this Ingright Dig this Ingright Dig this Microson dig this Microson dig this Microson dig this Ingright Dig this Microson dig this Odd dig this			SENSE:INT			Frequency
Indication #Atten: 30 dB Der P NNNN Mkr2 2.404 40 GHz Auto Tune 0 dB/div Ref 20.00 dBm -4.13 dBm 100 -4.13 dBm -2746n 0.00 -2746n -2746n 0.01 -2746n -2746n 0.02 -2746n -2746n 0.02 -2746n -2746n 0.03 -2746n -2746n 0.04 -2746n -2746n 0.05 -2746n -2746n 0.06 -274700000 GHz 2.41200000 GHz -2746n 2.41200 GHz -2746n	Center Freq 2.4120	00000 GHz	Trig: Free Run	Avg Type: Log-Pwr	TYPE M WAAAAAAAA	
O dB/div Ref 20.00 dBm -4.13 dBm 0 dB/div Ref 20.00 dBm -4.13 dBm 0 dB/div Ref 20.00 dBm -4.13 dBm 0 dD/div 2 -4.13 dBm 0 dD/div -4.13 dBm 1 N 1 f 2.413 25 GHz 3.29 dBm 1 N 1 f 2.413 26 GHz -4.13 dBm 1 N 1 f 2.413 26 GHz -4.13 dBm 1 N 1 f 2.413 26 GHz -4.13 dBm 1 N 1 f 2.413 26 GHz -4.13 dBm 1 N 1 f 2.413 26 GHz -4.13 dBm					DET P N N N N N	
0 dB/div Ref 20.00 dBm -4.13 dBm 0 dB/div Q 1 -4.13 dBm 0 d Q -27+den -27+den 0 d Q -27+den -27+den -27+den				Mkr	2 2 404 40 CH7	Auto Tune
Og Og<		-15		IVINI		
100 2 1 3 27448 241200000 GH 100 200 3 27448 241200000 GH 241200000 GH 200 300 3 27448 3 27448 241200000 GH 200 300 <td>10 dB/div Ref 20.00</td> <td>dBm</td> <td></td> <td></td> <td>-4.10 0.011</td> <td></td>	10 dB/div Ref 20.00	dBm			-4.10 0.011	
0.00 0.00	10.0		<u> </u> ∧1			Conter Free
10.0 10.0	0.00	▲ ² .		3	0.71 10	
20.0 30.0 40.0 90.0	0.00	manne	and and produced and and produced and and and and and and and and and an	har	-2./1 aBm	2.412000000 GH
Start Free	-10.0					
30.0 40.0	-20.0					
Stop Free Stop Free 20.0 Image: Stop Free 2.43700000 GHz Center 2.41200 GHz #VBW 300 kHz Span 50.00 MHz Center 2.41200 GHz #VBW 300 kHz Sweep 4.80 ms (1001 pts) 1 N 1 f 2.413 25 GHz 3.29 dBm 2 N 1 f 2.413 25 GHz 3.29 dBm 2 N 1 f 2.404 40 GHz 4.13 dBm 3 N 1 f 2.419 60 GHz 4.75 dBm 4 - - - - - 6 - - - - - 7 - - - - - 9 - - - - - 10 - - - - - 11 - - - - - - 11 - - - - - - 11 - </td <td>-30.0</td> <td></td> <td></td> <td>h</td> <td></td> <td></td>	-30.0			h		
Stop Free Stop Free 20.0 Image: Stop Free 2.43700000 GHz Center 2.41200 GHz #VBW 300 kHz Span 50.00 MHz Center 2.41200 GHz #VBW 300 kHz Sweep 4.80 ms (1001 pts) 1 N 1 f 2.413 25 GHz 3.29 dBm 2 N 1 f 2.413 25 GHz 3.29 dBm 2 N 1 f 2.404 40 GHz 4.13 dBm 3 N 1 f 2.419 60 GHz 4.75 dBm 4 - - - - - 6 - - - - - 7 - - - - - 9 - - - - - 10 - - - - - 11 - - - - - - 11 - - - - - - 11 - </td <td>10.0 h 4.1 A MAN</td> <td>mar how all how and</td> <td></td> <td>MAN WWW</td> <td>hopping and a</td> <td>2.387000000 GH</td>	10.0 h 4.1 A MAN	mar how all how and		MAN WWW	hopping and a	2.387000000 GH
Stop Fre Stop Fre 2.00 Image: Stop Fre 2.43700000 GHz Center 2.41200 GHz #VBW 300 kHz Span 50.00 MHz CF Step Center 2.41200 GHz #VBW 300 kHz Sweep 4.80 ms (1001 pts) Auto 1 N 1 f 2.413 25 GHz 3.29 dBm 2 N 1 f 2.413 25 GHz 3.29 dBm 3 N 1 f 2.404 40 GHz 4.13 dBm 3 N 1 f 2.419 60 GHz 4.75 dBm 4 - - - - - 6 - - - - - 7 - - - - - - 9 - - - - - - - 11 - - - - - - - - 12 - - - - - - -	-40.0				and the state of t	
XXX XXX XXX XXX XXX XXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-50.0					
XIII XIII XIII XIIII XIIIII XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-60.0					
Span 50.00 GHz Span 50.00 MHz CF Step Res BW 100 kHz #VBW 300 kHz Sweep 4.80 ms (1001 pts) CF Step 1 N 1 f 2.413 25 GHz 3.29 dBm FUNCTION WIDTH FUNCTION VALUE 2 N 1 f 2.413 25 GHz 3.29 dBm FUNCTION WIDTH FUNCTION VALUE 3 N 1 f 2.419 60 GHz -4.76 dBm -	-70.0					2.437000000 GH
Res BW 100 kHz #VBW 300 kHz Sweep 4.80 ms (1001 pts) CF Ste 5.000000 MH 1 N 1 f 2.413 25 GHz 3.29 dBm FUNCTION FUNCTION wIDTH FUNCTION VALUE Auto Mat 2 N 1 f 2.404 40 GHz 4.13 dBm FUNCTION FUNCTION wIDTH FUNCTION VALUE F	10.0					
Res BW 100 KHZ #VBW 300 KHZ Sweep 4.80 ms (1001 pts) 5.000000 MH Auto X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 2.413 25 GHz 3.29 dBm Auto Mato 2 N 1 f 2.413 25 GHz 3.29 dBm FUNCTION WIDTH FUNCTION VALUE 3 N 1 f 2.404 40 GHz -4.13 dBm Auto Mato 3 N 1 f 2.419 60 GHz -4.75 dBm Auto Freq Offset 6 - - - - - - Auto 7 - - - - - - 9 - - - - - - 10 - - - - - - 11 - - - - - -	Center 2.41200 GHz				Span 50.00 MHz	
Model TFC SEL X Y FUNCTION FUNCTION width FUNCTION value 1 N 1 f 2.413 25 GHz 3.29 dBm Auto Mate 2 N 1 f 2.404 40 GHz -4.13 dBm Function F	#Res BW 100 kHz	#VBW	/ 300 kHz	Sweep	4.80 ms (1001 pts)	
Interference A 1 f 2.413 25 GHz 3.29 dBm Toteler Totel						
2 N 1 f 2.404 40 GHz 4.13 dBm 3 N 1 f 2.419 60 GHz 4.75 dBm Freq Offsee 0 H 4 - - - - - 0 H 5 - - - - - 0 H 6 - - - - - 0 H 7 - - - - - - 0 H 9 - - - - - - - 0 H 11 -				UNCTION FUNCTION WIDTH	FUNCTION VALUE	
4 - - - - - - - - - - 0 0 - 0 - 0 - 0 - - 0 - 0 - - 0 - 0 - - - - 0 - - - 0 - - - - 0 - 0 - - - - 0 - - - - 0 - - - - 0 - - - - 0 - - - - - - 0 - - 0 - - - - 0 - - - - 0 - - - 0 - - - - 0 - - - - 0 - - - 0 - - - - 0 - - - - 0 - - - - 0 - - - - 0 - 0 - - 1 - 1 - 1 - - - - <td>2 N 1 f</td> <td>2.404 40 GHz</td> <td>-4.13 dBm</td> <td></td> <td></td> <td></td>	2 N 1 f	2.404 40 GHz	-4.13 dBm			
5 6 0 6 0 7 0 9 0 11 0 12 0		2.419 60 GHz	-4.75 dBm			Freq Offse
6 7 7 7 7 7 7 8 7 7 9 10 10 10 10 10 12 10 10						он
8	6					
9						
	10					
	11					
SG STATUS			I			
	MSG			STATUS	5	

Agilent Spectrum Analyzer - Swept SA		
222 RL RF 50 Ω AC SENSE:INT ALIGN AUTO Center Freq 2 437000000 GHz Avg Type: Log-Pwr	11:10:19 AM Jan 10, 2015 TRACE 1 2 3 4 5 6	Frequency
Center Freq 2.437000000 GHz Avg Type: Log-Pwr PN0: Fast IFGain:Low #Atten: 30 dB	TYPE MWWWWW DET P NNNN	
10 dB/div Ref 20.00 dBm	r2 2.429 40 GHz -4.47 dBm	
		Conton From
	-2.86 dBm	Center Fred 2.437000000 GHz
Martin and a start	-2:00 uBit	2.437000000 GH2
-10.0		
-20.0		Start Fred
-30.0		2.412000000 GH
-40.0	When warmen the work war war	
30.0	I MARINA MAN	
-60.0		Stop Free
-70.0		2.462000000 GH:
-70.0		
Center 2.43700 GHz	Span 50.00 MHz	CF Step
#Res BW 100 kHz #VBW 300 kHz Sweep	4.80 ms (1001 pts)	5.000000 MH
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
1 N 1 f 2.438 30 GHz 3.14 dBm		
2 N 1 f 2.429 40 GHz -4.47 dBm 3 N 1 f 2.444 60 GHz -4.63 dBm		Freq Offse
4		
5 6 C		UH
7		
8 9		
10		
11 12 1		
ISG STATU	JS	

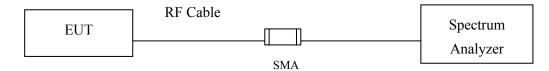
Figure Channel 6:

Figure Channel 11:

Agilent Spectrum Analyzer - Swe	pt SA										
κ RL RF 50 Ω Center Freq 2.46200	AC 0000 GHz PN0: Fast C	SENSE:IN	Avg Type	align auto : Log-Pwr	TRAC	M Jan 10, 2015 E 1 2 3 4 5 6 E M WWWWW	Frequency				
	IFGain:Low #Atten: 30 dB Der[P NNNN Mkr2 2.454 40 GHz -4.50 dBm -4.50 dBm										
10.0 0.00 -10.0	2 Constant		1			-2.63 dBm	Center Freq 2.462000000 GHz				
-20.0 -30.0 -40.0 -50.0 material with the state of the st				wellyhowshill	1 Martin	WWWWWWW	Start Freq 2.437000000 GHz				
-50.0							Stop Fred 2.487000000 GHz				
Center 2.46200 GHz #Res BW 100 kHz MKR MODE INTER SCI	#VBW	/ 300 kHz	FUNCTION FUN	Sweep 4		0.00 MHz 1001 pts)	CF Step 5.000000 MHz <u>Auto</u> Man				
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	2.463 25 GHz 2.454 40 GHz 2.469 60 GHz	3.37 dBm -4.50 dBm -4.49 dBm					Freq Offset 0 Hz				
7 8 9 10 11 12											
MSG		4		STATUS							

8. **Power Density**

8.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2014
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2014
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014
Note				

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2009; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

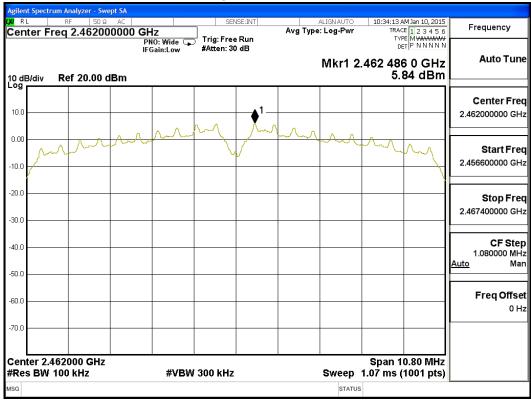
± 1.27 dB

8.6. Test Result of Power Density

Product	:	ASUS Home Gateway
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
1	1 2412		< 8dBm	Pass	
6	2437	5.810	< 8dBm	Pass	
11	2462	5.840	< 8dBm	Pass	

			- 15		uniti i	•			
Agilent Spect	rum Analyzer - Swept SA								
LXI RL	RF 50 Ω AC		SEM	ISE:INT		ALIGN AUTO	10:17:27 4	M Jan 10, 2015	_
Center F	req 2.41200000	GHz]		Avg Type	: Log-Pwr	TRAC	E123456	Frequency
		PNO: Wide 😱	Trig: Free				TYP		
		IFGain:Low	#Atten: 30	dB			Di		
						Mkr1	2.412 4	93 GHz	Auto Tune
10 dB/div	Ref 20.00 dBm						4.	79 dBm	
Log	Rei 20.00 dBill					1			
									Center Freq
40.0									
10.0				1					2.412000000 GHz
		0		X A	n				
0.00	0 0	n And	m	Jun	$\Delta \Delta \Delta$	AA			
	1 million	~	\rightarrow	1		m m (M	Λ α	Start Freq
1			V	\sim			<u> </u>		2.406637500 GHz
-10.0								1	2.400007000 0112
								Y	
-20.0									
									Stop Freq
									2.417362500 GHz
-30.0									
-40.0									CF Step
40.0									1.072500 MHz
									<u>Auto</u> Man
-50.0									
-60.0									Freq Offset
-00.0									0 Hz
-70.0									
Center 2	412000 GHz						Span 1	0.73 MHz	
#Res BW		#VBW	300 kHz			Sweep	1.07 ms (
MSG						STATUS	5		


Figure Channel 1:

				ITE	guite Cl	iannel	υ.			
	rum Analyzer - Swe									
a RL Center F	RF 50 Ω Freq 2.43700	AC 0000 GH	z		ISE:INT		ALIGNAUTO e: Log-Pwr	10:27:10 AM Jan TRACE 1 2	3456	Frequency
10 dB/div	Ref 20.00 d	IFO	lO: Wide 🕞 Sain:Low	∫ Trig: Free #Atten: 30			Mkr1 2	™PEIMM DETPN 436 481 6 5.81 0	GHz	Auto Tun
10.0				1						Center Fre 2.437000000 GH
10.00	m	<u>, </u>	<u></u>				ha	m	~	Start Fre 2.431600000 G⊦
20.0										Stop Fre 2.442400000 G⊦
i0.0										CF Ste 1.080000 MH <u>Auto</u> Ma
i0.0										Freq Offs₀ 0 ⊦
70.0										
	437000 GHz 100 kHz		#VBW	300 kHz		1	Sweep	Span 10.80 1.07 ms (100′	MHz 1 pts)	
ISG							STATUS			

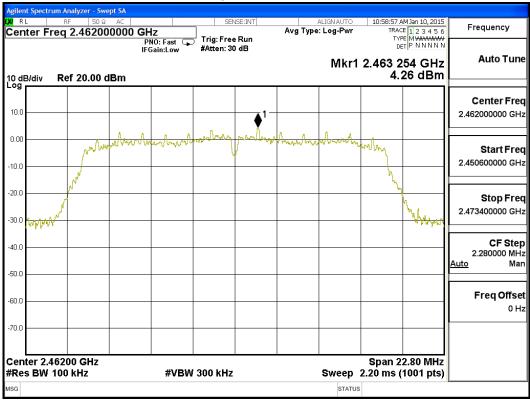
Figure Channel 6:

Figure Channel 11:

Product	:	ASUS Home Gateway
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	· ·		Result
1	2412	4.370	< 8dBm	Pass
6	2437	4.360	< 8dBm	Pass
11	2462	4.260	< 8dBm	Pass

Figure Channel 1:


	it Spectrum A										
Cen		F 50 Ω 2.41200	AC 0000 GH	lz	1			ALIGNAUTO : Log-Pwr	TRAC	M Jan 10, 2015 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 dE Log	3/div R e	ef 20.00 d	IFO	NO: Fast 🕞 Gain:Low	#Atten: 30			Mkr1	2.413 2		Auto Tune
10.0						1-					Center Freq 2.412000000 GHz
0.00 -10.0		Jow Mar	Monte	walnunde	www.alalaman	produces.	Awnorthe	Anorty			Start Freq 2.400600000 GHz
-20.0 -30.0	-Ar Small	<u></u>								Wingley A	Stop Freq 2.423400000 GHz
-40.0											CF Step 2.280000 MH: <u>Auto</u> Mar
-60.0											Freq Offset 0 Hz
-70.0	ter 2.412								Sman 2	2.00 MU	
	s BW 100			#VBW	300 kHz				2.20 ms (2.80 MHz 1001 pts)	
MSG								STATU	S		

			0:	iannel	gure C	ГІЗ					
								pt SA	nalyzer - Swe	t Spectrum Ar	Agilen
Frequency	M Jan 10, 2015 E 1 2 3 4 5 6 E MWWWWW	TRAC	ALIGN AUTO : Log-Pwr		Bun]				ter Freq	Cen
Auto Tune	54 GHz 36 dBm	2.438 2	Mkr1			#Atten: 30	NO: Fast 🌘 Gain:Low	IFO	f 20.00 d	8/div R e	10 dE
Center Fred 2.437000000 GHz					∮ 1-						10.0
Start Freq 2.425600000 GHz		mlm	Amoralia	Annthen	pulle linde		maturat	mhmmM	pulled		0.00
Stop Fred 2.448400000 GHz	Withey App								<u>/</u>	W. Allow Jaw	-20.0 -30.0
CF Step 2.280000 MH; Auto Mar											40.0 50.0
Freq Offse 0 H:											60.0
	2.80 MHz									er 2.4370	
	1001 pts)	2.20 ms (Sweep			300 kHz	#VBW		KHZ	8W 100	#Res

Figure Channel 6:

Figure Channel 11:

:	ASUS Home Gateway
:	Power Density Data
:	No.3 OATS
:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)
	:

Channel No.	FrequencyMeasure Level(MHz)(dBm)		Limit (dBm)	Result
1	2412	3.190	< 8dBm	Pass
6	2437	3.410	< 8dBm	Pass
11	2462	3.100	< 8dBm	Pass

Figure Channel 1:

	ectrum Anal	lyzer - Swe	pt SA								
Center	Freq 2	50 Ω . 41200	AC 0000 GH		1			ALIGN AUTO : Log-Pwr	TRAC	M Jan 10, 2015 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 dB/div Log	v Ref	20.00 d	IFO	NO: Fast 🕞 Gain:Low	#Atten: 30			Mkr1	2.413 2	54 GHz 19 dBm	Auto Tune
10.0						1-					Center Fred 2.412000000 GHz
-10.0	, v	mm	, alou la	walkar	water for	montana	Annahan	Andy	mlmm		Start Free 2.400600000 GH
-20.0	ANN									A Marily	Stop Free 2.423400000 GH
-40.0	<u> </u>										CF Ste 2.280000 M⊦ <u>Auto</u> Ma
-60.0											Freq Offse 0 ⊢
-70.0											
	2.41200 W 100 k			#VBW	300 kHz	1		Sweep	Span 2 2.20 ms (2.80 MHz 1001 pts)	
MSG								STATUS	3		

11:10:35 AM Jan 10, 2015 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N RL SENSE:INT SI TGN & Center Freq 2.437000000 GHz Frequency Avg Type: Log-Pwr GHZ PNO: Fast IFGain:Low #Atten: 30 dB Auto Tune Mkr1 2.438 254 GHz 3.41 dBm 10 dB/div Log Ref 20.00 dBm **Center Freq** 10.0 2.437000000 GHz **∮**¹ wanter where the water and the second and the second secon 0.00 Aundhund walnut war Start Freq 2.425600000 GHz -10.0 -20.0 Stop Freq 2.448400000 GHz "MJ/M -30.0 NN CF Step -40.0 2.280000 MHz Auto Man -50.0 Freq Offset -60.0 0 Hz -70.0 Center 2.43700 GHz Span 22.80 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.20 ms (1001 pts) ISG STATUS

Figure Channel 6:

Figure Channel 11:

	ım Analyzer - Swe									
Center Fr	RF 50 Ω eq 2.46200	PI	VO: Fast 🕞	Trig: Free			ALIGNAUTO : Log-Pwr	TRAC	M Jan 10, 2015 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 dB/div	Ref 20.00 c	IFG	Gain:Low	#Atten: 30	0 dB		Mkr1	2.463 2	77 GHz 10 dBm	Auto Tune
10.0					1					Center Freq 2.462000000 GHz
-10.0	rowalin	and them An	muthin	www.	provide burge	An working	Amata	and more		Start Fred 2.450600000 GHz
-20.0										Stop Fred 2.473400000 GH:
-40.0 -50.0									יישי <i>א</i> י	CF Step 2.280000 MH <u>Auto</u> Mar
-60.0										Freq Offse 0 H
-70.0 Center 2.4									2.80 MHz	
#Res BW ' ^{MSG}	I UU KHZ		#vBW	300 kHz			Sweep STATUS		1001 pts)	

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs