

RF Exposure Evaluation declaration

Product Name	: Dual-Band Wireless-AC PCI-E Adapter
Trade Name	: ASUS
Model No.	: PCE-AC51
FCC ID.	: MSQ-PCEAC1N00

Applicant : ASUSTeK COMPUTER INC. Address : 4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	:	Aug. 22, 2016
Date of Declaration	:	Sep. 20, 2016
Report No.	:	1680463R-RF-US-Exp
Report Version	:	V1.0
lac-m	A	TAF
	111	Testing Laboratory
and a later of the		3024

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.

1. **RF Exposure Evaluation**

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR	MAXIMUM	PERMISSIBI E	EXPOSURE	(MPF)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)
	(A) Limits for C	ccupational/ Contr	ol Exposures	
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

Friis Formula Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

 $Pd = power density in mW/cm^{2}$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78° M.

1.3. Test Result of RF Exposure Evaluation

Product	Dual-Band Wireless-AC PCI-E Adapter	
Test Mode	Transmit	
Test Condition	RF Exposure Evaluation	

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.05dBi or 1.60 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11b (ANT 0)					
WLAN Function	WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)		
1	2412	131.2200	0.04177		
6	2437	176.6038	0.05621		
11	2462	90.5733	0.02883		

IEEE 802.11g (ANT 0)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
1	2412	44.5656	0.01419	
6	2437	157.7611	0.05022	
11	2462	37.9315	0.01207	

Product	Dual-Band Wireless-AC PCI-E Adapter
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.05dBi or 1.60 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11b (ANT 1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
1	2412	64.7143	0.02060	
6	2437	187.4995	0.05968	
11	2462	111.9438	0.03563	

IEEE 802.11g (ANT 1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
1	2412	34.1979	0.01089	
6	2437	101.6249	0.03235	
11	2462	47.6431	0.01517	

Product	Dual-Band Wireless-AC PCI-E Adapter
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.05 dBi or 1.60 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11n (20MHz) (ANT 0+1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
1	2412	57.4916	0.01830	
6	2437	182.6155	0.05813	
11	2462	52.9739	0.01686	

IEEE 802.11n (40MHz) (ANT 0+1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
3	2422	32.0316	0.01020	
6	2437	60.6804	0.01932	
9	2452	29.2858	0.00932	

Product	Dual-Band Wireless-AC PCI-E Adapter
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is: 3.61dBi or 2.30 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11a (ANT 0)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
36	5180	61.3762	0.02808	
40	5220	65.3131	0.02989	
44	5240	38.4592	0.01760	

IEEE 802.11a (ANT 0)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
149	5745	190.5461	0.08719	
157	5785	207.0141	0.09472	
165	5825	201.3724	0.09214	

Product	Dual-Band Wireless-AC PCI-E Adapter
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is: 3.61dBi or 2.30 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11a (ANT 1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
36	5180	42.3643	0.01938	
40	5220	84.1395	0.03850	
44	5240	65.9174	0.03016	

IEEE 802.11a (ANT 1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
149	5745	138.6756	0.06345	
157	5785	181.1340	0.08288	
165	5825	159.2209	0.07285	

Product	Dual-Band Wireless-AC PCI-E Adapter
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is: 3.61dBi or 2.30 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11 n (20MHz) (ANT 0+1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
36	5180	109.9828	0.05032	
40	5220	36.6887	0.01679	
44	5240	32.3181	0.01479	

IEEE 802.11 n (20MHz) (ANT 0+1)				
WLAN Function				
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)	
149	5745	276.6810	0.12660	
157	5785	339.6737	0.15542	
165	5825	303.3070	0.13878	

Product	Dual-Band Wireless-AC PCI-E Adapter
Test Mode	Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is: 3.61dBi or 2.30 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11 n (40MHz) (ANT 0+1)				
WLAN Function				
ChannelChannel Frequency (MHz)Output Power to Antenna (mW)Power Density at R = 20 (mW/cm²)				
38	5190	75.5092	0.03455	
46	5230	179.8871	0.08231	

IEEE 802.11 n (40MHz) (ANT 0+1)						
WLAN Function						
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)			
151	5755	230.2339	0.10535			
159	5795	261.1455	0.11949			

Product	Dual-Band Wireless-AC PCI-E Adapter		
Test Mode	Transmit		
Test Condition	RF Exposure Evaluation		

Antenna Gain: The maximum Gain measured in fully anechoic chamber is: 3.61dBi or 2.30 in linear scale.

Output Power into Antenna & RF Exposure Evaluation Distance:

IEEE 802.11ac (80MHz) (ANT 0+1)						
WLAN Function						
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)			
42	5210	71.2910	0.03262			

IEEE 802.11ac (80MHz) (ANT 0+1)						
WLAN Function						
Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)			
155	5775	97.2879	0.04452			